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CIRCULAR TIME SERIES
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A class of circular processes based on Gaussian subordination is introduced. This allows for flexible modelling of directional
time series with long-range dependence. Based on limit theorems for subordinated processes and consistent estimation of
nuisance parameters, asymptotic confidence intervals for the mean direction are derived. Extensions to cases where the direction
depends on explanatory variables are also considered. Simulations and a data example illustrate the proposed method.
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1. INTRODUCTION

Directional or circular data arise in many scientific fields such as meteorology, oceanography, biology, neuro-
science, bioinformatics, geoscience and cosmology. Often observations occur in a temporal sequence. Given a
circular time series 𝜗1,… , 𝜗n ∈ [0, 2𝜋) one of the first questions is inference about the mean direction 𝜇 defined by

E
[
exp (i𝜗)

]
= R exp (i𝜇) , (1)

where R > 0. Here, it is assumed that 𝜗 and 𝜗1,… , 𝜗n all have the same (marginal) distribution on [0, 2𝜋). In
this article, we consider inference about 𝜇 for circular time series that exhibit long-range dependence. For i.i.d.
observations Fisher and Lewis (1983) introduced simple asymptotic confidence intervals for 𝜇, based on the central
limit theorem for (

C̄, S̄
)
=

(
n−1

n∑
j=1

cos 𝜗j, n−1
n∑

j=1

sin𝜗j

)
.

For weakly dependent observations a similar central limit theorem holds. However, in some applications tempo-
ral dependence is much stronger such that S̄, and possibly also C̄, has a slower rate of convergence than under
independence or short-range dependence. An example is shown in Figures 1 and 2. Figure 2(d) displays the peri-
odogram (in log–log coordinates) of sin(𝜗j−�̂�) where 𝜗j are daily wind directions observed in Milwaukee between
30 January and 31 December 2017, and �̂� is the estimated mean direction. The negative slope in the log–log plot
indicates a hyperbolic pole of the spectral density at the origin, and thus long-range dependence.
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Figure 1. Milwaukee daily average wind directions between 30 January and 31 December, 2017. Here 𝜗j (j = 1,… , n) are
visualized as points on the unit circle, connected to the origin. Each plot corresponds to a 2-week periods, that is 14 consecutive

observations [Color figure can be viewed at wileyonlinelibrary.com]

In this article, a class of circular processes based on Gaussian subordination is introduced. The approach allows
for flexible modelling of circular time series with long-range dependence and arbitrary marginal circular dis-
tributions. Limit theorems for C̄ and S̄ and consistent estimation of nuisance parameters are then combined to
obtain asymptotic confidence intervals for 𝜇. The results are generalized to non-stationary circular processes where
the mean direction depends on explanatory variables. Simulations and a data example illustrate the proposed
methods.

2. STRONGLY DEPENDENT CIRCULAR TIME SERIES

There is an extended literature on circular data. Excellent books on the topic are for instance Mardia (1972),
Fisher (1993), Mardia and Jupp (1999), Jammalamadaka and SenGupta (2001), Pewsey and Neuhauser (2013)
and Ley and Verdebout (2017). Most methods have been developed for i.i.d. observations. Circular processes and
circular time series analysis are considered for example in Wehrly and Johnson (1980), Breckling (1989), Fisher
and Lee (1994), Kato (2010), Modlin et al. (2012) and Wang and Gelfand (2014). For stationary circular time

J. Time Ser. Anal. 41: 210–228 (2020) © 2019 The Authors. wileyonlinelibrary.com/journal/jtsa
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212 J. BERAN AND S. GHOSH

Figure 2. Milwaukee daily wind directions: time series plot of Ŷj = sin
(
𝜗j − �̂�

)
(a); windrose plot and an approximate

95%-confidence interval for 𝜇 based on (13) (b); empirical autocorrelation function of Ŷj (c); and periodogram of Ŷj (in
log–log-coordinates) together with the fitted spectral density (d)

series, autocorrelation can be defined for instance by

𝜌circular (k) =
E
[
sin

(
𝜗j − 𝜇

)
sin

(
𝜗j+k − 𝜇

)]
E
[
sin2 (𝜗1 − 𝜇

)] (2)

(Jammalamadaka and Sarma, 1988). With the exception of Di Marzio et al. (2012), circular time series models dis-
cussed in the literature are weakly dependent. In contrast, here we will define circular time series with long-range
dependence (or strong dependence). In the context of real valued second-order stationary time series Zj ∈ ℝ
(j ∈ ℤ) with autocovariance function 𝛾Z(k) = cov(Zj,Zj+k), Zj is said to exhibit long-range (or strong) dependence,

wileyonlinelibrary.com/journal/jtsa © 2019 The Authors. J. Time Ser. Anal. 41: 210–228 (2020)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12500
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if
∑

𝛾Z(k) = ∞. More specifically, it is often assumed that 𝛾Z(k) ∼ c𝛾,Zk2d−1 (k → ∞), or that the spectral density
has a pole at the origin characterized by

fZ (𝜆) =
1

2𝜋

∞∑
k=−∞

𝛾Z (k) e−ik𝜆 ∼
𝜆→0

cf ,Z |𝜆|−2d (3)

with d ∈ (0, 1

2
) and 0 < c𝛾,Z , cf ,Z < ∞. Here, ‘∼’ means that the ratio of the left- and right-hand side converges to

1. For references to the extended literature on long-memory processes see for instance Beran (1994), Giraitis et
al. (2012) and Beran et al. (2013).

To obtain a circular time series with long-range dependence, we apply the method of Gaussian subordination.
Thus, let (Zj, j ∈ ℤ) be a stationary Gaussian process with E(Zj) = 0, var(Zj) = 1, autocovariance function
𝛾Z and spectral density fZ such that (3) holds. Moreover, let G be an absolutely continuous circular distribution
function with density g = G′, and denote by Φ and 𝜑 = Φ′ the standard normal distribution and density function
respectively. Recall that a circular distribution is a probability distribution of a random variable whose values are
angles, usually taken to be in the range [0, 2𝜋). We assume that the observed circular process 𝜗j is defined by

𝜗j = G−1
(
Φ

(
Zj

))
(j ∈ ℤ). (4)

More generally, we may define 𝜗j = Ψ
(
Zj

)
where Ψ ∶ ℝ → [0, 2𝜋) is a Lebesgue measurable function. A time

series of this type is said to be subordinated to the Gaussian process Zj (see e.g. Rosenblatt, 1961, 1979; Taqqu
1975, 1979; Dobrushin and Major, 1979; Dobrushin, 1980). Note that the more specific definition (4) is useful for
establishing an explicit link to prespecified circular distribution functions.

For Gaussian subordination models, Hermite polynomials, defined by

Hq (z) = (−1)q exp
(1

2
z2
) dq

dzq
exp

(
−1

2
z2
)

(q ∈ ℕ)

play an essential role. In the L2-space of real valued functions H with ‖H‖2 = ∫ |H(z)|2𝜑(z)dz < ∞, Hq (q =
0, 1,…) build an orthogonal basis. In particular, we have an L2-representation

H (z) = E [H (Z)] +
∞∑

q=1

aq

q!
Hq (z) ,

where Z is a standard normal random variable, and

aq =
⟨

H,Hq

⟩
= ∫

∞

−∞
H (z)Hq (z)𝜑(z)dz

is the qth Hermite coefficient. A function H is called of Hermite rank m, if am ≠ 0 and aj = 0 (j < m) (Taqqu,
1975).

The long-memory properties of Zj are inherited by 𝜗j in the following sense.

Lemma 1. Let 𝜗j ( j ∈ ℤ) be defined by (4). Suppose furthermore that the Hermite rank of H(z) =
sin{G−1(Φ(z)) − 𝜇} is m ≥ 1 and d >

1

2
(1 − m−1). Then

𝜌circular (k) ∼
k→∞

cmk2dm−1 (5)

J. Time Ser. Anal. 41: 210–228 (2020) © 2019 The Authors. wileyonlinelibrary.com/journal/jtsa
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214 J. BERAN AND S. GHOSH

with

dm = 1
2
(1 + (2d − 1)m) ∈

(
0,

1
2

)
,

cm =
a2

mcm
𝛾,Z

m!E
[
sin2

(
𝜗1 − 𝜇

)] ,
and

am = ∫ Hm (z) sin{G−1(Φ(z)) − 𝜇}𝜑 (z) dz.

3. ASYMPTOTIC CONFIDENCE INTERVALS FOR THE MEAN DIRECTION

3.1. Confidence Intervals With Known Nuisance Parameters

The mean direction 𝜇 is defined by (1). A standard estimator of 𝜇 is defined by

exp (i�̂�) = R̄−1
(
C̄ + iS̄

)
, (6)

where R̄2 = C̄2 + S̄2. Simple asymptotic confidence intervals for 𝜇 are derived by Fisher and Lewis (1983) as
follows. Let 𝜗∗ = 𝜗 − 𝜇, E[exp(2i𝜗∗)] = 𝛼2 + i𝛽2, C̄∗ = n−1 ∑ cos 𝜗∗

j and S̄∗ = n−1 ∑ sin𝜗∗
j . Then E[exp(i𝜗∗)] =

exp(−i𝜇)E[exp(i𝜗)] = R, C̄∗ = R̄ cos(�̂� − 𝜇), S̄∗ = R̄ sin(�̂� − 𝜇), E(cos 𝜗∗) = R, E(sin 𝜗∗) = 0, E(cos 2𝜗∗) = 𝛼2,
E(sin 2𝜗∗) = 𝛽2, var(cos 𝜗∗) = 1

2
(1 + 𝛼2 − 2R2), var(sin𝜗∗) = 1

2
(1 − 𝛼2), and C̄∗2 + S̄∗2 = C̄2 + S̄2 = R̄2. Suppose

now that 𝜗j are i.i.d. Then

√
n

R̄ sin (�̂� − 𝜇)√
1

2

(
1 − 𝛼2

) →
d

Z, (7)

where Z is a standard normal variable. Thus, noting that

lim
n→∞

P

(||R̄ sin (�̂� − 𝜇)|| ≤ n− 1
2

√
1
2

(
1 − 𝛼2

)
z1−𝛼∕2

)
= 1 − 𝛼. (8)

an approximate confidence interval for 𝜇, at confidence level (1 − 𝛼), is given by

�̂� ± arcsin
⎛⎜⎜⎝
√

1

2

(
1 − 𝛼2

)
nR̄2

z1−𝛼∕2

⎞⎟⎟⎠ . (9)

Here, z1−𝛼∕2 denotes a (1 − 𝛼∕2)-quantile of the standard normal distribution. To estimate the unknown nuisance
parameter 𝛼2, Fisher and Lewis suggest �̂�2 = n−1 ∑ cos(2(𝜗j − �̂�)). Note that the length of confidence intervals
defined by (9) is at most 𝜋. For reasonable sample sizes, and asymptotically, this restriction does not matter. Note
also that in principle, in particular for very small sample sizes, the argument of the arcsine function could be
outside the range [−1, 1]. In such cases, the asymptotic formula given in (9) is not applicable, and a larger sample
size would be needed.

wileyonlinelibrary.com/journal/jtsa © 2019 The Authors. J. Time Ser. Anal. 41: 210–228 (2020)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12500
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Under the assumptions of Lemma 1, (7) no longer holds. Instead we have:

Theorem 1. Let 𝜗j ( j ∈ ℤ) be defined by (4), the process Zj has spectral density fZ such that (3) holds, and
denote by

a1 = ∫
∞

−∞
zH (z)𝜑 (z) dz

the first Hermite coefficient of

H (z) = sin
{

G−1 (Φ (z)) − 𝜇
}
.

Suppose that a1 ≠ 0. Then

n
1
2
−dS̄∗ →

d
a1

√
𝜈 (d) cf ,ZZ,

where Z ∼ N(0, 1) and

𝜈 (d) = 2 sin𝜋d
d (2d + 1)

Γ (1 − 2d)
(

d ∈
(

0,
1
2

))
.

Theorem 1 implies

lim
n→∞

P
(||R̄ sin (�̂� − 𝜇)|| ≤ a1nd−1∕2

√
𝜈 (d) cf ,Zz1−𝛼∕2

)
= 1 − 𝛼.

Therefore (9) has to be replaced by

�̂� ± arcsin
(

a1nd−1∕2
√

𝜈 (d) cf ,Zz1−𝛼∕2

)
. (10)

Remark 1. If a1 ≠ 0, then the length of confidence intervals given by (10) converges to zero at a slower rate
than under independence or short-range dependence. In cases where a1 = 0, the Hermite rank of H is at least two,
and a faster rate of convergence is obtained. However, the limiting distribution is no longer Gaussian and difficult
to compute in general.

Remark 2. The assumption of Hermite rank one is reasonable in most situations. As an example, consider
the von Mises and the wrapped normal distributions (see Section 4 for definitions). Figure 3 shows a1 for von
Mises distributions with scale parameter 0.05 ≤ 𝜅 ≤ 6 (full black line). Note that it is sufficient to vary 𝜅,
since a1 does not depend on 𝜇. These results are compared to the first Hermite coefficient of sin{G−1(Φ(z)) − 𝜇}
for wrapped normal distributions with 𝜎2 = 1∕𝜅 (dotted red line). The reason for matching 𝜎2 this way is
that, for 𝜅 → ∞, the von Mises distribution approximates the wrapped normal distribution with 𝜎2 = 1∕𝜅
(see e.g. Mardia and Jupp, 1999). Figure 3 shows that, for both distribution families, a1 is far from zero for all
values of 𝜅.

Remark 3. Note that (10) is asymptotically equivalent to

�̂� ± arcsin
(

a1n−1∕2
√
𝜈 (d) fZ (n−1)z1−𝛼∕2

)
. (11)

Setting 𝜈(0) = limd→0𝜈(d) = 2𝜋, (11) is also applicable to processes defined by (4) with d = 0. In particular, for i.i.d
observations (11) is asymptotically equivalent to the formula obtained by Fisher and Lewis (1983) (Equation (9)).

J. Time Ser. Anal. 41: 210–228 (2020) © 2019 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12500 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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Figure 3. First Hermite coefficient a1 of sin{G−1(Φ(Z)) − 𝜇} for von Mises distributions with 0.05 ≤ 𝜅 ≤ 6 (full black line)
and wrapped normal distributions with 𝜎2 = 1∕𝜅 (dotted red line) [Color figure can be viewed at wileyonlinelibrary.com]

3.2. Confidence Intervals With Unknown Nuisance Parameters

In practice, formula (10) cannot be used directly, because it includes the unknown nuisance parameters cf ,Z , d and
a1. Note in particular that Zj is an unobserved latent process and the transformation in (4) is unknown. To obtain
data based confidence intervals, we note first that the autocovariance function and the spectral density of

Yj = sin
(
𝜗j − 𝜇

)
=

∞∑
q=1

aq

q!
Hq

(
Zj

)
are of the form

𝛾Y (k) =
∞∑

q=1

a2
q

q!
𝛾

q
Z (k) ∼

k→∞
a2

1𝛾Z (k)

and

fY (𝜆) ∼
𝜆→0

cf ,Y |𝜆|−2d
,

where cf ,Y = a2
1cf ,Z . Thus, asymptotically (10) is equivalent to

�̂� ± arcsin
(

nd−1∕2
√

𝜈 (d) cf ,Yz1−𝛼∕2

)
. (12)

Consistent estimation of cf ,Y and d from an observed series Y1,… ,Yn is well developed in the literature. The
best-known methods include the Geweke Porter–Hudak estimator (Geweke and Porter-Hudak, 1983; Robinson,
1995a, 1995b; Moulines and Soulier, 1999), the local Whittle estimator (Künsch, 1987; Robinson, 1995b), the
log-wavelet estimator (see e.g. Abry et al., 2003; Faÿ et al., 2009 and references therein), broadband FEXP esti-
mation (Moulines and Soulier, 1999, 2000; Hurvich, 2001; Hurvich and Brodsky, 2001; Hurvich et al., 2002;

wileyonlinelibrary.com/journal/jtsa © 2019 The Authors. J. Time Ser. Anal. 41: 210–228 (2020)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12500
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Narukawa and Matsuda, 2011; also see Beran, 1993; Robinson, 1994). In our context, 𝜇 is unknown so that esti-
mation of cf ,Y and d has to be based on Ŷj = sin

(
𝜗j − �̂�

)
(j = 1,… , n) instead of Yj = sin(𝜗j − 𝜇). Since �̂� is a

consistent estimator, replacing Yj by Ŷj does not affect consistency of ĉf ,Y and d̂. A data based confidence interval
for 𝜇 can therefore be defined by

�̂� ± arcsin

(
nd̂−1∕2

√
𝜈
(
d̂
)

ĉf ,Yz1−𝛼∕2

)
, (13)

where d̂ and ĉf ,Y are consistent estimators of d and cf ,Y respectively.

3.3. Extension to Non-Stationary Series

The definition of the mean direction in Equation (1) implies that 𝜗j can be written as

𝜗j =
(
𝜇 + 𝜀j

)
mod 2𝜋,

where E(sin 𝜀j) = 0 and E(cos 𝜀j) = R. More generally, we may assume a non-stationary model

𝜗j =
[
𝜇
(
xj; 𝛽

)
+ 𝜀j

]
mod 2𝜋, (14)

where xj (j = 1, 2,… , n) are explanatory variables observed at time j, 𝛽 is an unknown parameter vector, 𝜀j (j ∈ ℤ)
is a stationary process such that

E
(
sin 𝜀j

)
= 0, E

(
cos 𝜀j

)
= R, (15)

and the process Yj = sin 𝜀j has an autocovariance function

𝛾Y (k) = cov
(
Yj,Yj+k

)
∼ c𝛾,Y |k|2d−1 (k → ∞)

and a spectral density function

fY (𝜆) =
1

2𝜋

∞∑
j=−∞

𝛾Y (k) e−ik𝜆 ∼ cf ,Y ⋅ |𝜆|−2d (𝜆 → 0), (16)

where d ∈ (0, 1

2
) and 0 < c𝛾,Y , cf ,Y < ∞. To obtain an estimator of 𝛽 we note that �̂� defined by (6) minimizes the

risk function Qn(𝜇) =
∑
[1−cos(𝜗j−𝜇)]. Note that for unit vectors u(𝜗) = (cos 𝜗, sin 𝜗)T and u(𝜇) = (cos𝜇, sin𝜇)T

(𝜗, 𝜇 ∈ [0, 2𝜋)) we have

1 − cos (𝜗 − 𝜇) = 1 − (cos 𝜗 cos𝜇 + sin𝜗 sin𝜇)
= 1 − uT (𝜗) u (𝜇)

which is minimal, if and only if the directions defined by 𝜗 and 𝜇 coincide. In the non-parametric literature for
circular data, 1 − cos(𝜗 − 𝜇) is therefore often used as a ‘distance’ between two angles 𝜗 and 𝜇 (see e.g. Hall et
al., 1987). Minimizing Qn(𝜇) with respect to 𝜇 can be generalized to estimating 𝛽 in (14) by defining

𝛽 = arg min Q̃n (b) , (17)
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where

Q̃n (b) =
n∑

j=1

[
1 − cos

(
𝜗j − 𝜇

(
xj; b

))]
.

For an analogous definition in a non-parametric context see for example Di Marzio et al. (2012). More specifically
consider for instance

𝜇
(
xj; 𝛽

)
=

(
xT

j 𝛽

)
mod 2𝜋 =

(
p∑

l=0

𝛽lxjl

)
mod 2𝜋, (18)

where 𝛽 = (𝛽0,… , 𝛽p)T ∈ ℝp+1 and xj = (xj0,… , xjp)T ∈ ℝp+1 (j = 1,… , n) are deterministic explanatory vectors
(see e.g. Gould, 1969). Then minimizing

Q̃n (b) =
n∑

j=1

[
1 − cos

(
𝜗j − xT

j b
)]

, (19)

leads to p + 1 equations

Ψn

(
𝛽
)
=

[
Ψn,0

(
𝛽
)
,… ,Ψn,p

(
𝛽
)]T = 0, (20)

where

Ψn,l

(
𝛽
)
=

n∑
j=1

xjl sin
(
𝜗j − xT

j 𝛽

)
, l = 0,… , p.

By standard arguments based on a Taylor expansion, 𝛽 − 𝛽 can be approximated by

𝛽 − 𝛽 = −
{

E
[
Ψ̇n (𝛽)

]}−1 Ψn (𝛽) + op

(
𝛽 − 𝛽

)
, (21)

where

Ψ̇n (𝛽) =
[
Ψ̇n;lm (𝛽)

]
l,m=0,…,p

and

Ψ̇n;lm (𝛽) = −
n∑

j=1

xjlxjm cos
(
𝜀j

)
.

A detailed derivation and further simplifications can be obtained under suitable conditions on the explanatory
variables. Denote by Xn = [xjl]j=1,…,n;l=0,…,p the matrix of explanatory variables, with row vectors xT

j ∈ ℝp+1

(j = 1,… , n) and column vectors x⋅l(n) = (x1l,… , xnl)T ∈ ℝn (l = 0,… , p). Furthermore let ‖x⋅l(n)‖ =
√∑n

j=1 x2
jl

and Dn = diag(‖x⋅0 (n) ‖,… , ‖x⋅p (n) ‖). The following conditions introduced by Grenander and Rosenblatt (1957)
in the context of linear time series regression are useful:

• (R1) limn→∞ ‖x⋅l (n) ‖2 = ∞ (l = 0,… , p).
• (R2) limn→∞ ‖x⋅l (n) ‖2∕‖x⋅l (n − 1) ‖2 = 1 (l = 0,… , p).
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• (R3) The limits

𝜆lm (k) = lim
n→∞

∑n
j=1 xj,lxj+k,m‖x⋅l (n) ‖‖x⋅m (n) ‖ (l,m = 0,… , p; k ∈ ℕ)

exist and are finite.
• (R4) Define 𝜆lm (−k) = 𝜆lm (k) for k ∈ ℕ, and (p+ 1) × (p+ 1) matrices Λ(k) = [𝜆lm (k)]l,m=0,…,p (k ∈ ℕ). Then
Λ(0) is non-singular.

Assumptions (R1) to (R4) imply the following approximation for the variance matrix of 𝛽 − 𝛽:

Proposition 1. Let

Vn =
[
Vn;l,m

]
l,m=1,…,p

(22)

with

Vn;l,m =
n∑

j1,j2=1

xj1l‖‖x⋅l (n)‖‖ xj2m‖‖x⋅m (n)‖‖𝛾Y

(
j1 − j2

)
. (23)

Then, under (R1) to (R4),

Dnvar
(
𝛽
)

Dn = R−2Λ−1 (0)VnΛ−1 (0) + rn, (24)

where rn is of a smaller order than Dnvar(𝛽)Dn.

From (24) in Proposition 1 one can see that the asymptotic variance of 𝛽 depends on the autocovariance function,
or equivalently the spectral density, of the process Yj = sin 𝜀j. Moreover, the asymptotic behaviour of Vn also
depends on the so-called regression spectrum of the explanatory variables xjl (see Yajima, 1991). For a detailed
study of Vn under assumption (16) see Yajima (1988, 1991). To illustrate which results are possible, consider for
instance a polynomial and a seasonal trend function respectively. For a polynomial trend

𝜇poly

(
xj; 𝛽

)
=

(
𝛽0 +

p∑
l=0

𝛽lj
l

)
mod 2𝜋

we have D2
n ≈ n ⋅ diag[1, n∕2,… , np∕(p + 1)] and Λ(0) = [𝜆l,m(0)]l,m=0,…,p with

𝜆l,m (0) =
√
(2l + 1) (2m + 1)

l + m + 1
(j, l = 0,… , p).

Yajima (1988) showed that in this case

lim
n→∞

n−2dVn = V =
[
vl,m

]
l,m=0,…,p

,

where

vl,m = 2𝜋cf ,Y

√
(2l + 1) (2m + 1)Γ

(
3

2
− HZ

)
Γ
(

HZ − 1

2

)
Γ
(

3

2
− HZ

) ∫
1

0 ∫
1

0
ulvm |u − v|2HZ−2 dudv.
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Thus

lim
n→∞

n−2dDnvar
(
𝛽
)

Dn = R−2Λ−1 (0)VΛ−1 (0) . (25)

Note in particular that the rate of convergence depends on the long-memory parameter d. Also, due to the lin-
earization in (21), asymptotic normality of n−dD1∕2

n (𝛽 − 𝛽) can be derived along the same line as for linear
regression models (for detailed technical conditions see e.g. Yajima, 1991, and chapter 11 in Giraitis et al., 2012
and references therein).

A very different result holds for a seasonal trend function defined by

𝜇season

(
xj; 𝛽

)
=

[
q∑

l=1

𝛽l sin
(
𝜆lj

)
+

q∑
l=1

𝛽q+l cos
(
𝜆lj

)]
mod 2𝜋,

where T ∈ {2, 3,…} and 𝜆l = 2𝜋l∕T (l = 1,… , q). Here, Λ(0) = diag(1,… , 1), D2
n ≈ n ⋅ diag(1∕2,… , 1∕2), and

results in Yajima (1991) imply

lim
n→∞

Vn = V

with

V = 2𝜋 ⋅ diag
[
fY

(
𝜆1

)
,… , fY

(
𝜆q

)
, fY

(
𝜆1

)
,… , fY

(
𝜆q

)]
.

Thus,

lim
n→∞

n ⋅ var
(
𝛽 − 𝛽

)
= 4𝜋 ⋅ diag

[
fY

(
𝜆1

)
,… , fY

(
𝜆q

)
, fY

(
𝜆1

)
,… , fY

(
𝜆q

)]
.

Moreover, due to (21), under mild moment conditions
√

n(𝛽−𝛽) is asymptotically normal (see e.g. Yajima, 1991;
Giraitis et al., 2012). Note in particular that, in contrast to a polynomial trend, the rate of convergence of 𝛽 is the
same as under independence, for all values of the long-memory parameter d.

More generally, we may combine polynomial and seasonal trend functions,

𝜇
(
xj; 𝛽

)
= 𝜇poly

(
xj; 𝛽poly

)
+ 𝜇season

(
xj; 𝛽season

)
=

[
p∑

l=0

𝛽poly,lj
l +

q∑
l=1

𝛽season,l sin
(
𝜆lj

)
+

q∑
l=1

𝛽season,q+l cos
(
𝜆lj

)]
mod 2𝜋.

Analogous arguments as in Yajima (1991) imply that the estimated coefficients 𝛽poly,0,… , 𝛽poly,p are asymptotically

independent from 𝛽season,1,… , 𝛽season,2q.
With respect to confidence intervals for 𝛽 and the function 𝜇(x; 𝛽), the situation is more complicated than in

the stationary case. The reason is that, if 𝜇 is not constant, then no explicit solution of (20) is available. There-
fore (10) is no longer applicable. Instead, a linearization as indicated in (21) has to be used. For instance for
𝜇 = 𝜇season,

√
n(𝛽 − 𝛽) =

√
n(𝛽1 − 𝛽1,… , 𝛽2q − 𝛽2q) is approximately distributed like a zero mean normal

vector Z = (Z1,… ,Z2q) with independent components and var(Zl) = var(Zl+q) = 4𝜋fY

(
𝜆l

)
(l = 1,… , q). A

(1 − 𝛼)−confidence interval for individual coefficients 𝛽l or 𝛽l+q (1 ≤ l ≤ q) is then given by 𝛽l ± q(𝛼)
√

4𝜋fY

(
𝜆l

)
and 𝛽l+q±q(𝛼)

√
4𝜋fY

(
𝜆l

)
respectively, where q(𝛼) is the (1−𝛼∕2)-quantile of the standard normal distribution. In

practice, fY

(
𝜆l

)
has to replaced by an estimate f̂Y

(
𝜆l

)
which can be obtained, as described above, by fitting a suit-

able model to the process Ŷj = sin �̂�j = sin(𝜗j −𝜇(xj; 𝛽)). Moreover, noting that Z̃l = Zl∕
√

4𝜋fY

(
𝜆l

)
(l= 1,… , 2q)
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are i.i.d. N(0, 1) variables, a (simultaneous) confidence interval for the vector 𝛽 = (𝛽1,… , 𝛽2q)T can be
defined by

C𝛽 (𝛼) =
⎧⎪⎨⎪⎩𝛽

∗ ∈ ℝ2q ∶

||||||||
𝛽l − 𝛽∗

l√
4𝜋 f̂Y

(
𝜆l

)
|||||||| ≤ q (𝛼∗) , l = 1,… , 2q

⎫⎪⎬⎪⎭ , (26)

where 𝛼∗ is such that (1−𝛼∗)2q = 1−𝛼. A (simultaneous) confidence band for 𝜇season = (𝜇season(1),… , 𝜇season(n))T
is then given by

C𝜇 (𝛼) =
{

y∗ ∈ [0, 2𝜋)n ∶ y∗j = yj mod 2𝜋, �̂�low

(
xj

) ≤ yj ≤ �̂�up

(
xj

)}
, (27)

where

�̂�low

(
xj

)
= min

𝛽∗∈C𝛽 (𝛼)
𝜇
(
xj, 𝛽

∗) , �̂�up

(
xj

)
= max

𝛽∗∈C𝛽 (𝛼)
𝜇
(
xj, 𝛽

∗) (j = 1,… , n). (28)

Remark 4. Analogous asymptotic results for 𝛽 in (17) can be derived for other definitions of 𝜇. For instance
Fisher and Lee (1992) consider 𝜇(x) = 𝛽0 + 2 arctan(xT𝛽). Other definitions of 𝜇(x; 𝛽) can be found for instance
in Johnson and Wehrly (1978). Also see for example Mardia and Jupp (1999), Jammalamadaka and SenGupta
(2001), Pewsey and Neuhauser (2013), Kim and SenGupta (2016), and references therein.

4. SIMULATIONS

To examine finite sample properties of confidence intervals defined by (9) (known nuisance parameters) and (13)
(estimated nuisance parameters) respectively, we consider model (4) with G equal to a von Mises and a wrapped
normal distribution respectively. Recall that the density function gvM = G′ of a von Mises distribution is defined by

gvM (x) = gvM (x;𝜇, 𝜅) = 1
2𝜋I0 (𝜅)

exp (𝜅 cos (x − 𝜇)) ,

where I0(𝜅) is the modified Bessel function of order 0, and 𝜅 > 0 is a scale parameter. The density function of a
wrapped normal distribution is given by

gwn (x) = gwn

(
x;𝜇, 𝜎2

)
= 1√

2𝜋𝜎

∞∑
k=−∞

exp

(
−(x − 𝜇 + 2𝜋k)2

2𝜎2

)
.

Here 𝜎2 > 0 is the variance of the unwrapped normal distribution. Sometimes the so-called concentration param-
eter 𝜌 = exp(−𝜎2∕2) ∈ (0, 1) is used for the wrapped distribution, instead of 𝜎2. The following specifications are
used in the simulation study:

• Model 1: G =von Mises distribution with 𝜇 = 𝜋∕5 and 𝜅 = 4;
• Model 2: G =von Mises distribution with 𝜇 = 𝜋∕5 and 𝜅 = 2;
• Model 3: G =wrapped normal distribution with 𝜇 = 𝜋∕5 and concentration parameter 𝜌 = 0.5.

The Gaussian process Zj is generated by a standardized fractional ARIMA(0, d, 0) process with d = 0.2 and 0.1
respectively. For each parameter setting, 100 simulated series are generated and 95%-confidence intervals (12)
and (13) are calculated. The nuisance parameters cf ,Y and d are estimated using the BIC criterion comparing
ARIMA(p, d, 0) with orders p = 0, 1,… , [log n] (see e.g. chapter 5 in Beran et al., 2013). Simulated coverage
probabilities of (12) and (13) are given in Tables I and II.
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Table I. Models 1 and 2: simulated coverage probabilities of 95%-confidence intervals defined by (12) and (13) respectively

Model 1

cf ,Y and d known cf ,Y and d estimated

n = 100 400 1000 n = 100 400 1000

d = 0.2 0.98 0.96 0.94 0.87 0.91 0.94
d = 0.4 0.91 0.97 0.95 0.79 0.92 0.94

Model 2

n = 100 400 1000 n = 100 400 1000

d = 0.2 0.96 0.97 0.90 0.79 0.95 0.91
d = 0.4 0.92 0.96 0.97 0.67 0.86 0.96

Table II. Model 3: simulated coverage probabilities of 95%-confidence intervals defined by (12) and (13) respectively

cf ,Y and d known cf ,Y and d estimated

n = 100 400 1000 4000 n = 100 400 1000 4000

d = 0.2 0.98 0.96 0.93 0.93 0.81 0.83 0.86 0.91
d = 0.4 0.85 0.95 0.90 0.95 0.68 0.84 0.83 0.90

Table III. Model 4: simulated coverage probabilities of 95%-confidence intervals defined by (13)

n = 100 400 1000 4000

d = 0.2 0.85 0.90 0.95 0.92
d = 0.4 0.77 0.86 0.94 0.95

The results for Models 1 and 2 (Table I) illustrate that coverage probabilities of (12) are close to the nominal
value of 0.95 for all sample sizes. On the other hand, estimation of cf ,Y and d introduces additional uncertainty that
is not negligible, if the series is short. The finite sample effect is more pronounced for d = 0.4. For larger sample
sizes (n = 1000), (13) provides a reasonable approximation.

Similar comments apply to the wrapped normal distribution (Table II). In comparison with the von Mises dis-
tribution, estimation of cf ,Y and d appears to have a stronger finite sample effect. Even for n = 1000, coverage
probabilities of (13) are too low. We therefore carried out additional simulations for n = 4000. For this sample
size, coverage probabilities are reasonably close.

Models 1–3 have symmetric unimodal marginal density functions. For comparison it is also interesting to con-
sider a skewed bimodal density function, even though a mean direction in the sense of (1) may be less meaningful
when there are two modes. Specifically we simulate confidence intervals with estimated nuisance parameters for
(4) with

g (x) = G′ (x) = 4
5

gvM

(
x;𝜇1, 𝜅1

)
+ 1

5
gvM

(
x;𝜇2, 𝜅2

)
, (29)

where 𝜇1 = 𝜋∕2, 𝜇2 = 𝜋, 𝜅1 = 6 and 𝜅2 = 4 . In this case, the mean direction as defined by (1) is equal to 𝜇 = 1.8.
The simulation results in Table III (Model 4) show a reasonably good approximation of the nominal coverage
probability for n ≥ 1000. An interesting open question that should be addressed in future is how to estimate the
more meaningful parameters 𝜇1 and 𝜇2.

5. DATA EXAMPLE

We consider daily average wind directions recorded in Milwaukee between 30 January and 31 December, 2017
(NOAA/GLERL Milwaukee WI Met Station, 43◦ 02′44′′N, 87◦ 52′44′′W; data source://www.glerl.noaa.gov/).

wileyonlinelibrary.com/journal/jtsa © 2019 The Authors. J. Time Ser. Anal. 41: 210–228 (2020)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12500



ESTIMATING THE MEAN DIRECTION UNDER LONG MEMORY 223

Figure 4. Milwaukee daily wind directions: time series plot of 𝜗j together with the fitted seasonal mean direction [Color figure
can be viewed at wileyonlinelibrary.com]

Figure 1 shows 24 plots of the data, each corresponding to a 2-week period with 14 daily average wind directions.
Note that in this data set, angles are measured clockwise and winds from north to south are represented by 𝜗 = 0◦.
The time series plot of Ŷj = sin

(
𝜗j − �̂�

)
is shown in Figure 2(a), the corresponding empirical autocorrelation

function is given in Figure 2(c). Fitting a FARIMA(p, d, 0) model using the BIC with a maximal order of pmax =
[log n] yields a FARIMA(0, d, 0) process with d̂ = 0.14 and 95%-confidence [0.06, 0.22]. Thus there is evidence
for long memory in the series. The periodogram of Ŷj (in log–log-coordinates) together with the fitted spectral
density is plotted in Figure 2(d). A windrose plot of the entire series is displayed in Figure 2(b). The estimated
average direction is �̂� = 280◦ which essentially corresponds to west winds (west to east). Based on the fitted model
and (13), an approximate 95%-confidence interval for 𝜇 is [233.2◦, 326.8◦]. The confidence region is marked as
a shaded area in Figure 2(b). Note that this confidence interval is much larger than the interval [275.6◦, 284.4◦]
obtained from formula (9) under the assumption of independence. In view of long memory observed in the data,
the coverage probabilty of the shorter interval is however likely to be much lower than 0.95.

Given the geographic location of Milwaukee, the result can be interpreted as an overall dominance of a
land breeze. The confidence interval for 𝜇 is however obtained under the assumption of stationarity. Often
wind direction depends on the season. We therefore consider a seasonal model with period T = 365, and
𝜇 = [𝛽0 +

∑p
l=1 𝛽l sin

(
𝜆lj

)
+
∑p

l=1 𝛽p+l cos
(
𝜆lj

)
]mod 2𝜋 for a suitable value of p ≥ 1. Fitting 𝜇 for 1 ≤ p ≤ 18, and

excluding non-significant coefficients (at the 5% level) leads to the parsimonious model �̂�(j) = [𝛽0 + 𝛽1 sin(𝜆1j) +
𝛽3 sin(𝜆3j)]mod 2𝜋. Note also that including an additional polynomial does not change the result, that is a poly-
nomial trend is not significantly different from zero and can therefore be omitted. For Ŷj = sin(𝜗j − �̂�(xj; 𝛽)),
a FARIMA fit (as described above) yields d̂ = 0.08 with a 95%-confidence interval [0, 0.16]. Thus including
a seasonal component in the model slightly reduces long memory in the stochastic component. The estimated
coefficients for 𝜇 and the corresponding 95%-confidence intervals are 𝛽0 = 279.8 ([259.1, 300.5]), 𝛽1 = 55.4
([29.4, 81.4]) and 𝛽3 = −37.5 ([−61.3,−13.7]). Note in particular that 𝛽0 = 279.8 is almost equal to �̂� = 280◦

obtained under the assumption of stationarity, but the confidence interval for 𝛽0 is shorter. The reason is that
𝛽1 sin(𝜆1j) and 𝛽3 sin(𝜆3j) capture seasonal deviations from the overall mean. The remaining variability is therefore
smaller than before. Figure 4 shows 𝜗j together with the fitted seasonal trend. The full horizontal line corresponds

to 𝛽0 = 279.8. Also given are simultaneous 95%-confidence bands for 𝜇(j, 𝛽). The lower and upper border of the
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Figure 5. Seasonal trend �̂�(j) = 𝛽0 + 𝛽1 sin(𝜆1j) + 𝛽3 sin(𝜆3j) of Milwaukee daily average wind directions between 30 January
and 31 December, 2017. Each plot corresponds to a 2-week period. For each day, the wind direction defined by �̂�(j) is displayed

by an arrow. Thus, in each plot there are 14 arrows [Color figure can be viewed at wileyonlinelibrary.com]

confidence band are plotted as dotted red lines. Finally, in Figure 5, the daily mean wind directions defined by
𝜇(j, 𝛽) are displayed for 24 consecutive 2-week periods. For each 2-week period, 14 arrows are drawn. Each arrow
corresponds to the direction defined by 𝜇(⋅, 𝛽) on a particular day. The figures indicate a seasonal pattern with a
dominance of north/north-west winds in spring, west winds in summer, south/south-west winds in fall, and west
winds in winter. This pattern is close to long term weather patterns observed in Milwaukee.

6. FINAL REMARKS

In this article, Gaussian subordination was used to define a class of directional processes that exhibit long-range
dependence. Given any continuous circular distribution function, a strongly dependent subordination model
defined by (4) exists. More generally, one may define processes subordinated to linear processes that are not nec-
essarily Gaussian. Note however that in the non-Gaussian case this leads to Appell polynomial expansions that
are no longer orthogonal.
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A further generalization one may consider is an extension to higher Hermite ranks. One of the assumptions
in (12) and (13) is that H(z) = sin{G−1(Φ(z)) − 𝜇} has Hermite rank m = 1. For m ≥ 2, the convergence of
sums

∑
H(Zj) is well understood so that analogous confidence intervals could be defined in principle. However,

the limiting distribution is no longer normal, and quantiles are quite difficult to compute. In many applications
m = 1 is a reasonable assumption. For example any monotonous transformation has Hermite rank one (see e.g.
Menendez et al., 2013). Moreover, tests of the null hypothesis that m is one are available in the literature (Beran
et al., 2016; Tewes, 2018).

The method proposed here enables us to model stationary and non-stationary circular time series data, including
the estimation of trends and seasonal patterns, under general conditions on the temporal dependence structure.
For instance, in the example discussed above, simultaneous confidence intervals for the seasonal wind direction
were obtained. Modelling and prediction of the prevailing wind direction, together with an assessment of the
uncertainty of estimates, are essential for many purposes, including weather forecast, climatology, wind power
generation or air traffic. An interesting extension that will be worth pursuing in future research is the possibility of
heteroskedasticity. For instance, the variability of wind direction may depend on the season or may even change
at some point due to changes in the landscape. Another interesting question is how to carry out inference for a
vector of mean directions in the case of mixture distributions.
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APPENDIX A. PROOFS

Proof of Lemma 1. Consider the space L2(ℝ, 𝜑) of real valued functions H ∶ ℝ → ℝ with ∫ H2(z)𝜑(z)dz < ∞
where 𝜑(z) = (2𝜋)−

1
2 exp

(
− 1

2
z2
)

. For functions H, H̃ ∈ L2(ℝ, 𝜑), define the scalar product

⟨
H, H̃

⟩
= ∫ H (z) H̃ (z)𝜑 (z) dz.

Then L2(ℝ, 𝜑) is a Hilbert space where Hermite polynomials Hq(z) = (−1)q exp( 1

2
z2) dq∕dzq exp(− 1

2
z2) build an

orthogonal basis. Any function H ∈ L2(ℝ, 𝜑) then has the L2-representation

H (z) =
∞∑

q=0

aq

q!
Hq (z)

with

aq =
⟨

Hq,H
⟩
= ∫ Hq (z)H (z)𝜑 (z) dz.

Moreover, H is called to be of Hermite rank m ≥ 1, if am ≠ 0 and aq = 0 (q < m). Based on this representation,
Taqqu (1975) showed that for a stationary zero mean Gaussian process Zj with var(Zj) = 1, and autocovariances

𝛾Z and a spectral density fZ that satisfy (3) with d >
1

2
(1 − m−1), one obtains

cov
(
H

(
Zj

)
,H

(
Zj+k

))
∼

k→∞

a2
m

m!
cm
𝛾,Zk(2d−1)m (A1)

(also see e.g. Major, 1981). In particular, consider

H (z) = sin
{

G−1 (Φ (z)) − 𝜇
}
,

and suppose that H has Hermite rank m. Then (A1) holds with

am = ∫ Hm (z) sin
{

G−1 (Φ (z)) − 𝜇
}
𝜑 (z) dz.

The result then follows by rewriting (2d − 1)m as 2dm − 1.

Proof of Theorem 1. Since

S̄∗ = n−1
∑

sin𝜗∗
j
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and

H (z) = sin
{

G−1 (Φ (z)) − 𝜇
}

has Hermite rank 1, the result follows from limit theorems under Gaussian subordination (Taqqu, 1975; Dobrushin
and Major, 1979; also see e.g. Beran et al., 2013, chapter 4.2).

Proof of Proposition 1. Minimizing Q̃n leads to

Ψn

(
𝛽
)
=

[
Ψn,0

(
𝛽
)
,… ,Ψn,p

(
𝛽
)]T = 0

where

Ψn

(
𝛽
)
=

(
n∑

j=1

xj0 sin
(
𝜗j − xT

j 𝛽

)
,… ,

n∑
j=1

xjp sin
(
𝜗j − xT

j 𝛽

))T

= XT
n sn

(
Xn, 𝛽

)
,

Xn denotes the n × (p + 1) matrix with elements xjl (j = 1,… , n; l = 0,… , p) and

sn

(
Xn, 𝛽

)
=

[
sin

(
𝜗1 − xT

1𝛽
)
,… , sin

(
𝜗n − xT

n𝛽
)]T

.

Standard arguments based on a Taylor expansion lead to

𝛽 − 𝛽 = −Ψ̇−1
n (𝛽) Ψn (𝛽) + op

(
𝛽 − 𝛽

)
with

Ψ̇n (𝛽) =
[
Ψ̇n;lm (𝛽)

]
l,m=0,…,p

and

Ψ̇n;lm (𝛽) = −
n∑

j=1

xjlxjm cos
(
𝜀j

)
.

Noting that, under (R1) to (R4), D−1
n Ψ̇n(𝛽)D−1

n can be approximated by −RΛ (0), we obtain

Dn

(
𝛽 − 𝛽

)
= −

[
D−1

n Ψ̇n(𝛽)D−1
n

]−1
D−1

n XT
n sn

(
Xn, 𝛽

)
+ op

(
𝛽 − 𝛽

)
= R−1Λ−1 (0)D−1

n XT
n sn

(
Xn, 𝛽

)
+ op

(
𝛽 − 𝛽

)
.

Hence,

Dnvar
(
𝛽
)

Dn = R−2Λ−1 (0)VnΛ−1 (0) + o
(
Dnvar

(
𝛽
)

Dn

)
,

where Vn is as defined in (23).
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