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Summary

Rank-based inference methods are applied in various disciplines, typically when procedures
relying on standard normal theory are not justifiable. Various specific rank-based methods have
been developed for two and more samples and also for general factorial designs (e.g. Kruskal–Wallis
test or Akritas–Arnold–Brunner test). It is the aim of the present paper (1) to demonstrate that
traditional rank procedures for several samples or general factorial designs may lead to surprising
results in case of unequal sample sizes as compared with equal sample sizes, (2) to explain why this
is the case and (3) to provide a way to overcome these disadvantages. Theoretical investigations show
that the surprising results can be explained by considering the non-centralities of the test statistics,
which may be non-zero for the usual rank-based procedures in case of unequal sample sizes, while
they may be equal to 0 in case of equal sample sizes. A simple solution is to consider unweighted
relative effects instead of weighted relative effects. The former effects are estimated by means of
the so-called pseudo-ranks, while the usual ranks naturally lead to the latter effects. A real data
example illustrates the practical meaning of the theoretical discussions.

Key words: Rank statistic; pseudo-rank statistic; Kruskal–Wallis test; Hettmansperger–
Norton test; Akritas–Arnold–Brunner test; unweighted relative effect; weighted relative
effect.

1 Introduction

When the assumptions of classical parametric inference methods are not met, the usual rec-
ommendation is to apply non-parametric rank-based tests. Here, the Wilcoxon–Mann–Whitney
and Kruskal & Wallis (1952) tests are among the most commonly applied rank procedures,
often utilised as replacements for the unpaired two-sample t-test and the one-way analysis of
variance (ANOVA), respectively. Other common rank methods include the Hettmansperger &
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Norton (1987) test for ordered alternatives and the procedures by Akritas et al. (1997) for two-
way or higher-way designs. In statistical practice, these procedures are usually appreciated as
robust and powerful inference tools when standard assumptions are not fulfilled. For exam-
ple, Whitley & Ball (2002) conclude that ‘Nonparametric [rank-based] methods require no or
very limited assumptions to be made about the format of the data, and they may, therefore, be
preferable when the assumptions required for parametric methods are not valid’.

These descriptions are slightly overoptimistic because rank-based methods also rely on
certain assumptions. Furthermore, they are based on different effects than contrasts of means.

In case of doubt, it is nevertheless expected that rank procedures are more robust and lead to
more reliable results than their parametric counterparts. While this is true for deviations from
normality, and while by now it is clear that ordinal data in general should rather be analysed
using adequate rank-based methods than using normal theory procedures, we illustrate in vari-
ous instances that non-parametric rank tests for more than two samples possess one noteworthy
weakness. Namely, they are generally non-robust against changes from balanced to unbalanced
designs. In particular, keeping the set of distributions fixed, we provide paradigms under which
commonly used rank tests surprisingly yield completely opposite test decisions when rear-
ranging group sample sizes. These examples need not be in general artificially generated to
obtain surprising results but even include homoscedastic normal models in two-way layouts.
The practical meaning of the theoretical considerations is demonstrated by a real data example
in Section 6.

In order to comprehensively answer the question whether rank procedures can adequately
handle designs for more than two groups, we carefully analyse the underlying non-parametric
effects of the respective rank procedures. It should be noted, however, that rank procedures
address different statistical models than simply considering the usual contrasts of means in
shift models. Moreover, many rank procedures for more than two groups are based on weighted
relative effects where each distribution is compared with the weighted mean of all distribu-
tions in the experiment, and the weights are the relative sample sizes. These weighted relative
effects are ‘estimated’ by the means of the ranks where the expression ‘estimated’ is a slight
abuse of the terminology because the weighted relative effects are not fixed model quantities.
Basically, we use three different types of rankings: (1) the usual (overall) ranks, (2) the pseudo-
ranks and (3) the so-called internal ranks, which may not be confused with the within-block
ranks, which are used in the Friedman (1937) test for block designs. The usual ranks (simply
called ‘ranks’ throughout this paper) are used to evaluate the weighted relative effects, while
the pseudo-ranks are used to estimate the unweighted relative effects. The internal ranks are
only used to estimate the variances of the rank statistics by computing the so-called place-
ments (Orban & Wolfe, 1980,1982). These three types of ranks are defined in (1), (19) and (21)
below. For more details, we refer to the textbook by Brunner et al. (2019), definition 2.20.
The weighted relative effects are evaluated by functions of the rank means. Throughout this
paper, however, they will also be called ‘estimators’ for convenience, but having in mind this
slight abuse of terminology. The simple idea to overcome the problems of rank procedures
in case of unequal sample sizes is to define unweighted relative effects where each distri-
bution is compared with the unweighted mean of all distributions in the experiment. These
unweighted relative effects basically have the same intuitive interpretation as the weighted
relative effects. They are estimated by the so-called pseudo-ranks, which have already been
considered by Kulle (1999), Gao & Alvo (2005a, 2005b), and in more detail by Thangavelu &
Brunner (2007), and by Brunner et al. (2017). However, it should be noted that the motiva-
tion in these referenced articles was different and that their authors had not been aware of the
striking properties that may arise when using rank tests in case of unequal sample sizes. These
unexpected paradigms only appear in case of unequal sample sizes, and the surprising results
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mentioned earlier cannot occur with rank procedures, which are defined only for equal sam-
ples sizes as, for example, the Friedman (1937) test and the Kepner & Robinson (1988) test.
Pseudo-ranks are easy to compute (Happ et al., 2019), share the same advantageous properties
of ranks and lead to reliable and robust inference procedures for a variety of factorial designs.
Moreover, we can even obtain confidence intervals for (contrasts of) easy to interpret reasonable
non-parametric effects, namely, the unweighted relative effects. This way, they also contribute
to resolve the widespread (but wrong) perception that ‘nonparametric [rank-based] methods are
geared towards hypothesis testing rather than estimation of effects’ (Whitley & Ball, 2002). To
the best of our knowledge, these unweighted relative effects have been first mentioned in the
literature by Brunner & Puri (2001, Sections 1.3.1 and 3.2).

The paper is organised as follows. Notations are introduced in Section 2. Then in Section 3,
some surprising results are presented in the one-way layout for the Kruskal–Wallis test and for
the Hettmansperger–Norton trend test by means of certain tricky (non-transitive) dice. In the
two-way layout, a more striking result for the Akritas–Arnold–Brunner test in a simple 2� 2
design is presented in Section 4 using a homoscedastic normal shift model. The theoretical
background of the unexpected results is discussed in Section 5, and a solution of the problem by
using the unweighted relative effects, which ultimately lead to the pseudo-ranks, is investigated
in detail. Finally, the computation of confidence intervals for the purely non-parametric effects
is briefly discussed in Section 5.2. A real data example demonstrating the issues discussed ear-
lier is provided in Section 6. The paper closes with some discussions and conclusions regarding
an adequate application of rank procedures.

2 Statistical Model and Notations

We consider rank tests in factorial designs for d> 2 samples of N D
Pd
iD1 ni independent

observations Xik � Fi D
1
2 ŒF
�
i CF

C
i �; i D 1; : : : ; d; k D 1; : : : ; ni . Let Rik denote the rank

of Xik among all N observations, then a rank test is usually based on the means Ri � of the ranks

Rik D
1

2
C

dX
rD1

nrX
`D1

c.Xik �Xr`/; (1)

where c.u/ D 0; 1=2; 1 for u <;D or>0, respectively, denotes the count function. To determine
the rank tests' consistency region, we have to find the theoretical quantities estimated by the rank
means. To this end, note that 1

nr

Pnr
`D1 c.Xik � Xr`/ D

bFr.Xik/ is the value of the empirical
distribution function of the observations Xr1; : : : ; Xrnr within sample r at the random point
Xik. Thus, we have nr bFr.Xik/ D Pnr

`D1 c.Xik � Xr`/, and Rik in (1) can be rewritten as (see,
e.g. Akritas et al., 1997, Formula (14))

Rik D
1

2
C

dX
rD1

nr bFr.Xik/ D 1

2
CN bH.Xik/; (2)

where bH.x/ D 1
N

Pd
rD1 nr

bFr.x/ denotes the weighted mean of the empirical distribution

functions bFr.x/. Because E
hbFr.Xik/i D R

FrdFi , i D 1; : : : ; r I k D 1; : : : ; ni (see, e.g.

Lemma 7.4 in Brunner et al., 2019), it follows that

E.Rik/ D
1

2
CNpi ; wherepi D

Z
HdFi (3)
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and H D 1
N

Pd
rD1 nrFr denotes the weighted mean of the distributions F1, : : : , Fd. Thus,

E
�
Ri �
�
D Npi C

1
2 is linearly related to pi in (3).

An unbiased and consistent estimator of pi is obtained by the simple plug-in estimator

bpi D Z bHd bFi D 1

N

�
Ri � �

1

2

�
; (4)

where bFi denotes the (normalised) empirical distribution of Xi1; : : : ; Xini , i D 1; : : : ; d , andbH D 1
N

Pd
rD1 nr

bFr their weighted mean and Ri � is the mean of the ranks Rik. This means that
ranks are simple and intuitive tools to estimate the quantity pi D P.Z < Xi1/ C

1
2P.Z D

Xi1/, which is, easily interpreted, the probability that a randomly selected observation Z from
the weighted mean distribution H is smaller than a randomly selected observation Xi1 from
the distribution Fi plus 1

2 times the probability that both observations are equal. Because pi

depends on the weights ni/N, it is strictly speaking not an effect, that is, a fixed model quantity
by which hypotheses could be formulated and for which confidence intervals could be given.
Nevertheless, we follow the historical notion and call pi a (weighted) relative effect (see, e.g.
Brunner & Puri, 2001; Thangavelu & Brunner, 2007) because it measures a difference of the
distribution Fi with respect to the weighted mean distribution H.

As a consequence, we do not consider rank tests as procedures where simply the observations
are replaced by their ranks. Instead, we consider ranks as quantities used to obtain unbiased
and consistent estimators of purely non-parametric effects defined by the distributions Fi and
the relative sample sizes ni/N. Considering linear functions or quadratic forms of these non-
parametric weighted relative effects enables a different look at rank procedures, which come
out in a natural way by this approach. To this end, the weighted relative effects pi are arranged
in the vector p D .p1; : : : ; pd /

0 D
R
HdF, where F D .F1; : : : ; Fd /

0 denotes the vector of
the distributions and the estimators bp1; : : : ; bpd are arranged in the vector

bp D Z bHdbF D 1

N

�
R� �

1

2
1d

�
; (5)

where bF D .bF1; : : : ; bFd /0 is the vector of the empirical distributions, R� D .R1�; : : : ; Rd �/
0

the vector of the rank means Ri �, and 1d D .1; : : : ; 1/0d�1 denotes the vector of 1s.

2.1 Relation to the Mann–Whitney Effect for d D 2 Samples

The non-parametric weighted relative effects pi for d> 2 samples are generalisations of the
Mann–Whitney effect for d D 2 samples Xik � Fi ; i D 1; 2I k D 1; : : : ; ni . In the case of
two independent random variables X1�F1 and X2�F2, Birnbaum & Klose (1957) had called
the function L.t/ D F2ŒF

�1
1 .t/� the ‘relative distribution function’ of X1 and X2, assuming

continuous distributions. Thus, its expectationZ 1

0
tdL.t/ D

Z 1
�1

F1.s/dF2.s/ D P.X1 < X2/

is called a ‘relative effect’ with an obvious adaptation of the notation. Depending on the
context, it is also known as probabilistic index (e.g. Acion et al., 2006; Thas et al., 2012),
Mann–Whitney & Wilcoxon effect (e.g. Janssen, 1999; Chung & Romano, 2016; Dobler
et al., 2020) or stress–strength characteristic (e.g. Kotz et al., 2003).

© 2020 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.
International Statistical Review (2021), 89, 2, 349–366

352 BRUNNER ET AL.



In the case of several samples, the weighted relative effect pi is a linear combination of the
pairwise effects wri D

R
FrdFi . In vector notation, the quantities pi in (3) are written as

p D

Z
HdF D W 0n D

0@ w11 : : : wd1
:::

: : :
:::

w1d : : : wdd

1A �
0@ n1=N

:::
nd=N

1A D
0@ p1

:::
pd

1A : (6)

Here, F D .F1; : : : ; Fd /
0 denotes the vector of distribution functions, and

W D

Z
FdF0 D

0@ w11 : : : w1d
:::

: : :
:::

wd1 : : : wdd

1A (7)

is the matrix of the pairwise effects wri. Note that wi i D
1
2 and wir D 1 � wri , which follows

from integration by parts.
The earlier decomposition of the distribution H as a weighted sum of the distributions Fi

shows that the effects underlying the known rank procedures for d> 2 samples can be repre-
sented as linear combinations of the pairwise Mann–Whitney effects wri D

R
FrdFi . In what

follows, the dependence on the relative sample sizes ni/N of the consistency regions of rank tests
for d> 2 will be demonstrated by means of this decomposition in the one-way layout in (13)
and in the two-way layout in (17).

In the following sections, we demonstrate that for d� 3 groups, rank tests may lead to striking
results in case of unequal sample sizes. In particular, for factorial designs involving two or
more factors, the non-parametric main effects and interactions (defined by the weighted relative
effects pij D

R
HdFij ) may be severely biased.

3 Surprising Results in the One-way Layout

To demonstrate some surprising results of rank tests for d� 3 samples in the one-way layout,
we consider the vector p D

R
HdF of the weighted relative effects pi. Letbp D R bHdbF denote

the plug-in estimator of bp defined in (5). In order to detect whether the pi are different, we
study the asymptotic distribution of

p
Nbp, which is obtained from the asymptotic equivalence

theorem
p
N.bp � p/ �

p
N
�
Y � C Z � � 2p

�
; (8)

if N/ni�N0<1. This condition is assumed throughout the paper. For details, we refer to
Akritas et al. (1997), Brunner & Puri (2001, 2002) or Brunner et al. (2019) for different
generalisations.

In (8), the symbol � denotes asymptotic equivalence, while the mean vectors Y � D
R
HdbF

and Z � D
R bHdF have expectations E.Y �/ D E.Z �/ D p. It follows from the central limit

theorem that
p
N
�
Y � C Z � � 2p

�
has, asymptotically, a multivariate normal distribution with

mean 0 and covariance matrix †N, which has a quite involved structure (for details, see Brunner
et al., 2017).

However, the covariance matrix simplifies dramatically when testing the hypothesisHF
0 .T/ W

TF D 0, where T is an appropriate contrast matrix, which can be assumed to be a projection
matrix without loss of generality. Under HF

0 .T/, this follows from
p
NT.bp � p/ �

p
NT

�
Y � C Z � � 2p

�
D
p
NTY �
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because TZ � D T
R bHdF D

R bHd.TF/ D 0 and Tp D T
R
HdF D

R
Hd.TF/ D 0

(see Akritas & Arnold, 1994). For example, to test the hypothesis HF
0 W F1 D : : : D Fd

that all distributions are equal in the one-way layout, usually the centring matrix Td D Id �
1
d

Jd is chosen as a contrast matrix. Here, Id denotes the d-dimensional unit matrix and Jd D
1d10d the d� d-dimensional matrix of 1s. The asymptotic distribution of

p
NTd .bp � p/ is the

multivariate normal distribution with mean 0 and covariance matrix Td†NTd, where †N D
Cov

�p
N
�
Y � C Z �

�	
. Then it follows from (8) that in general,

p
NTdbp �

p
NTd

�
Y � C Z � � 2p

�
C
p
NTdp: (9)

Obviously, the multivariate distribution is shifted by
p
NTdp from the origin 0. Therefore,

Tdp is the particular quantity defining the rank tests' consistency region and will be called
‘multivariate non-centrality’. A corresponding ‘univariate non-centrality’ may be quantified by
the quadratic form cp D p0Tdp. In particular, we have cp D 0 iff Tdp D 0. The actual
(multivariate) shift of the distribution, depending on the total sample size N, is

p
NTdp, and

the corresponding univariate non-centrality (depending on N) is then given by N � cp. From these
considerations, it follows that N � cp!1 as N!1 if Tdp ¤ 0. This defines the consistency
region of a test based on

p
NTdbp, which leads to the Kruskal–Wallis test. For the general

technical derivation, we refer to Brunner & Puri (2001, section 1.6.1).
In the succeeding text, we will demonstrate that for the same set of distributions F D

.F1; : : : ; Fd /
0, the non-centrality cp D p0Tdp may be 0 in case of equal sample sizes, while cp

may be unequal to 0 in case of unequal sample sizes. This means that for equal sample sizes, F
does not belong to the consistency region Tdp ¤ 0, while for unequal sample sizes, it may be
contained in the consistency region. Under the strong non-parametric hypothesis formulated in
terms of the distribution functions HF

0 W TdF D 0, it follows that Tdp D 0. If, however, the
strong non-parametric hypothesis HF

0 is not true, then the non-centrality cp D p0Tdp may be
0 or unequal to 0 for the same set of distributions F1, : : : , Fd, because cp depends on the rela-
tive samples sizes n1/N, : : : , nd/N. As a consequence, existing rank tests forHF

0 may reject the
null hypothesis simply due to a reallocation of the designs from balanced to unbalanced (while
all other parts of the settings remained fixed).

Some well-known tests in the one-way layout, which have this undesirable property, are, for
example, the Kruskal & Wallis (1952) test and the Hettmansperger & Norton (1987) trend test.

As an example, consider the case of d D 3 distributions given by the probability mass func-
tions f1.x/ D

1
6 if x2 {9, 16, 17, 20, 21, 22}, f2.x/ D

1
6 if x2 {13, 14, 15, 18, 19, 26},

f3.x/ D
1
6 if x2 {10, 11, 12, 23, 24, 25} and f1.x/ D f2.x/ D f3.x/ D 0 otherwise. These

discrete distributions are derived from some tricky dice (see, e.g. Peterson, 2002). For the
distribution functions Fi(x) defined by fi(x), i D 1; 2; 3 earlier, it is easily seen that

w21 D P.X2 < X1/ D

Z
F2dF1 D 7=12; (10)

w13 D P.X1 < X3/ D

Z
F1dF3 D 7=12; (11)

w32 D P.X3 < X2/ D

Z
F3dF2 D 7=12: (12)
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Table 1. Ratios of relative sample sizes ni/N, weighted relative effects pi, and
the non-centralities for the example of the tricky dice where w D 7=12 and the
distributions F1, F2 and F3 are fixed.

Setting n1/N n2/N n3/N p1 p2 p3 p
�

cp

(A) 1/3 1/3 1/3 0.5 0.5 0.5 0.5 0
(B) 2/3 1/12 1/4 0.4861 0.4653 0.5486 0.5 0.00376
(C) 1/4 2/3 1/12 0.5486 0.4861 0.4653 0.5 0.00376

Thus, w21 D w13 D w32 D w, and the vector of the weighted relative effects pi is given by

p D

 
p1
p2
p3

!
D W 0n D

1

N

0@ 1
2n1 C n3 C .n2 � n3/w

n1 C
1
2n2 C .n3 � n1/w

n2 C
1
2n3 C .n1 � n2/w

1A : (13)

Equation (13) demonstrates that for equal samples sizes, the vector p of the weighted relative
effects is equal to the constant 1

2 13 while it depends in general on the pairwise differences of
the relative samples sizes ni/N. It is easily seen that in this example,

F1 D F2 D F3 ) p1 D p2 D p3 ()



w D 1

2 or
n1 D n2 D n3 � n:

(14)

This means that p1 D p2 D p3 holds if w ¤ 1
2 while the samples sizes are equal, but if

w ¤ 1
2 in case of unequal sample sizes, then the weighted relative effects p1, p2 and p3 are

different. In the latter case, Tdp is contained in the consistency region, while in the former case,
it is not contained in the consistency region—for the same set of distributions!

The weighted relative effects pi of the three discrete distributions and the resulting non-
centralities cp are listed in Table 1 for equal and some different unequal sample sizes.

Because for unequal sample sizes one obtains cp¤ 0 if w ¤ 1
2 , it is only a question of

choosing the total sample size N large enough to reject the hypothesis HF
0 W F1 D F2 D F3 by

the Kruskal–Wallis test with a probability arbitrary close to 1 (based on �2
2I1�˛ as the critical

value). In case of equal sample sizes for N!1, the probability of rejecting the hypothesis
remains constant equal to ˛� (close to ˛) because in this case, cp D 0. It may be noted that
in general, ˛�¤˛ because the variance estimator of the Kruskal–Wallis statistic is computed
under the strong hypothesis HF

0 W F1 D F2 D F3, which is not true in general. Thus, the
scaling is not correct, and the Kruskal Wallis test has a slightly different type I error ˛�.

For the Hettmansperger–Norton trend test, the situation gets worse because for different
ratios of sample sizes, the non-parametric effects p1, p2 and p3 may change their order. In setting
(B) in Table 1, we have p2< p1< p3, while in setting (C), we have p3< p2< p1. Now consider
the non-centrality of the Hettmansperger–Norton trend test, which is a linear rank test. Let
c D .c1; : : : ; cd /

0 denote a vector reflecting the conjectured pattern. Then it follows from (9)
that

p
N c0Tdbp �

p
N c0Td

�
Y � C Z � � 2p

�
C
p
N c0Tdp: (15)

The quantity cHNp D c0Tdp is a univariate non-centrality, and if Tdp D 0, then it follows
that cHNp D c0Tdp D 0. If, however, Tdp ¤ 0, then cHNp < 0 indicates a decreasing trend and
cHNp > 0 an increasing trend. In the earlier discussed example, we obtain for setting (B) and for
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a conjectured pattern of c D .1; 2; 3/0 the non-centrality cHNp D

3X
iD1

ci
�
pi �

1
2

�
D 1=16 > 0,

indicating an increasing trend. For setting (C), however, we obtain cHNp D �1=12, indicating
a decreasing trend. In case of setting (A) (equal sample sizes), cHNp D 0 because p1 D p2 D

p3 D
1
2 and thus indicating no trend. Again, it is a question of choosing the total sample size

N large enough to obtain the decision of a significantly decreasing trend for the first setting (B)
of unequal sample sizes and for the second setting (C) the decision of a significantly increasing
trend with a probability arbitrary close to 1 for the same distributions F1, F2 and F3. These
results are contradicting.

4 Surprising Results in the Two-way Layout

In the previous section, surprising decisions by rank tests in case of unequal sample sizes
were demonstrated for the one-way layout using large sample sizes and particular configurations
of distributions leading to non-transitive decisions. In this section, we will show that in two-way
layouts, similar unexpected results may already occur in simple homoscedastic normal shift
models. To this end, we consider the simple 2� 2 design with two crossed factors A and B, each
with two levels i D 1; 2 for A and j D 1; 2 for B. The observations Xijk�Fij, k D 1; : : : ; nij ,
are assumed to be independent.

The hypotheses of no non-parametric effects in terms of the distribution functions Fij(x) are
expressed as HF

0 .A/ W F11 C F12 � F21 � F22 D 0 (no main effect of factor A), HF
0 .B/ W

F11�F12CF21�F22 D 0 (no main effect of factor B) andHF
0 .AB/ W F11�F12�F21CF22 D 0

(no interaction AB), where in all three cases, 0 denotes a function, which is identical 0. We nev-
ertheless would like to point out that all of these null hypotheses do not imply exchangeability
of the rank vector in general. Thus, the corresponding rank tests cannot be directly performed
as permutation tests. For a detailed discussion, we refer to Akritas et al. (1997) as well as to
Umlauft et al. (2017).

Let F D .F11; F12; F21; F22/
0 denote the vector of these distribution functions. Then the three

hypotheses formulated earlier can be written in matrix notation as HF
0 .c/ W c0F D 0, where

c D cA D .1; 1;�1;�1/0 for the main effect of factor A, c D cB D .1;�1; 1;�1/0 for the
main effect of factor B and c D cAB D .1;�1;�1; 1/0 for the interaction AB. For testing these
hypotheses, Akritas et al. (1997) derived rank procedures based on the statistic

LN .c/ D
p
N c0bp D 1

p
N

c0R�; (16)

where R� D .R11�; R12�; R21�; R22�/
0 denotes the vector of the rank means Rij � for the four

samples. We note that this statistic is based on the non-parametric functional c0
R
HdF. Under

the null hypothesis HF
0 .c/ W c0F D 0, the statistic LN(c) in (16) has, asymptotically, a normal

distribution with mean 0 and variance �2
0 D

2X
iD1

2X
jD1

N
nij
�2
ij , where the unknown variances �2

ij

are consistently estimated under HF
0 .c/ by using the ranks Rijk of the observations Xijk.

To demonstrate a surprising result, we assume that the observations Xijk are coming from
normal distributions N(�ij, �2) with equal standard deviations �2 D 0:6 and with expectations
� D .�11; �12; �21; �22/

0 D .4; 5; 5; 6/0. From the viewpoint of linear models, there is a main
effect A of c0A� D �11C�12��21��22 D �2, a main effect B of c0B� D �11��12C�21�
�22 D �2 but no AB interaction because c0AB� D �11 � �12 � �21 C �22 D 0. Because this
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is a homoscedastic linear model, the classical ANOVA should reject the hypotheses H�
0 .cA/ W

c0A� D 0 and H�
0 .cB/ W c0B� D 0 with a high probability if the total sample size is large

enough, while the hypothesis H�
0 .cAB/ W c0AB� D 0 of no interaction should only be rejected

with the preselected type I error probability ˛. The non-centralities are given by c�.A/ D
c0A� D �2, c�.B/ D c0B� D �2 and c�.AB/ D c0AB� D 0. In this example, F11 D
N.4; �2/, F12 D F21 D N.5; �2/ and F22 D N.6; �2/, where �2 D 0:6. Thus, for the non-
parametric non-centrality, one obtains (the details are given in Section 2.1 of the Supporting
Information)

cp.AB/ D c0AB p D p11 � p12 � p21 C p22

D
n11 � n22

N

�
1

2
� 2w C v

�
	 �0:18� .n11 � n22/=N;

(17)

where w D
R
F11dF12 D ˆ

�
1=
�p

1:2
		
D 0:823 and v D

R
F11dF22 D ˆ

�
2=
p

1:2
	
	

0:966. Thus, if n11¤ n22, it follows that the non-parametric non-centrality cp(AB)¤ 0, while it
is equal to 0 if n11 D n22. In contrast to that, the non-centrality c�(AB) for the ANOVA is equal
to 0 in both cases because c�(AB) does not depend on the sample sizes. This means that in the
case of equal sample sizes n11 D n22, both the ANOVA and the rank test in (16) should only
reject the hypothesis of no interaction with probability close to the nominal level ˛. For unequal
sample sizes n11¤ n22, however, the rank test will reject the hypothesis of no interaction with a
probability arbitrary close to 1 if the total sample size N is large enough, whereas the ANOVA
will again have a rejection probability close to the nominal ˛.

In order to investigate the dependence of this rejection probability on the difference n11� n22

while the total sample size N is fixed, we have performed a simulation study in this setting, and
the results are reported in Section 2.2 of the Supporting Information. For example, the sample
sizes n11 D 800, n12 D 20, n21 D 30 and n22 D 10 lead to cp.AB/ D �4:65, and the rejection
probability was about 64%, while for equal sample sizes nij � n D 215, the non-centrality is
zero, and the rejection probability was about 3.5%.

On the surface, the difference of the two non-centralities c�(AB) and cp(AB) in the unbal-
anced case could be explained by the fact that the non-parametric hypothesis HF

0 .AB/ and
the parametric hypothesis H�

0 .AB/ are not identical and that this particular configuration of
normal distributions falls into the region where H�

0 .AB/ is true, but HF
0 .AB/ is not. It is sur-

prising, however, that this explanation does not hold for the balanced case. This calls for an
explanation.

5 Explanation of the Surprising Results

The simple reason for the surprising results is the fact that even when all distribution func-
tions underlying the observations are fixed, the consistency region cp D p0Tdp ¤ 0 of a rank
test based onbp is not fixed in general because p D

R
HdF depends on the relative sample sizes

ni/N. Thus, in general, p is not a fixed model quantity by which hypotheses could be formulated
or for which confidence intervals could be reasonably computed.

The details shall be demonstrated by means of Figure 1, which shows an example of the
consistency regions of the Kruskal–Wallis test and the ANOVA for equal and unequal sample
sizes. The point f D .f1; f2; f3/ represents the vector of three different discrete distributions
considered in Section 3 in the three-dimensional space of distributions. Note that these distri-
butions are different, and thus, HF

0 W F1 D F2 D F3 is not true while H�
0 W �1 D �2 D �3

is true because the expectations �i are equal to 9/2, i D 1; : : : ; 3. The area outside the solid
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Figure 1. Graphical representation of the hypotheses and the consistency regions of the analysis of variance and the
Kruskal–Wallis test for the three discrete distributions f1, f2 and f3 from Section 3. The solid region is fixed, and the dashed
region refers to the situation of equal sample sizes, while the dotted region varies with the ratios of the sample sizes. The fixed
point f D .f1; f2; f3/ may or may not be contained in the consistency region of the Kruskal–Wallis test cKWp D p0T3p ¤ 0
only by changing the ratios of the sample sizes.

ellipse is the consistency region c� D �0T3� ¤ 0 of the ANOVA, the area outside the dashed
ellipse is the consistency region cp¤ 0 of the Kruskal–Wallis test involving equal sample sizes,
while the area outside the dotted ellipse is the consistency region cp¤ 0 of the Kruskal–Wallis
test involving unequal sample sizes n1 W n2 W n3 D 8:1:3. In the example of the three discrete
distributions in Section 3, the non-centrality of the ANOVA does not depend on the relative
sample sizes and is given by c� D �0T3� D 0 for the distributions in this example, so that
the point f is not contained in the consistency region of the ANOVA. The non-centrality of
the Kruskal–Wallis test involving equal sample sizes is given by cp D p0T3 p D 0 because
p1 D p2 D p3 D 1=2 and is thus contained within the dashed ellipse. For unequal sample
sizes (setting (B) in Table 1), however, the non-centrality of the Kruskal–Wallis test is given by
cp D 0:00376 ¤ 0 because p1 D 0:4861; p2 D 0:4653 and p3 D 0:5486. This means that the
consistency region of the Kruskal–Wallis test is not a fixed region: it may or may not contain
the fixed point f corresponding to the distributions given in this example only by varying the
ratio of the sample sizes.

In the one-way layout, one needs to employ crossing distribution functions leading to non-
transitive decisions in order to demonstrate the strange phenomenon that non-centralities and
subsequently test decisions may depend on the ratio of sample sizes. However, in the two-way
layout, this phenomenon can already appear with shifted homoscedastic normal distributions as
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demonstrated by the example in Section 4. The reasons are the same as in the one-way layout,
namely, that (1) there is a gap between the strong hypothesis HF

0 and the consistency region
of a rank test and (2) this consistency region is not fixed; instead, it depends on the ratio of the
sample sizes. This unfortunately also provides a possibility to manipulations.

5.1 Unweighted Effects and Pseudo-Ranks

With the foregoing considerations in mind, it appears reasonable to define different non-
parametric effects, which are fixed model quantities not depending on sample sizes. To this end,
letG D 1

d

Pd
rD1 Fr denote the unweighted mean distribution, and let  i D

R
GdFi . This non-

parametric effect  i can be interpreted as the probability that a randomly drawn observation
from the mean distribution function G(x) is smaller than a randomly drawn observation from
the distribution function Fi(x) (plus 1

2 times the probability that it is equal). Thus, the quantity
 i measures an effect of the distribution Fi with respect to the unweighted mean distribution G
and is therefore a ‘fixed relative effect’. It can be estimated consistently by the simple plug-in
estimator b i D Z bGd bFi D 1

N

�
R
 

i � �
1

2

�
; (18)

where bG D 1
d

Pd
rD1

bFr denotes the unweighted mean of the empirical distributionsbF1; : : : ; bFd , and R
 

i � D
1
ni

Pni
kD1R

 

ik
the mean of the so-called pseudo-ranks

ps-rank.Xik/ D R
 

ik
D

1

2
CN bG.Xik/ D 1

2
C
N

d

dX
rD1

1

nr

nrX
`D1

c.Xik �Xr`/: (19)

The only difference of Equations (19) and (2) is that bH.Xik/ in (2) is replaced with bG.Xik/
in (19). Comparing (18) and (19), it is easily seen that the expectation of the pseudo-rank mean
R
 

i � is linearly related to the unweighted relative effect  i, namely, E
�
R
 

i �

	
D N i C

1
2 .

From a formal and technical viewpoint, this means that ranks are replaced by the corresponding
pseudo-ranks.

Finally, the unweighted relative effects  i are arranged in the vector  D
R
GdF, and the

estimators b i are arranged in the vector

b D �b 1; : : : ; b d	0 D Z bGdbF D 1

N

�
R
 

� �
1

2
1d

�
; (20)

where R
 

� D .R
 

1� ; : : : ; R
 

d �/
0 is the vector of the pseudo-rank means R

 

i � .
The pseudo-ranks R 

ik
are also order preserving and invariant under strictly monotone trans-

formations (see Lemma 1 of the Supporting Information). Both the ranks and the pseudo-ranks
are obtained from ranking the observations albeit resulting in different quantities with similar
properties. Therefore, the quantities R 

ik
are referred to as ‘pseudo-ranks’. We use this denom-

ination also in grateful memory of Steven Arnold (� 2014) who first mentioned this name in a
discussion about rank statistics at Penn State University about a quarter century ago.

Furthermore the pseudo-ranks can be represented as linear combinations of internal ranks
within sample i,

R
.i/

ik
D

1

2
C

nrX
`D1

c.Xik �Xi`/; (21)

© 2020 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.
International Statistical Review (2021), 89, 2, 349–366

359Ranks and Pseudo-ranks



and all pairwise ranks R.ir/
ik

within samples i ¤ r D 1; : : : ; d , namely,

R
 

ik
D

1

2
C
N

d

24 dX
r¤i

1

nr

�
R
.ir/

ik
�R

.i/

ik

	
C

1

ni

�
R
.i/

ik
�

1

2

�35 : (22)

It should be noted that the relation in (22) is only a technical relation of the pseudo-ranks
to some other rankings (pairwise rankings and internal ranks). The definition of a pseudo-rank
R
 

ik
in (19) does neither require pairwise rankings nor internal ranks. Some more details along

with some particular properties of the pseudo-ranks are given in Sections 1.1 and 1.2 of the
Supporting Information.

5.2 Consistency Regions of Pseudo-rank Procedures

Here, we demonstrate that replacing the ranks Rik with the pseudo-ranks R 
ik

leads to proce-
dures that do not have the surprising results discussed in Sections 3 and 4. The main reason is
that pseudo-rank procedures are based on the (unweighted) relative effects  i, which are fixed
model quantities, by which hypotheses can be formulated and for which confidence intervals
can be derived. Thus, it appears reasonable to formulate non-parametric hypotheses by these
quantities in the same way as for the distribution functions. Let D . 1; : : : ;  d /

0 D
R
GdF,

then a general non-parametric hypothesis about the fixed relative effects can be expressed as

H
 
0 .T/ W T D 0; (23)

where T denotes an appropriate hypothesis matrix and 0 D .0; : : : ; 0/0. An asymptotic
equivalence theorem—similar to that for the rank procedures in (8)—has been established by
Konietschke et al. (2012) in the context of confidence intervals and by Brunner et al. (2017) in
the general case. This theorem states that

p
N.b � / �

p
N
h
Y
 

� C Z
 

� � 2 
i
; (24)

where Y
 

� D
R
GdbF and Z

 

� D
R bGdF are vectors of means of random vectors with

expectations E.Y
 

� / D E.Z
 

� / D  . It follows from the central limit theorem that
p
N
h
Y
 

� C Z
 

� � 2 
i

has, asymptotically, a multivariate normal distribution with mean 0
and covariance matrix VN, which has a quite involved structure (for details, see Konietschke
et al., 2012; Brunner et al., 2017). The consistency region of a test for the hypothesis H 

0 .T/ W
T D 0 follows from (24) and

p
NTb �

p
NT

h
Y
 

� C Z
 

� � 2 
i
C
p
NT : (25)

Because under H 
0 .T/ the quantity

p
NT

h
Y
 

� C Z
 

�

i
has, asymptotically, a multivariate

normal distribution with expectation 0 and covariance matrix TVNT, the consistency region
is given by T ¤ 0 or equivalently by c D  0T D 0. The details about the covariance

matrix VN D Cov
�p

NT
h
Y
 

� C Z
 

�

i	
and a consistent estimator bVN using pairwise rank-

ings are derived in Konietschke et al. (2012) and Brunner et al. (2017) but are not in the focus
of this paper.
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In the succeeding text, we examine the behaviour of pseudo-rank procedures in the situations
where the use of rank tests led to the surprising results by considering the consistency region
in (25).

1. For testing the hypothesis HF
0 W F1 D F2 D F3 () T3F D 0 in case of the tricky

dice in the example in Section 3, one obtains for the non-centrality of the Kruskal–Wallis
statistic the value cKW D  0T3 D 0 if the weighted relative effects pi are replaced by the
unweighted relative effects  i. This means that the ranks Rik are replaced with the pseudo-
ranks R 

ik
for estimating the unweighted instead of the weighted effects. In this case, it

follows from (10), (11), (12) and (13) that D 1
2 13 and cKW D  0T3 D

1
2 103 T3

1
2 13 D 0

by noting that T3 is a contrast matrix, and thus, T313 D 0.
2. When substituting ranks with pseudo-ranks in the example in Section 3, then the unweighted

effects  i are estimated and the non-centrality for the Hettmansperger–Norton trend test
becomes cHN D c0T3 D 0 for all trend alternatives c D .c1; c2; c3/

0.
3. In the two-way layout, we reconsider the example of the four shifted normal distributions

(for details, we refer to Equation 6 of the Supporting Information). We obtain for the
unweighted relative effects  ij

 D W 0�
1

4
14 D

1

4

0@ 7=2 � 2w � v
2
2
1=2C 2w C v

1A
and the non-centrality of the statistic for the interaction

c .AB/ D  11 �  12 �  21 C  22 D 0: (26)

In all these cases, surprising results obtained by changing the ratios of the sample sizes cannot
occur because the non-centralities cKW ; cHN and c (AB) are equal to 0 for all constellations
of the relative sample sizes. In case of equal sample sizes ni� n, i D 1; : : : ; d , we do not
obtain surprising results by rank tests because in this case, ranks and pseudo-ranks coincide,
Rik D R

 

ik
.

It is clear by these considerations that such unexpected results for the well-known Friedman
(1937) test and the Kepner & Robinson (1988) test cannot occur because by design, the sample
sizes (i.e. the number of blocks) are equal for all treatments.

In case of d D 2 samples, it is easily seen that p2 � p1 D  2 �  1 D p D
R
F1dF2,

which does not depend on sample sizes. Thus, surprising results for rank-based tests—such as
presented in the previous sections—can only occur for d� 3 samples.

Confidence intervals for linear combinations c0 of the fixed relative effects  are easily
obtained from (24). The details are given in Konietschke et al. (2012) and Brunner et al. (2017).
For multivariate designs, see Dobler et al., (2020) and Umlauft et al. (2019).

6 Real Data Example of a Subgroup Analysis

Here we discuss a register study for patients with multiple sclerosis (MS). It should be inves-
tigated on possible pitfalls that may occur in the baseline comparability of MS cohorts from
different types of centres. The centres and the distribution of relapsing-remitting (RR) and
primary progressive (PP) disease courses may be heterogeneous, so that differences in base-
line covariables must be accounted for in the analysis of effects, for example, in symptomatic
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Figure 2. Densities of the expanded disability scale scores within the two centres for the multiple sclerosis subgroups
relapsing-remitting multiple sclerosis (left) and primary progressive multiple sclerosis (right).

treatment, behavioural interventions or socio-demographics. The present study focuses on the
assessment of differences in the expanded disability scale (EDSS) as a measure of disability in
MS patients. The EDSS is a bounded outcome score (0–10) in steps of 0.5. The differences are
compared between two different types of centres and their interaction with the disease courses
of RRMS and PPMS. For details, we refer to Rommer et al. (2018).

The analyses of the register study for patients with MS are performed using three different
models—just for comparison. In model 1, the effects are described by the weighted relative
effects pij D

R
HdFij , which are estimated by means of the ranks, while in model 2, the

effects are described by the unweighted relative effects  ij D
R
GdFij , which are estimated

by means of the pseudo-ranks. These two models consider the EDSS as ordinal data. Model 3,
however, considers this scale as metric data. An appropriate analysis may then be an asymptotic
ANOVA because the total sample size is quite large. The asymptotic ANOVA uses the quantiles
of the �2 distribution as critical values instead of the F distribution.

The frequency distributions smoothed by a kernel density estimator are displayed in Figure 2.
The estimated weighted and unweighted relative effects as well as the mean-based effects for

both types of MS and their differences ıpi , ı i and ı�i within both centres are listed in Table 2.
The results of the tests for the main effects of the centres and of the type of the MS as well

as for the interaction are displayed in Table 3.
Obviously, the interaction LpN .cAB/ is biased by the ratio of the samples sizes appearing in

the weighted relative effects. This becomes clear from Equation (2) and from Equation (20)
because both quantities p and  are based on the same pairwise effects wrs D

R
FrdFs . The

only difference is that for p, the linear combinations of the wrs are weighted by the samples sizes
ni/N, while this is not the case for  . It is noteworthy that the effects in this example described
by the means and by the unweighted relative effects are quite close for the two centres. In any
case, the effects described by the unweighted relative effects cannot be changed by different
ratios of the sample sizes—similar as for the means.
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Table 2. Estimators of the relative effects bpij and b ij as well as the means bXij � of the two subgroups
RRMS and PPMS within the two centres.

Estimated effects and differencesbpij (weighted) b ij (unweighted) bXij � (means)

Centre i Type RR Type PP ı
p

i Type RR Type PP ı
 

i Type RR Type PP ı
�

i

i D 1 0.431 0.859 0.428 0.260 0.662 0.402 2.23 5.10 2.87
i D 2 0.560 0.875 0.315 0.358 0.720 0.362 2.94 5.73 2.79

The differences ı i D b i2 � b i1, i D 1; 2, of the unweighted relative effects and of the means ı�i DbXi2�� bXi1� are quite close when compared between the two centres, while the differences ıpi D bpi2� bpi1
of the weighted relative effects are much more different between the two centres.
PP, primary progressive multiple sclerosis; RR, relapsing-remitting multiple sclerosis.

Table 3. Analyses of the EDSS of the MS study by the statistics LpN .c/ in
Equation (16) based on the weighted relative effects pij using the ranks,
L
 

N .c/ based on the unweighted relative effects ij using the pseudo-ranks
and based on L�N using the means �ij by an asymptotic ANOVA. The
p-values listed in the table are two sided.

Ranks Pseudo-ranks Means

Effect L
p

N p-value L
 

N p-value L
�

N p-value

Centre 3.45 0.0009 2.85 0.0061 2.92 0.0035
MS type 17.88 <10�4 13.95 <10�4 12.34 <10�4

Centre� type 2.71 0.0084 0.72 0.4752 0.14 0.8880

ANOVA, analysis of variance; EDSS, expanded disability scale; MS,
multiple sclerosis.

7 Conclusions and Discussion

We have demonstrated that in designs involving more than two samples, certain rank tests
may lead to surprising results. The reason for this is that in factorial designs, the expectations of
the rank means depend on the relative sample sizes ni/N in the design. These expectations have
been denoted as relative effects (Brunner & Puri, 2001), Mann–Whitney–Wilcoxon effects (e.g.
Janssen, 1999; Chung & Romano, 2016), stress–strength characteristic (e.g. Kotz et al., 2003)
or probabilistic index (e.g. Acion et al., 2006). Indeed, for d� 3 samples, these quantities are
weighted effects that depend on the relative sample sizes and are thus not fixed model quantities.
Moreover, we have shown that the consistency regions of rank tests based on these quantities
also depend on the relative sample sizes. This means that the consistency regions are not fixed
and may or may not contain a fixed set of distribution functions depending on the ratio of the
sample sizes. This is ultimately the reason why surprising results with rank tests may happen in
case of unequal sample sizes.

There are two exceptions:

(1) In the case of two samples the Mann–Whitney effect,
R
F1dF2 does not depend on sample

sizes. Thus, unequal sample sizes in case of d D 2 samples cannot lead to striking results.
(2) Whenever the sample sizes are identical in the different treatment groups by design. For

example, the Friedman (1937) test or the Kepner & Robinson (1988) test were developed
for blocks of equal lengths. Thus, the number of blocks is the same for each treatment,
and unexpected results cannot occur. This is, however, not true for modifications of these
procedures. For example, if unequal numbers of replications within the different blocks
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and treatments are performed or if missing values occur in an unbalanced pattern (see
also Ramosaj et al., 2018, for additional difficulties that may appear in this context), then
also surprising results for these tests are possible.

An obvious solution of the problem with rank tests in case of unequal sample sizes and more
than two treatments is to consider unweighted relative effects. Here, also each distribution func-
tion is compared with the mean distribution function—as in the case of the rank tests—but
the difference is that the unweighted mean of the distribution functions is used instead of the
weighted mean. These unweighted relative effects have basically the same intuitive and simple
interpretations as the weighted relative effects and have similar statistical properties. They can
be estimated consistently by the so-called pseudo-ranks, which are obtained as simple plug-in
estimators from the definition of the unweighted relative effects. A similar asymptotic equiv-
alence theorem (Thangavelu & Brunner, 2007; Brunner et al., 2017) as for the rank statistics
enables the investigation of the consistency regions of tests based on the unweighted relative
effects. Obviously, these consistency regions are based upon fixed quantities and thus cannot
vary with changing sample sizes. Moreover, confidence intervals can be given (Konietschke
et al., 2012) so that these non-parametric procedures not only are appropriate for hypothesis
testing but also enable a quantitative description of the magnitude of the non-parametric effect
and its variability in the experiment.

Technically, these methods can be obtained from existing rank procedures by replacing ranks
with pseudo-ranks. Such a limiting look at the pseudo-rank procedures would be quite super-
ficial hiding the real ideas of the derivation. However, a careful examination of the situations
where the surprising results with the rank tests appeared showed that using pseudo-rank pro-
cedures solves these problems. This was theoretically demonstrated by the examination of the
non-centralities of the pseudo-rank procedures. Finally, the real data example in Section 6
demonstrates the meaning of the theoretical considerations. This example may also serve as a
cautionary note when using non-parametric methods in subgroup analysis.

In case of factorial designs with independent observations, pseudo-rank procedures are
already implemented in the R package rankFD by choosing the option for unweighted effects
(Konietschke et al., 2019). A quick method for the computation of the pseudo-ranks is provided
in the R package pseudorank (Happ et al., 2019).
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