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Abstract
In this paper, we analyse the network of international 
major conventional weapons (MCW) transfers from 1950 
to 2016, based on data from the Stockholm International 
Peace Research Institute (SIPRI). The dataset consists of 
yearly bilateral arms transfers between pairs of countries, 
which allows us to conceive of the individual relationships 
as part of an overall trade network. For the analysis, we 
extend the separable temporal exponential random graph 
model (STERGM) to account for time-varying effects on 
both the network level (trade network) and the actor level 
(country effects). Our investigation enables the identi-
fication of potentially differing driving forces that influ-
ence the formation of new trade relationships versus the 
persistence of existing ones. In accordance with political 
economy models, we expect security- and network-re-
lated covariates to be most important for the formation of 
transfers, whereas repeated transfers should prevalently 
be determined by the importers’ market size and military 
spending. Our proposed modelling approach corroborates 
the hypothesis and quantifies the corresponding effects. 
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1  |   INTRODUCTION

In this paper, we consider the highly relevant topic of international weapons transfers. The exchange 
of lethal products is unique from the trade of commercial products and services since it involves ques-
tions of political security and defence. We investigate the structure and dynamics of the international 
arms trade network from a network perspective in order to uncover how the network’s evolution de-
pends, on one hand, on the local structure of the network itself and, on the other hand, on economic 
and political variables. More specifically, we propose to distinguish between the processes of forming 
new relations in this network and maintaining existing ones. Major weapons transfers are highly risky 
and require strategic and careful decisions from the perspective of the supplier. If buyers prove to 
be unreliable, such contracts are often suspended or cancelled all together. Therefore, we follow a 
modelling strategy that separates the initiation and persistence of trade relationships using a flexible 
separable network model that shows how the influence of the covariates changes over time and how 
different countries are situated in the arms trade system.

To situate our work within the field, we first motivate the usage of the network approach to model 
international trade more generally. We then discuss international arms transfers before we introduce 
the statistical network model proposed to analyse data on international arms trading provided by the 
Stockholm International Peace Research Institute (SIPRI).

1.1  |  Trade networks

Statistical network analysis provides a good framework for conceptualizing international trade sys-
tems. Schweitzer et al. (2009) highlight the enormous interdependencies of economic transactions 
and propose a network approach for capturing the systemic complexity. Gravity models, which are 
a standard approach in econometrics for modelling trade data (Head & Mayer, 2014), are usually 
focussed on relations between country pairs (dyadic relations). Hence, the models exclude important 
network effects that go beyond dyadic relations. Squartini et al. (2011a, b) showed that gravity models 
of international trade are, therefore, necessarily incomplete. In particular, they demonstrated that ana-
lysing the determinants of link creation is highly important since the binary network carries informa-
tion that goes beyond the classical gravity model representation. Barigozzi et al. (2010) demonstrated 
that trade networks are commodity specific, that is, their network structures are quite different across 
commodities—leading us to conclude that there is also a need to consider arms transfers separately. 

Additionally, we subject the time-varying heterogeneity 
effects to a functional principal component analysis. This 
analysis serves as an exploratory tool and allows us to 
identify countries with exceptional increases or decreases 
in their tendency to import and export weapons.

K E Y W O R D S

arms transfers, functional principal component analysis, generalized 
additive model, security and defence network, varying coefficient 
model
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This is theoretically challenging since arms transfers constitute a very special trade relationship. The 
transferred products and services can potentially lead to deadly quarrels between or within states, or 
they may contribute to stabilization and deterrence. Arms trade is not always a purely economic ex-
change but may also serve to support aligned countries or groups. In sum, the exchange of weapons 
is a politically sensitive and security related, but also economically beneficial, relationship. For this 
reason, we make use of flexible statistical models for network data that allow us to investigate the 
special incentives in the international arms trade network.

1.2  |  Global weapons transfers

At present, there are only a few empirical binary network analyses of the international arms trade. 
Akerman and Seim (2014) pioneered the analysis of structural features of the binary arms trade 
network. Their descriptive network analysis is supplemented by an empirical investigation that uses 
a binarized gravity model without considering network dependencies. In this article, we build on 
the recently published paper by Thurner et al. (2019). However, our approach extends that work 
in many aspects. Most importantly, we treat temporal dependencies in a fundamentally different 
way. In Thurner et al. (2019), the authors found that previous arms trading between two parties 
was highly predictive of whether subsequent arms transfers would occur, due to inertia. This find-
ing implies that whether trade happened in the preceding year(s) has a considerable impact on the 
probability of trade in the future. To disentangle the driving network formation forces due to pure 
inertia, we propose to incorporate this distinction directly in the model. More precisely, the pro-
posed model allows us to investigate whether the mechanisms that result in transfers being formed 
without an immediate predecessor differ from those that lead to consecutive transfers. This is also 
of practical importance because governments carefully reflect before deciding whether to author-
ize arms transfers based on economic and security considerations. Furthermore, they continuously 
reconsider whether to maintain such trade relations based on potential risks the importer might 
present to strategic interests or importer violations of once-shared normative standards. (see Garcia-
Alonso & Levine, 2007 for the general model and the papers by Blanton, 2005 and Erickson, 2015 
for normative considerations).

We expect several necessary conditions to hold for the formation of transfers: the receiving country 
must be considered at least marginally trustworthy and politically and economically reliable. Hence, 
passing a threshold of trustworthiness is required for formation, that is, building new trade relation-
ships. The special role of trustworthiness in arms transfers stems from the fact that security concerns 
play an important role when governments decide whether to license the delivery. We expect net-
work dependencies, regime dissimilarity and formal alliances to play a prominent role in the forma-
tion stage to raise a relationship above the minimum threshold level of reservation. Follow-up trades 
should then be driven by economic considerations like the size of an importer’s economy and military 
expenditures (see Schulze et al., 2017).

While differentiation between trade formation and repetition legitimates the proposed statistical 
model, we further extend the model to account for time-varying coefficients that are important and, in 
our view, inevitable because the observational time covers more than 65 years. Hence, the introduction 
of smooth random effects is needed to build a realistic model. Given the dynamic evolution of the net-
work, the historical developments and the presence of at least one system-wide structural break with 
the collapse of the Soviet Union, we expect to observe changes in the network’s generative mecha-
nisms over time when comparing the included variables from the pre- and post-Cold War period. (See 
also Akerman & Seim, 2014 and Thurner et al., 2019).



204  |      LEBACHER et al.

Finally, we argue that not all network activities and trades can be explained by observables and, 
thus, unobserved heterogeneity remains. We expect primarily actor-specific heterogeneity, which is 
accentuated by systematic historical accounts (Harkavy, 1975; Krause, 1995). This highlights the 
self-reinforcing tendencies of highly developed countries’ technological advantages, which results in 
strong heterogeneity in the countries abilities to export (and import). Therefore, the inclusion of ac-
tor-specific random effects seems necessary and we expect strong heterogeneity among the countries 
concerning imports and exports.

1.3  |  Statistical network models

Statistical models that are suitable for temporal networks have been developed just in the last 10 
to 20 years, and different techniques have been proposed. Robins and Pattison (2001) were the 
first to extend the static exponential random graph model (ERGM, Holland & Leinhardt, 1981; 
Lusher et al., 2012) to discrete-time Markov chain models, see also Snijders et al. (2010a). Hanneke 
et al. (2010) or Leifeld et al. (2018) also consider network dynamics on a discrete time scale. They 
propose the temporal exponential random graph model (TERGM), which makes use of a Markov 
structure conditioning on previous network statistics as covariates in the model. A related approach 
is presented by Almquist and Butts (2014), which discusses assumptions that enable the circumven-
tion of the often computationally intractable fitting process for dynamic network models through the 
application of logistic regression models. Koskinen et al. (2015) expand the model using Bayesian 
methods, which allow the parameters in the dynamic network model to change with time. A general 
perspective on dynamic networks is provided by Holme (2015). It also includes models for continu-
ous time, such as stochastic actor-oriented models (SAOMs, see Snijders et al., 2010b) or dynamic 
stochastic block models (SBMs, see for instance Xu, 2015). A model that can be seen as a linkage 
between the ERGM and continuous-time approaches is given by the longitudinal ERGM (LERGM, 
Koskinen et al., 2015; Snijders & Koskinen, 2013). While the TERGM assumes discrete time steps, 
the LERGM takes the network dynamics as a continuous-time Markov process with the ERGM as 
the limiting distribution. Although the model is tie oriented, its mechanics can also be compared well 
with the actor-oriented SOAM. This is because the LERGM fundamentally builds on micro-steps 
and in each step, dyadic ties (instead of actors as in the SAOM) are allowed to change the current 
network, governed by a function that drives stochastic tie changes. Although this approach is an 
interesting combination between the model approaches of the (T)ERGM and the SAOM, we will 
choose a discrete-time model for the arms trade network since the data are available only in time-
discrete yearly time-steps.

A special variant of the TERGM was proposed by Krivitsky and Handcock (2014). They do not 
model the state of the network itself but rather focus on network changes which occur either because 
of the formation of new edges or because of the (non-)persistence of existing ones. Assuming in-
dependence between the two processes, conditional on the previous network, leads to the so-called 
separable TERGM (STERGM). Our use of the separable model is motivated by the fact that the two 
processes under study are highly likely to be driven by different mechanisms and factors.

For many real-world dynamic networks, the generative process changes with time and, therefore, 
the assumption of stationarity seems to be inappropriate. This is especially the case for network data 
that span a long period and are potentially subject to structural breaks. Under such conditions, it ap-
pears necessary to allow the model parameters to change with time. We take up this idea and extend 
the STERGM by allowing for time-varying coefficients. More specifically, we propose to rely on so-
called generalized additive models (GAMs). This model class was proposed by Hastie and Tibshirani 
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(1987) and extended fundamentally by Wood (2017) to allow for smooth, semi-parametric modelling 
of time-varying parameters in a generalized regression framework (see also Ruppert et al., 2009).

Furthermore, the assumption of node homogeneity must be regarded as questionable. We, there-
fore, allow for heterogeneity in the model (see Thiemichen et  al., 2016 for a discussion on node 
heterogeneity). Accordingly, we follow the p2 model developed by Duijn et  al. (2004) and enrich 
the STERGM with functional time-varying random effects (Durbán et  al., 2005), which leads to 
smooth node-specific effects. We propose to investigate the fitted functional heterogeneity effects 
with techniques from functional data analysis (FDA), see, for instance, Ramsay and Silverman (2005). 
This enables the identification of countries (nodes) that have fundamentally changed their role in the 
arms-trading network over the observation period.

We proceed as follows. Section 2 presents the data provided by SIPRI. Section 3 introduces the 
statistical models used to analyse the data. Section 4 provides the results and their interpretation. 
Section 5 concludes the paper.

2  |   DATA DESCRIPTION

Data on the international trade of major conventional weapons (MCW) are provided by the Stockholm 
International Peace Research Institute (see SIPRI, 2017) in a yearly time resolution. Examples for 
MCW include aircraft, armoured vehicles and ships. Note that we have excluded all non-state organi-
zations like the Khmer Rouge or the Lebanon Palestinian Rebels from the dataset as well as countries 
with no reliable covariate information available. See the Supplementary Materials for an overview of 
the types of arms and the countries included in the analysis.

In the following, we conceptualize arms trade as a network and focus on the binary occurrence 
of trade, thereby disregarding the exact transfer volumes, and follow Akerman and Seim (2014) and 
Thurner et al. (2019) in setting the edge value to one if there is a trade flow greater than zero between 
two countries and edge value of zero otherwise. Additionally, we re-estimated our model with differ-
ent thresholds and found that the results are quite robust. For details, see the Supplementary Materials. 
From a network perspective, the international arms trade in a given year can be seen as a collection of 
nodes (represented by the countries) and directed relations between the countries, called edges, that 
represent the existence of trade between these two countries in the respective year. Figure 1 at the end 
of the article shows the binary networks for the years 2015 and 2016 and the Supplementary Materials 
provides a collection of summary statistics for these networks.

The analysis of the degree distribution is of vital interest in statistical network analysis (Barabási 
& Albert, 1999) and gives important insights into the basic properties of the network under study. The 
degree is a node-related property and represents, in this context, the number of arms transfers that 
are related to a country. Because arms transfers go from an exporter to an importer, the network is a 
directed one. This allows for differentiation between the outdegree (the number of countries a specific 
country is exporting to) and the indegree (the number of countries from which a specific country is 
importing).

We compute the period-average in- and outdegree distributions and provide information on the 
minimal and maximal value of the realized degree distributions. This is represented in a log–log ver-
sion in Figure 2 for both the outdegree and the indegree. The plot shows the enormous heterogeneity 
in the networks. Most of the countries have no exports at all with a period-average share of 78% of 
countries exhibiting outdegree zero, while the outdegree distribution has a long tail, indicating that 
there are a few countries which have a very high outdegree. The highest observed outdegree in a year 
is 66 and is observed for the United States. Other countries with exceptionally high outdegrees for 
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F I G U R E  1   The network of international transfers of major conventional weapons (MCW) in 2015 (top) and 
2016 (bottom). Countries are represented by vertices. Directed edges represent arms transfers. Vertex sizes are scaled 
proportionally to the logarithmic outdegree (number of outgoing edges)
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almost the whole period are Russia (Soviet Union), France, Germany, the United Kingdom, China, 
Italy and Canada. In the right plot, the indegree distribution can be seen. Here, the pattern is different. 
The highest value observed in a year is 16 and corresponds to Saudi Arabia. In contrast to the outde-
gree distribution, the countries with high indegrees changed over time. At the beginning of the obser-
vational period, the countries with the highest indegrees were Germany, Indonesia, Italy, Turkey and 
Australia, but in more recent times the highest indegrees are observed from the United Arab Emirates, 
Saudi Arabia, Singapore, Thailand and Oman.

In Figure 3 we provide a graphical representation of the stability patterns in the network. On the 
left-hand side, we present the share of observations (vertical axis) against the number of subsequent 
transfers (i.e. repeated transfers) on the horizontal axis. Out of roughly 19,000 recorded trading in-
stances only 33% do not have at least one consecutive transfer in the follow-up year of trade. Looking 
on the right-hand side of Figure 3, we visualize the share of observations (vertical axis) that has at 
least as many subsequent transfers as indicated by the horizontal axis. It can be seen that roughly the 
same share of observations (35%) lasts at least 5 years and almost 10% of all dyadic relations last more 
than 20 consecutive years without any interruption.

As discussed in the introduction, our research questions are centred around the problem of how the 
formation and persistence of arms trade relationships are differently associated with covariates which 
include network topologies and exogenous variables. Those are introduced and described in Section 
3.3 after the statistical model itself has been outlined.

3  |   MODEL

3.1  |  Dynamic formation and persistence model

Let Yt be the network at time point t, which consists of a set of actors (the countries), labelled as At 
and a set of directed edges (the transfers), represented through the index set Et = {(i, j) : i, j∈ At}.  

F I G U R E  2   Degree distributions of the included countries for the outdegree (number of outgoing edges) on the 
left and indegree (number of ingoing edges) on the right. Averages over all years are represented by the solid line. The 
whiskers in grey show the minimum and maximum values realized in all years. Both axes are in logarithmic scale
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Note that this is a slight misuse of index notation since Yt
ij
 does not necessarily refer to the (i, j)-th ele-

ment if we consider Yt as an adjacency matrix. This is because the actor set At is allowed to change with 
time so that i and j are not running indices from 1 to nt, where nt is the number of elements in At. Instead 
indices i and j represent the i-th and j-th country respectively. We define Yt

ij
= 1 if country i exports 

weapons to country j and since self-loops are meaningless, elements Yt
ii
 are not defined.

We aim to model the network in t based on the network in t − 1. To do so, we have to take into account 
that the actor sets At−1 and At may differ. In particular, we have to consider the case of newly formed coun-
tries. New countries of interest are those that are present in t but do not provide information about their 
network embedding in the previous period. For exports this is not a concern as it is seldom the case that a 
new country starts sending arms immediately after entering the network. Notable exceptions are Russia, the 
Czech Republic and Slovakia. However, these countries have clearly defined predecessor states (the Soviet 
Union and Czechoslovakia) which can be used to gain information about the position of these countries in 
the precedent network. Regarding the imports, there is a share of countries that start receiving arms imme-
diately after entering the network. Notwithstanding, those transactions represent a share of less than 0.3% 
of the observed trade flows. Therefore, we regard these cases as negligible and include in the model only 
countries where information on the current and previous period is available. We formalize this approach by 
defining Yt,t−1 as the subgraph of Yt with actor set Bt,t−1 =At ∩ At−1 containing nt,t−1 := |Bt,t−1| elements. 
Accordingly, Yt−1,t represents the subgraph of Yt−1 with actor set Bt,t−1. Note that both subgraphs share the 
same set of actors and Yt−1 = Yt−1,t if At−1 and At coincide.

From a modelling perspective, we follow Hanneke et al. (2010) and assume that the network in t 
can be modelled given preceding networks using a first-order Markov structure to describe transition 
dynamics for those actors included in the set Bt,t−1. Furthermore, we want to identify the driving forces 
of a transfer in t if there was a preceding transfer in t − 1 in the persistence model, while the formation 
model considers the process of forming a trade relationship without a preceding transfer. Hence, we 
call trade ‘persistent’ if it takes place in two consecutive years and ‘formed’ if there was trade in a 
year but no trade in the preceding year. The concepts of formation and persistence can be amended by 
using broader time windows. We demonstrate the robustness of our results concerning broader time 
windows in the Supplementary Materials.

F I G U R E  3   Share of subsequent arms transfers (left) and cumulative share of subsequent arms transfers (right). 
Number of subsequent transfers on the horizontal axis and share of observations on the vertical axis
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Let Y+ = Yt,t−1 ∪ Yt−1,t represent the formation network, which consists of edges that are either 
present in t or in t−1. For the persistence network, we define Y− = Yt,t−1 ∩ Yt−1,t, as the network that 
consists of edges that are present in t and in t − 1. Based on the actor set Bt,t−1 and given the formation 
and persistence networks together with the network in t − 1, the network in t is uniquely defined by 

Note that both Y+ and Y− depend on time t as well, which we omitted in the notation for ease of readability. 
We assume that for each discrete time step, the processes of formation and persistence are separable. That is, 
the process that drives the formation of edges does not interact with the process of the persistence of the edges 
conditional on the previous network. Formally, this is given by the conditional independence of Y+ and Y−: 

where the lower case letters y+, y−, yt,t−1 denote the realizations of the random networks, xt−1 denotes a 
vector of exogenous covariates and � = (�+, �−) represents the parameters of the model.

Note that it is not possible to use the lagged response as a predictor, as by construc-
tion it holds that Y

t−1,t

ij
= 1 ⇒ Y+

ij
= 1 and Y

t−1,t

ij
= 0 ⇒ Y−

ij
= 0. That is, an edge that ex-

isted in t  −  1 cannot be newly formed and an edge that was not existent in t  −  1 cannot be 
dissolved. It follows that the formation model exclusively focuses on the binary variables Y+

ij
 with 

(i, j)∈E+ = {(i, j) : i, j ∈ Bt,t−1, Y
t−1,t

ij
= 0}. This assures that in t  −  1 no edge between actors 

i and j was present and both actors are observable at both time points. Equivalently, the model for  
Y− consists of observations Y−

ij
 with (i, j) ∈ E− = {(i, j) : i, j ∈ Bt,t−1, Y

t−1,t

ij
= 1}, assuring that only 

edges that could potentially persist enter the model. The time dependence of E+ and E− is omitted for 
ease of readability.

If we use an ERGM for the transition, this would yield the following probability model for the 
formation 

The sum in the denominator is over all possible formation networks from the set of potential edges that can 
form given the network yt−1,t. The inner product �+g(y+, yt−1, xt−1), relates a vector of statistics g(·) to the 
parameter vector �+. We will be more precise about the network statistics and the exogenous covariates 
in Section 3.3. The analogous model is assumed for the persistence of edges and not explicitly given here 
for the interest of space.

We will subsequently work with a simplified model which is computationally much more tractable. We 
assume that the formation or persistence of an edge at time point t depends solely on the past state and not 
on the current state of the network. This is achieved by restricting the statistics such that they decompose to 

for some statistics g̃( ⋅ ). This assumption is extensively discussed by (Hastie & Tibshirani, 1993) and can 
be well justified by the notion that the lagged network accounts for the major share of the dependency 
among the edges in the current network. It also allows for intuitive interpretations as can be seen below. 
Let Y+

−ij
 represent the formation network Y+, excluding the entry Y+

ij
. Then, for (i, j) ∈ E+ the following 

logistic regression model holds 

(1)Yt,t−1 =Y+�(Yt−1,t�Y−)=Y−∪ (Y+�Yt−1,t).

P(Yt,t−1 = yt,t−1|Yt−1,t = yt−1,t, xt−1;�)=P(Y+ = y+|Yt−1,t = yt−1,t, xt−1;�+)P(Y− = y−|Yt−1,t = yt−1,t, xt−1;�−),

P(Y+ = y+�Yt−1,t = yt−1,t, xt−1;�+, xt−1)=
exp{�+g(y+, yt−1,t, xt−1)}

∑
ỹ+∈+(yt−1,t)exp{�+g(ỹ+, yt−1,t, xt−1)}

.

g(y+, yt−1,t, xt−1)=
∑

(i,j)∈E+

y+
ij
%gij(y

t−1,t, xt−1)
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Note that model (2) describes network dynamics, but does not yet allow the parameters to change with time. 
Since the process under study is dynamic we replace the parameter �+ with �+(t), representing a smooth func-
tion in time that enables the inclusion of temporal heterogeneity in the model and leads to a time-varying co-
efficient model (Hastie & Tibshirani, 1993). The focus of interest is, therefore, not only on the formation and 
persistence of edges (trade flows) but also on how these effects change over the whole observation period.

3.2  |  Country-specific heterogeneity

The proposed network model assumes homogeneity, meaning that all differences between nodes in the 
network are fully described by the statistics g̃( ⋅ ). However, the arms transfer network exhibits a rather small 
number of countries that are high-intensity exporters and a large number of countries that are restricted to 
imports. Furthermore, some countries change their relative position in the trade network with time. This 
indicates a substantial amount of temporal heterogeneity that needs to be taken into account.

This temporal heterogeneity can be accommodated by the inclusion of latent country effects. We 
follow Durbán et al. (2005) and model country-specific random curves which are fitted with penalized 
splines. This can be written in a mixed model representation such that the smooth country-specific 
effects are constructed using a B-spline basis with (a priori) normally distributed spline coefficients. 
We follow the modelling strategy of Durban and Aguilera-Morillo (2017) and assume that the model 
includes two time-dependent random coefficients �+

i,exporter
(t) and �+

j,importer
(t) - called exporter and 

importer effect in the following. The effects are assumed to be a realization of a stochastic process 
with continuous and integrable functions. For each exporter and importer in both models, the coun-
try-specific curves are given by 

where B(t) = (B1(t), ⋯, BQ(t)) is a B-spline basis covering the time range of observations and 
ai = (ai1, …, aiQ) is the coefficient vector. We impose the prior distribution 

where DQ is the inverse of a difference-based penalty matrix which guarantees smoothness of the fitted 
curves �i(t) (see e.g. Eilers & Marx, 1996, for details on smoothing with B-splines). Note that for time 
windows where a country did not exist, the corresponding B-spline takes a value of zero so that no het-
erogeneity effect is present.

3.3  |  Network statistics and explanatory variables

In this section, we specify the covariates xt−1 and the network statistics through which the model de-
pends on the network at time t − 1, that is, the elements of g̃( ⋅ ) defined in the previous section.

We start with the network statistics that constitute a very important feature for model-based net-
work analysis. As social network literature has shown, network statistics usually are not just statistical 
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controls but convey substantial meaning (see e.g. Snijders, 2011). In the given context, they can be mo-
tivated by political, strategic and economic arguments that refer to real-world processes (see Thurner 
et al., 2019). Note that we norm all network statistics to range between 0 and 1. This is necessary to 
make the statistics independent from the varying network size and allows comparability over time. 
Note, however, that the norming also results in relatively high coefficients since the normed network 
statistics realize rather small values.

Outdegree: In our application, the outdegree provides information about the number of exporting re-
lationships exhibited by each country. Formally, the outdegree of actor i at time point t − 1 is defined as 

The arms trade network exhibits a strongly oligopolistic structure with a few high-intensity traders, hence 
a positive coefficient for the outdegree of the exporter (exporter. outdegt−1,i) is plausible. However, it is 
not clear whether the exporters’ outdegree as a global measure is still of relevance once we control for the 
random country heterogeneity effects.

Only a few advanced countries within NATO export and import at the same time. They have 
a highly differentiated portfolio, rendering specialization economically reasonable and strategically 
non-hazardous. To better represent this world-wide asymmetry, we include the outdegree of the im-
porter (importer. outdegt−1,j) as a measure of whether countries with many exporting relations also 
tend to be importers themselves. This should not be captured by the random effects and we expect a 
clear negative effect, indicating that strong exporters are seldom strong importers.

Reciprocity: This statistic is intended to detect whether there is a general tendency of arms trans-
fers to be mutual. The statistic measures whether the potential importer was an exporter in the dyadic 
relationship in the previous period: 

Reciprocation is an essential mechanism in human relations in general, and in trade more specifically. As 
noted above, very highly developed countries exhibit this feature in the context of arms transfers. Since 
this group of countries is rather small and specialization-induced transfers between developed countries 
do not lead to continuous inflows, we expect this mechanism to be rather visible at the formation stage 
whereas it should not be a dominant feature for permanent repetition.

Transitivity: Within the arms trade network, trade relations often form more complicated structures 
that go beyond dyadic ones. Often, these relations form collections of triangles. These triadic trade 
relationships are an effective mechanism for pooling risks in buyer–seller networks (Bramoullé et al., 
2019) and for building generalized trust, which is especially important in exchanging security goods. 
As a measure of these dependencies, we include transitivity, defined as 

The statistic counts how many tuples of transfers from i to j, passing a third country k can be found 
in t−1. Such relations can be interpreted as a direct application of the Friend of a Friend logic from 
social networks to arms trade. This kind of network embeddedness of weapons transfer deals is 
important for establishing new ones but is also likely to be relevant for the continuation of already 
existing ones.
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Shared Suppliers: We also include a statistic that we call shared suppliers in this context. This 
statistic counts the shared number of actors that export to a given pair of countries: 

This statistic allows for the investigation of whether two countries that share multiple suppliers tend to 
engage in trade with each other. Such a pattern is likely to be induced by a general hierarchy in the net-
work (see Krause, 1995). While the first tier consists of strong exporters, the second tier is populated by 
countries with the ability to produce and export that are nevertheless mainly supplied by the big exporters. 
Countries with many shared partners are likely to engage in trade with each other but, on the other hand, 
they are typically dependent on imports from the first tier. Therefore, relationships among those countries 
are rather sporadic and unlikely to persist. Consequently, we expect a positive coefficient in the formation 
model and a negative one in the persistence model.

Naturally, arms trade is not exclusively driven by endogenous network processes but also influ-
enced by variables from the realms of politics and economics. We lag all exogenous covariates by 1 
year, first to be consistent with the idea that the determination of the network in t is based on the pre-
ceding period and second, to account for the time lag between the ordering and the delivery of MCW. 
Some of the covariate data are subject to missing values. No time series of covariates for the selected 
countries is completely missing (those countries are excluded from the analysis) and the major share 
of them is complete, but there are series with some missing values. This is sometimes the case in the 
year 1990 and/or 1991 when the former socialist countries split up or had some transition time. In 
other cases, values at the beginning or the end of the series are missing. We have decided on three 
general rules to fill the gaps: First, if a value for a certain country is missing in t but there are values 
available in t − 1 and t + 1, the mean of those values is used. If the values are missing at the end of the 
observational period, the last value observed is taken. In the case of missing values at the beginning, 
the first value observed is taken. The series on military expenditures are imputed similarly using linear 
interpolation by employing the R package imputeTS by Moritz (2016).

Formal Alliance: We regard bilateral formal alliances (including defence agreements and non-aggres-
sion pacts) as important security-related criteria that play a central role for the formation of trade relation-
ships during the Cold War period. Therefore, the binary variable allianceij is included in the model. The 
variable is equal to 1 if countries i and j had a formal alliance in the previous period and zero otherwise. 
Given the restriction that the data are available only until 2012 (Correlates of War Project, 2017a), we 
extrapolate the data, thereby assuming that the formal alliances did not change between 2012 and 2015.

Regime Dissimilarity: Another important security-related variable that potentially acts on the for-
mation of arms trade relationships is given by the differences in political regimes between two poten-
tial trading partners. Hence, we include the so-called polity IV score, ranging from −10 (hereditary 
monarchy) to +10 (consolidated democracy). These data can be downloaded as annual cross-national 
time-series until 2015, see Center for Systemic Peace (2017) for the data and Marshall (2017) as a 
basic reference. In our model, we operationalize the distance between political regimes by using the 
absolute differences between the scores: poldiffij = |polityi − polityj|.

GDP: Following the standard gravity model, we include market sizes in our model. The standard 
measure for market size is the gross domestic product (GDP, in millions). We include the GDP in log-
arithmic form for the exporter (gdpi) and the importer (gdpj). The GDP data are taken from Gleditsch 
(2013a) and merged from the year 2010 on with recent real GDP data from the World Bank real GDP 
dataset (World Bank, 2017). Clearly, the market size and economic reliability of the exporter is an 
important prerequisite for forming and maintaining arms exports.
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Distance: For gravity models applied to trade in commercial goods, there exists mounting empirical evi-
dence that distance is a relevant factor for determining trade relations (Disdier & Head, 2008). We do not ex-
pect that trade costs and geographical distance impede arms trade because arms transfers establish worldwide 
alignments of exporters pursuing global strategic interests. Nevertheless, we include the logarithmic distance 
between capital cities in kilometres (Gleditsch, 2013b) to fulfil the gravity model specification.

Military Expenditures: We propose to include military expenditures of the sending and receiving 
country. This measure can be used to represent the size of the defence industrial base of the ex-
porter, and the spending power and the intensity of the threat perceptions of the importing country. 
Accordingly, military expenditure is added separately for the exporter and the importer in a logarithmic 
form (milexi, milexj). Concerning the distinction between formation and persistence, our expectation 
is related to the hypothesis that countries with high military expenditures are more likely to import 
arms repeatedly. We therefore expect a positive and high coefficient for the military expenditures of 
the importer in the persistence model. The data are available from Correlates of War Project (2017b) 
in the national material capabilities dataset with Singer et al. (1972) as the basic reference on the data.

3.4  |  Complete model and estimation

Putting all the elements together, the specification of the formation model as defined in Equation (2) 
is given by 

Analogously, we define the persistence model. Estimation is carried out with spline smoothing. That is, 
we replace the coefficients with 

where uk is penalized through 

As in the above, the penalty matrix is appropriately chosen (see e.g. Wood, 2017) and B(t) is a B-spline 
basis. Hence, smooth functions and smooth random heterogeneity can be estimated in a coherent frame-
work (see Durbán et al., 2005). The identification of the smooth components and the intercept term is 
ensured by a ‘sum-to-zero’ constraint. For the smooth time-varying coefficients on the fixed effects, a 
maximum number of 65 knots is used, combined with a second-order P-spline basis (quadratic splines) 
and a first-order difference penalty on the coefficients. For the estimation of the time-varying random 
effects, a first-order penalty with nine knots is employed. The smoothness selection is done by the re-
stricted maximum likelihood criterion (REML). The entire model can be integrated in the flexible GAM 
framework provided by Wood (2017) (see also Wood, 2006) which is implemented in the mgcv package 
of the statistical programming language R (R Development Core Team, 2008) by Wood (2011). Since the 
dataset is rather big and computationally expensive, we use the bam() function of the mgcv package that 
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needs less memory and is much faster than other comparable packages (Wood et al., 2015). This function 
uses discretization of covariate values and iterative updating schemes that allow for the application of 
parallelization.

Important packages used for visualization of networks and computation of network statistics are 
the statnet suite of network analysis packages (Handcock et al., 2008) and the package igraph 
(Csardi & Nepusz, 2006). For the Tables, the stargazer package from Hlavac (2013) was em-
ployed. For the model evaluation and visualization, we used the PRROC package by Grau et al. (2015).

4  |   RESULTS

4.1  |  Time-varying fixed effects

The results of the time-varying effects are grouped into network-related covariates (presented in 
Figure 4) and political and economic covariates (presented in Figure 5). The left and right columns 
give the coefficients for the formation model and persistence model respectively. In the case of the 
network statistics, a schematic representation of the corresponding network effects is added on the 
right-hand side. The values for the coefficients are presented as solid lines with shaded regions, 

F I G U R E  4   Time-varying coefficients of network statistics in solid black. Shaded areas give two standard error 
bounds. Time-constant effects in dashed grey and zero lines in dotted black. Schematic representation of the network 
effects on the right-hand side
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indicating two standard error bounds. The zero line is indicated as a dashed line and the estimates for 
time-constant coefficients are given by the dotted horizontal line. Additionally, for the same coeffi-
cient (or coefficients with the same norming) in the formation and persistence models, the effect size 

F I G U R E  5   Time-varying coefficients of political and economic covariates in solid black. Shaded areas give two 
standard error bounds. Time-constant effects in dashed grey and zero line in dotted black
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can be compared directly. Note that the coefficients at a given time point can be interpreted as in a 
logistic regression model.

4.1.1  |  Network Effects (see Figure 4)

Outdegree: The exporters’ outdegree has a coefficient that is almost time constant and close to zero 
for both models. This stands in contrast to the findings of Thurner et al. (2019), where a strong effect 
is present. Hence, once we controlled for country-specific heterogeneity (especially the exporter-
specific country effect), no population-level outdegree effect for the exporter is present. We show in 
the Supplementary Materials that the effect is indeed present when country-specific heterogeneity is 
excluded.

However, the inclusion of country-specific exporter and importer effects does not affect the co-
efficient on the outdegree of the exporter. On the contrary, the coefficient is consistently negative 
and increases slightly over time in the formation model. For the persistence model, we find a less 
pronounced but significant negative effect. We interpret this as clear evidence that countries with 
high outdegrees are comparatively less likely to import and importers, in turn, tend to export less 
frequently. According to our experience, this specification captures the trade asymmetries of the oli-
gopolistic market better than just specifying the indegrees of the importer.

Reciprocity: Controlling for the asymmetrical nature of the network, we identify a positive and 
significant impact of reciprocity in the formation model. Reciprocity in repeated transfers is only a 
relevant feature after the breakdown of the bipolar block structure. We conclude that the asymmetric 
structure is more present in persistent trade relations, with importing countries demonstrating large 
reliance on big exporters.

Transitivity: It can be seen that the variable transitivity has a positive impact on the formation and 
persistence of arms trade relationships. In the formation model, the effect is insignificant in the first 
years. This may be influenced by the clear hegemony of the United States and the Soviet Union im-
mediately after World War II, which did not require shared control over the recipient country because 
the donor was powerful enough to secure the terms of a deal. In the 1980s, middle power countries 
became technologically more advanced and, especially in the West, they joined the United States in 
delivering to other countries. The pronounced change between 1990 and 2010 can be explained by 
the break-up of the two hostile blocs and the interruption of long-standing arm-trading partnerships, 
which led to a fundamental reorganization until 2010 when the effect came back to the level of 1990. 
Although these arguments are also valid for the persistence model, we see that transitivity is less rele-
vant for ongoing, repeated transfers (the constant effect in the formation model is twice the size of the 
one in the persistence model). This finding is also strengthened by the fact that the coefficient is not 
subject to changes over time.

Shared Suppliers: The coefficients related to the shared suppliers corroborate our expectation that 
many shared suppliers lead to the formation of new trade relationships (positive and significant co-
efficient for the whole time period in the formation model). This mirrors the hierarchy of producing 
countries described above. If importing countries i and j become acquainted with similar technologies 
and develop similar levels of production capabilities, this would allow them to exchange arms. Also, 
the fact that both countries receive from the same supplier means that this country places trust in both 
importers, which facilities trust between the two importing countries. On the other hand, in the per-
sistence model, the effect of shared suppliers is significantly negative and virtually zero from 1975 on, 
showing that repetitive trading is not promoted if countries share suppliers.
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4.1.2  |  Covariate Effects (see Figure 5)

Formal Alliance: The impact of bilateral formal alliances is positive and significant for both the for-
mation and, with a more modest effect, the persistence of new trade relationships. This corroborates 
our expectation that formal alliances are more relevant for formation, that is, bypassing the required 
threshold of trustworthiness to initiate new trade relationships seems to decline over time. Hence, 
while formal alliances play a central role for arms trading after World Ward II, the formation of arms 
trades become less and less influenced by the existence of a formal alliance between the sending and 
receiving state. However, given the existence of an alliance, the impact (despite being smaller) con-
tinues to be relevant for repeated transfers. This is an important insight as we show for the first time 
that formalized alliances actually breed a dense web of arms transfers.

Regime Dissimilarity: For the formation model, the coefficient for the absolute difference of the 
polity scores is negative, significant and shows some time variation. With the decay of the eastern 
bloc, the resistance to sending new arms to dissimilar regimes increases until 2000. After that, the 
absolute effect of different polity scores declines again, coming back to the long-term constant effect. 
Interestingly, we find that regime dissimilarity is irrelevant in the persistence model, showing that if 
a relationship has started, repetition no longer requires regimes to exhibit shared governance values.

GDP: As expected, the coefficients on the logarithmic GDP for exporter and importer are positive 
and constant for both models. However, the effect for the exporters’ GDP is much stronger in the for-
mation model, model, confirming that it is mostly economically strong countries that can open new 
markets for arms exports. Together, the coefficients support the ’gravity hypothesis’, that is, greater 
economic power and market sizes of the exporter and the importer increase the probability of forming 
and maintaining trade relations. However, given that a transfer relationship has started, this effect 
becomes smaller for repetition.

Distance: The results on the logarithmic distance contradict the standard gravity model. Distance 
proves to be insignificant in both models.

Military Expenditures: For the military expenditures of the exporter, we find very comparable and 
declining effects that become insignificant from 1990 on in both models. This indicates that with the 
end of the Cold War, the dominance of exporting countries with high military budgets decreased. For 
the importers’ military expenditures in the formation model, the effect is positive and turns significant 
with time. This clearly illustrates that the military expenditures of the importer were not as import-
ant in the Cold War period when superpowers often granted military assistance. With the end of the 
1980s, we observed a marketization of weapons transfers that resulted in supplier states demanding 
money for delivery. Given a preceding exchange of arms, we find that importer military expenditures 
have a very strong effect for the full observational period, indicating that the availability of huge mil-
itary expenditures is key for understanding the continuous yearly inflow of weapons.

Overall, the results confirm our initial hypothesis. Judging by the size of the coefficients and their 
significance, we find that the network statistics (reciprocity, transitivity, shared suppliers) and secu-
rity-related covariates (formal alliance, regime dissimilarity) prove to be highly influential in the for-
mation model. On the other hand, we find weaker (or insignificant) network effects in the persistence 
model combined with high dominance of GDP and especially the military expenditures of the receiv-
ing country. This is not to say that we regard, for example, the positive effect of transitivity or alliances 
in the persistence model as irrelevant for repeated trading. The special nature of arms trading clearly 
demands trust for the formation and the persistence of transfers but the effects nevertheless show that 
the two processes are guided by different mechanisms that attach different priorities to security-related 
and economic variables.
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4.2  |  Time-varying smooth random effects

4.2.1  |  Functional component analysis

We now turn our attention to the actor-specific heterogeneity. In Figure 6, the country-specific effects 
for the exporter and the importer countries are visualized for the formation model on the left and the 
persistence model on the right. Note that in these plots we have truncated the curves for the years 
where countries are not existent.

At first, interpretation of these plots appears clumsy. We therefore retrieve information by 
employing a functional principal component analysis (FPCA) to the multivariate time series of 

F I G U R E  6   Fitted time-varying smooth random effects ϕ(t) plotted against time with country codes. The 
respective models are in the columns (formation on the left and persistence on the right) and the type of random 
effects in the rows (exporter effect on the top and importer effect on the bottom)
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random effects seen in Figure 6 (see also 7 and the Supplementary Materials). The results are 
shown in Figure 7 for the formation model and in Figure 8 for the persistence model. On the 
left-hand side, the scores of the first two principal components are plotted. The effect of the two 
scores, including their contribution to the share of variance explained by the respective compo-
nent, is visualized on the right-hand side. For example, in Figure 7, the first component explains 
95% of the variance, which is shown by the heading PC 1 (95%). The concrete interpretation of 
the visualization on the right-hand side is given as follows. For the first (top plot) and the second 
component (bottom plot), adding (the ‘+’ line) or subtracting (the ‘−’ line) the corresponding 
principal component curve leads to the visualized perturbation from the mean. In all four cases, 

F I G U R E  7   Functional principal component analysis of the smooth random effects in the formation model for 
the exporter (top) and the importer (bottom). Scores of the random effects for the first two principal components are 
given on the left. Mean principal component curve (zero line) and the effects of adding (+) and subtracting (−) the 
principal component curve are given on the right
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the first principal component (PC 1) is close to being constant, meaning that large positive scores 
for the first component indicate countries with a relatively high random effect, and vice versa for 
large negative scores. The temporal heterogeneity of the random effects is captured by the second 
principal component, indicating a tendency towards upward movement if positive and downward 
if negative. Hence, looking on the horizontal axes, we see countries that build up their arms trade 
links over the years as exporters (importers) on the right-hand side while countries that are re-
luctant to build up export (import) links are plotted on the left-hand side. Looking on the vertical 
axes, we see countries that decrease their role as exporter (importer) over time on the bottom, and 
vice versa countries that increase the number of export (import) links over time on the top. All 

F I G U R E  8   Functional principal component analysis of the smooth random effects in the persistence model for 
the exporter (top) and the importer (bottom). Scores of the random effects for the first two principal components are 
given on the left. Mean principal component curve (zero line) and the effects of adding (+) and subtracting (−) the 
principal component curve are given on the right
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these effects are conditional on the remaining covariate effects discussed before. Hence, these ran-
dom effects capture the remaining heterogeneity not included in the remaining model.

4.2.2  |  Results of the functional component analysis

Because of the great amount of information condensed in Figures 7 and 8, we restrict our interpreta-
tion to a few global patterns and selected countries that take either very special positions in the arms 
trade network (high or low values for component 1) or exhibit variation over time (high or low values 
for component 2). Overall, regarding the different levels of the random effects, it can already be seen 
in Figure 6 that the heterogeneity is much more pronounced in the formation model than in the persis-
tence model. Furthermore, in the formation model, the countries differ more strongly in their ability 
to export in comparison to their ability to import while this contrast is not present in the persistence 
model.

A global pattern regarding the temporal heterogeneity of the exporter effect becomes visible since 
the top left in Figure 7 looks like a ’lying mushroom’. That is, countries that started on a low level 
(i.e. negative component 1) show, except for Japan (JPN) and Turkey (TUR), minimal upward or 
downward variability (i.e. low level for component 2). In contrast, countries that have a random effect 
above zero move more strongly up or down with time. This means that the export dynamics are mainly 
driven by countries with relatively high exporter effects.

Figures 7 and 8 show clearly that fundamental changes in the system are driven by the end of the 
Cold War. This can be seen, for example, in the position of the Soviet Union (SUN) and Czechoslovakia 
(CZE) at the top left in Figures 7 and 8 (both with a high level for component 1 and a low level for 
component 2). This indicates that these countries left the system shortly after the collapse of the 
eastern bloc. However, this turning point affected importers as well as exporters, and consequently, 
the representation of the importer effects of the formation model at the bottom left of Figure 7 is pop-
ulated with (former) socialist countries such as Cuba (CUB), Ukraine (UKR), North Korea (PRK), 
Yugoslavia (YUG) and Moldova (MDA). Additionally, we find a prominent position for Romania 
(ROM), which is a country that has a high level (high value for component 1) but decreased its ten-
dency to be an importer in persistent trade relations (low value for component 2) in Figure 8. However, 
while some of the countries of the eastern bloc ceased to exist or strongly reduced their exports or 
imports, we also find a contrary pattern. Countries like Ukraine (UKR) and Bulgaria (BGR) have 
managed to increase their exporter effect in the formation and in the persistence model over time (high 
value for component 1 and component 2 in the top left of Figures 7 and 8). This indicates that some 
leftovers from the collapsed Soviet Union defence industries sold off their stocks and rushed into the 
global market of military products.

Besides the massive shift initiated by the end of the Cold War, we see that some dominant export-
ing countries, especially Great Britain (GBR), France (FRA) and Egypt (EGY), lost importance over 
time. These countries can be found in the fourth quadrant of the top left panels in Figures 7 and 8, 
meaning their high exporter effects decreased strongly with time. This might seem surprising since 
France and Great Britain are still among the countries with the highest exported volumes. However, 
France and Great Britain have lost their dominance over former colonies, leading to a loss of control 
over many potential importers. The general pattern also carries over to the importer effects. Looking 
at the scores of Great Britain (GBR) and France (FRA) at the bottom left of Figure 8, we see a strong 
decrease in their importer effects in the persistence model.

Apart from global patterns, some countries exhibit exceptional scores that can be traced back to 
country-specific circumstances. We find that Japan (JPN) stands out among the countries with the 
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lowest proclivity to import (see the low scores for components 1 and 2 at the bottom left of Figure 7). 
Even more pronounced is the very low tendency to export, indicated by Japan’s exporter effect in the 
persistence models (Figure 8, top left) and the strongly declining exporter effect in the formation model 
(Figure 7, top left). These findings stand in contrast to the fact that Japan is among the wealthiest coun-
tries with a highly developed export industry and are clearly due to the highly restrictive arms export 
principles introduced in 1967 and tightened in 1976. This ban on exports was only lifted in 2014 (see 
Hughes, 2018 and Ministry of Foreign Affairs of Japan, 2014).

Another very notable case is Israel (ISR), which represents somewhat of an opposite case to that 
of Japan (JPN). The exporter effects on the top left of Figures 7 and 8 show that Israel (ISR) has an 
outstanding tendency to establish and maintain arms exports. On the other hand, Israel (ISR) takes a 
very polar position in the bottom left of Figure 7 as a consequence of a strongly decreased (i.e. low 
level for component 2) importer effect in the formation model. These results reflect Israel’s path of de-
veloping highly internationally competitive weapons systems and its rise as one of the most important 
exporters. This stands in contrast to countries like Mexico (MEX), which is the country with the least 
tendency to form new trade exports (top left in Figure 7). It appears that this country is not able to be 
a relevant player in the market despite being among the world’s largest economies. We consider these 
special paths as induced by cumulative advantages and learning over time in the one case (Israel), 
whereas in the case of Mexico (MEX) we observe the path inertia of a country that has not been able 
to get its defence products sold externally.

There remain many other interesting cases. For example, the rise of South Africa (ZAF) as an 
exporter in the formation model (top left in Figure 7) demonstrates the history of the country, which 
was initially dependent on imports and is now among the major exporters of MCW. We also find that 
Ireland (IRL) strongly increased its tendency to be a persistent importer after its entry to the European 
Union (bottom left in Figure 8) while Germany (DEU) and Canada (CAN) strongly increased their 
roles as persistent exporters (top left in Figure 8).

4.3  |  Model evaluation

The evaluation of the out-of-sample predictive power is based on the following steps. We first fit the 
formation model and the persistence model, based on the information in t − 1, to the data in t and use 
the estimated coefficients for the prediction of new formation or persistence of existing ties in t + 1. 
As the predictions are probabilistic by nature, we weight the recall (true positive rate, TPR) against 
the false positive rate (FPR) for varying threshold levels, yielding the receiver operating characteristic 
(ROC) curve and the area under the curve (AUC) for each year of prediction. Because arms transfers 
can be regarded as rare events, we also compute the precision-recall (PR) curve and the correspond-
ing AUC (see Powers, 2011 as a basic reference and survey regarding ROC and PR). The results are 
plotted in Figure 9 with the AUC values that correspond to the PR curves on the left and the one cor-
responding to the ROC curves on the right. The first row gives the evaluation of the formation model 
and the second row shows the persistence model. While the AUC values in the formation model are 
very high when evaluated at the ROC curves they are much lower with the PR curves. This is a con-
sequence of being right quite frequently if a zero is predicted, while it is hard to forecast the actual 
transfers in the next period in case of the formation model. Interestingly, the opposite holds for the 
persistence model. In the combined version at the bottom of Figure 9, the AUC values derived from 
the PR curve show that the model does quite well.

Additionally, we evaluate how well global network structures like the mean outdegree, the share 
of reciprocity and observed transitivity can be mirrored by the predictions using a simulation-based 
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approach (see (see Hunter et al., 2008). To do so, we fit the models for the transition between t − 1 
and t and simulate from the formation model and the persistence model 1,000 times based on the in-
formation in t. Then, based on Equation (1), the predicted network for t + 1 is constructed. From this, 
we evaluate global network characteristics and compare them to the actual characteristics from the 
true MCW trade network in t + 1. The corresponding figure is given in the Supplementary Materials. 
The results are reassuring and the simulated networks acceptably mirror the real network properties.

Clearly, the proposed model is not the only suitable network model. Alternatively, it is possible 
to analyse the data with a STERGM without random effects and with various variants of the ERGM 
or the TERGM with and without random effects. Judged by the Akaike Information Criteria (AIC), 
we find that the values for the formation (49384.11) and persistence model (19278.99) are lower than 
their counterparts for the formation (56054.33) and persistence models (19867.85) without random 
effects. We discuss these matters further in the Supplementary Materials and show that the out-of-
sample predictive power of our model is superior to other candidate models.

5  |   CONCLUSION

In this paper, we employ a separable network model as introduced by Krivitsky and Handcock (2014) 
and add techniques proposed by Hastie and Tibshirani (1993) and Durbán et al. (2005). This enables 

F I G U R E  9   Time series of the area under the curve (AUC) values for precision-recall (PR) on the left and AUC 
values for the receiver operating characteristic (ROC) on the right. Formation model in the first row, the persistence 
model in the second row and their combination in the last row
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us to study the processes of arms trade relationship formation and persistence separately and to in-
clude time-varying coefficients and smooth time-varying random effects that are further analysed by 
methods from functional data analysis as described in Ramsay and Silverman (2005).

Applied to the discretized MCW networks from 1950 to 2016, we find that the mechanisms 
leading to formation and persistence differ fundamentally. Most importantly, the formation of new 
trade relationships is driven by network effects and security-related variables, while the persistence 
of transfers is dominated by the military expenditures of the receiving country. A careful analysis 
of the random effects indicates a high variation among the countries and along the time dimension. 
By using functional principal component analysis, we decompose the functional time series of 
smooth random effects to find countries that have increased or decreased their relative importance 
in the network. The evaluation of the fit confirms that the chosen model is able to give good out-
of-sample predictions.
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