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Abstract

We propose a general framework for Maximum Likelihood (ML) and Bayesian estimation
of income distributions based on grouped data information. The asymptotic properties of
the ML estimators are derived and Bayesian parameter estimates are obtained by Monte
Carlo Markov Chain (MCMC) techniques. A comprehensive simulation experiment shows
that obtained estimates of the income distribution are very precise and that the proposed
estimation framework improves the statistical precision of parameter estimates relative to
the classical multinomial likelihood. The estimation approach is finally applied to a set of
countries included in the World Bank database PovcalNet.

I. Introduction

The empirical analysis of welfare, income inequality and poverty requires precise estimates
of the distribution of income. An overview on the vast and growing literature on statistical
inference for income distributions is, for example, provided by Kleiber and Kotz (2003),
Chotikapanich (2008) and Bandourian, McDonald and Turley (2003). If the data are fully
released, the distribution can be estimated by standard parametric or non-parametric meth-
ods like Maximum Likelihood (ML) or kernel density estimation. Especially for developing
countries it is, however, common that researchers can only access grouped income data
which are, for example, provided by the World Bank and the World Institute for Develop-
ment Economics Research (WIDER). The data typically consist of population shares and
group-specific mean incomes for 10 to 20 income groups, where the group boundaries
are not provided. This limited data structure causes problems related to partial identifica-
tion of unrestricted income distributions and derived inequality measures (see e.g. Cowell,
1991 and Stoye, 2010), and turns the objective to estimating the parameters of prespecified
parametric income distributions, which are well known to provide a good fit to observed
income data (see e.g. McDonald, 1984, and Hajargasht et al., 2012).

The literature provides a variety of parametric income distributions including, but
not limited to Pareto’s distribution, the lognormal distribution, Champernowne’s
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distribution, Fisk’s distribution, the gamma-, generalized gamma-,Weibull-, Singh–Maddala-
and Dagum distribution (see e.g. Kleiber and Kotz, 2003). McDonald (1984) proposed the
generalized beta distribution of the second kind (GB2 distribution), which nests the lognor-
mal, generalized gamma, Singh–Maddala, Beta-2 and Dagum distributions. Parker (1999)
showed that the GB2 distribution can be derived from microeconomic principles and the
distribution has therefore become very popular in applied economic research. An alterna-
tive, flexible way of income modelling is based on mixture distributions, which are, for
example, analysed by Griffiths and Hajargasht (2012).

Contributions on statistical inference for grouped income data are rare. The traditional
and most frequently applied method is ML based on sample proportions using a multi-
nomial likelihood function (see e.g. McDonald, 1984, and Bandourian et al., 2003). This
approach is inefficient in the majority of practical applications since it neglects the informa-
tion content of observed group means and does not account for unknown group boundaries.
Subsequent work then focused on nonlinear least squares and GMM estimation, where
relative population- and income shares are effectively matched to their theoretical coun-
terparts (see e.g. Wu and Perloff, 2005; Wu, 2006; Chotikapanich, Griffiths, Rao, 2007;
Chotikapanich et al., 2012). Hajargasht et al. (2012) and Griffiths and Hajargasht (2015)
propose GMM frameworks which account for unknown group boundaries and observed
group means but lack a solid statistical foundation with respect to the underlying data
generating process (DGP). Hajargasht and Griffiths (2020) shift the focus from income
distributions to parametric Lorenz curves and provide a GMM framework covering two
DGPs of empirical relevance, and Chen (2018) generalizes the GMM framework to in-
corporate varying data information. Bayesian approaches to the estimation of parametric
income distributions are provided by Chotikapanich and Griffiths (2000), Kakamu (2016)
and Kakamu and Nishino (2019). All Bayesian methods employ Monte Carlo Markov
Chain (MCMC) techniques based on the Metropolis-Hastings (MH) algorithm in order
to obtain samples from the parameters’ joint posterior distribution. While Chotikapanich
and Griffiths (2000) employ the standard multinomial likelihood of McDonald (1984), the
recent contributions of Kakamu (2016) and Kakamu and Nishino (2019) employ the joint
likelihood of a set of order statistics as proposed by Nishino and Kakamu (2011), which
is – however – appropriate for quantile-data only. Moreover, both Bayesian settings do not
account for unknown group boundaries and ignore the information of observed group mean
incomes.

Interestingly, while those recent contributions which account for the informational con-
tent of group mean incomes completely focused on GMM, the early work of Hitomi et al.
(2008) already developed an asymptotically efficient Quasi-Maximum Likelihood (QML)
approach incorporating the information of group means under observed and predetermined
group boundaries. Their QML approach is asymptotically equivalent to ML and provides
the same asymptotic properties as the subsequent GMM approaches of Hajargasht et al.
(2012) and Griffiths and Hajargasht (2015). In the present paper we develop a QML esti-
mation scheme which is similar in nature and asymptotically equivalent to the approach of
Hitomi et al. (2008) and extends the Hitomi framework to unknown group boundaries and
two different DGPs of practical relevance, which involve likelihoods containing different
data information. Moreover, we find that our QML framework comes particularly close
to the true likelihood for reasonable sample sizes, and combining the derived likelihoods
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with prior information therefore allows for the implementation of a straight-forward MH
sampling scheme for Bayesian inference. Bayesian estimation using MCMC techniques
is especially attractive for income distributions, since it directly provides valid inference
for nonlinear functions of the distribution parameters, such as the Gini coefficient or the
Headcount ratio. Up to our knowledge, the proposed setting is the first to incorporate
the information of observed group means into Bayesian estimation of parametric income
distributions under grouped data.

We therefore contribute to the literature by offering a comprehensive discussion of
classical and Bayesian estimation of parametric income distributions for grouped income
data with potentially unknown boundaries while accounting for two methods of grouping
observations. The first method (DGP1) builds on proportions of observations in each in-
come group, which have been fixed prior to sampling. As a result the group income means
and group boundaries are random. In the second method of grouping (DGP2) the group
boundaries are predetermined prior to sampling. Hence both the number of observations
and the income means in each group are random. Income data from the World Bank or
WIDER typically correspond to DGP1 with unknown group boundaries. Dependent on the
type of DGP the likelihood comprises varying data information including group population
proportions, group means and group boundaries. The multinomial ML method of McDon-
ald (1984) fits DGP2 with known boundaries and observed population proportions. The
informational content of the group means is ignored. The QML approach of Hitomi et al.
(2008) fits DGP2 with known group boundaries and observed group means and population
proportions. Both likelihoods are misspecified in case of DGP1. Finally, the order-statistic
based ML approach of Nishino and Kakamu (2011) fits DGP1 with known boundaries but
ignores the informative content of observed mean incomes.

Extending the ML approach of McDonald (1984) to incorporate the informational
content of the group means requires the derivation of the joint (conditional) density of
the mean incomes. This distribution is unknown for all relevant income distributions, but
for reasonable sample sizes well approximated by the Gaussian due to standard central
limit arguments. We approximate the joint density of the group means by a product of
Normals with moments given by their asymptotic counterparts. Under DGP1 the group
boundaries constitute random order statistics and can easily be included in the likelihood
(known boundaries, comparable to the ML approach of Nishino and Kakamu, 2011). If
the boundaries are unknown, we exploit asymptotic results of Beach and Davidson (1983)
and maximize the resulting Gaussian likelihood approximation for the group means con-
ditional on the parameters of the income distribution. Under DGP2 both group means
and relative population shares are random and the likelihood results from the product of
the joint conditional density of group means and the multinomial likelihood. If group
boundaries are unknown, we can simply estimate them along with the remaining model
parameters. Bayesian estimation is implemented by combining the derived likelihoods
with according prior information and sampling the resulting posterior using an inde-
pendent MH sampler based on a Gaussian approximation to the posterior distribution.
Since the proposed likelihood functions are based on Gaussian approximations, they es-
sentially resemble QML functions. However, as our simulation experiments show, the
estimation error is of very reduced impact and the QML functions appear close to the true
likelihoods.
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We proof the consistency of our QML estimation schemes and derive the asymptotic
distribution of the QML estimators. By analogy to the results of Hitomi et al. (2008) our
QML approaches are asymptotically equivalent to ML based on the true (unknown) joint
conditional density of the group means and asymptotically efficient under standard regu-
larity conditions. We also find that our QML method under DGP2 has the same asymptotic
covariance as the GMM approaches of Hajargasht et al. (2012) and Griffiths and Hajargasht
(2015).

Taken all together, we provide a comprehensive QML framework for the estimation of
income distributions using grouped data. Combining the QML functions with according
prior distributions then allows for Bayesian inference using basic MCMC techniques. Our
approach is efficient in the sense that all available data information is included in the
likelihood, whose characteristics depend on the specific DGP at hand. We further find that
the QML estimation is simple and fast to implement with standard asymptotic properties
corresponding to asymptotically efficient ML under the usual regularity conditions. With
regard to Bayesian inference, the proposed independent MH algorithm for sampling the
posterior distribution shows a high degree of efficiency as reflected by high acceptance
probabilities and accordingly low numerical standard errors.

We provide an extensive simulation experiment in order to assess the finite sample
performance of the proposed estimation schemes. Here we consider the popular GB2
distribution which nests most of the income distributions of practical relevance. The results
indicate a sound and stable performance of the QML- and Bayesian estimators under DGP1
and DGP2 and known-/unknown group boundaries. This performance appears to be robust
against varying DGPs, parameterizations, sample sizes and numbers of income groups.
Our results also indicate significant improvements over the conventional multinomial ML
approach and we obtain accurate parameter estimates which come close to those obtained
for individual income data. We also find that the precision of the parameter estimates does
not suffer significantly if the group boundaries are unknown. This result is of considerable
practical relevance, since group boundaries are usually not provided in the World Bank or
WIDER data sets.

We finally apply both, the QML- and the Bayesian estimation approach to World Bank
data for four countries and find evidence for the GB2 distribution relative to its nested
competitors such as the Beta2, Singh–Maddala and the Dagum distribution. The obtained
estimates of inequality and poverty measures as well as predictions of income shares show
a high degree of accuracy.

The remainder of this paper is organized as follows. Section II gives general definitions
and discusses the relevant data generating processes. Section III introduces the QML
approach and section IV extends the QML scheme to Bayesian inference using standard
MCMC techniques. Section V then provides a simulation experiment in order to assess
the finite sample performance of the estimators, and section VI presents the empirical
application. Section VII concludes. Proofs are given in the Appendix.

II. Definitions and data generating processes

Let y1,…, yn be a random sample from a parametric distribution with density function
fy(y;�) (y > 0), distribution function Fy(y;�) and moment distribution function

© 2020 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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F`(y;�)= 1

E[y`]

∫ y

0
t`fy(t;�) dt, `=1, 2, … (1)

where y denotes income and � comprises the model parameters. In the following we assume
that the first and second moments of y exist. For the GB2 distribution we, for example,
obtain �= (a, b, p, q)′ with a, b, p, q > 0 and

fy(y;�)= ayap−1

bapB(p, q)(1+ (y/b)a)p+q
,

Fy(y;�)=Bu(p, q),

F`(y;�)=Bu(p+`/a, q−`/a),

E[y`]=b` B(p+`/a, q−`/a)

B(p, q)
,

where u = (y/b)a/ [1 + (y/b)a], B(·) denotes the beta function and Bu(·) denotes the beta
distribution function evaluated at u. An overview of the GB2 and its nested distributions
is provided in Table 1, which has been taken from Hajargasht et al. (2012).

The sample is grouped into K income groups where the boundaries are denoted by
{zi−1, zi}K

i=1 with z0 = 0 and zK =∞. Let ni denote the number of observations in income
group i such that the sample size obtains as n =∑K

i=1 ni. Typical income data (e.g. World
Bank or WIDER) contains information on relative population shares ci =ni/n and group-
specific mean incomes ȳi = (1/ni)

∑n
j=1 yjgi(yj), for i =1,…, K , where

gi(y)=
{

1 if zi−1 < y � zi

0 otherwise.
(2)

In some cases we do not have data on mean incomes directly but observe the overall
mean income ȳ together with income shares {si}K

i=1 instead, where si = (nȳ)−1
∑n

j=1 yjgi(yj).
Group-specific mean incomes are then obtained via ȳi = siȳ/ci. Group boundaries {zi}K−1

i=1

are usually not provided.
The method of grouping individuals into income classes is not unique and likelihood

functions for ML or Bayesian estimation of � must be tailored to the respective DGP in
order to enable solid statistical inference. The upcoming subsections therefore define two
distinct DGPs which are of particular relevance in practice.

DGP1: Fixed ni and random zi , ȳi

Under DGP1 the relative proportions of observations in each income group, ci =ni/n, are
prespecified. This is the case for the majority of the data sets in the World Bank and the
WIDER data base. Respective data consist of constant relative population shares corre-
sponding, for example, to deciles or quintiles together with the respective mean incomes.

Denote the cumulative number of group observations by nc
i =∑i

`=1 n`. Under DGP1
the group boundary zi (i = 1,…, K − 1) corresponds to the nc

i ’th order statistic y[nc
i ] from

fy, which represents a random variable. Note that, strictly speaking, the group boundary
can take any value in [y[nc

i ], y[nc
i +1]). Corresponding data generating processes are, however,
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Figure 1. Schematic illustration of the two data generating processes DGP1 and DGP2 for n=20 and K =5
income groups. Black bullets denote individual income yi on the real line. The example for DGP1 assumes
ci =0.2 ∀ i

observationally equivalent and zi =̂ y[nc
i ] therefore constitutes an identifying restriction. The

upper panel of Figure 1 depicts a schematic illustration of DGP1 for n=20.
We summarize that DGP1 generates random group boundaries and group means, while

relative proportions ci and ni = n · ci are preset and therefore deterministic. The non-
stochastic nature of the group proportions renders the classical multinomial ML method
of McDonald (1984) misspecified and ML estimation for DGP1 can only be based on the
information contained in the group boundaries (if available) and the group means.

DGP2: Fixed zi and random ni, ȳi

DGP2 assumes prespecified fixed group boundaries resulting in a random number of ob-
servations in each income group. Respective data sets contain group means and relative
population shares which vary over income groups. Such data are rather infrequently met in
practice – a few examples are found in the PovcalNet data base of the World Bank for se-
lected countries and years. A schematic illustration of DGP2 is provided in the lower panel
of Figure 1. The multinomial ML method of McDonald (1984) and the QML approach of
Hitomi et al. (2008) are designed under DGP2 with known group boundaries.

We summarize that DGP2 generates random population shares and group means, while
group boundaries are preset and therefore deterministic. ML estimation for DGP2 can
therefore be based on the information contained in both, the group means and the population
shares. Note that the multinomial ML method of McDonald (1984) remains inefficient since
the informational content of the group-specific mean incomes is not exploited.

III. Quasi maximum likelihood inference

DGP1: Fixed ni and random zi , ȳi

Under DGP1 and known group boundaries (KB) the likelihood for the complete set of
observable data obtains as

LDGP1, KB(�; ȳ, z)= f (ȳ | z;�) · f (z;�), (3)

© 2020 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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where ȳ = {ȳi}K
i=1 and z = {zi}K−1

i=1 . Dependence on {ni}K
i=1 is suppressed for notational

convenience.
The i’th group boundary zi corresponds to the nc

i ’th order statistic of iid random variables
from fy. Exploiting the Markov property of order statistics (see e.g. David and Nagaraja,
2003, Theorem 2.5) we obtain the joint density of group boundaries in (3) as

f (z;�)= f (z1;�) · f (z2 | z1;�) ·… · f (zK−1 | zK−2;�), (4)

where standard calculus for order statistics gives

f (z1;�)= n!

(nc
1 −1)!(n−nc

1)!
Fy(z1;�)nc

1−1 [1−Fy(z1;�)]n−nc
1 fy(z1;�), (5)

(zi | zi−1;�)= (n−nc
i−1)!

(nc
i −nc

i−1 −1)!(n−nc
i )!

· [1−Fy(zi;�)]n−nc
i

[1−Fy(zi−1;�)]n−nc
i−1

[Fy(zi;�)−Fy(zi−1;�)]nc
i −nc

i−1−1 fy(zi;�). (6)

Note that f (z;�) corresponds to the likelihood analysed by Nishino and Kakamu (2011).
By exploiting conditional independence the joint density of group means in equation

(3) can be decomposed into

f (ȳ | z;�)= f (ȳ1 | z1;�) · f (ȳ2 | z1, z2;�)

·… · f (ȳK−1 | zK−2, zK−1;�) · f (ȳK | zK−1;�), (7)

where z0 =0 and zK =∞.The distribution of the arithmetic mean is unknown for any income
distribution of practical relevance (see e.g. Nadarajah, 2005, for the complex derivation of
the distribution of the sum of only two GB2 distributed random variables). We therefore
replace the individual constituents of f (ȳ | z;�) in equation (7) by approximations, which
are consistent in the sense that the resulting approximation error diminishes to zero as
n → ∞. Employing the standard Lindeberg Levy Central Limit Theorem (CLT) for iid
random variables we obtain

f (ȳ | z;�)≈ fN (ȳ1 | z1;�) · fN (ȳ2 | z1, z2;�)

·… · fN (ȳK−1 | zK−2, zK−1;�) · fN (ȳK | zK−1;�), (8)

where fN (ȳi | ·) denotes the density function of a Gaussian distribution with mean �i(�) and
variance �2

i (�). Note that this approach is analogous to the QML likelihood approximation
of Hitomi et al. (2008), who do not refer to CLT arguments but (equivalently) discuss the
convergence of the characteristic function of the density of group means. Hitomi et al.
(2008) then provide a formal proof for the asymptotic equivalence of ML estimates based
on f (ȳ | z;�) and QML estimates using the approximation in (8).

Since conditional on the group boundaries (zi−1, zi), the ni − 1 individual stochastic
incomes in group i are independent and identically distributed with density function
f (y | zi−1, zi;�) = f (y | zi−1 < y < zi;�) (see David and Nagaraja, 2003, Theorem 2.5) we
obtain

�i(�)=E(ȳi | zi−1, zi;�)= ni −1

ni
�̃i(�)+ zi

ni
with (9)
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�̃i(�)=E(y | zi−1 < y < zi;�)

= [F1(zi;�)−F1(zi−1;�)] ·E(y;�)

Fy(zi;�)−Fy(zi−1;�)

(10)

and

�2
i (�)=Var(ȳi | zi−1, zi;�)= ni −1

n2
i

�̃2
i (�) with (11)

�̃2
i (�)=Var(y | zi−1 < y < zi;�)

=
[

(F2(zi;�)−F2(zi−1;�)) ·E(y2;�)

Fy(zi;�)−Fy(zi−1;�)
− �̃i(�)2

]
,

(12)

where i = 1,…, K − 1. Note that conditional on zi the last summand in ȳi is deterministic
and given by zi. For the last income group we obtain �K = �̃K and �2

K = �̃2
K /nK .

Inserting the previously derived expressions into equation (3) the resulting approximate
log-likelihood under DGP1 and known group boundaries obtains as

LDGP1, KB(�; ȳ, z)=�− 1

2

[
ln(�̃2

K (�))− ln nK + �̃−2
K (�)nK (ȳK − �̃K (�))2

]
+

K−1∑
i=1

{
− 1

2

[
ln(�2

i (�))+ (ȳi −�i(�))2

�2
i (�)

]
+ (nc

i −nc
i−1 −1) ln[Fy(zi;�)−Fy(zi−1;�)]+ ln fy(zi;�)

}
+ (n−nc

K−1) ln
[
1−Fy(zK−1;�)

]
, (13)

where nc
0 =Fy(z0;�)=0 and

�=−K

2
ln(2�)+

K−1∑
i=1

ln[(n−nc
i−1)!]− ln[(n−nc

i )!]− ln[(nc
i −nc

i−1 −1)!].

Estimation of � is carried out by maximizing the objective function in equation (13) us-
ing numerical techniques routinely available in standard software packages. Note that the
unique maximizer �̂ of (13) can be interpreted as a QML-type estimator where consis-
tency and asymptotic normality follow by the standard regularity conditions provided in
Appendix A. We provide results on the consistency and asymptotic normality of the QML
estimator for DGP1 and known boundaries in Proposition 1.

Proposition 1. Under the regularity conditions stated in Appendix A, the QML estima-
tor obtained as the unique maximizer of the QML objective in equation (13) is consistent
and asymptotically normal with covariance matrix ACOVDGP1, KB(�̂)=− 1

n H (�0)−1, and

H (�0)=
K∑

i=1

−
[

@�̃i(�0)

@�

@�̃i(�0)

@�′

]
ci

�̃2
i (�0)
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− 1

ci

[
@Fy(qy(cc

i ;�0);�0)

@�
− @Fy(qy(cc

i−1;�0);�0)

@�

]
·
[

@Fy(qy(cc
i ;�0);�0)

@�
− @Fy(qy(cc

i−1;�0);�0)

@�

]′
,

where �0 = plim(�̂) denotes the true value of �, qy(·;�0) = F−1
y (·;�0) denotes the quan-

tile function of y, cc
i = ∑i

`=1 c` and by definition of the first and the last income group
@Fy(qy(cc

0,�0);�0)/@� =̂0 and @Fy(qy(cc
K ,�0);�0)/@� =̂0.

Proof: see Appendix B.

The quality of the QML approximation in (8) is further analysed in section V. The
results imply overall accurate approximations even for relatively low sample sizes with
n=5, 000 and 10 income groups. In fact the approximation error induced by the Gaussian
approximation to the group means appears practically negligible.

The majority of the WIDER and World Bank data sets do not report group boundaries.
In order to deal with this situation we have to integrate out the latent group boundaries z
from the joint (unknown) likelihood in equation (3). It turns out that this problem is solved
asymptotically by the results of Beach and Davidson (1983) (see also the related work of
Griffiths and Hajargasht, 2015). We obtain the QML objective

LDGP1, UB(�; ȳ)=−0.5[K ln(2�)−K ln(n)+ ln |�(�) |
+n(ȳ −�Æ(�))′�−1(�)(ȳ −�Æ(�))],

(14)

where �Æ(�) = (1/ci)
∫ qy(cc

i ;�)
qy(cc

i−1;�) yfy(y)dy and the limiting covariance matrix of
√

nȳ, �(�),
defined in Appendix B.

The results on consistency and asymptotic normality of the QML estimator for DGP1
and unknown group boundaries are provided in Proposition 2.

Proposition 2. Under the regularity conditions stated in Appendix A, the QML estima-
tor obtained as the unique maximizer of the QML objective in equation (14) is consistent
and asymptotically normal with covariance matrix ACOVDGP1, UB(�̂)=− 1

n H (�0)−1, where

H (�0)=−@�*′
(�0)

@�
�−1(�0)

@�*(�0)

@�′ .

Proof: see Appendix B.

DGP2: Fixed zi and random ni, ȳi

DGP2 generates random numbers of observations ni and random mean incomes ȳi for each
group. The likelihood comprising all available data information then obtains as

LDGP2(�; ȳ, n)= f (ȳ |n;�) · f (n;�), (15)

where n={ni}K
i=1. Dependence on z is again suppressed for notational convenience.
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The distribution of n is multinomial with density function

f (n;�)= n!

n1! ·… ·nK !
·�1(�)n1 ·… ·�K (�)nK , (16)

where

�i(�)=Pr(zi−1 < y � zi;�)=Fy(zi;�)−Fy(zi−1;�), i =1,…, K .

We then obtain the QML objective under DGP2 via inserting (16) and the Gaussian
approximation (8) in equation (15):

LDGP2(�; ȳ, n)=�+
K∑

i=1

{
− 1

2

[
ln(�̃i(�)2)− ln ni + ni(ȳi − �̃i(�))2

�̃i(�)2

]
+ni ln �i(�)

}
, (17)

where

�=−K

2
ln(2�)+ ln(n!)−

K∑
i=1

ln(ni!). (18)

QML estimation of � is carried out by maximizing the objective in equation (17) over �
(known boundaries) or jointly over z and � (unknown boundaries). Note that the maxi-
mization of (16) for known group boundaries corresponds to the multinomial ML method
of McDonald (1984).

The results on consistency and asymptotic normality of the QML estimator �̂ for DGP2
(known and unknown boundaries) are provided in Proposition 3.

Proposition 3. Under the regularity conditions stated in Appendix A, the QML es-
timator obtained as the unique maximizer of the QML objective in equation (17) is
consistent and asymptotically normal with covariance matrix ACOVDGP2(�̂)=− 1

n H (�0)−1,
where

H (�0)=
K∑

i=1

�i(�0)
@2 ln �i(�0)

@�@�′ −
[

@�̃i(�0)

@�

@�̃i(�0)

@�′

]
�i(�0)

�̃2
i (�0)

.

This result holds for both, known and unknown group boundaries (with the parameter
vector � augmented by the set of group boundaries).

Proof: see Appendix C.

Note that the asymptotic covariance matrix of �̂ under DGP2 corresponds to the one
obtained under the QML approach of Hitomi et al. (2008) and the GMM estimators of
Hajargasht et al. (2012) and Griffiths and Hajargasht (2015).

IV. Bayesian inference

Taking the previously derived quasi likelihood functions as close approximations to the
true likelihoods (compare our simulation results in section V on the approximation error),
and introducing Pr(�) as a joint prior distribution for the parameter vector �, we obtain the
posterior
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�(� |X )∝L(�; X ) ·Pr(�), (19)

where X denotes the data, that is, the group means ȳ and/or group boundaries z or group
counts n, depending on the DGP. The likelihood L(�; X ) is chosen from equations (13) and
(14 or 17) according to the type of DGP and depending on whether the group boundaries
are known or unknown.

We impose independent lognormal priors for the parameters a, b, p and q of the GB2
distribution and sample the posterior by a standard independent MH algorithm similar to
the ones applied in Chotikapanich and Griffiths (2000) and Kakamu (2016).1 We employ
a multivariate normal maximum a posteriori proposal for ln �, q(ln �), centred at the mode
of the posterior density kernel (19) w.r.t. ln �. The covariance matrix is obtained by the
negative inverse of the log-posterior’s hessian at the mode. The mode and the hessian
are obtained via numerical maximization of the posterior kernel in (19) over ln � using a
standard Quasi-Newton BFGS optimizer.

The MH sampler then proceeds as follows:

(i) Set ln �(1) = ln �mode, where �mode denotes the posterior mode.
(ii) For i =2,…, S implement the following MH steps:

(a) Draw a candidate value ln �* from the proposal q(ln �).
(b) Compute the MH acceptance probability

�=min

{
1,

�(�* |X ) q(ln �(i−1))

�(�(i−1) |X ) q(ln �*)

}
, (20)

where �* = exp(ln �*). Note that � can be computed without knowing the in-
tegrating constant of the posterior in (19). Also, if �* falls outside the feasible
parameter region, that is, if q* < 2/a* (non-existence of the GB2 variance, see
Table 1), set �=0.

(c) Draw a uniform random variable u from the interval (0, 1).
(d) If u�� set ln �(i) = ln �*, else set ln �(i) = ln �(i−1).

The MH algorithm constructs a Markov chain, which converges to the posterior of
ln �. After a burnin of the first M iterations of the sampler, after which convergence
is achieved, we obtain with {exp(ln �(i))}S

i=M+1 a correlated sample from the posterior
of �, from which we can compute an MC approximation to the Bayesian estimate of �
(posterior mean) by the corresponding sample mean. The uncertainty of the estimates is
addressed by the posterior standard deviation, approximated by the sample standard de-
viation of the MC draws. Posterior moments of functions of the model parameters like,
for example, the Gini coefficient or the Headcount ratio are easily obtained by evaluat-
ing the respective function at each MC draw �(i) and then computing the desired sample
statistics.

For our simulation experiments in section V and the empirical applications in section
VI we choose overall uninformative lognormal priors centred at the posterior mode with

1
In case of DGP2 and unknown group boundaries we augment � by the group boundaries and impose additional

lognormal prior distributions for the boundaries.
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standard deviation equal to 100. For the number of MH simulations and the burnin we
choose S =120, 000 and M =20, 000.

V. Simulation experiment

We now perform a simulation experiment in order to investigate the quality of the like-
lihood approximation through central limit arguments and the performance of the QML
and Bayesian estimation schemes under DGP1 and DGP2 and both known and unknown
boundaries in finite samples. We consider a GB2 distribution and four parameter settings
of empirical relevance: (i) a=1.5, b=106, P =5.1, q=2.9; (ii) a=1.6, b=386, P =1.2,
q = 1.8; (iii) a = 3.1, b = 56, P = 2.3, q = 0.9; (iv) a = 4.4, b = 69, P = 0.7, q = 0.6. The
four settings are based on our empirical estimates for income data of India Rural, Peru,
Ethiopia and Iraq as discussed in section VI.

We first analyse the quality of the Gaussian approximation to the joint density of the
group means. We focus on DGP1 and unknown group boundaries, which is the empirically
most realistic scenario, and simulate N = 100, 000 independent data sets, each of sample
size n=5, 000. Empirically relevant sample sizes typically amount to n=20, 000 or higher
(see our empirical application in section VI). We, however, focus on rather low sample sizes
in order to tempt the asymptotics of our normality approximation. We then construct K =10
income groups, where the group boundaries are set to the deciles of the simulated data, and
compute the K group mean incomes for each of the N data sets. Figure 2 depicts kernel
density approximations to the true density of the group means (based on the N simulations)
together with the Gaussian approximations with moments given by the corresponding
elements of �* and �/n in equations (14) and (24). We obtain accurate approximations
with some very slight skewness in the last income groups for parameter settings (ii), (iii)
and (iv) induced by the strong skewness of the respective income distributions. Note that
small approximation errors for the last group cannot be expected to have a significant effect
on inference as compared to the hypothetical but unavailable ‘true’ likelihood, since the
likelihood contribution of the mean income in each income group is down weighted by
the respective variance. The income variance within the last group, however, is typically
exceedingly high if the underlying distribution is heavily skewed to the right. Hence in
case of heavily skewed income distributions, the average income in the last income group
has practically zero weight.

We now turn to the analysis of the finite sample performance of the QML and Bayesian
parameter estimates under both DGP1 and DGP2 and all four parameter settings given
above. We consider sample sizes n ∈ {5000, 10000, 20000, 100000} and three different
group settings: We construct K =10, K =20, and K =50 income groups, where the group
boundaries are set to the respective sample quantiles/theoretical quantiles corresponding
to equal group sizes/probabilities under DGP1 and DGP2 respectively. We consider both,
known and unknown group boundaries, and compare the performance of the QML- and
Bayesian estimators of sections I and IV to the empirically infeasible ML for individual
observations (denoted by ML Raw), the GMM approach of Hajargasht and Griffiths (2020)
labelled GMM-L) and the GMM approach of Hajargasht et al. for DGP2 (2012, labelled
GMM ). For DGP2 with known group boundaries we also consider the multinomial ML
method of McDonald (1984) denoted by ML Multi).
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Figure 2. Kernel density estimates of the distribution of K = 10 group means together with their Gaussian
approximations under DGP1 and unknown group boundaries. Black line: kernel density estimate; Dashed red
line: Gaussian approximation with moments given by the corresponding elements of �* and �/n in equations
(14) and (24). The kernel density estimates are based on 100,000 simulations from a GB2 distribution under
DGP1 and unknown boundaries with parameter settings (i), (ii), (iii) and (iv) as illustrated in section V. The
sample size is n=5, 000

Tables 2 to 5 provide the MSE results for parameter settings (i)–(iv) obtained under 500
independently simulated data sets.2 The MSEs are decreasing with increasing sample size,
reflecting the consistency of the estimates. For parameter settings (ii) to (iv) we observe an
overall similar performance of the QML and Bayesian estimators with a tendency to slightly
higher MSEs under the Bayesian setting. The performance of QML also appears similar
to GMM, which is expected under the asymptotic equivalence of both estimators. The
lowest MSEs are typically obtained for ML Raw. Interestingly, under parameter setting
(i) and n � 10, 000 the best MSE results are obtained under the Bayesian setting, even
outperforming ML Raw. For low sample sizes we also find that QML outperforms the
GMM approach, in particular for K =50.

The MSEs under known and unknown group boundaries are typically very similar in
value.The availability of group boundaries therefore appears to be of limited importance for
estimation precision. This is an important finding since the group boundaries are typically

2
The MH acceptance probabilities �, which determine the efficiency of the MCMC sampling scheme under

the Bayesian setting, are ranging between 0.20 and 0.91 with a median value of 0.74. These values indicate a good
performance of the MH algorithm and a fast mixing of the generated Markov chains. See also the results on numerical
standard errors reported for our empirical estimates in section VI.
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Figure 3. Average estimated income densities under parameter setting (i) for both, grouped data with unknown
boundaries (K = 10 income groups; black line: estimated via Quasi Maximum Likelihood (QML); magenta
line: estimated via Bayes) and raw data (blue line, estimated via ML), along with corresponding 95% pointwise
confidence intervals under DGP1 with n=10, 000 (dashed lines).The average densities and confidence intervals
are computed using the 500 estimated income distributions from the Monte Carlo experiment of section V. The
figure also reports average estimates of the Gini coefficient and according finite sample standard errors which
are computed as the sample standard deviation over the 500 Gini estimates

not available in practice. The same holds for DGP1 vs. DGP2: The data generating process
itself does not have a strong effect on the MSEs. The worst MSE results are obtained for ML
Multi, irrespective of the parameter setting, sample size and number of income groups –
a finding which is explained by the method’s limited use of the available data information.
We also do not find clear evidence of decreasing MSEs with increasing number of income
groups K , although the results provide some indication that this might be the case for low
sample sizes n.

Taken all together, the results indicate a sound and stable performance of the QML-
and Bayesian estimators under DGP1 and DGP2 and known-/unknown group boundaries.
This performance appears to be robust against varying DGPs, parameterizations, sample
sizes and numbers of income groups.

We now focus on parametrization (i), which is characterized by rather high differences
in the MSEs across models and settings, and analyse the effect of the parameter uncertainty
on estimates of the income distribution itself. Figure 3 depicts average estimated income
distributions for both grouped data under DGP1 with unknown boundaries (estimated

© 2020 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.



Inference for income distributions 55

via QML and Bayes) and raw data, along with corresponding 95% pointwise confidence
intervals, which are computed using the 500 estimated income distributions from the sim-
ulation experiment. The figure also reports average estimates of the Gini coefficient and
corresponding standard errors. The differences in the estimates under grouping and raw
data appear minor. We conclude that the grouping itself generates only moderate losses in
estimation uncertainty regarding the income distribution itself and derived measures like
the Gini coefficient, even for unknown group boundaries.This is an important finding, since
international income data are usually provided in grouped form and one might reasonably
expect severe statistical limitations by this data format compared to raw data. Our results
imply that this is actually not the case.

VI. Empirical application

We now apply our QML- and Bayesian estimation schemes to grouped household income
data from the World Bank website PovcalNet provided for the year 2013 (income is mea-
sured in purchasing power parity Dollar rates, see PovcalNet for details). We consider
a selection of four countries: India Rural, Peru, Ethiopia and Iraq. The data consist of
group-specific mean incomes ȳi and population shares ci for 10 income groups, where the
grouping mechanism corresponds to DGP1 with unknown boundaries (constant population
shares ci =0.1 ∀i). The complete data set is given in Table 6.

Table 7 reports the QML- and Bayesian parameter estimates under the GB2 distribution
along with estimates of the Gini coefficient and the headcount ratio (HC) with according
standard errors. For a given poverty line x, the headcount ratio is the proportion of popu-
lation with income less than x. Hence

HC =F(x; �̂),

where we set x =57.79 as provided by the World Bank. The Gini coefficient is obtained as

Gini=−1+ 2

E[y]

∫ ∞

0
y F(y;�) f (y;�) dy,

and the integral is evaluated numerically. We also consider forecasts of observed income
shares si for i = 1,…, 10 as a criterion for the goodness of fit of the income distribution
(see also Hajargasht et al., 2012). Predicted cumulative income shares �i are obtained
by the first-moment distribution function, �̂i =F1(zi; �̂). Predicted income shares are then
computed as ŝi = �̂i − �̂i−1. Table 7 reports predictions of the income shares for the first
and the last group. Accurate predictions for the first group are of special importance for
poverty measurement, while predictions for the last group suffer from the thick right tail
of typical income data.

The reported parameter estimates are obtained under the log-likelihood LDGP1, UB in
equation (14). For the Bayesian estimates we also report numerical standard errors com-
puted by a Parzen-based spectral estimator (see e.g. Kim, Shephard and Chib, 1998) which
addresses the numerical uncertainty of the estimates induced by the simulation-based
MCMC approach. The last line in Table 7 reports the average MH acceptance ratio, which
takes a minimum of 0.55 for Iraq and a maximum of 0.92 for Ethiopia, implying a high de-
gree of simulation efficiency as reflected by a fast mixing of the generated Markov chains.
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ȳ 5
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TABLE 7

Bayesian and Quasi Maximum Likelihood (QML) estimates of model parameters, poverty and inequality
measures and income shares ŝ1 and ŝ10 obtained under the GB2 distribution for the PovcalNet data

India Rural Peru Ethiopia Iraq

Bayes QML Bayes QML Bayes QML Bayes QML

a 3.0809 3.0842 1.6403 1.6421 4.4050 4.3979 1.5137 1.5179
(0.1340) (0.1585) (0.0785) (0.0804) (0.1815) (0.1999) (0.1058) (0.1417)
[0.0008] [0.0003] [0.0006] [0.0012]

b 55.5631 55.6948 386.2183 385.9497 69.1348 69.1478 105.7670 106.2234
(1.5815) (1.6864) (9.6912) (11.2499) (0.5848) (0.6178) (6.3412) (8.5476)
[0.0106] [0.0376] [0.0020] [0.0696]

p 2.3017 2.2769 1.2221 1.2141 0.7106 0.7099 5.2060 5.0863
(0.2207) (0.2429) (0.0885) (0.0878) (0.0398) (0.0435) (0.7813) (1.0372)
[0.0015] [0.0004] [0.0001] [0.0090]

q 0.8938 0.8903 1.8283 1.8165 0.5939 0.5938 2.9642 2.9191
(0.0504) (0.0609) (0.1436) (0.1517) (0.0315) (0.0353) (0.3351) (0.4265)
[0.0003] [0.0006] [0.0001] [0.0037]

Gini 0.3078 0.3074 0.4377 0.4375 0.3303 0.3299 0.2947 0.2954
(0.0021) (0.0025) (0.0023) (0.0026) (0.0025) (0.0027) (0.0016) (0.0017)

[< 0.0001] [< 0.0001] [< 0.0001] [< 0.0001]

HC 0.2051 0.2051 0.0418 0.0418 0.3045 0.3045 0.0195 0.0195
(0.0020) (0.0022) (0.0010) (0.0010) (0.0024) (0.0025) (0.0007) (0.0008)

[< 0.0001] [< 0.0001] [< 0.0001] [< 0.0001]

s1 emp 0.0395 0.0395 0.0156 0.0156 0.0318 0.0318 0.0368 0.0368
ŝ1 0.0398 0.0396 0.0157 0.0156 0.0320 0.0319 0.0371 0.0368
s10 emp 0.2665 0.2665 0.3269 0.3269 0.2740 0.2740 0.2370 0.2370
ŝ10 0.2614 0.2620 0.3231 0.3241 0.2713 0.2717 0.2357 0.3371

acc-ratio 0.8114 0.8787 0.9224 0.5469

Notes: HC: Headcount ratio; si emp: observed income share for the i’th group. Bayesian estimates: posterior standard
errors in parentheses; MC standard errors computed by a Parzen based spectral estimator in square brackets; All
estimates are computed using 120,000 MH draws and a burnin of the first 20,000 draws; Lognormal priors with
standard deviation 100 centered at the QML estimates; acc-ratio: average MH acceptance ratio � computed over
the 100,000 MG draws after burnin. QML estimates: asymptotic standard errors in parentheses

Figure 4 finally depicts Bayesian estimates of the income distributions (posterior means of
the income pdf as a function of the GB2 parameters) along with 95% pointwise posterior
high-density regions.

The Bayesian- and QML parameter estimates as well as the associated standard errors
appear very similar in value, as expected under uninformative prior distributions. All stan-
dard errors reported in Table 7 are low and indicate a high level of estimation precision,
in particular for the Gini coefficient and the headcount ratio, which are of special interest
in applied economic research. The estimation precision is also reflected by the Bayesian
density estimates in Figure 4 with very tight 95% posterior high-density intervals. The
numerical standard errors under the MCMC estimation scheme are low and in most cases
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Figure 4. Bayesian estimates of the GB2 income densities (posterior means of the income pdf as a function of
the GB2 parameters) along with 95% pointwise posterior high-density regions for India Rural, Peru, Ethiopia
and Iraq

less than 1 per cent of the associated posterior standard deviations. Also the income share
predictions for the first and the last income group appear very accurate. The highest abso-
lute prediction errors for the income shares are obtained for the last income group, where
the heavy right tail of the income distribution makes accurate predictions rather hard to
obtain. The nested B2 (a=1), Singh–Maddala (P =1) and Dagum distributions (q=1) are
rejected by t-tests at the 5% significance level and not included in the according posterior
high-density regions. India Rural builds the only exception since a standard t-test does not
reject the Dagum distribution with q=1 at the 5% significance level.

In order to assess the relative benefit of the GB2 for modelling grouped income data we
compare Root Mean Squared Errors (RMSEs) for the forecasted income shares under the
nested B2, Singh–Maddala and Dagum distributions. The results are reported in Table 8.
Note that we do not assess the significance of RMSE differences, since each RMSE is based
on 10 observations only, and we only report results for the Bayesian estimates, since the
QML results are very similar. The GB2 performs best in all cases except for Peru, where
the lowest RMSE is obtained under the Singh–Maddala distribution. We conclude that
our findings overall support the adequacy of the GB2 for modelling international income
data. However note that the obtained RMSEs are very low for all considered income
distributions.
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TABLE 8

Root mean squared errors (RMSEs) for income share
predictions (parameter estimates: Bayesian)

Distribution India Rural Peru Ethiopia Iraq

GB2 0.0018 0.0015 0.0009 0.0005
B2 0.0070 0.0032 0.0062 0.0007
Singh-Maddala 0.0027 0.0006 0.0026 0.0082
Dagum 0.0024 0.0067 0.0047 0.0065

Notes: Bold numbers indicate the lowest RMSEs. The RMSEs are
obtained as RMSE =

√
K−1

∑K
i=1(ŝi − si)2

VII. Conclusion

In this paper we develop a general framework for QML- and Bayesian estimation of para-
metric income distributions for grouped data with potentially unknown group boundaries.
Our approach accounts for two data generating processes of practical relevance and incor-
porates the information of group mean incomes into the likelihood. The method thereby
generalizes the ML and QML frameworks of McDonald (1984), Nishino and Kakamu
(2011), and Hitomi et al. (2008) which either neglect the informational content of the
group mean incomes (McDonald and Nishino and Kakamu) and/or do not provide statis-
tically sound inference in the presence of empirically realistic data generating processes
and unknown group boundaries.

A Monte Carlo simulation experiment shows a good and stable performance of the
proposed QML- and Bayesian estimation schemes under DGP1 and DGP2 and known-
/unknown group boundaries. This performance appears to be robust against varying DGPs,
parameterizations, sample sizes and numbers of income groups. Our results also indicate
significant improvements over the conventional multinomial ML approach and we obtain
accurate parameter estimates which come close to those obtained for individual income
data. The results also indicate an overall comparable estimation precision under known and
unknown group boundaries for both, DGP1 and DGP2.

We finally apply the QML approach to World Bank data for four countries and find
evidence for the GB2 distribution relative to its nested competitors such as the Beta2,
Singh–Maddala and the Dagum distribution. The obtained estimates of inequality and
poverty measures as well as predictions of income shares show a high degree of
accuracy.
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Appendix A: Regularity conditions for consistency and asymptotic normality

Let the QML objective function L·(�; ·) = n · Qn(�). Also denote �̃i(�) = E(y | zi−1, zi;�)
and �̃2

i (�)=Var(y | zi−1, zi;�). For identification we assume that �=�0 and no other �∈�
satisfies �̃i(�)= �̃i(�0), �̃2

i (�)= �̃2
i (�0) and fy(zi;�)= fy(zi;�0).

Note that the unique maximizer of Qn(�), denoted by �̂, represents an Extremum Es-
timator (c.f. Hayashi, 2000). According to the standard requirements for the consistency
and asymptotic normality of Extremum Estimators we employ the following two sets of
assumptions (see e.g. Hayashi, 2000, p. 456 ff.).

Assumption 1. (Consistency) Assume that

(i) the parameter space � is a compact subset of Rp;
(ii) Qn(�) is a continuous measurable function in �;

(iii) there exists a function Q0(�) such that
(a) (identification) Q0(�) is uniquely maximized on � at �0 ∈�,
(b) (uniform convergence) Qn(·) converges uniformly in probability to Q0(·).

Assumption 2. (Asymptotic normality) Assume that

(i) �0 is in the interior of �;

(ii)
@

@�

∫
fy(z;�)dz =

∫
@

@�
fy(z;�) dz;

(iii)
@Qn(�)

@�@�′ exists and is continuous in �

(iv)
@Qn(�*)

@�@�′
p→H (�0) is a non-singular matrix for any consistent estimator �*;

(v)
√

n
@Qn(�0)

@�
d→N (0, M (�0)), where M (�0) is a symmetric p.d. matrix.

Appendix B: Consistency and asymptotic normality of the QML estimator
under DGP1

We start with the situation, where the group boundaries are known. Recognizing that
�i = ni−1

ni
�̃i + zi/ni and �2

i = ni−1
n2

i
�̃2

i we obtain by equation (13) the QML objective

n ·Qn(�)=�−0.5[ln �̃2
K (�)− ln nK + �̃−2

K (�)nK (ȳK − �̃K (�))2]

+ (n−nc
K−1) ln[1−Fy(zK−1;�)]

+
K−1∑
i=1

{
−0.5

[
ln �̃2

i (�)−2 ln(ni)+ ln(ni −1)

+ �̃2
i (�)−2 n2

i

ni −1

(
ȳi −

ni −1

ni
�̃i(�)− zi

ni

)2
]

+ (nc
i −nc

i−1 −1) ln[Fy(zi;�)−Fy(zi−1;�)]+ ln fy(zi;�)

}
.

© 2020 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.



Inference for income distributions 61

Note that under DGP1 the proportions ci = ni/n are fixed. According to point (iii) of As-
sumption 1 (see Appendix A) we observe that � is o(n) and by the WLLN we have uniform
convergence ȳi

p→ �̃i(�0), and zi = y[nc
i ]

p→F−1
y (cc

i ;�0) =̂qy(cc
i ;�0), where cc

i =∑i
`=1 c`. We

then obtain

Qn(�)
p→−0.5[�̃−2

K (�)cK (�̃K (�0)− �̃K (�))2]

+ cK ln[1−Fy(qy(cc
K−1;�0);�)]

+
K−1∑
i=1

−0.5[�̃2
i (�)−2ci(�̃i(�0)− �̃i(�))2]

+ ci ln[Fy(qy(cc
i ,�0);�)−Fy(qy(cc

i−1,�0);�)],

which is uniquely maximized for �=�0. It follows that �̂
p→�0 (see e.g. Hayashi, 2000).

For the derivation of the asymptotic distribution of �̂ we employ Assumption 2 of
Appendix A and note that by CLT arguments analogous to our asymptotic approximation
in equation (8), involving the convergence of the characteristic function of the sum of iid
random variables, Hitomi et al. (2008) show that for QML functions based on the Gaussian
likelihood approximation in equation (8) it holds that H (�0) = −M (�0)−1 (Information
Matrix Equality, IME). By standard results, IME still holds if the likelihood is enriched
by the joint density of the group boundaries, as long as we assume sufficient smoothness
of the income distribution Fy(·), such that the order of integration and differentiation
can be interchanged, see point (ii) of Assumption 2 (c.f. Amemiya, 1985, p. 17). In this
case the QML estimator �̂ is asymptotically efficient with asymptotic covariance matrix
ACOV (�̂)=−H (�0)−1/n (see Hitomi et al., 2008).

We obtain

@Qn(�)

@�@�′ =−0.5

{[
1

�̃2
K (�)n

− nK

�̃4
K (�)n

(ȳK − �̃K (�))2

]
@2�̃2

K (�)

@�@�′

+
[
− 1

�̃4
K (�)n

+ 2nK

�̃6
i (�)n

(ȳK − �̃K (�))2

]
@�̃2

K (�)

@�

@�̃2
K (�)

@�′

+
[ −2nK

�̃2
K (�)n

(ȳK − �̃K (�))
]

@2�̃K (�)

@�@�′ +
[

2nK

�̃2
K (�)n

]
@�̃K (�)

@�

@�̃K (�)

@�′

+
[

2nK

�̃4
K (�)n

(ȳK − �̃K (�))
]

@�̃K (�)

@�

@�̃2
K (�)

@�′

+
[

2nK

�̃4
K (�)n

(ȳK − �̃K (�))
]

@�̃2
K (�)

@�

@�̃K (�)

@�′ −
[

n−nc
K−1

n(1−Fy(zK−1;�))

]
@2Fy(zK−1;�)

@�@�′

−
[

n−nc
K−1

n(1−Fy(zK−1;�))2

]
@Fy(zK−1;�)

@�

@Fy(zK−1;�)

@�′

}

−
K−1∑
i=1

0.5

{[
1

�̃2
i (�)n

− n2
i

�̃4
i (�)(ni −1)n

(ȳi − (ni −1)�̃i(�)/ni − zi/ni)2

]
@2�̃2

i (�)

@�@�′
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+
[
− 1

�̃4
i (�)n

+ 2n2
i

�̃6
i (�)(ni −1)n

(ȳi − (ni −1)�̃i(�)/ni − zi/ni)2

]
@�̃2

i (�)

@�

@�̃2
i (�)

@�′

+
[ −2ni

�̃2
i (�)n

(ȳi − (ni −1)�̃i(�)/ni − zi/ni)
]

@2�̃i(�)

@�@�′ +
[

2(ni −1)

�̃2
i (�)n

]
@�̃i(�)

@�

@�̃i(�)

@�′

+
[

2ni

�̃4
i (�)n

(ȳi − (ni −1)�̃i(�)/ni − zi/ni)
]

@�̃i(�)

@�

@�̃2
i (�)

@�′

+
[

2ni

�̃4
i (�)n

(ȳi − (ni −1)�̃i(�)/ni − zi/ni)
]

@�̃2
i (�)

@�

@�i(�)

@�′

}

− nc
i −nc

i−1 −1

n(Fy(zi;�)−Fy(zi−1;�))2

[
@Fy(zi;�)

@�
− @Fy(zi−1;�)

@�

][
@Fy(zi;�)

@�
− @Fy(zi−1;�)

@�

]′

+ nc
i −nc

i−1 −1

n(Fy(zi;�)−Fy(zi−1;�))

[
@2Fy(zi;�)

@�@�′ − @2Fy(zi−1;�)

@�@�′

]
− 1

fy(zi;�)2n

@fy(zi;�)

@�

@fy(zi;�)

@�′ + 1

fy(zi;�)n

@2fy(zi;�)

@�@�′ ,

which implies

H (�0)=plim
(

@Qn(�0)

@�@�′

)
=−

[
@�̃K (�0)

@�

@�̃K (�0)

@�′

]
cK

�̃2
K (�0)

− 1

cK

[
@Fy(qy(cc

K−1,�0);�0)

@�

@Fy(qy(cc
K−1,�0);�0)

@�′

]
+

K−1∑
i=1

−
[

@�̃i(�0)

@�

@�̃i(�0)

@�′

]
ci

�̃2
i (�0)

− 1

ci

[
@Fy(qy(cc

i ,�0);�0)

@�
− @Fy(qy(cc

i−1,�0);�0)

@�

]
×

[
@Fy(qy(cc

i ,�0);�0)

@�
− @Fy(qy(cc

i−1,�0);�0)

@�

]′

=
K∑

i=1

−
[

@�̃i(�0)

@�

@�̃i(�0)

@�′

]
ci

�̃2
i (�0)

− 1

ci

[
@Fy(qy(cc

i ;�0);�0)

@�
− @Fy(qy(cc

i−1;�0);�0)

@�

]
×

[
@Fy(qy(cc

i ;�0);�0)

@�
− @Fy(qy(cc

i−1;�0);�0)

@�

]′
,

where �0 = plim(�̂) denotes the true value of �, qy(·;�0) = F−1
y (·;�0) denotes the quan-

tile function of y, cc
i = ∑i

`=1 c` and by definition of the first and the last income group
@Fy(qy(cc

0,�0);�0)/@� =̂0 and @Fy(qy(cc
K ,�0);�0)/@� =̂0.

For the case of unknown group boundaries we use results of Beach and Davidson (1983)
leading to

√
n(ỹ −L(qy(cc)))

d→N (0, �), (21)

where ỹ = (ỹ1,…, ỹK ) with ỹi =
∑i

j=1 cjȳj, and L(qy(cc))= (L1,…, LK )′ with Li =L(qy(cc
i ))=∫ qy(cc

i )
0 yfy(y)dy.
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The limiting covariance �= (�ij) obtains as

�ij =mi + (cc
i qy(cc

i )−Li)(qy(cc
j )− cc

j qy(cc
j )+Lj)−qy(cc

i )Li for i � j, (22)

where

mi =
∫ qy(cc

i )

0
y2fy(y) dy. (23)

From these results we obtain

ȳ
appr:∼ N

(
�Æ,

1

n
�

)
, (24)

where �Æ = (�Æ
1,…,�Æ

K )′, with �Æ
i = (1/ci)

∫ qy(cc
i ;�)

qy(cc
i−1;�) yfy(y)dy, and � = DB�B′D′, with D =

diag(c−1
1 ,…, c−1

K ) and

B =

⎡⎢⎢⎣
10 0 … 0 0

−11 0 … 0 0
...
...

...
...

...
00 0 … −1 1

⎤⎥⎥⎦. (25)

From (24) we obtain the QML objective nQn(�)=LDGP1, UB(�; ȳ) in equation (14). Then

since ȳ
p→�Æ(�0)

Qn(�)
p→(�Æ(�0)−�Æ(�))′�−1(�Æ(�0)−�Æ(�)), (26)

which is uniquely maximized for �=�0.
Let H =�/n and x = (ȳ −�Æ). Then Ḣi = @H

@�i
and Ḧij = @2H

@�i@�j
, while ẋi and ẍij are defined

accordingly. We obtain

@2Qn(�)

@�i@�j
=− 1

2n
tr[ḦijH

−1 − ḢiH
−1ḢjH

−1

+ x′H −1ẍij − x′H −1ḢjH
−1ẋi + ẋ′

jH
−1ẋi

+ ẋ′
iH

−1ẋj − ẋ′
iH

−1ḢjH
−1x + ẍ′

ijH
−1x

− x′H −1ḢiH
−1ẋj − ẋ′

jH
−1ḢiH

−1x

− x′H −1[Ḧij − ḢiH
−1Ḣj − ḢjH

−1Ḣi]H −1x], (27)

implying

@2Qn(�0)

@�i@�j

p−→−1

2

[
@�*(�0)′

@�i
�−1 @�*(�0)

@�j
+ @�*(�0)′

@�j
�−1 @�*(�0)

@�i

]
(28)

and

H (�0)=plim
(

@2Qn(�)

@�@�′

)
=−@�*(�0)′

@�
�−1 @�*(�0)

@�
. (29)
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Appendix C: Consistency and asymptotic normality of the QML estimator
under DGP2

We start with the situation, where the group boundaries are known. We then obtain by
equation (17) the Quasi-Log-Likelihood

n ·Qn(�)=�+
K∑

i=1

{−0.5[ln �̃2
i (�)− ln(ni)+ �̃−2

i (�)ni(ȳi − �̃i(�))2]+ni ln �i(�)}.

According to condition (iii) for the consistency of Extremum Estimators (see Assump-
tion 1 of Appendix A) we observe that � is o(n) and by the WLLN we have uniform
convergence ȳi

p→ �̃i(�0) and ni/n
p→�i(�0). We then obtain

Qn(�)
p→

K∑
i=1

{−0.5[�̃−2
i (�)�i(�0)(�̃i(�0)− �̃i(�))2]+�i(�0) ln(�i(�))},

which is uniquely maximized for �=�0.
The asymptotic covariance matrix of �̂ is obtained under Assumption 2 (see Appendix

A) via

n
@Qn(�)

@�@�′ =−0.5
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1
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(ȳi − �̃i(�))2

]
@�̃2

i (�)

@�

@�̃2
i (�)

@�′
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+
[
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]
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@�′

+
[

2ni

�̃4
i (�)

(ȳi − �̃i(�))
]

@�̃2
i (�)

@�

@�̃i(�)

@�′ −2ni
@2 ln �i(�)

@�@�′

}
,

where since ȳi

p→ �̃i(�0) and ni/n
p→�i(�0)

H (�0)=plim
(

@Qn(�0)

@�@�′

)
=

K∑
i=1

�i(�0)
@2 ln �i(�0)

@�@�′ −
[

@�̃i(�0)

@�

@�̃i(�0)

@�′

]
�i(�0)

�̃2
i (�0)

. (30)

Note that the asymptotic covariance matrix of �̂, ACOVDGP2(�̂)=− 1
n H (�0)−1, corresponds

to the one obtained under the QML approach of Hitomi et al. (2008) and the GMM
estimators of Hajargasht et al. (2012) and Griffiths and Hajargasht (2015). Also note that
the same asymptotic covariance applies if the group boundaries are unknown (with the
parameter vector � augmented by the set of group boundaries).
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