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Abstract
Currently, the most common delivery mode offered in online retailing is next-day

delivery. Retailers, however, are investigating whether same-day deliveries can be

offered to online and store customers in order to meet increasing customer require-

ments. The present paper considers an integrated order picking and vehicle routing

problem assuming same-day delivery in the field of omnichannel retailing. Within

this context the paper focuses on the picking and delivery process for large durable

consumer goods, for example, consumer electronics and home appliances with the

option of associated installation services at the customer’s home as well as store

deliveries for click-and-collect customers and the short-term replenishment of store

inventory. We develop a decision support model and a general variable neighbor-

hood search-based algorithm that tackle the problem described by considering the

tradeoff between picking and delivery costs while ensuring customers’ delivery time

windows. The results show the benefits of an integrated solution approach amount-

ing to approx. 13% total cost savings on average, compared to a sequential approach

typically applied in retail practice. A case study from an internationally operating

omnichannel retailer demonstrates the advantages and applicability of the modeling

and solution approach suggested.

KEYWORDS

general variable neighborhood search, online retailing, order picking, retail opera-

tions, same-day delivery, vehicle routing

1 INTRODUCTION

The increasing demand for multi- and omnichannel shop-

ping opportunities is forcing retail companies to continuously

enhance their supply chain strategies to satisfy customer

requirements (Agatz, Fleischmann, & van Nunen, 2008;

Gallino & Moreno, 2019). The online channel is growing

especially rapidly. While total revenues of the online chan-

nel in Germany amounted to EUR 20.2 billion in 2010, they

dramatically increased to EUR 53.3 billion and EUR 57.8 bil-

lion in 2018 and 2019, respectively (HDE, 2019). Revenues

from household appliances, for example, increased from EUR

2.44 billion in 2015 to EUR 4.30 billion in 2018, equating to

a growth of 76.2%. Similarly, revenues increased by 56.0%

in the field of electronics and telecommunication from EUR

7.55 billion (2015) to EUR 11.79 billion (2018) (bevh, 2019).

Retailers have to face up to this development and to meet

ever growing customer expectations, very short delivery times

being one of the toughest (Hübner, Holzapfel, & Kuhn, 2015,

2016; Hübner, Holzapfel, Kuhn, & Obermair, 2019). Cur-

rently, the standard mode of delivery is “next-day delivery,”

for example, customer orders that are placed by 8 PM are

expected to be fulfilled on the following day (Wollenburg,

Holzapfel, Hübner, & Kuhn, 2018). In the meantime, how-

ever, retailers are investigating whether and under what condi-

tions same-day deliveries can be offered to customers in order
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to cope with emerging customer requirements for shorter

delivery times, enhancing customer services as a result (McK-

insey, 2017; Voccia, Campbell, & Thomas, 2017).

Online retailers typically operate distribution centers (DCs)

that are responsible for fulfilling most customer orders

(Holzapfel, Kuhn, & Sternbeck, 2018). The products relating

to these orders are picked in the DC and subsequently deliv-

ered to the locations requested by the customers. In retail

practice, both processes, that is, picking and delivery, are

mostly considered independent operations (Kuhn, Schubert,

& Holzapfel, 2020; Moons, Ramaekers, Caris, & Arda, 2018;

Schubert, Scholz, & Wäscher, 2018). Both processes, how-

ever, are strongly interconnected due to the short time span

between the arrival of customer’s order and the delivery

time-slot in the context of same-day delivery. This situation

applies both where retailers have their own delivery fleet

and when they charter a forwarding agent to fulfill their

deliveries.

A vehicle, for example, can only start executing its tour

once all items from the customer orders assigned have been

picked and placed at the loading dock of the warehouse as

well as subsequently loaded into the shipping space of the

vehicle. The time required to prepare all a tour’s orders at

the loading dock, however, depends on the order picking

schedule. Likewise, the tour’s entire delivery time depends

on the orders assigned. Thus, a schedule for order pick-

ing operations may be favorable for picking but unfavorable

for delivery and vice versa. The question therefore arises,

which of all possible combinations will minimize overall

picking and delivery costs while ensuring agreed delivery

dates and service requirements. This is especially crucial for

same-day deliveries since additional picking shifts and deliv-

ery tours are required during the late afternoon and evening.

This increases delivery costs and requires higher flexibil-

ity within the retailer’s entire distribution system. Retailers

therefore hesitate to offer this service, largely because of its

unprofitability (Hübner et al., 2016).

Retail practice requires novel decision support systems that

tackle the problem described by considering the tradeoff

between picking and delivery costs while ensuring customers’

delivery time windows. The literature discusses this class

of decision problems as integrated order picking and vehi-

cle routing problems (Kuhn et al., 2020; Moons et al., 2018;

Schubert et al., 2018). This kind of problem class, however,

is difficult to solve since the individual problems are already

known to be NP-hard. Exact solution methods are only suit-

able for very small instances. A retailer, however, has to

manage a considerable number of orders even in the case

of same-day delivery: up to 200 orders are expected by the

company in our case. This means that appropriate heuristic

solution procedures are required.

The present paper contributes to the literature in the fol-

lowing way. It takes up the decision problem described and

develops a novel mixed-integer program (MIP) that also con-

siders additional installation services at delivery destinations.

The paper develops a variable neighborhood search (VNS)

based approach that makes it possible to obtain high-quality

solutions within short computing times for instances of

practically relevant sizes. The solution procedure distinctly

improves the results of sequential approaches usually applied

in practice. A joint case study with a leading European

electronics and household appliance retailer demonstrates

the applicability of the modeling and solution approach

developed.

The remainder of the paper is organized as follows.

Section 2 details the context of the picking and delivery pro-

cess under consideration and illustrates the interdependencies

between both processes. Section 3 reviews related literature,

while Section 4 formulates the decision support model of the

integrated planning approach. An enhanced VNS, that is, a

general VNS (GVNS) approach for solving this problem, is

proposed in Section 5. Section 6 comprises numerical exper-

iments with simulated problem instances as well as instances

from practice. The same section also presents several man-

agerial insights. Section 7 completes the paper and outlines

further research opportunities.

2 PROBLEM DESCRIPTION

The problem under investigation considers an omnichannel

retailer operating a large number of bricks-and-mortar stores

and an online channel (Gallino & Moreno, 2019; Hübner

et al., 2015; Wollenburg, Hübner, Kuhn, & Trautrims, 2018).

The retailer offers large durable consumer goods, for example,

consumer electronics and home appliances (TVs, satellite

dishes, washing machines, refrigerators, dishwashers, etc.) in

both channels. Online as well as store customers can ask for a

home delivery of the goods purchased and additionally order

associated installation services at the delivery destination

requested. In addition, the given structure enables the retailer

to fulfill click-and-collect orders for customers who wish to

pick up the goods they have ordered at the retailer’s stores, or

to provide general store deliveries at short notice (Paul, Agatz,

Spliet, & Koster, 2019). The retailer fulfills all these different

kinds of customer and store orders from one of its omnichan-

nel regional warehouses. This general structure also enables

the retailer to provide deliveries to both customers and store

locations within a few hours, which is especially important

when offering a same-day delivery option (McKinsey, 2017;

Voccia et al., 2017). The retailer in our case is able to offer a

same-day delivery option for a large number of customer and

store orders.

In the remainder of this section we define the time-

line of events, the individual fulfillment processes, the

resources required and the interconnection between these pro-

cesses, which requires an integrated planning approach in the

same-day delivery setting described. Please note that in the

following we denote all orders as “customer orders” regard-

less of whether they originate from pure online customers,
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FIGURE 1 Timeline of events and individual processes

click-and-collect customers, store customers, or from the

store itself.

2.1 Timeline of events

In the same-day delivery context, all sorts of customers can

place their orders at an early stage of the day, that is, by

a certain cut-off time (e.g., 3 PM), and receive the corre-

sponding goods at home in the afternoon or evening. The

retailer defines an earliest (e.g., 4 PM) and a latest arrival time

(e.g., 8 PM) at the customer’s home. The picking process can

immediately start after the cut-off time. Note that it is indeed

common that same-day delivery orders are not picked before-

hand, that is, as soon as these orders arrive, because of space

limitations at the loading docks of the warehouse, and to avoid

mixing up these orders with standard delivery orders (see,

e.g., Hübner et al. (2015)). The picking process of these orders

therefore starts after the cut-off time. The delivery process

then starts as soon as the respective vehicles are loaded, which

could be considerably in advance of the earliest arrival time

defined because of the travel time to the customer. The service

process, however, can last longer than the latest permissible

arrival time at the customer’s home because of the service

time required. Figure 1 illustrates the timeline of events and

the individual processes.

2.2 Order picking process

Large items are usually picked one by one from the stor-

age area of the warehouse using a special picking device, for

example, a fork lift with clamp. Note that this picking strategy

is generally denoted “discrete picking.” A discretely picked

item often corresponds to the customer order size since large

durable consumer goods are generally individually ordered.

The picking process then has the following sequence: an order

picker receives a picking order at the dispatching area of the

warehouse, drives or walks to the corresponding storage loca-

tion, collects the item, and finally returns to the unloading

area, that is, the ramp of the warehouse, or loads the item

directly into the cargo space of the waiting vehicle (De Koster,

Le-Duc, & Roodbergen, 2007). The expected processing time

of a customer order in the warehouse (pick time) can therefore

be approximated beforehand (Schubert et al., 2018). The pick

time of a customer order includes a setup time for preparing

a (picking) tour, the travel time, a search time for identify-

ing an item, a pick time for the retrieval process, and the

loading time into the vehicle (Tompkins, White, Bozer, &

Tanchoco, 2010). In addition, the following assumptions must

be ensured in order to approximate the expected process times

with sufficient accuracy: a permanent application of a speci-

fied routing strategy, a warehouse layout with wide aisles, and

continuous availability of the items in demand.

2.3 Delivery process

The delivery process starts as soon as a vehicle is loaded with

the products required for the delivery tour scheduled. The

earliest possible arrival time at customers’ homes has to be

considered within this context. In general, two delivery time

options are applied in retail practice: (a) customers can choose

a certain time window (e.g., 2 hours) within which the corre-

sponding service should start, or (b) the delivery service may

start at any time during the entire delivery time span prede-

fined by the retailer, that is, between the earliest and latest

arrival time at customer’s home. The latter option is denoted

“general time window.” Furthermore, a delivery tour is typi-

cally limited by time and space constraints. The delivery time

includes the travel, waiting and service times required to ful-

fill all customer orders assigned to a tour. In addition, the

loading space of the vehicle has to be considered. A typical

tour contains 5 to 15 customer orders in the delivery context

considered.

2.4 Additional delivery services

The retailer offers additional installation services at the deliv-

ery destination that can be ordered by the customers at an

extra charge. In general, three service types are offered in the

case of large durable consumer goods: (a) delivery only to

the place of destination, (b) delivery to the place of destina-

tion and basic installation services, and (c) delivery to the

place of destination with all types of installation, for example,

including high voltage current connections and/or carpentry

services. A qualified employee (driver and/or co-driver) is
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FIGURE 2 Visualization of the interdependencies between picking and delivery process

necessary for each service type, and installation equipment

also has to be prepared in the vehicle used. The equipment

required and qualifications of the drivers for each service

type differ significantly. While there are only a few require-

ments for the most basic service level, particular equipment

is necessary for the highest service level, for example, con-

sumable materials, tools, as well as a specific qualification

level of the driver and/or co-driver. The highest service level

required by at least one customer order assigned to a van

defines the associated vehicle type. This, in addition, defines

the minimum qualification level of the driver and/or co-driver.

The specialized materials and tools required to fulfill the

respective services are either already available in all vans or

present in boxes or roll cages that are additionally loaded into

the van upon departure. Vehicles can therefore be divided

into different vehicle types according to the service types

they can be used for and the associated driver qualifications.

Each service type requires a certain service time that has

to be considered when scheduling the delivery of customer

orders.

2.5 Resources required

Customer demand varies from day to day in retail practice.

The resources required will therefore also vary from day to

day, that is, the number of vehicles per type and the number

of order pickers necessary to process the respective customer

orders. In the present paper we assume that these resources

are provided by delivery companies, subcontractors perform-

ing the picking process, or other business units of the retailer

at short notice. Please note that in the present case the deliv-

ery company and the subcontractor are willing to offer this

short-term flexibility since all parties involved are interlinked

within a broad, nationwide and long-standing business rela-

tionship. The use of these resources is then remunerated or

compensated based on their respective use. The retailer, how-

ever, has the entire planning authority and decides at short

notice how many units of each of the resources are required

to fulfill all customer orders within the planning horizon. The

aim of the retailer is therefore to minimize the total costs for

pickers and vehicles used while fulfilling all customer orders,

including the respective services requested. This type of orga-

nization is common practice in the planning environment

being considered.

2.6 Decisions and their interdependencies

In the context of same-day delivery, the order picking pro-

cess in the warehouse and the home-delivery process, that

is, the delivery tours, are interconnected because of the short

time span between the arrival of the customer order and the

customer’s delivery date. The connection of both subprob-

lems is illustrated in Figure 2.

Two pickers and three vehicles are planned to pick and

deliver the 12 pending customer orders, that is, C1, C2,

… , C12. All orders are allowed to be delivered during the

general delivery period. Only customers C4 and C6 have

chosen a specific time window for their delivery. A vehi-

cle can start its associated delivery tour as soon as the

warehouse has prepared the last customer order assigned to

it. A delivery tour generally alternates between travel and

service processes. An additional waiting time occurs if a

vehicle arrives at the customer’s home before the earliest

possible arrival time. Vehicle #1, for example, arrives at cus-

tomer C4 before the associated delivery is requested. The

driver and/or service person therefore have to wait until the

corresponding time window is reached. The tour for the

second vehicle (#2), on the other hand, is scheduled such

that it arrives exactly within the time window requested by

customer C6.

The integrated planning of both processes, that is, picking

and delivery, makes it possible to start the delivery tours as

early as possible, which allows more customers to be served

within the respective tours. Vehicles are therefore used most

efficiently with respect to loading space and driving time.

This would not be the case if all delivery tours started at the

same time, as is assumed in sequential planning approaches

(Klapp, Erera, & Toriello, 2018). The order picking pro-

cess in the warehouse and the home-delivery process should

therefore be coordinated.

In addition, the number of pickers assigned influences the

earliest starting time of the respective delivery tours and

therefore influences the number of vehicles required. Deliv-

ery tours can start earlier with a larger number of pickers,

which may reduce the number of vehicles required. On the

other hand, a greater number of vehicles allows operation of

the warehouse with a smaller number of pickers. This means

more time is available to make the products available at the

ramp of the warehouse.
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2.7 Decision problem

The present planning problem necessitates determining both

the number of pickers and the number of vehicles required per

vehicle type. In addition, the customer orders available have

to be assigned to the individual pickers and vehicles, and the

respective sequence of their execution has to be determined

such that the customer time windows promised and the service

type required, that is, standard, medium, or full service, are

satisfied. The aim of the present paper is therefore to develop a

decision support model and an appropriate solution approach

that tackles the problem described by considering the tradeoff

between picking and delivery costs while ensuring customers’

delivery time windows.

3 LITERATURE REVIEW

The literature review first discusses the literature related to the

individual order picking (see Section 3.1) and vehicle routing

(see Section 3.2) subproblems. Afterwards we analyze the lit-

erature that considers a simultaneous planning approach (see

Section 3.3).

3.1 Order picking problem

On the operational planning level, the number of order pick-

ers per day or shift have to be determined and afterwards

assigned to the different warehouse areas and zones. The

corresponding planning problems are denoted as workforce

level and assignment problems (van Gils, Ramaekers, Caris,

& Cools, 2017). The order assignment problem then defines

how customer (or picking) orders are assigned to an individual

picker (Scholz, Schubert, & Wäscher, 2017). Two main strate-

gies can be distinguished: individual order picking, that is,

“discrete picking,” and batch picking (De Koster et al., 2007;

van Gils, Caris, Ramaekers, & Braekers, 2019; van Gils,

Ramaekers, Caris, & de Koster, 2018).

The circumstances of the planning problem considered in

the present paper require that customer orders are picked dis-

cretely, that is, one by one. The discrete picking problem has

similarities with the parallel machine scheduling problem by

interpreting order pickers as machines, customer orders as

jobs, and pick times as machine-independent processing times

(Schubert et al., 2018). Order-specific deadlines also have to

be considered in the event that delivery tours are given. A

general deadline has to be defined if order picking and vehi-

cle routing are planned independently of each other. All items

have to be made available at the ramp of the warehouse at

this deadline. In that case the order picking problem is equiv-

alent to the well-known NP-complete bin packing problem

(Morihara, Ibaraki, & Hasegawa, 1982). An order picker is

interpreted as a bin and its capacity corresponds to the prede-

fined general deadline. The weights of the items equal the pick

times of the orders, which have to be assigned to the bins, that

is, the pickers. The number of pickers (bins) required to per-

form all orders is then minimized. A recent overview of the

classic (one-dimensional) bin packing problem can be found

in Delorme, Iori, and Martello (2016), including both exact

and heuristic solution approaches. Morihara et al. (1982) pro-

pose three approximation algorithms and compare them to the

largest processing time rule (LPTR). LPTR arranges orders

according to non-increasing processing times. Applying this

sequence, they are successively assigned to the bins with the

largest remaining capacity. Morihara et al. (1982) figure out

that LPTR is a very competitive approach for minimizing the

number of bins (pickers) required.

De Koster et al. (2007) and van Gils et al. (2018) present

comprehensive overviews on diverse order picking planning

problems, including routing and workforce allocation prob-

lems.

3.2 Vehicle routing subproblem

A classical vehicle routing problem (VRP) basically involves

two types of decision: customer orders have to be assigned

to vehicles and each vehicle has to be scheduled such that all

customer orders are fulfilled. It has been extended over recent

decades via additional constraints and decisions. These have

most commonly been capacity and time window constraints

(Vidal, Crainic, Gendreau, & Prins, 2013a). Three main fea-

tures particularly characterize the vehicle routing subproblem

being considered. First, the service at the customer’s home has

to be initiated within a specific time window. Second, each

customer order contains a specific release date. Third, a cus-

tomer order can only be served by a subset of the vehicle fleet.

The subsequent review therefore concentrates on the literature

considering VRPs that include at least one of these features.

3.2.1 VRPs with time windows
Recent and comprehensive overviews on VRPs that include

VRPs considering time windows can be found in Vidal

et al. (2013a) and Toth and Vigo (2014). Vidal, Crainic, Gen-

dreau, and Prins (2013b) present a state-of-the-art algorithm

for a broad class of vehicle routing problems assuming

customer-specific time windows. However, release date con-

straints are not included in the approaches described and

analyzed in these studies.

3.2.2 VRPs with release dates
The solution to the order picking subproblem defines com-

pletion dates of the picking orders, which in turn define order

release dates of the delivery orders. The vehicle routing sub-

problem has to consider these release dates. Archetti, Feillet,

and Speranza (2015) investigate the complexity of routing

problems with release dates. A multi-period VRP with release

and due dates is studied and solved by Archetti, Jabali, and

Speranza (2015). Cattaruzza, Absi, and Feillet (2016) present
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a hybrid genetic algorithm for the multitrip vehicle routing

problem with time windows and release dates.

3.2.3 VRPs with site dependencies
In the present study vehicles are classified into differ-

ent vehicle types according to the service type requested

by customers. VRPs with site dependencies take this

into account. Cordeau and Laporte (2001) show that the

site-dependent vehicle routing problem (SDVRP) can be for-

mulated as a special case of the periodic vehicle routing

problem (PVRP) where the number of delivery periods equals

the number of vehicle types, and each customer has to be

served on one and only one day. The set of allowable days of

visit for each customer then equals the set of vehicles of the

corresponding SDVRP that are permitted. This is also true for

the multidepot vehicle routing problem (Cordeau, Gendreau,

& Laporte, 1997). In that case each depot represents a certain

type of vehicle.

We refer to Vidal et al. (2013b) for an extensive review

of all of these classes of vehicle routing problems. The

current state-of-the-art algorithm for solving the VRP with

site dependencies and hard time windows is provided by

Vidal et al. (2013b). The authors suggest a hybrid genetic

algorithm with advanced diversity control. Other authors sug-

gest neighborhood-based solution approaches, for example, a

unified tabu search by Cordeau, Laporte, and Mercier (2004),

an adaptive large neighborhood search by Pisinger and

Ropke (2007), and a parallelized unified tabu search by

Cordeau and Maischberger (2012). Zare-Reisabadi and Mir-

mohammadi (2015) propose an ant colony system-based

approach solving a VRP with site dependencies assuming soft

time windows.

3.3 Integrated and related problems

Only a few publications suggest an integrated approach

for solving an order picking and vehicle routing problem.

Schmid, Doerner, and Laporte (2013) introduce the integra-

tion of order picking and vehicle routing as a worthwhile

endeavor for future research. Schubert et al. (2018) consider a

problem that integrates order picking and vehicle routing on

an operational level. The authors assume a predefined num-

ber of order pickers, a given number of homogeneous vehicles

and customer-specific delivery dates. In order to minimize

total tardiness, that is, the sum of all non-negative differences

between scheduled and requested delivery dates, a model for-

mulation and an iterated local search algorithm are proposed.

The problem formulated by Moons et al. (2018) concerns

a given number of order pickers that can be increased up

to a certain level. For delivery operations, a restricted num-

ber of vehicles with heterogeneous capacities and costs are

assumed to be available at the warehouse. A model formula-

tion is presented that aims to minimize total costs composed

of variable costs for the proportional wage of regular and

additional order pickers, respectively, fixed costs per vehi-

cle used, and variable costs per travel time of a vehicle.

Moons, Braekers, Ramaekers, Caris, and Arda (2019) and

Ramaekers, Caris, Moons, and van Gils (2018) deal with

an identical problem setting. Moons et al. (2019) develop a

heuristic solution approach and Ramaekers et al. (2018) apply

the heuristic developed to gain managerial insights regarding

time windows. Kuhn et al. (2020) integrate order batching,

order picking and delivery operations into a simultaneous

planning approach when supplying micro stores and gas sta-

tion convenience stores with perishable and durable goods.

They propose an extension of an adaptive large neighbor-

hood search (ALNS) metaheuristic denoted as general ALNS

(GALNS) and demonstrate the applicability of the modeling

and solution approach suggested in retail practice.

In contrast to the integrated approaches of order pick-

ing and vehicle routing just mentioned, there are several

contributions that consider the integrated production and

distribution problem, implying a make-to-order production

strategy. Chen (2010) and Moons, Ramaekers, Caris, and

Arda (2017) provide extensive reviews on this topic. Schu-

bert et al. (2018) also extensively review these kinds of

contribution focusing on integrated machine scheduling and

vehicle routing problems. However, these approaches are

of minor interest in our setting since the present paper

focuses on the integrated order picking and vehicle routing

problem considering site-dependent constraints, that is, com-

patibility dependencies between customer sites and vehicle

types. To the best of our knowledge, a site-dependent vehi-

cle routing problem (SDVRP)—especially the nested struc-

ture of the utility of different vehicle types to fulfill certain

types of services—has not been considered part of an inte-

grated problem with any machine scheduling or order picking

configuration.

Summarizing the literature available on integrated order

picking and vehicle routing problems, only a very lim-

ited number of papers tackle the general problem (Kuhn

et al., 2020; Moons et al., 2018; Schubert et al., 2018), and

to the best of our knowledge the planning problem at hand

has not been considered in the literature so far. The present

paper therefore contributes to the literature as follows. A novel

MIP is developed that tackles the integrated order picking

and vehicle routing problem defined considering the tradeoff

between picking and delivery costs while ensuring customers’

delivery time windows and the individual services requested.

The model especially considers additional services at the

delivery destination. These individual services require spe-

cific qualifications of the delivery staff and a certain vehicle

type. These services are nested-organized such that higher

qualified teams can fulfill services requiring lower qualifi-

cations, but not vice versa. An appropriate heuristic solu-

tion procedure is developed that improves the results of the

sequential approaches usually applied in practice. In addition,

the solution approach developed solves instances of practi-

cally relevant sizes within a short computational time. Within
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an extensive numerical analysis the paper demonstrates the

value of integration for order picking and delivery plan-

ning, which becomes especially true for omnichannel retailers

offering a same-day delivery option. A case study is also

conducted in cooperation with a leading European omnichan-

nel retailer that demonstrates the real-life applicability of the

modeling and solution approach suggested.

4 MATHEMATICAL MODEL

In the present section we develop a decision support model

for the integrated order picking and vehicle routing problem

being considered. To achieve this we first define the param-

eters specifying the customer orders given at the begin-

ning of the planning horizon. We then name the parame-

ters and decision variables defining both subproblems, the

order picking subproblem, denoted Order Assignment and

Sequencing Problem (OASP), and the delivery subproblem,

named Vehicle Routing Problem with Site Dependencies

(VRPSD). Finally, we formulate an integrated MIP, which is

denoted OAS-VRPSD.

4.1 Customer orders

At the time of planning, a set of customer orders N = {1,

2, ..., i, ..., |N |} is given and all orders have to be fulfilled

on the respective day. Each customer order i is characterized

by an item with a certain weight wi and space requirement

vi, i ∈ N. These items have to be prepared in the warehouse

and delivered to the corresponding customer location. More-

over, a customer demands a certain but single type of service

that can be fulfilled by specific vehicles of type k, k ∈ K,

that include specific service teams that are qualified to fulfill

the service required. The binary parameter eik then indicates

whether customer i can be served by vehicle type k (eik = 1)

or not (eik = 0). Please note that it is assumed that a higher

qualified service team, that is, vehicle type, can also perform

lower-level services. Fulfilling the service requested by cus-

tomer i requires a specific service time si, i ∈ N. The length

of service time only depends on the type of service to be

provided, and is independent of the qualification level of the

team providing the service. The service time includes unload-

ing operations and the time for connection and installation

according to the service type requested. The service has to

start within a customer-specific time window and has to be

completed within only one visit. The time window is defined

by a lower bound 𝛼i and an upper bound 𝛽 i, i ∈ N. The start

of service is postponed until the lower bound of the time

window is reached if a vehicle arrives early at a customer’s

home. Late arrivals, that is, a start of service after the upper

time limit, however, are not allowed. Consequently, the ser-

vice requested by customer i has to start exactly within the

defined time window [𝛼i, 𝛽 i]. The starting time of service i
is denoted as ai. Note that this defines the most general case

for the problem being considered since general time windows

and a delivery deadline are special cases of customer-specific

time windows.

4.2 Order picking subproblem

The item ordered by customer i is customer-specifically col-

lected by a picker on a so-called picking tour from its storage

location in the warehouse. The pick time required for col-

lecting the item and loading it into the shipping space of the

vehicle is denoted pi, i ∈ N. We assume the availability of

a sufficiently large number of pickers, whereby each of the

pickers used is charged at a fixed cost rate of cpicker. Determin-

ing the number of pickers used is part of the decision-making

process. Moreover, customer orders have to be assigned to

the pickers and the orders assigned have to be sequenced.

The assignment and sequencing decisions are quantified by

the following decision variables: yi ∈ {0, 1} defines whether

order i is assigned (yi = 1) to the first position on the pick-

ing list of one of the pickers available or not (yi = 0). The

sum
∑

i∈Nyi then quantifies the number of pickers used. An

artificial customer order |N |+ 1, N+ = N ∪ {|N |+ 1} and

the binary variable zij, i ∈ N, j ∈ N+, are introduced to

represent the subsequent orders on each of the picking lists

(Biskup, Herr-mann, & Gupta, 2008). Variable zij then indi-

cates whether an order i is processed immediately before order

j (zij = 1), or not (zij = 0). Order i is processed last on a pick-

ing list if zi, |N |+ 1 = 1. This means the point in time when

the item of an order is prepared by the warehouse for deliv-

ery, that is, the release date ri, i ∈ N, of the respective order

depends on the orders previously assigned to the same picker,

that is, the sum of their pick times, and on the pick time of the

corresponding order itself.

4.3 Vehicle routing subproblem

The items prepared by the pickers at the ramp of the ware-

house are delivered to the customers by vehicles that are

capable of offering the individual services required by the

customers. The entire set of vehicles with different ser-

vice qualifications available at the warehouse is denoted

M = {1, 2, … , m, … , |M|}. Set M covers the disjointed sub-

sets of vehicles Mk, k ∈ K, corresponding to the service types

offered to the customers. It is assumed that a sufficiently large

number of vehicles of each vehicle type (|Mk |≥ |N |) are avail-

able at the beginning of the planning horizon. Each vehicle

type is associated with a type-specific cost rate ck
vehicle due

to the differences in both driver qualification and equipment

required. Determining the number of vehicles used per type

is part of the decision-making process. Moreover, customer

orders have to be assigned to the vehicles used and sequenced.

Variables uim, i ∈ N, m ∈ M, determine whether a customer

order i is assigned to vehicle m (uim = 1) or not (uim = 0). The

sequencing decision, that is, the vehicle route, is quantified by
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decision variable xm
ij , i, j ∈ N0, m ∈ M. The variable quanti-

fies whether customer location i is visited immediately before

location j by vehicle m (xm
ij = 1) or not (xm

ij = 0). Each

route starts and ends at the warehouse that is indexed with 0,

N0 = N ∪ {0}. Vehicles have a uniform weight w and space

v capacity that must not be violated when designing vehicle

tours. Please note that specific packing restrictions are not

considered.

In addition, a cost is incurred relating to the distances

driven, that is, ck
ij, i, j ∈ N0, k ∈ K. Independent of its type,

each vehicle can perform one tour at most. Before a tour can

start, all items included in the customer orders assigned must

be prepared by the warehouse, that is, loaded onto the vehi-

cle. The earliest starting time of vehicle m is denoted by bm.

In addition, the driving times between locations are denoted

by ti, j, i, j ∈ N0.

Table 1 summarizes the sets, parameters and decision vari-

ables defined. The OAS-VRPSD is modeled afterwards.

minimize
∑
k∈K

∑
m∈Mk

∑
i∈N0

∑
j∈N0

ck
ij ⋅ xm

ij

+
∑
k∈K

∑
m∈Mk

∑
i∈N

ck
vehicle

⋅ xm
0i +

∑
i∈N

cpicker ⋅ yi (1)

subject to

yi +
∑

j∈N,i≠j
zji = 1 ∀i ∈ N (2)

∑
j∈N+,i≠j

zij = 1 ∀i ∈ N (3)

ri ≥ pi ∀i ∈ N (4)

ri ≥ rj + pi − Q(1 − zji) ∀i, j ∈ N, i ≠ j (5)

bm ≥ ri − Q ⋅ (1 − uim) ∀i ∈ N,m ∈ M (6)

∑
m∈M

uim = 1 ∀i ∈ N (7)

uim ≤ eik ∀i ∈ N,m ∈ Mk, k ∈ K (8)

ujm =
∑

i∈N0,i≠j
xm

ij ∀j ∈ N,m ∈ M (9)

ujm =
∑

i∈N0,i≠j
xm

ji ∀j ∈ N,m ∈ M (10)

∑
i∈N

xm
0i ≤ 1 ∀m ∈ M (11)

ai ≥ bm + t0i − Q ⋅ (1 − uim) ∀i ∈ N,m ∈ M (12)

aj ≥ ai + tij + si −Q ⋅ (1− xm
ij ) ∀i, j ∈ N, i ≠ j,m ∈ M (13)

ai ≥ 𝛼i ∀i ∈ N (14)

ai ≤ 𝛽i ∀i ∈ N (15)

v ≥
∑
i∈N

vi ⋅ uim ∀m ∈ M (16)

w ≥
∑
i∈N

wi ⋅ uim ∀m ∈ M (17)

xm
ij ∈ {0, 1} ∀i, j ∈ N0,m ∈ M (18)

uim ∈ {0, 1} ∀i ∈ N0,m ∈ M (19)

yi ∈ {0, 1} ∀i ∈ N (20)

zij ∈ {0, 1} ∀i ∈ N, j ∈ N+, i ≠ j (21)

The objective function (1) quantifies the total costs that

need to be minimized. The first term of the cost function spec-

ifies the traveling costs associated with all tours generated.

The second term quantifies the vehicle employment costs,

which depend on the number of vehicles used. Note that the

cost parameters in both terms depend on the respective vehi-

cle type deployed. Finally, the third term specifies the number

of order pickers used and the corresponding picking costs.

Constraints (2) to (5) represent the order picking subproblem.

Constraints (6) connect order picking with vehicle routing,

which is formulated in constraints (7) to (17). Definitions (18)

to (21) specify the respective domains of the binary decision

variables.

The release time of a delivery order, that is, the finishing

date of a picking order, depends on the sequence of picking

orders assigned to an order picker. An order i can either be

processed first by one of the order pickers used (yi = 1) or

is the successor of another order (see Eq. (2)). Consequently,

the order is either processed last (zi, |N | + 1 = 1) or has at least

one successor (see Eq. (3)). Inequations (4) and (5) define the

finishing time of a picking order, which equals the release date

of a delivery order (ri).

The order picking and vehicle routing subproblems are con-

nected by Inequalities (6). A tour cannot start until all the

corresponding orders have been supplied by the warehouse.

Within the vehicle routing subproblem, Eq. (7) ensure that a

customer is assigned to exactly one vehicle. Inequations (8)

ensure that the type of the vehicle fits the service qualifica-

tion required. Note that the vehicle type chosen arises from

the customer order(s) with the highest hierarchical service

type of all orders assigned to the same tour. Equations (9)

and (10) ensure the integrity of routing and customer-vehicle

assignment variables (Irnich, Toth, & Vigo, 2014). They also

guarantee that the depot is included in a route containing at

least one customer. Constraints (11) specify that a vehicle

performs one tour at most. Inequations (12) to (15) then

define the earliest possible starting time of a service at cus-

tomer’s home, ai, which cannot be earlier than when the

vehicle arrives at that location or earlier than the lower bound

of the delivery time window defined. In addition, the ser-

vice is not allowed to take place after the upper bound of
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TABLE 1 Notation for model OAS-VRPSD

Sets

N Set of customers, N = {1, 2, … , i, … , |N|}
N0 Set of customers with 0 as warehouse, N0 = N ∪ {0}

N+ Set of customers with (| N |+1) as an artificial customer, N+ = N ∪ {|N |+ 1}

M Set of vehicles, M = {1, 2, … , m, … , |M|}
K Set of vehicle types, K = {1, 2, … , k, … , |K|}
Mk Set of vehicles of type k ∈ K, Mk ⊆M; Mh ∩ Ml = ∅ ∀h, l ∈ K, h ≠ l

Parameters

ck
ij Nonnegative travel cost between location i and j, if i, j ∈ N0, is performed by vehicle type k, k ∈ K

ck
vehicle Fixed cost per vehicle used of type k, k ∈ K

cpicker Fixed cost per picker used

eik Binary parameter indicating whether customer i, i ∈ N, can be served by vehicle type k, k∈K, (eik = 1) or not (eik = 0)

tij Travel time between location i and j, i, j ∈ N0

pi Pick time for the order of customer i, i ∈ N

si Service time for the order of customer i, i ∈ N

vi Space requirement for the order of customer i, i ∈ N

v Maximum capacity of a vehicle, measured in space units

wi Weight of customer i’s order, i ∈ N

w Maximum capacity of a vehicle, measured in weight units

Q Sufficiently large number, for example, maximum length of planning horizon, that is, latest possible starting time of all services,

Q = maxi∈N [𝛽 i]

𝛼i Lower bound of the time window of customer i, i ∈ N

𝛽 i Upper bound of the time window of customer i, i ∈ N

Decision variables

ai Starting time of service at customer i, i ∈ N

bm Starting time of vehicle m, m ∈ M, at the warehouse

ri Release date of the delivery order of customer i, i ∈ N

uim Binary variable that indicates whether customer i, i ∈ N, is assigned to vehicle m, m∈M, (uim = 1) or not (uim = 0)

xm
ij Binary variable that indicates whether vehicle m, m ∈ M, visits location j, j ∈ N0 immediately after location i, i ∈ N0, (xm

ij = 1) or not (xm
ij = 0)

yi Binary variable that indicates whether customer order i, i ∈ N, is processed first by an order picker (yi = 1) or not (yi = 0)

zij Binary variable that indicates whether the order of customer i, i ∈ N, is processed immediately before the order of customer j, j∈N+, i≠ j,
(zij = 1) or not (zij = 0)

the defined delivery time window. The capacity limits of

the vehicles also have to be considered (see constraints (16)

and (17)).

The order picking subproblem is known to be NP-complete

(Hochbaum & Shmoys, 1988) and the vehicle routing sub-

problem generalizes the NP-hard capacitated vehicle routing

problem (Vidal et al., 2013a). Consequently, the more general

OAS-VRPSD is NP-hard, too. Heuristic procedures are thus

required to solve problem instances of practically relevant

sizes.

5 A GENERAL VARIABLE
NEIGHBORHOOD SEARCH APPROACH

This section proposes a general variable neighborhood search

algorithm that is adapted to the OAS-VRPSD. The VNS meta-

heuristic was introduced by Mladenović and Hansen (1997).

A GVNS extends the basic metaheuristic by a more

sophisticated local search procedure, that is, a variable

neighborhood descent (VND) algorithm (Hansen, Mladen-

ović, Brimber, & Pérez, 2010), while additionally considering

the specific requirements of OAS-VRPSD problem character-

istics. Although its concept is rather simple, the VNS meta-

heuristic has yielded several high-performing algorithms, for

example, for vehicle routing problems with multiple periods

(see Pirkwieser and Raidl (2008), Hemmelmayr, Doerner, and

Hartl (2009) and Kovacs, Golden, Hartl, and Parragh (2014))

or multiple depots (see Salhi, Imran, and Wassan (2014)), and

for order picking problems, for example, an order batching,

batch assignment and sequencing problem (see Henn (2015)).

In the subsequent section we first introduce a construction

heuristic that generates a feasible solution for OAS-VRPSD.

The GVNS approach developed uses this solution as a start

for its improvement process. The construction heuristic solves

the order picking and vehicle routing problem in a sequential

manner, which is common in retail practice and in commercial

parcel deliveries. Later we use this procedure as a benchmark

when analyzing the GVNS developed within our numerical

study.
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(A) (B)

(C)

FIGURE 3 Scheme for the construction of an initial solution

5.1 Initial solution

Figure 3 schematically depicts the general concept of the

heuristic for building an initial solution for the problem being

considered. The procedure splits the planning horizon (3a)

into two planning phases according to partial workloads that

have to be handled in each subproblem. We use the aver-

age upper time window as indicator for the length of the

planning horizon. The sum of pick times and direct driving

times defines the order picking and vehicle routing workload,

respectively. The order picking subproblem is solved first by

LPTR so that the release dates of the customer orders are

determined (3b). Orders are assigned to the order pickers

according to decreasing processing times, which balances

the workload between the order pickers and minimizes their

number. It has to be ensured for each assignment that the

picking deadline is not violated and that the corresponding

order can be delivered without violating the upper bound of

its time window. If this is not possible, the order is assigned

to an additional order picker, that is, the number of order

pickers is increased by one. A solution to the vehicle routing

subproblem is subsequently generated with the well-known

savings algorithm of Clarke and Wright (1964). The release

dates of the orders are taken as a fixed input (3c) in the sav-

ings algorithm. However, the original savings method does

not consider different vehicle types, so they are set after the

savings algorithm has terminated according to the highest

service type of the customers assigned to a vehicle. This

results in a feasible solution to the OAS-VRPSD. The inte-

grated solution approach uses this solution as initiation of its

improvement process.

5.2 Integrated solution procedure

We apply a GVNS algorithm to obtain an integrated solution

to the OAS-VRPSD problem. A GVNS consists of a

shaking phase that perturbs the incumbent solution and a local

search that derives benefits from the shaking moves, while

neighborhood structures are changed in a systematic manner.

The problem structure of the OAS-VRPSD leads, however, to

special requirements for an integrated solution approach.

If one assumes a given solution to the vehicle routing

problem, then the remaining cost only derives from the

number of order pickers required in the order picking solution.

The assignment of orders to pickers and the sequencing of

picking orders has no impact on the target value. These factors

do however determine the vehicle start dates via order release

dates and thus whether a route remains feasible regarding

the hard time window bounds. Following this argumenta-

tion, typical moves of local searches such as shift or swap

either do not change the objective value—while maintaining

feasibility—or lead to a non-feasible solution to the overall

problem if they are applied to the order picking solution.

The GVNS applied considers these requirements of the

OAS-VRPSD by only including vehicle routing decisions

in the local search. Order picking decisions (together with

resource and routing decisions) are then evaluated in the shak-

ing phase. As a result, we directly evaluate all changes to the

picking schedule to determine whether they have potential to

improve the routing plan or not. In the course of doing this we

immediately consider the consequences of a change on both

subproblems. Algorithm 1 shows the main structure of our

i_GVNS algorithm.

We assume a given sequence of neighborhood structures

ΦGVNS
1

, … ,ΦGVNS
max GVNS and an incumbent solution 𝜎. The

GVNS then randomly selects a neighbor solution 𝜎 from

the 𝜙th neighborhood ΦGVNS
𝜙

of 𝜎 (ΦGVNS
𝜙

(𝜎)) in the shak-

ing phase, and then applies a local search procedure to 𝜎. A

new best solution always updates the incumbent solution. If

no new best solution is found but 𝜎 complies with an accep-

tance criterion, 𝜎 replaces 𝜎 as the incumbent solution and
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the first neighborhood structure will be used in the shaking

phase of the next iteration. Otherwise, 𝜎 remains unchanged

and the next neighborhood structure is deployed. If the accep-

tance criterion is not met in an iteration of GVNS with

the last neighborhood structure ΦGVNS
max GVNS and no termina-

tion criterion has been met, the GVNS again applies the

first neighborhood structure for the next iteration. Instead of

Algorithm 1 i_GVNS

Input: problem data, number of neighborhood structures

max_GV NS and max_V ND
Output: best solution 𝜎best and corresponding total costs

f (𝜎best) determine (initial) solution 𝜎

𝜎 ≔ VND(problem data,Φ
VND

, 𝜎)

while termination criterion not met do
𝜙 := 1

while 𝜙 ≤ max_GV NS do
generate 𝜎 randomly from the 𝜙th

neighborhood of 𝜎 (𝜎 ∈ ΦGVNS
𝜙

(𝜎)) // shaking

𝜎 ≔ VND(problem data,Φ
VND

, 𝜎)
if f (𝜎) < f (𝜎best) then
𝜎best ≔ 𝜎

𝜎 ≔ 𝜎

𝜙 := 1

else if acceptance criterion met then

𝜎 ≔ 𝜎

𝜙 := 1

else
𝜙 :=𝜙 + 1

end if
if 𝜎best not improved for certain number

of iterations then
𝜎 := 𝜎best

end if
end while

end while

a simple local search, we embed a VND as the local search

procedure in our algorithm (Hansen et al., 2010).

5.2.1 VND procedure
The local search procedure of the GVNS, that is, the VND

algorithm, follows the idea of the (G)VNS metaheuristic

but changes neighborhood structures in a deterministic man-

ner. In contrast to a (G)VNS, the entire neighborhood is

explored and the best neighbor solution 𝜎 is determined. If the

objective function value of 𝜎 (f (𝜎)) constitutes an improve-

ment regarding the objective function value of 𝜎, 𝜎 is set

as the new incumbent solution and VND applies the first

neighborhood structure again. Otherwise the next neighbor-

hood of 𝜎 will be examined in the next iteration. The VND

terminates, if the last neighborhood structure ΦVND
max VND has

been investigated but no improvement of 𝜎 results. Conse-

quently, 𝜎 provides a local optimum to all neighborhoods of

𝜎 (ΦVND
1

(𝜎), … ,ΦVND
max VND(𝜎)).

5.2.2 Neighborhood structures in the local search
The VND approach contains two types of neighborhood

structure ΦVND
𝜙

, that is, the Or-Opt Operator (Or, 1976) and

the Relocate Operator (Savelsbergh, 1992).

• Or-Opt Operator: As an intra-route move, the Or-Opt

Operator shifts one customer or a sequence of customers

to another position in the same route.

• Relocate Operator: As an inter-route move, the Relo-

cate Operator shifts one customer or a sequence of cus-

tomers to a different route that can be an existing route

or a newly created one. While the Or-Opt Operator has

no impact on the vehicle type, the Relocate Operator

also balances between routing cost and costs for vehicle

types.

5.2.3 Neighborhood structures in the shaking phase
In the shaking phase of the GVNS algorithm, neighborhood

structures are associated with the vehicle routing subprob-

lem, order picking subproblem, and the determination of

resources, that is, increasing or reducing the number of pick-

ers or vehicles.

• Cross-exchange operator: Two sequences of customers of

different routes are interchanged (Taillard, Badeau, Gen-

dreau, Guertin, & Potvin, 1997). The lengths of both

sequences may be different and are determined indepen-

dently within identical limits. This operator also makes

it explicitly possible to swap customers to a new vehi-

cle and to adjust vehicle types according to the cus-

tomers exchanged. Similar to the Relocate Operator, the

Cross-exchange Operator takes into account both routing

costs and costs per vehicle type.

• Shift same picker operator: A customer order or a sequence

of orders is moved to a different position at the same picker.

• Shift different pickers operator: A customer order or a

sequence of orders is moved to a different picker.

• Swap different pickers operator: Customer orders or

sequences from two different pickers are exchanged. Sim-

ilar to the Cross-exchange Operator, the lengths of both

sequences considered are determined independently but

follow the same limit.

• New picker operator: A number of randomly chosen orders

are selected from set {𝜔, … , 𝜔} and assigned to a newly

added picker. The orders can originate from different pick-

ers and are assigned to the newly added picker using the

sequence selected.
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• Delete picker operator: A randomly chosen picker is

deleted and the corresponding orders are randomly

assigned to random positions of the remaining pickers.

• Delete vehicle operator: A randomly chosen vehicle (tour)

is deleted and the corresponding orders are randomly

assigned to the remaining delivery tours.

Please note that vehicle capacities are always respected but

a shaking move to the order picking problem may result in

a non-feasible solution regarding time window compliance.

The local search then aims to restore feasibility by only con-

sidering feasible moves. The acceptance criterion rejects the

current solution if no feasible solution is found.

5.2.4 Acceptance and termination criteria
Particularly for vehicle routing problems, threshold accep-

tance (Dueck & Scheuer, 1990) has proven to be an effective

mechanism to avoid neighborhood search-based algorithms

from getting stuck in local optima (see, e.g., Tarantilis,

Kiranoudis, and Vassiliadis (2004), Polacek, Hartl, and

Doerner (2004), or Henke, Speranza, and Wäscher (2015)).

Basically, an altered solution 𝜎 is accepted if the corre-

sponding objective value f (𝜎) is smaller than the objective

value f (𝜎) of the incumbent solution 𝜎 plus a threshold T .

First, a new best solution is always accepted and the incum-

bent solution is updated as well. Second, we implement a

threshold-acceptance procedure depending on the objective

value of the current best solution 𝜎best. In doing this, the

threshold T is determined by 𝛾 ⋅ f (𝜎best). A solution 𝜎 is then

accepted as a (new) incumbent solution 𝜎 if f (𝜎) < f (𝜎) + T .

This procedure achieves slightly better results than only con-

sidering the objective value of the incumbent solution. The

parameter 𝛾 is dynamically adjusted within the algorithm.

Initially, 𝛾 is set to zero such that only improvements are

accepted within the search behavior. However, after a prede-

fined number of iterations without finding a new incumbent

solution, 𝛾 is increased by parameter 𝜇 with the result that

solutions of inferior quality can be accepted. If a new incum-

bent or best solution has been found, 𝛾 is reset back to its

initial value. The GVNS algorithm terminates if a certain

time limit is reached.

6 NUMERICAL EXPERIMENTS

This section presents the design and results of the numeri-

cal experiments that are performed to evaluate our solution

approach for the OAS-VRPSD. In the following we will refer

to our GVNS approach described in the previous section as

integrated GVNS (i_GVNS). In the first subsection we outline

the main benchmark approaches for evaluating the perfor-

mance of i_GVNS (Section 6.1). Afterwards we detail the

configuration of our test instances (Section 6.2), the imple-

mentation setting (Section 6.3) and describe the results based

on instances generated in the basic setting (Section 6.4), as

well as with varied planning scenarios (Section 6.5). We then

briefly analyze the solution quality over time (Section 6.6)

before finally testing i_GVNS in a real-life setting using a case

from a major European electronics retailer (Section 6.7).

6.1 Benchmark approaches

As a main benchmark approach (SEQ), a sophisticated

algorithm is applied that solves the OAS-VRPSD sequentially

as it is prevalent in retail practice. The approach selected cor-

responds as far as possible to the planning activities of our

practice partner. It can therefore be assumed that the SEQ

approach will lead to comparable results as a direct applica-

tion of approaches currently used in retail practice. The SEQ

approach proceeds as follows. The initial solution is deter-

mined by the construction heuristic described in Section 5.1.

Orders are therefore assigned to a number of order pickers

that has previously been estimated using the LPTR. Solving

the order picking subproblem applying LPTR minimizes the

number of order pickers and thus the decision-relevant costs

in the order picking subproblem. Subsequently, an adapted

savings approach is used to solve the vehicle routing problem

taking into account all constraints. To obtain a fair compar-

ison for our integrated solution approach and to minimize

the decision-relevant costs arising in the vehicle routing sub-

problem, the initial solution is improved, first via the local

search procedure of the i_GVNS algorithm, that is, a VND

approach. Second, a GVNS algorithm is applied to the vehi-

cle routing subproblem. This means that all neighborhood

structures that deal with the order picking subproblem are

removed (ΦGVNS
4

−ΦGVNS
13

and ΦVNS
G15

) from i_GVNS, maintain-

ing the sequential planning characteristics in retail practice.

SEQ therefore uses intelligence from our i_GVNS while

keeping separate both planning domains being considered. A

comparison of the solution quality of the i_GVNS approach

(integrated solution) with the benchmark (sequential solution)

thus shows whether—and if so, to what extent—benefits arise

from dealing with the OAS-VRPSD as a simultaneous plan-

ning problem. Both i_GVNS and SEQ are performed with

the same computing time and parameter settings in order to

have a fair comparison (see Section 6.3). Moreover, an exact

approach is applied by implementing the model formulation

from Section 4 in a standard optimization software. How-

ever, this approach is only suitable for solving small-sized

instances.

6.2 Test instances

We set up our experiments on newly generated problem

instances in order to evaluate the corresponding contributing

factors since the OAS-VRPSD has not been dealt with so far.

Instances of previous studies would only have been reusable

to a limited extent as they do not differentiate in terms of pick

times and size of the delivery area, nor do they build on soft

upper time windows, order batching or multiple vehicle tours.
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However, the specifications of the characteristics are strongly

oriented to practical data.

Our research focus lies on same-day deliveries for large

products, so the planning horizon is set equal to a few hours

only. More precisely, if a hypothetical upper bound for the lat-

est possible delivery date for all customers is set (eg, 9 PM),

the length of the planning horizon determines the point in

time by which customers can order such that they are served

the same day. In our experiments, the length of the planning

horizon is set to 6, 9, and 12 hours, that is, customers can order

by 3 PM, noon, and 9 AM, respectively. The planning horizon

is thus described as tight (t), medium (m) or wide (w).

We generate problem instances with 5, 7, 50, 100, and 200

customers. Instances with 5 and 7 customers are used to com-

pare the performance of the i_GVNS approach to the exact

one, while instances of practically relevant sizes are the basis

for the evaluation of the i_GVNS compared to the sequential

planning approach, SEQ. The number of orders for practically

relevant instances is oriented to what we find at the partner

company as well as on problem sizes typically used in litera-

ture. Henn (2015) and Scholz et al. (2017), for example, use

problem instances with up to 200 customer orders for order

picking problems, Desaulniers, Madsen, and Ropke (2014)

state that about 150 customer orders are realistic problem

sizes for vehicle routing problems, and Schubert et al. (2018)

generated instances with up to 200 customer orders for an

integrated order picking and vehicle routing problem adapt-

able to the daily deliveries of supermarkets from a central DC.

The pick times of customer orders depend on several fac-

tors, although a discrete picking strategy is assumed, for

example, the size of the warehouse, the storage assign-

ment policy, the picker routing strategy, etc. (De Koster

et al., 2007). We generate small (s), medium (m) and large

(l) pick times randomly within certain limits, that is, {[5, 10],

[10, 30], [30, 50]} minutes, to be able to evaluate the influence

of pick times in our setting.

The customers and the DC are randomly located within

a predefined delivery area. The size of the delivery area

is adapted from Holzapfel, Hübner, Kuhn, and Stern-

beck (2016), Ullrich (2013), and Schubert et al. (2018) and

set at 50× 50, 100× 100, and 200× 200 km. These areas

represent “Metropolitan” to “District” regions (Holzapfel

et al., 2016). Driving times and distances between the corre-

sponding locations are calculated according to the Euclidean

distances. Correspondingly, the size of the delivery area

(SDA) is characterized as small (s), medium (m), or large (l).

A customer order includes a time window within which the

corresponding service must start. Each customer is assigned

to a specific time window with a length of 2 hours. The posi-

tions of these time windows are randomly chosen within the

planning horizon. More precisely, the lower bound of a time

window is at least as great as the sum of the pick time of the

corresponding order and the driving time from the DC to the

respective customer location. The problem generator ensures

that a problem instance is feasibly solvable and that the length

TABLE 2 Domains of problem class parameters

Problem class parameter Domain

Number of customer orders |N | 5, 7, 50, 100, 200

Pick times PT [5, 10], [10, 30], [30, 50] minutes

Tightness of planning horizon TPH 6, 9, 12 hours

Size of delivery area SDA 50× 50, 100× 100, 200× 200 km

of a time window is not reduced by the end of the planning

horizon. That means the upper bound of a time window is

strictly lower than or equal to the hypothetical upper bound

for the latest possible delivery.

We assume that a customer is equally likely to choose one

of three service types. The timespans correspond to those

applicable in practice. For service type 1 (all installations

and connection services), a service time of 80 minutes is

defined. Service type 2 (simple installations) is processed in

40 minutes, while service type 3 (delivery to place of destina-

tion) requires 20 minutes. Three vehicle types are considered

according to these service types. A vehicle of the first type can

be deployed for 840 monetary units (MU) and used to serve

all service types. Vehicles of the second type cost 680 MU and

can be used for service types two and three, while a vehicle of

the last type (type 3) can only serve customers who order ser-

vice three, and costs 580 MU. The cost factor per kilometer

driven is set to 1 MU. Finally, an order picker can be deployed

in the warehouse for 240 MU. The cost parameters are gen-

erally inspired by the values from the case study and from

previous collaborations with industry partners. The weight

and space requirement of the items ordered by a customer

are randomly generated within [20, 120] kg and [60× 60,

120× 120] cm2. Each vehicle can load up to 1,500 kg, and its

loading area has a size of 14.64 m2.

In total, 135 problem classes result from the combination of

problem characteristics mentioned above. Ten instances have

been generated for each problem class. Table 2 shows the

corresponding problem class parameters and their domains.

6.3 Implementation and parameter testing

The experiments were carried out on Intel Xenon E5-2697

v3 processors. IBM ILOG CPLEX Optimization Studio

version 12.6.3 (CPLEX) was used for the implementation

of the model formulation from Section 4. The i_GVNS

algorithm and the sequential benchmark approach (SEQ)

are programmed in C++ and compiled with the g++ -O3

optimization.

Table 3 shows the specification of the neighborhood struc-

tures applied in the local search (ΦVND
𝜙

) and their sequence

of application in the VND. In total, VND makes use of six

neighborhood structures.

Fifiteen neighborhood structures, ΦGVNS
𝜙

, are embedded in

the shaking phase of the GVNS algorithm. Table 4 pro-

vides an overview of the operators considered and parameters
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TABLE 3 Embedded neighborhood structures
in the local search

𝝓 Operator Sequence length

1 Or-Opt 1

2 Or-Opt 2

3 Or-Opt 3

4 Relocate 1

5 Relocate 2

6 Relocate 3

TABLE 4 Embedded neighborhood structures in the shaking phase

Minimum Maximum

𝝓 Operator Sequence length

1 Cross-exchange 1 1

2 Cross-exchange 1 2

3 Cross-exchange 1 3

4 Shift same picker 1 1

5 Shift same picker 1 2

6 Shift same picker 1 3

7 Shift different pickers 1 1

8 Shift different pickers 1 2

9 Shift different pickers 1 3

10 Swap different pickers 1 1

11 Swap different pickers 1 3

12 Swap different pickers 1 5

Number of orders

13 New picker 2 10

14 Delete vehicle

15 Delete picker

used. The number of orders assigned to a picker who is

additionally deployed, that is, 𝜔 and 𝜔, is set to 2 and 10,

respectively.

i_GVNS and SEQ terminate if a certain time limit has been

reached. For instances with 5 and 7 orders, the algorithm

was executed for 1 second. In order to solve instances with

50, 100, and 200 orders, the CPU limit was set to 5, 10,

and 30 minutes, respectively. In contrast, CPLEX was not

bounded by a CPU limit to solve the instances considered to

optimality.

We tested different parameter constellations regarding the

sequence length and number of orders used within the oper-

ator tests. Accordingly, we tested the parameters used within

the threshold accepting procedure. In total we pretested 50

instances with random problem parameters chosen based

on the problem classes described in Section 6.2. A further

increase in the neighborhood structures did not lead to sig-

nificant improvements. Moreover, we found that modifying

threshold T after 60 iterations without a new incumbent solu-

tion results in an appropriate tradeoff between intensification

and diversification. In detail, we modify T by increasing

𝛾 by 𝜇 = 0.01, that is, T is increased by 1% of the best

solution. Moreover, the incumbent solution was reset to the

best solution after 600 iterations without finding a new best

solution.

6.4 Comparison of solution approaches

In the following we present the results from our test instances

based on data generated. First, the results of the small

instances are discussed comparing i_GVNS to an exact

solution of the planning problem (Section 6.4.1). Second,

i_GVNS and SEQ are compared to each other using the

remaining instances with a large number of customer orders

(Section 6.4.2).

6.4.1 Results of the experiments with small instances
This subsection compares the performance of i_GVNS and

SEQ with the performance of an exact approach, that is,

implementation of the model formulation from Section 4 in

CPLEX. Table 5 presents the corresponding results (columns

4 to 13). The first three columns specify the problem class,

that is, the pick times (PT), the size of the delivery area

(SDA), and the tightness of the planning horizon (TPH)

in accordance with Section 6.2. The average deviation of

the target values of the solutions generated by the i_GVNS

from the optimal target value (dev) is stated in columns 4

and 9 for five and seven customers, respectively. Columns

5 and 10 show the improvement of SEQ by i_GVNS, that

is, imp_seq= (f (𝜎SEQ)− f (𝜎i_GVNS))/f (𝜎SEQ), with f (𝜎i_GVNS)

and f (𝜎SEQ) as final solutions of i_GVNS and SEQ, respec-

tively. Moreover, the computing time in seconds after which

the best solution is found is given in columns 6 and 11 for

the exact approach (t_ex), and in columns 7 and 12 for the

i_GVNS algorithm (t_GVNS). Finally, the number of opti-

mally solved instances per problem class by the i_GVNS

(#opt) is shown in columns 8 and 13.

i_GVNS is able to optimally solve 530 out of 540 instances,

that is, 98.15%, with a maximum deviation from the opti-

mal objective value of 1.09%. The solution quality of the

i_GVNS is only 0.0048% worse than the optimal target value,

on average. For five customer orders, the exact approach is

able to generate optimal solutions for all instances within

0.25 seconds on average, while the i_GVNS requires less than

0.01 seconds until the final solution has been found. How-

ever, the average time to find an optimal solution with the

exact approach increases to 24.63 seconds in the case of seven

customers. The i_GVNS algorithm still finds a final solu-

tion within fractions of a second (0.03 seconds on average).

i_GVNS performs approximately 25,600 and 24,000 itera-

tions within the computing time of 1 second for instances with

five and seven customer orders, respectively. Moreover, the

computational times of the exact approach strongly vary even

within the same problem class. The maximum computing

time of the exact approach amounts to 1957.73 seconds (large

pick times, small delivery square, tight planning horizon). In
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FIGURE 4 Impact of parameter values (attributes) for four problem parameters on the cost benefits between i_GVNS and SEQ

the same problem class, the minimum time to find an optimal

solution amounts to 0.95 seconds. Comparing the objective

values of SEQ and i_GVNS reveals 6.59% lower target val-

ues for i_GVNS solutions on average considering the cases

of five and seven orders. The differences in solution qual-

ity between SEQ and i_GVNS are greater for seven (8.69%)

than for five (4.5%) orders, since the coordination effort nec-

essary increases from five to seven orders. Moreover, the

solution quality of SEQ strongly varies between different

problem classes. For example, both approaches generate a

similar solution quality for five orders and small pick times

and a small distribution area, but a deviation of about 19%

can be observed for seven orders, large pick times and a small

distribution area. Similar results occur for large instances.

We therefore refer to the following section that analyzes the

results of SEQ and i_GVNS in more detail.

6.4.2 Results of the experiments with large instances
The following part of the analysis investigates the benefits

of an integrated solution approach for the OAS-VRPSD. The

solution quality of the benchmark approach SEQ is compared

to i_GVNS for instances of practically relevant sizes for this

purpose.

Table 5 contains the results for large instances with 50, 100,

and 200 customer orders (columns 14−16) solved with SEQ

and i_GVNS, respectively. The table shows the average devi-

ation of the objective function values of SEQ compared to the

corresponding target values of i_GVNS (imp_seq).

i_GVNS outperforms SEQ by 8.62% across all problem

instances. The maximum average percentage of improvement

per problem class equals 19.77% (50 orders, PT = large,

SDA = medium, TPH = tight), while the minimum average

percentage of improvement is equal to 2.21% (200 orders,

PT = small, SDA = small, TPH = tight). The solutions of

the integrated approach require an average of 2.0 pickers and

1.8 vehicles less than the solutions of the sequential approach.

Using a lower number of vehicles increases the average num-

ber of stops per vehicle. In detail, vehicles of type 1 deliver 0.5

customer orders more in i_GVNS solutions than in SEQ solu-

tions, that is, 5.63 compared to 5.13, while vehicles of type 2

deliver 0.29 customer orders more in that constellation, that

is, 6.62 compared to 6.33. Both approaches, however, lead to

similar results for type 3 vehicles, that is, the average num-

ber of stops equals 3.78 and 3.74, respectively. Summarizing

these results, the SEQ approach assigns slightly fewer cus-

tomer orders to the vehicles of each type than the i_GVNS

approach. However, the distribution of stops at a customer

type by a vehicle type is very similar for both approaches.

Overall, the routing costs are reduced by 8.02%.

We analyzed the percentage of improvement of i_GVNS

compared to SEQ in respect of three values (attributes) for
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four problem parameters, that is, pick times, size of distribu-

tion area, tightness of planning horizon, and number of orders.

Figure 4 shows the results by means of box plots for each of

these parameters and respective values (attributes). The center

line and the cross depict the median and mean, respectively.

Increasing pick times favors an integrated planning

approach (see Figure 4A). The percentage of improvement of

i_GVNS to SEQ increases from 6.79% to 7.94%, and 11.14%

on average for small, medium, and large pick times, respec-

tively. The average number of orders that can be handled by

an order picker within a certain amount of time decreases with

increasing pick times, and thus the average release date of

the delivery orders increases. Consequently, if the order pick-

ers release delivery orders later, coordination between order

picking and vehicle routing becomes more important since

there is less time available to arrange the delivery tours in an

appropriate manner.

Varying the size of the distribution area (SDA) does not

seem to affect the percentage of improvement of i_GVNS to

SEQ (see Figure 4B). The results amount to 9.02%, 8.29%,

and 8.55% for small, medium, and large distribution areas,

respectively. However, the impact of the size of the deliv-

ery area impacts the percentage of improvement of i_GVNS

to SEQ in combination with the pick times. SEQ approxi-

mates the number of order pickers by the ratio of the sum

of pick times and the direct driving times from the DC to

the customers. Using i_GVNS solutions as benchmark, this

calculation scheme works quite well for similar combina-

tions of pick times and driving times, that is, small/small,

medium/medium, and large/large. Both approaches apply a

similar number of order pickers in these scenarios, that is,

SEQ applies 3% fewer pickers. However, if travel times are

considerably more pronounced than pick times, SEQ over-

estimates the necessary number of pickers by 38%, and

underestimates them by 22% if travel times are considerably

less pronounced than pick times. An overestimated number

of pickers leads to routes that are 0.76% shorter in SEQ

solutions, while an underestimated number results in routes

that are 27.89% longer. For similar resources, vehicle routes

determined by SEQ are 10.98% longer compared to routes

calculated by i_GVNS. This result shows the importance of

coordinated scheduling of picking and delivery resources in

the environment considered, which is achieved by i_GVNS.

Moreover, the tightness of the planning horizon impacts the

percentage of improvement between i_GVNS and SEQ (see

Figure 4C). In the case of a loose planning horizon the limited

capacities pose a greater challenge than meeting the delivery

time windows. However, if the planning horizon is tight-

ened, the composition of tours becomes more restricted by the

release dates and the time windows of the customer orders,

and an integrated solution to the OAS-VRPSD becomes more

important as a result. In our experiments, we only con-

sider very tight planning horizons with a length of 6, 9, and

12 hours and, additionally, hard time windows so that the

time dimension is generally more restrictive than the capacity

constraints. As a result, the impact of the tightness of the

planning horizon shows a clear trend, although the differ-

ences between the average percentages of improvement of

the respective attributes are relatively small. They amount to

9.87%, 8.21%, and 7.79% for a tight, medium or loose plan-

ning horizon. The results of the median values support this

observation.

The average percentage of improvement of i_GVNS to SEQ

decreases with the number of customers (see Figure 4D).

However, the absolute savings increase by applying i_GVNS

instead of SEQ. For 50, 100, and 200 orders, they amount to

1,338.25, 2,073.46, 2,947.25 MU on average per instance. In

combination with the limited planning horizon, more pick-

ers are necessary to handle the increased workload. This

increases the number of orders picked per time unit that are

ready for delivery. Consequently some delivery tours can

start earlier since the number of customer orders per vehicle

remains similar. Note that the number of customers per vehi-

cle is physically limited by the capacity and especially due

to the time window constraints so that the average number of

orders per tour will only go up slightly if the entire number of

customer orders increases. The sequential planning approach

(SEQ) benefits relatively more from this situation than the

integrated approach (i_GVNS). Nevertheless, the absolute

advantages of the integrated approach are still present (see

above). Ramaekers et al. (2018) observe a similar develop-

ment for increasing instance sizes in an integrated picking and

vehicle routing problem with time windows.

6.5 Varied planning scenarios

As already mentioned, the most common delivery mode

offered in online retailing is next-day delivery. In order to ana-

lyze the impact of different planning scenarios for same-day

delivery we additionally extend the problem classes intro-

duced in Section 6.2 according to the delivery conditions and

number of vehicle types prepared. The results can be used to

analyze the impact of different same-day delivery modes on

logistics costs and to answer the question as to the conditions

under which an integrated solution approach is especially

worth applying.

6.5.1 Setting and assumptions
Customers are accustomed to deliveries within

customer-specific time windows. However, this significantly

restricts planning and the solution space. We therefore intro-

duced two additional delivery conditions, that is, two general

time windows and a general delivery deadline by which the

service of a customer must start. The planning horizon is split

in order to assign customers to one of the two general time

windows. Customers are randomly assigned to one of the

two time windows on condition that the amount of time for

serving a customer must not be shorter than 2 hours (length

of a customer-specific time window). In the case of delivery
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deadlines we align the associated values to the length of the

planning horizon, that is, 6, 9, and 12 hours, respectively.

Second, the vehicle fleet is modified on the assumption

that the requirements of customers cannot be influenced with

respect to the service type demanded. It must therefore be

ensured that the compilation of the vehicle fleet is compiled

such that all service types can be performed. However, the

deployment of more than one vehicle type increases the com-

plexity of the planning problem at the operational level as well

as in contract design with subcontractors or for the compi-

lation of a proper vehicle fleet, respectively. For this reason,

only the vehicles with the highest service level (type 1) are

prepared in a first variation, while in a second the first and

second highest qualified vehicle types (types 1 and 2) are

prepared.

In order to obtain valid results, we use the identical

instances as for the previous experiments, but modify the

corresponding delivery conditions for the customers and/or

the number of vehicle types. All problem instances are then

solved with i_GVNS under the same conditions, and the cor-

responding solutions are compared to analyze the cost impact

of the varied scenarios.

6.5.2 Impact of delivery conditions on costs
The total decision-relevant costs decrease by 18.20% if

customer-specific time windows are excluded such that cus-

tomers are to be served by a general delivery deadline. These

cost savings result from a reduction of resources and from

significantly fewer driving distances. First, the routing costs

decrease by 22.38%, which follows from the fact that the

compilation of tours is no longer constrained by time win-

dows. Second, the number of order pickers is reduced by

3.36 on average, resulting in 19.65% lower (decision-relevant)

order picking costs. Third, the number of vehicles required

decreases on average by 3.68 that leads on average to 17.40%

lower decision-relevant costs. The reduction in the deploy-

ment of resources is explained by the significant time savings

due to the tour compilation.

If two general time windows are established, the results

are similar to those cited above. The total costs decrease by

10.23%, the vehicle-dependent costs by 11.45%, and the rout-

ing costs by 13.31% for all problem instances. However, the

number of order pickers deployed increases by 0.89 (5.53%)

on average, as half of the customers have to be served very

early within the planning horizon.

6.5.3 Impact of number of vehicle types on costs
Table 6 summarizes the average number of resources that

are deployed within the corresponding instances of problem

classes with one, two, and three vehicle types, analyzing the

benefits of a hierarchically divided vehicle fleet. The total

costs increase if the number of vehicle types available are

reduced. The percentage of additional costs amounts to 0.68%

and 4.74%, respectively, if only the two highest or the high-

est classes of vehicles can be deployed. Since the lowest class

of vehicles is only rarely used (1.1 vehicles on average), the

amount of additional costs if this type is abandoned would

be fairly low. This is not true for vehicles of type 2 that are

used at a rate of 29.21% and 36.05% in problem classes with

three and two vehicle types, respectively. From the results, a

tradeoff for the deployment of different resources can be iden-

tified. If only the highest class of vehicles is deployed, route

planning is easier and more cost efficient and the number of

order pickers can be reduced. On the other hand, vehicle costs

increase by 1.57% and 8.53% if only the two highest or the

highest vehicle type can be deployed.

6.5.4 Changes regarding the benefits of an integrative
solution to the OAS-VRPSD
As mentioned in Section 6.4.2, the time window constraints

greatly restrict the solution space due to the short planning

horizon. The number of customers per tour is fairly small

as a result. For the extended experiments above, the benefits

of an integrated solution to the OAS-VRPSD rise signifi-

cantly since the number of customers per tour increases, and

it is therefore harder for the DC to ensure tours. If different

delivery scenarios (general time windows, general deadline)

are considered as well, the percentage of the improvement

using an integrated solution approach increases from 8.62% to

12.98% on average. The percentage of improvement amounts

to 12.12% for problem classes with two general delivery

time windows. For a general delivery deadline, the benefits

increase to the remarkable figure of 18.19%.

In contrast to the delivery conditions, the number of vehi-

cle types prepared does not have a significant impact on the

benefits of an integrated solution to the OAS-VRPSD.

6.6 Solution quality over time

For next-day deliveries, computing times of one or several

hours are not a critical issue since customer orders are known

since the previous evening at the latest (Schubert et al., 2018).

However, this is not true for same-day deliveries due to the

tightness of the planning horizon in this setting. This section

evaluates i_GVNS regarding the computational times.

Figure 5 shows the average deviation from the best tar-

get value found (ADBTV) for all problem classes with 50,

100, and 200 customer orders. These instances were solved

for 5, 10, and 30 minutes, respectively, in order to deal

with the increasing complexity arising from a larger number

of orders. The initial solution of i_GVNS features a target

value that is still far above the best solution found (31.14%,

29.91%, 27.85%). The target value however significantly

decreases within the first seconds of runtime. In detail,

ADBTV amounts to 4.83%, 7.32%, and 8.80% for 50, 100,

and 200 orders, respectively, after 1% of the computational

times. After 20% of the computational times, ADBTV varies
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TABLE 6 Deployment of resources and compilation of costs

No. vehicles Costs

No. vehicle types f (i_GVNS) No. pickers Type 1 Type 2 Type 3 Pickers Vehicles Routing

Three 21,018.3 16.5 12.1 5.4 1.1 3,955.9 14,458.5 2,604.0

Two 21,161.4 16.3 12.0 6.8 0.0 3,903.9 14,670.6 2,586.9

One 22,013.8 16.0 18.7 0.0 0.0 3,847.5 15,692.4 2,473.9

FIGURE 5 Development of solution quality as a function of applied

computational time

between 1.03% and 2.07% only. Moreover, i_GVNS still finds

improvements within the last 20% of computational time,

when the corresponding ADBTV accounts for 0.07%, 0.12%

and 0.21%, respectively.

We perform additional experiments to analyze the

long-term runtime behavior of i_GVNS. In doing so, we set

the termination criterion of the algorithm to 6 hours when

solving the problem instances with 100 and 200 customer

orders. The additional computational time improves the pre-

vious best solution found by 2.19% and 2.15%, respectively.

Also, ADBTV amounts to 0.32% and 0.52% after half of

the computing time and, even after 5.4 hours, the i_GVNS

still manages to slightly improve the incumbent solution by

0.03% (100 orders) and 0.06% (200 orders).

Summarizing these insights, the computational times

applied are adequately chosen for all problem classes, but

i_GVNS still manages to find improvements after 6 hours of

computational time for large instances. However, in real-life

settings there is a tradeoff between the improved solution

quality of the application of the algorithm and the time for

achieving this, which could be used for additional orders to be

prepared for delivery. Overall, if computational times are very

critical as in same-day delivery settings, i_GVNS is appropri-

ate as it manages to improve the objective value significantly

within the first seconds of application.

6.7 Real-life case

In this final subsection of our analysis we present the results

of the application of i_GVNS and SEQ to real-life data. The

data is provided by an internationally operating European

electronics retailer and covers historical customer data of

approximately 2 months including more than 2,500 customer

FIGURE 6 Boxplots of the number of customers, service times (minutes)

and weights (kg) in the case study. Please note that four outliers for service

times, that is, 206, 208, 257, and 279, are not depicted here

orders from one regional DC. This corresponds to approxi-

mately 50 customer orders per day, which have to be fulfilled

within 6 hours. Out of this data, 47 instances are gener-

ated that meet the basic expectations of the retailer regarding

same-day customer orders for the corresponding area. The

resulting instance size is a multiple of the size that can reason-

ably be solved by implementation of the model formulation

from Section 4. Consequently, both i_GVNS and SEQ are

applied to each instance for 15 minutes. A direct comparison

of the method used in practice was unfortunately not possible

for technical and confidential reasons. However, in terms of

conception and algorithmics, the SEQ approach corresponds

as far as possible to the current planning process at our case

company.

The distribution of the number of customer orders per day

and the corresponding service times (minutes) and weights

(kg) are shown in a boxplot in Figure 6.

Note that volume data has not been provided, and is there-

fore not considered in the case study. However, consultations

show that volume is a critical issue that is currently moni-

tored by dispatchers. Pick times are uniformly distributed in

a range of [5, 15] minutes. The size of the distribution area

based on the customer locations equals 146× 81 km. Finally,

the ratio between the average vehicle cost rate and the cost

rate for order pickers equals 2.5.

The results of the application of i_GVNS and SEQ are

provided in Table 7 in the form of normalized values.

The objective values of the solutions generated by SEQ

are 18.9% above those of i_GVNS, which demonstrates

the necessity of an integrated solution approach to the

OAS-VRPSD in practice. The corresponding cost savings of

the i_GVNS solutions result from reducing the deployment

of all types of resources. While the reduction in the number
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TABLE 7 Percentage savings when applying i_GVNS compared to SEQ in the real-life case

𝚫No. vehicles

𝚫total cost 𝚫No. pickers Total Type 1 Type 2 Type 3 𝚫routing costs

18.9% 3.8% 23.2% 13.5% 37.5% 14.7% 17.2%

FIGURE 7 Coefficients of variation for the deployment of resources in the

real-life case; SEQ: gray bars, i_GVNS: black bars

of pickers appears to be relatively small, at 3.8% on average,

the deployment of vehicles is reduced by a remarkable 23.2%.

Moreover, savings related to vehicle routing amount to 17.2%

using the i_GVNS approach.

Besides cost savings potential, we investigate the varia-

tions of the resources deployed by both the sequential and

integrated solution approach. The provision of a sufficiently

large vehicle fleet and picking team is a natural component

of medium- and long-term contracts with subcontractors and

employees. Variations in the resources required must also be

taken into account in this context. A larger variation in order

pickers can be more easily compensated for as their numbers

can also be increased by using temporary employment agen-

cies or similar. A greater variation in vehicles, on the other

hand, is more difficult to handle, since a truck must be pro-

vided in addition to (trained) drivers. The size and contractual

fixed costs of the vehicle fleet are thus determined depend-

ing on a fixed service level regarding vehicle provision. The

coefficients of variation (CV) of the deployed resource types

are depicted in Figure 7 for all 47 instances.

Generally, the CVs are relatively high, which can be

explained by a high CV for the number of customers (0.44).

However, there are significant differences for individual

resource types and solution approaches. SEQ (gray bar)

results in a lower CV for order pickers (0.31) compared to the

total number of vehicles (0.63). This is not true for i_GVNS

(black bar), which leads to a lower CV for the total number

of vehicles (0.44) compared to the CV of the number of order

pickers (0.49). This is interesting from a practical point of

view. One aspect of note is that vehicle and vehicle routing

costs are the largest cost drivers. Another is that a two-man

team, the vehicle, and the corresponding equipment has to

be allocated to prepare a vehicle. It therefore appears easier

to handle a higher variation in the necessary order pickers

required than vehicles such that the results—besides the cost

savings potential—indicate a more robust solution structure

for our integrated solution approach.

Figure 8 details the dependency of resources applied

depending on the number of orders considered. Circles (vehi-

cles) and squares (pickers) indicate the number of resources

applied. The lines show the third degree polynomial trend

line for the number of pickers required and the exponential

trend line for the number of vehicles needed. The number

of pickers and vehicles used increases synchronously with

the number of orders when applying the integrated planning

approach (i_GVNS). In sequential planning (SEQ), how-

ever, the number of vehicles required grows strongly as the

number of orders rises, while the number of pickers increases

only slightly. This is due to the fact that in the sequen-

tial approach picking is optimized first and vehicle routing

plans afterwards. Thus, the VRP solution has to build on the

picking schedule already fixed. The results show that this

leads to a fundamental disadvantage of the sequential plan-

ning approach compared to i_GVNS. The resources planned

increase almost linearly with the number of orders considered

in i_GVNS solutions, while the number of vehicles planned

increases exponentially in the SEQ solution in the case study.

This is also an indicator of a more robust solution of i_GVNS

and its benefits for application in practice.

The CVs of the different vehicle types indicate that the

volatility of resources applied is higher for the cheaper and

less flexible vehicle types (types 2 and 3). This means that

in practice the retailer can make plans based on more sta-

ble resource requirements using higher-cost vehicle types,

but needs flexibility especially regarding lower-cost vehicle

types. Note that i_GVNS generates solutions with a lower CV

compared to SEQ for all vehicle types (see Figure 7).

The results of the case study confirm the results obtained

using the problem instances generated. An integrated solution

approach results in significant cost savings for both practical

and simulated data. Moreover, the case study shows that solu-

tions of the integrated approach are easier to handle in the

long run due to a smaller variation in the number of vehicles,

but at the expense of a higher variation in the number of order

pickers.

In the following we vary the cost rate per order picker

(CRPP, i.e., parameter cpicker) to obtain additional insights on

the solution structure. In so doing, the 47 practical problem

instances described above (basic instances) are solved again,

but the CRPP is set to 25%, 50%, 200% and 400% of the cur-

rent rate. Table 8 shows the corresponding results of i_GVNS

normalized to the solutions of the basic instances.
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(A) (B)

FIGURE 8 Resources applied depending on the number of orders considered

TABLE 8 Results for varied cost rates per order picker planned

Multiplicator picking costs 0.25 0.50 1.00 2.00 4.00

Target value 0.83 0.89 1.00 1.21 1.51

Number of pickers 1.12 1.07 1.00 0.99 0.80

Number of vehicles 0.98 0.98 1.00 1.02 1.12

Ratio vehicles to pickers 1.14 1.22 1.32 1.35 1.93

The reduction in order picking costs, that is, CRPP, natu-

rally leads to a reduction in total costs and vice versa. Decreas-

ing CRPP to 25% leads to solutions with 16.72% lower target

values, while a reduction of 50% results in 11.21% lower tar-

get values. However, the target value increases greatly, that is,

by 21.39% and 51.26%, if the CRPP is doubled and quadru-

pled, respectively. These cost increases are induced by the

higher cost rates per picker but also by changes to the solution

structure.

Reducing the CRPP to 25% increases the number of order

pickers planned by 12.18%, and reducing it to 50% leads to

a 6.87% increase. The savings in target value are obtained by

reducing the number of vehicles used and creating improved

routes. More order pickers available reduce the average order

release date by 7.52% for a CRPP equal to 25% of the ini-

tial CRPP, and 5.09% for a CRPP of 50%. Consequently, the

number of vehicles used goes down by 2.33% and 2.11% and

routing costs by 2.34% and 0.65%, respectively. The same

argument holds for an increased CRPP, leading to fewer order

pickers planned, more vehicles used, and ultimately increas-

ing target values. The increase in terms of number of vehicles,

however, results mainly from an increase in vehicles of type

3. It increases by 41.10% comparing the smallest and largest

CRPP. In contrast, the number of vehicles of type 2 increases

by only 11.21%, while the number of vehicles of type 1 goes

up by the much lower figure of 2.29%.

Summarizing this analysis, the ratio of the number of vehi-

cles to number of pickers used is heavily affected by CRPP

(see Table 8). This ratio is rather balanced for the small-

est CRPP but close to two for a quadrupled CRPP, which

shows the tradeoff between number of pickers and number of

vehicles.

7 CONCLUSIONS AND OUTLOOK ON
FUTURE RESEARCH

7.1 Conclusions

This paper considers the simultaneous solution of order

picking and order delivery where the delivery of products

includes the possibility of product-associated installation ser-

vices at the customer’s home. The decision problem at hand is

especially relevant when distributing large durable consumer

goods in a same-day delivery environment, and is observable

in the case of both pure online and omnichannel retailers.

The problem integrates the order assignment and sequencing

problem with a vehicle routing problem with site dependen-

cies. We denote the entire problem OAS-VRPSD. The paper

presents a decision support model and an integrative solution

approach that is based on a generalized variable neighborhood

search (GVNS) algorithm. The integrative solution approach

considerably improves the solution of a sequential approach

that is the current standard in retail practice. The paper

undertakes an extensive numerical study for both simulated

data and real-life data from a leading European omnichannel

retailer, which impressively confirms the value of integration

and reveals several managerial insights:

(a) The logistics costs are highly dependent on the

delivery conditions offered. Offering two gen-

eral time windows or a general delivery deadline
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instead of accepting customer-specific time win-

dows reduces costs by 10.23% and 18.20%, respec-

tively, in our numerical study. This effect becomes

especially visible when solving both problems in

an integrative manner. More delivery flexibility for

the retailer therefore requires an integrative solution

approach.

(b) The logistics costs also depend on the number

of different vehicle types used. The cost differ-

ences become most visible when operating only

one instead of two vehicle types. However they

become negligible when operating only two instead

of three vehicle types. Operating two instead of

three vehicle types therefore seems appropriate in

the environment considered by the generated data.

However, no special effect has been observed on the

necessity of an integrative solution approach. The

integrative approach shows equal benefits compared

to the sequential approach in all of these parameter

variations.

(c) The integrative approach leads to more robust (sta-

ble) results related to the number of vehicles used

than the sequential approach. This is especially true

for the vehicle type offering the most value-added

services. The integrative solution approach there-

fore offers the opportunity for the retailer in our

case study to operate with a relatively constant mix

of vehicle types even though the customer orders

significantly vary from day to day.

(d) The analysis of the cost rate per order picker (CRPP)

in the case study leads to additional insights into the

development of the solution structure. The analysis

reveals the tradeoff between the number of pickers

and the number of vehicles. In addition, the same

analysis shows that an increase in picking cost is

mostly compensated by the least flexible, that is, the

lowest-cost vehicle type. This is a valuable hint for

any retailer since this type of vehicle is much eas-

ier to enlarge or reduce than more flexible types if

demand and/or cost rates change.

7.2 Outlook on future research

The suggested modeling and solution approach includes sev-

eral specific—possibly restricting—assumptions, leading to

new challenges for further research:

(a) The timeline of the modeling approach assumes that

all processes—including the picking process—are

only allowed to start after the cut-off time. It may

be of interest to know under what conditions this

assumption could be relaxed, and how this would

influence the results achieved.

(b) This research assumes a deterministic planning

environment. This enables us to identify unbiased

insights and interconnections in the problem being

considered. Furthermore, the approach developed

can be used as a planning tool that achieves better

results than classical sequential approaches. How-

ever, the very tight timeline can intensify the effects

caused by uncertainties in the picking process and

during delivery. Take for example the cases where a

delivery arrives at the customer location only after

the time window scheduled due to an unforeseen

extension of travel times or an extended installa-

tion process at a previous customer. The current

approach can only take this into account by provid-

ing sufficient slack in the pick times, travel times,

service times and time windows. However, slack

times that are too generous result in unnecessary

costs. Investigation of the effects of uncertainties in

an integrated problem setting, especially in relation

to the length of the planning horizon, would provide

a valuable opportunity for further research.

(c) We assume a sufficient number of available order

pickers and vehicles per type in order to adapt

the resources required in the short term. This

assumption is appropriate for large retailers, as in

our case, and comes at high expense for this flexibil-

ity by contract. However, if the number of resources

is restricted, a feasible solution that serves all cus-

tomers is no longer ensured.

(d) We assume a sufficient number of loading docks at

the DC. Again, this is true for large DCs, on which

our research is based. For smaller DCs, vehicle load-

ing operations have to be scheduled, so additional

decisions have to be made, and further interactions

are involved.

(e) Omnichannel grocery retailers serve supermarkets

and online customers from joint regional DCs.

Retailers operate multi-compartment vehicles in

order to deal with diverse product segments that

require individual temperature requirements, (Hüb-

ner & Ostermeier, 2019). A branch of further

research could therefore concentrate on integrat-

ing the order picking process of diverse segments

and the joint supply of these segments using

multi-compartment vehicles.
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