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I nventory optimization approaches typically optimize steady-state performance, but do not consider the transition of an
initial state to the optimized state. In this study, we address this transition. Our research is motivated by a company

that implemented an improved inventory policy for its spare parts division. The improved policy suggested new base
stock levels for the majority of the parts. For parts with increased base stock levels, inventory increases were realized after
the part lead times, but for low-demand parts with decreased base stock levels, inventory reductions were slow. As a
result, inventory cost increased over the first months after the new inventory policy had been introduced and exceeded
the inventory budget substantially. To avoid such undesirable effects, base stock level changes must be phased in. We
consider a multi-item spare parts inventory system, initially operating under an item approach inventory policy that
achieves identical fill rates for all parts. Our approach addresses the transition to a superior system approach inventory
policy that maximizes the system fill rate. We model the inventory transition as a finite-horizon optimization problem and
apply column generation and a marginal analysis heuristic to determine transient base stock levels for all parts. Using
data from the company that motivated our research, we illustrate how the transition can be controlled to quickly improve
fill rates without exceeding the initial inventory budget.
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1. Introduction

The trigger of inventory optimization projects is often
a suboptimal performance of the current inventory sys-
tem. In spare parts management, for instance, compa-
nies can set base stock levels such that a certain fill rate
is achieved by every individual part. This approach is
referred to as item approach. Instead of optimizing each
part individually, companies can reduce inventory or
increase the system fill rate by considering all parts in
the inventory system jointly when making decisions
about base stock levels. This approach is referred to as
system approach (Sherbrooke 2004). For a spare parts
inventory system for high-end computer servers, for
example, Thonemann et al. (2002) show improvements
in inventory investment of up to 25% when applying a
system approach instead of an item approach. For a
spare parts inventory system at the Royal Netherlands
Navy, Rustenburg et al. (2003) demonstrate an increase
in spare parts availability by 34 percentage points,
while simultaneously reducing the inventory invest-
ment by about 10%.

Implementing a system approach requires the
adjustment of inventory control policy parameters.
For example, base stock levels of inexpensive fast
movers are increased and base stock levels of expen-
sive slow movers are reduced. Overall inventory per-
formance is improved once the inventory system has
reached its new steady state. However, during the
transition to the new steady state, system fill rate or
system inventory holding cost can deteriorate tem-
porarily, particularly if lead times are long or demand
rates are low.
We experienced this in an inventory optimization

project with the service division of a global business-
to-business (B2B) equipment manufacturer. The com-
pany generates annual multi-billion euros turnover
and operates in more than 50 countries. Its service
division offers repair and maintenance services for
the specialized and expensive equipment. The divi-
sion wanted to improve its inventory performance
but the inventory budget was restricted and we were
asked to improve the system fill rate without exceed-
ing the current budget. We suggested moving the
inventory system from an item approach to a system
approach and projected a long-run system fill rate
increase of 12 percentage points while keeping the
inventory holding cost constant. After pilot imple-
mentation of the new approach, the system fill rate
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started to improve, but the inventory holding cost
increased by more than 20% within four months (Fig-
ure 1). This placed a major burden on the service
organization’s inventory budget and it took more
than a year for the inventory holding cost to finally
reach the projected value.
The observed increase in inventory cost is a severe

issue, since complying with inventory budgets is of
critical importance to companies. Companies estab-
lish inventory budgets because the capital they can
invest in inventory is restricted (Silver et al. 2016,
Yang et al. 2017). Requiring significantly more capital,
even if only temporarily, can cause severe financial
straits and even impacts the company’s valuation.
Moreover, the negative consequences of increased
inventory cost during the transition period are not
limited to the direct financial impact. Major changes
in inventory policies like moving from an item
approach to a system approach are usually initiated
in the scope of large and costly inventory projects. If
the inventory performance falls short of its targets
and expectations, the pressure on accountable divi-
sions can be substantial.
These observations motivated our research on con-

trolling the transition of inventory systems when the
inventory policy changes. We analyze the transient
behavior of a spare parts inventory system that oper-
ates under a periodic review base stock policy. The
goal of our approach is to phase-in changes in base
stock levels over time while keeping inventory hold-
ing cost within a given budget during the transition.
We focus on analyzing the base stock level transi-

tion of an inventory system that moves from an item
approach to a system approach, taking into account
replenishment lead times and expected future
demands. However, our model is not restricted to
managing transitions of inventory systems starting
from an item approach. It can be generally applied to
arbitrary inventory systems that operate under

periodic review base stock policies and that require
an adaption of the base stock levels to a system
approach. Such adaptions might be triggered, for
example, if lead times or prices are renegotiated with
suppliers, new suppliers are introduced, new cus-
tomers are acquired, or major customers terminate
their service contracts (Çetinkaya and Parlar 2010).
We contribute to the inventory control literature by

considering the transition of a multi-item inventory sys-
tem from a current state to an optimized state, which is
a topic that has not previously been addressed. We for-
mulate the problem as a multi-period optimization
problem and present two solution approaches that rely
on column generation and on marginal analysis, respec-
tively. For small and moderate size problems, for which
we can determine upper bounds on the objective func-
tion values, both approaches generate solutions that are
close to optimal. Large size problems can only be solved
by marginal analysis and we use the approach in an
extended case study that is based on data from a global
equipment manufacturer.
This study is structured as follows. In section 2, we

review the literature. In section 3, we present a model
for optimizing the inventory system transition. In sec-
tion 4, we introduce two solution approaches. In sec-
tion 5, we present numerical results based on data
from the service division of the global manufacturer
that motivated our research. In section 6, we summa-
rize our findings and conclude.

2. Literature Review

We review steady-state system approaches with mod-
eling assumptions similar to our work, and non-
steady-state inventory models for base stock level tran-
sitions. We also review two relevant solution tech-
niques for system approach optimization problems.
For a comprehensive overview of the literature on
spare parts inventory systems, we refer to Sherbrooke
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Figure 1 Inventory Index Development at the Service Division after Introducing the System Approach Base Stock Levels in May
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(2004), Muckstadt (2005), Basten and Van Houtum
(2014), and Van Houtum and Kranenburg (2015).
System approaches for spare parts inventory sys-

tems have gained increasing attention since their
introduction in the seminal paper by Sherbrooke
(1968). Their benefits compared to simpler item
approaches have been shown by Mitchell (1988),
Thonemann et al. (2002), Rustenburg et al. (2003), and
Sherbrooke (2004). Spare parts inventory systems that
operate under a periodic review base stock policy
have been analyzed by Mitchell (1988), Cohen et al.
(1989), and Cohen et al. (1992). Budget-constrained,
service maximizing system approaches have been
analyzed by Rustenburg et al. (2000, 2003) and Sher-
brooke (2004). Schwarz et al. (1985) maximize the sys-
tem fill rate subject to a constraint on the system
safety stock.
While most system approach models consider the

initial supply of spare parts, there are only a few mod-
els that include the current state of a running inventory
system. For such a system, Rustenburg et al. (2000)
address a budget-constrained re-supply problem. They
assume annual budgets for the total purchasing cost of
new parts, which arrive after a fixed lead time. They
develop operational re-supply strategies for spending
the limited budget, but do not cover situations in
which the optimal target base stock levels change.
Van Houtum and Kranenburg (2015 ch. 2.8) intro-

duce a modified system approach for periodic base
stock level optimization. They account for the current
inventory position of each spare part by modifying
the cost function of the standard initial supply model
when updating the base stock levels. While their
approach generates good solutions for the next plan-
ning period, it is myopic and does not aim to reach
the standard system approach base stock levels. This
is reasonable for inventory systems that already oper-
ate under a system approach, when changes in base
stock levels are typically minor. Their approach also
assumes steady-state behavior of the system in each
period with quickly realized changes in the base stock
levels. The authors note that it is necessary to consider
the transient behavior of the inventory system if their
assumptions do not hold, for example, if parts have
long replenishment lead times. We address such situ-
ations with our research.
Several publications address the non-steady-state

transition period when steady-state base stock levels
change for single items. When base stock levels
increase, the implication in a single-item setting is
straightforward: new parts must be ordered and
arrive after the replenishment lead time. When base
stock levels decrease, inventory above the reduced
base stock level must be considered. Pinçe and Dek-
ker (2011) note that in such situations “timely adap-
tion of the base stock levels is crucial for optimal stock

control” (p. 83). They adapt the steady-state base
stock policy for a single, low demand item with a
fixed lead time and decreasing demand and propose
a transition control policy that minimizes the total
expected cost during the transition. Similar to our
model, their policy is based on the current inventory
position of the item, but it only allows for two different
base stock levels and focuses on the timing of the
switch. Our model allows for multiple adjustments in
base stock levels during the transition period, which is
hypothesized by Pinçe and Dekker (2011) to improve
results. Teunter and Klein Haneveld (2002) develop an
ordering policy for the end-of-life phase of service
parts with stationary, Poisson-distributed demand.
Assuming a higher replenishment price and risk of
obsolescence in the final phase, they propose a
sequence of decreasing base stock levels for a deter-
ministic planning horizon of a single item. Çetinkaya
and Parlar (2010) consider the introduction of a peri-
odic review base stock policy without an explicit spare
parts focus. In their single-item setting, the target
inventory policy is similar to ours. However, the
authors do not consider inventory systems with multi-
ple items and do not include replenishment lead times.
All of the reviewed non-steady-state models focus on
the transition of a single item and are not directly
applicable to the multi-item problem that we consider.
We apply two solution approaches to solve our

optimization problem. The first approach, decomposi-
tion and column generation, exploits structural prop-
erties of multi-item spare parts systems. Instead of
solving the original complex optimization problem,
the problem is decomposed by spare part and the
resulting single-item optimization problems are
solved repeatedly. This method has recently received
increasing attention in the multi-item spare parts
inventory optimization literature (Alvarez et al. 2013,
2015, Arts 2017, Drent and Arts 2020, Kranenburg and
Van Houtum 2007, Topan et al. 2010, Topan et al.
2017, Wong et al. 2007). Details on fundamentals and
theoretical background of decomposition and column
generation are provided by Dantzig and Wolfe (1960)
and Desrosiers and Lübbecke (2005).
Our second solution approach, marginal analysis, is

a well-known solution technique for optimizing spare
parts inventory systems that operate under a system
approach (Sherbrooke 2004, Van Houtum and Kra-
nenburg 2015). The general principle is to compare
the cost of increasing a spare part’s base stock level by
one unit with its impact on the system’s performance
(e.g., the expected backorders or the system fill rate).
In each iteration, the base stock level of the part with
the highest performance improvement per monetary
unit spent is increased. The procedure is repeated
successively until the system target is reached. Mar-
ginal analysis is efficient, provides good results, and
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is easy to implement in practice. It has been applied
to various spare parts inventory optimization prob-
lems, for example, by Wong et al. (2005, 2007) and
Topan et al. (2017). For a finite-horizon periodic
review setting, Caggiano et al. (2006) apply heuristics
that are based on marginal analysis to make opera-
tional repair and inventory allocation decisions. We
use this solution approach to determine target base
stock levels for multiple items and multiple periods
based on the expected system state.

3. Problem Formulation and
Mathematical Model

We consider a multi-item spare parts inventory system
that operates under a periodic review base stock policy
(e.g., Cohen et al. 1992, Sherbrooke 2004). This inven-
tory control policy is suited when spare parts are
ordered periodically and is applied in many real-world
spare parts inventory systems (Cavalieri et al. 2008,
Tiemessen et al. 2013, Wang 2012). It is also applied at
the company that motivated our research. We denote
the set of spare parts i in the inventory system by I. The
part-specific replenishment lead time is li ∈ and the

unit holding cost is ci ∈þ. Demand per period, Di, is

Poisson-distributed with demand rate λi ∈þ and the
aggregated mean demand per period is Λ ¼ ∑i∈ Iλi.
We denote the part demand over p consecutive periods

by D
p
i . Excess demand is backlogged. We use the fill

rate as service level measure, that is, the fraction of
demand that is fulfilled from on-hand inventory (Axsä-
ter 2015, Cachon and Terwiesch 2006).
We will next discuss the model of the steady-state

inventory system and define the initial state of the
inventory system under the item approach, as well as
the target state of the inventory system under the sys-
tem approach. Then, we will build on the steady-state
model to optimize the inventory transition from the
item approach to the system approach.

3.1. The Inventory System in Steady State
We denote the base stock level of part i∈ I by si.
s ¼ ðs1, s2, . . ., sjIjÞ is the vector of base stock levels for
the parts in the system. The sequence of events in a
period is as follows: First, the current inventory posi-
tions of the parts are observed. Then, orders are
placed to increase the inventory positions to the base
stock levels si. Next, the orders that were placed li
periods ago are received. Demands Di are satisfied
and excess demands are backlogged. Inventory hold-
ing costs are determined based on the on-hand inven-
tories at the end of a period.
The fill rate of part i under a periodic review base

stock policy with base stock level si is (Cachon and
Terwiesch 2006)

βiðsiÞ¼ 1�
∑∞

d¼siþ1ðd� siÞ � PðDliþ1
i ¼ dÞ�PðDli

i ¼ dÞ
� �

E½Di� :

(1)

The demand-weighted system fill rate is

βðsÞ¼∑i∈ Iλi �βiðsiÞ
Λ

:

The expected on-hand inventory of part i at the end
of a period is

ohiðsiÞ¼ ∑
si

d¼0

PðDliþ1
i ¼ dÞ � ðsi�dÞ (2)

and the expected system inventory holding cost is

cðsÞ¼ ∑
i∈ I

ci �ohiðsiÞ:

3.1.1 The Inventory System under the Item
Approach. Consider an inventory system that is oper-
ated under the item approach. The base stock levels
sitem ¼ ðsitem1 , . . ., sitemjIj Þ are chosen such that all parts
achieve the same fill rate (Thonemann et al. 2002). We
denote the resulting expected system inventory holding
cost by c(sitem) and the system fill rate by β̂ ¼ βðsitemÞ.

3.1.2 The Inventory System under the System
Approach. The base stock levels that maximize the
system fill rate β(s), given an expected inventory cost
budget b, can be determined by solving

ðPSÞ max βðsÞ
s:t: cðsÞ≤b

βiðsiÞ≥βmin 8i∈I

si∈0 8i∈I:

The first constraint ensures that the inventory bud-
get is not exceeded. The second constraint imposes
a minimum fill rate βmin ∈ ½0,1Þ on each part. Com-
panies impose minimum fill rates on parts to
avoid that some expensive parts with low demand
rates receive base stock levels of zero. This can be
the optimal solution, but it can also be undesirable
as it implies that failures of critical parts result in
system downtimes that are equal to the part lead
time. To avoid excessively long downtimes and to
avoid that some parts are generally unavailable,
we include the minimum fill rate. With βmin ¼ 0,
the problem corresponds to the system approach
without minimum fill rates.
We solve problem (PS) by marginal analysis

(Sherbrooke 2004, Van Houtum and Kranenburg
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2015). The obtained solution is efficient if condition

si ≥ λi
lnðliþ1Þ�lnðliÞ � 1 holds for all i 2 I (proof con-

tained in Appendix A). This condition holds in all
our numerical experiments; however, in situations
where this is not the case, there might be solutions
that achieve a higher system fill rate at lower cost.
Note that an efficient solution is not necessarily
optimal for optimization problems with discrete
decision variables. If the final increase in the base
stock level determined by the algorithm does not
result in a fully utilized budget, a solution that
increases the base stock level of a part with a smal-
ler marginal increase β(s)/Δc(s) can be superior.
However, in situations like the one we consider,
with a large number of spare parts and unit holding
costs that are very small compared to the budget,
the suboptimality is negligible (Sherbrooke 2004).

3.2The Inventory Transition
The transition from the item approach to the sys-
tem approach is realized during a finite planning
horizon T with periods indexed by t¼ 0, :::,T,
T>lmaxwith lmax ¼ max i∈ I li. The base stock levels
in period t = 0 are those of the item approach.
After period t = T, the transition is completed and
the base stock levels are those of the system
approach. The objective of the inventory transition
is to maximize the average system fill rate during
the transition without exceeding the inventory
budget b in any period. The budget b is deter-
mined by the expected system inventory holding
cost under the item approach, b = c(sitem). While
any T > lmax is feasible for the transition model,
the planning horizon T should be chosen long
enough for the on-hand inventories ohi, i∈ I, to
reach the system approach steady-state levels.
Otherwise, the budget might be exceeded in per-
iod T + 1. We further discuss the appropriate
length of the planning horizon in section 5.2.3.
We model the transition as a sequence of base stock

levels �si, i∈I, during the transition periods 0,. . .,T. For
notational convenience, �si also includes base stock
levels for the li periods before t = 0. The sequence

�si ¼ ðs�li
i , s�liþ1

i , . . ., s0i , . . ., s
T
i Þ has the following proper-

ties: Up to t = 0, the base stock levels are those of the

item approach: sti ¼ sitemi 8t≤ 0. After period T � li,

the base stock levels sti are set to the system approach

base stock levels s
system
i : sti ¼ s

system
i 8t>T � li. We

assume �si to be either monotone increasing

(sitemi <s
system
i ), monotone decreasing (sitemi >s

system
i ) or

constant (sitemi ¼ s
system
i ).

The base stock levels sti , t≤ 0∪ t>T � li are input
parameters and s1i , s

2
i , . . ., s

T�li
i are decision variables

of the transition model. βtið�siÞ and ohtið�siÞ denote

the transient fill rate and the transient on-hand
inventory of part i in period t, respectively. Due
to the non-stationarity of the base stock levels dur-
ing the transition, we cannot directly apply Equa-
tions (1) and (2) for computing the transient fill
rates and the transient on-hand inventories.
Depending on the direction of the base stock level
transition for different parts, we distinguish
between three cases.
If sitemi ¼ s

system
i , then there is no change in the base

stock level of part i and we can directly apply Equa-
tions (1) and (2) for the transient fill rate and the tran-

sient on-hand inventory in period t, βtið�siÞ ¼ βiðssystemi Þ
and ohtið�siÞ ¼ ohiðssystemi Þ.
If sitemi <s

system
i , then the base stock levels of part i are

monotone increasing and the transient fill rate and
corresponding on-hand inventory in period t only
depend on the transient base stock level of period
t� li. Therefore, we can again use Equations (1) and

(2), βtið�siÞ ¼ βiðst�li
i Þ and ohtið�siÞ ¼ ohiðst�li

i Þ.
We can apply the steady-state equations for

increasing and constant base stock levels because
of the characteristics of the base stock policy.
Under the steady-state base stock policy, the on-
hand inventory depends on the base stock level si
and the demand over lead time + 1 periods. An
order of part i arriving in period t was initiated
in period t � li. The order size in period t � li is

the difference between the base stock level st�li
i

and the inventory position in period t � li. All
orders that are part of the inventory position in
period t � li will arrive until period t and whatever
happened before period t � li will be compensated
with the order initiated in period t � li. In period
t � li, the inventory position of part i is either

below st�li
i and we order the difference to st�li

i , or

it is equal to st�li
i and we order nothing. We cannot

observe an inventory position greater than st�li
i as

st
0
i ≤ sti 8t0< t. Thus, the transient on-hand inventory
in period t only depends on the base stock level of
period t� li. The transient on-hand inventory in
period t does further not depend on any decisions
made in periods after t − li.
If sitemi >s

system
i , then the base stock levels of part i

are monotone decreasing during the transition. As
the on-hand inventory of a part only decreases with
demand, we lose the characteristic that the transient
fill rate and the transient on-hand inventory in per-
iod t only depend on the base stock level in period
t � li. For example, let us consider a situation with a
positive difference between the base stock levels of

two periods t0 and t00 with t0< t00, st
0
i � st

00
i >0. If the

total demand during the time span between periods
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t0 and t00, Dt00 � t0
i , is smaller than the difference of the

base stock levels, the inventory position of part i in

period t00 is greater than st
00
i , which then also influ-

ences the on-hand inventory of later periods. The
probability that this situation occurs increases with
lower demand rates. Therefore, considering this case
is particularly important in the spare parts context
as demand rates are often low.
The transient fill rate and the transient on-hand

inventory at the end of period t depend on the
inventory position in period t � li immediately after
an order is placed. In the standard base stock policy,
this is the base stock level si but for parts with
decreasing base stock levels, the inventory position

ipt�li
i can be between sitemi and st�li

i . For each poten-

tial inventory position ipt�li
i ¼ k, k∈ fst�li

i , . . ., sitemi g,
we can compute the resulting fill rate βiðkÞ and the
expected on-hand inventory ohi(k) using Equations

(1) and (2). The overall transient fill rate βtið�siÞ and

the transient on-hand inventory ohtið�siÞ in period t
are the averages of those values, weighted with the

probabilities Pðipti ¼ kÞ. We, therefore, must derive

those probabilities.
At the beginning of the transition, in period 0, the

system is in steady-state under the base stock policy

with base stock levels sitemi and, thus, Pðip0i ¼ kÞ ¼ 1

for k ¼ sitemi and Pðip0i ¼ kÞ ¼ 0 for k≠sitemi . For every

period t > 0, we describe the probabilities recursively
with

Pðipti ¼ kÞ¼

∑
sitem
i

j¼k

Pðipt�1
i ¼ jÞ �PðDi ¼ j� kÞ k>sti

∑
sitem
i

j¼k

Pðipt�1
i ¼ jÞ �PðDi≥ j� kÞ k¼ sti

0 k<sti :

8>>>>>>><
>>>>>>>:

With these probabilities, the transient fill rate and
the transient on-hand inventory in period t for parts
with decreasing base stock level are defined by

βtið�siÞ¼ ∑
sitem
i

j¼s
t�li
i

Pðipt�li
i ¼ jÞ �βiðjÞ

and

ohtið�siÞ¼ ∑
sitem
i

j¼s
t�li
i

Pðipt�li
i ¼ jÞ � ohiðjÞ:

Thus, we can compute the transient fill rates and
the transient on-hand inventories for every part and
every period of the inventory transition by

βtið�siÞ¼

βiðst�li
i Þ sitemi <s

system
i

βiðssystemi Þ sitemi ¼ s
system
i

∑
sitem
i

j¼s
t�li
i

Pðipt�li ¼ jÞ �βiðjÞ sitemi >s
system
i

8>>>>><
>>>>>:

and

ohtið�siÞ¼

ohiðst�li
i Þ sitemi <s

system
i

ohiðssystemi Þ sitemi ¼ s
system
i

∑
sitem
i

j¼s
t�li
i

Pðipt�li ¼ jÞ �ohiðjÞ sitemi >s
system
i :

8>>>>><
>>>>>:

Based on these results, we formulate the inventory
transition as a finite-horizon optimization problem:

ðPTÞ max
1

T
�∑

T

t¼1

∑i∈ Iλi �βtið�siÞ
Λ

(3)

s:t:∑
i∈I

ci �ohtið�siÞ≤b 8t¼ 1, . . .,T (4)

sti ¼ sitemi 8i∈ I,8t≤0 (5)

sti ¼ s
system
i 8i∈ I,8t>T� li (6)

�siis monotone 8i∈ I (7)

sti∈0 8i∈ I,t¼�li, . . .,T: (8)

(PT) builds on the optimization problem (PS) for
the steady-state system approach. The objective is
to maximize the average system fill rate during
the transition. The Budget Constraints (4) ensure
that the expected system inventory holding cost
does not exceed the budget in any period of the
transition. Constraints (5)–(8) formalize the
required properties on the base stock level
sequences �si. Similar to the stationary model, the
model of the inventory transition is a non-linear
integer programming problem. The solution of the
model is an optimal sequence of base stock levels
for every part over the planning horizon T.

4. Solution Approaches

We provide two solution approaches for problem
(PT). The first solution approach is based on decom-
position and column generation. It generates upper
bounds for problem (PT) and can also be used to find
a well-performing, feasible solution. The second solu-
tion approach is a heuristic that is based on marginal
analysis.
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4.1. Column Generation Approach
The optimization problem (PT) is non-linear and on-
hand inventories depend on base stock levels of pre-
vious periods. To efficiently solve this problem, we
use decomposition and column generation (Dantzig
and Wolfe 1960, Desrosiers and Lübbecke 2005). Col-
umn generation is an efficient technique to solve
large-scale linear problems. This technique alternates
between solving a master problem with a restricted
set of decision variables and generating new decision
variables (or as the name implies columns) that might
improve the solution.
We first reformulate the problem (PT) as an integer

program, for which we later relax the integrality con-
straints. We refer to it as the master problem (MP).
The set �Si contains all feasible base stock level
sequences �si for part i. For each element n∈ �Si, we
introduce a decision variable xni ∈ f0, 1g that indicates
whether a sequence is selected (xni ¼ 1) or not (xni ¼ 0).
We add a constraint to ensure that exactly one policy
is selected for each part i. The transient fill rate βt,ni
and the transient on-hand inventory oht,ni of the corre-
sponding sequence n in period t are input parameters
to the master problem. We obtain:

ðMPÞ max
1

T
�∑

T

t¼1

∑i∈ I∑n∈�Si
λi �βt,ni �xni

Λ
(9)

s:t: ∑
i∈ I

∑
n∈�Si

ci �oht,ni �xni ≤b 8t¼ 1, . . .,T (10)

∑
n∈�Si

xni ¼ 1 8i∈ I (11)

xni ∈f0,1g 8i∈I,n∈�Si: (12)

For every part, the number of potential sequences
j�Sij and, therefore, the number of decision variables is
finite. However, the number quickly increases with
planning horizon T and absolute difference between
initial and target base stock levels, jssystemi � sitemi j. j�Sij
can be computed as

j�Sij ¼ fðsitemi ,s
system
i ,T, liÞ¼ jssystemi � sitemi jþT�li

T� li

 !
:

(13)

The number of constraints of (MP) increases lin-
early in the number of parts and the length of the
planning horizon.
In principle, it would be possible to determine �Si

and all corresponding fill rates βt,ni and on-hand
inventories oht,ni upfront, and then solve (MP) opti-
mally. However, j�Sij can be large and the problem
becomes numerically intractable even for moderate
problem sizes. This specifically holds for cases with

large differences between the item approach base
stock levels and the system approach base stock
levels, that is, cases for which we can potentially gain
the biggest impact by optimizing the transition.
To overcome this computational challenge, we relax

the integrality constraints on xni and apply column gen-
eration to a restricted master problem (RMP) that con-
tains only a subset of possible sequences �S

0
i⊆�Si (see

Appendix B). The solution of the final (RMP) after col-
umn generation provides an upper bound to (MP) and
thus to the original problem (PT). If in this solution all
xni are integer, this upper bound is the optimal solution
to (PT) and the base stock level sequences can be
applied directly. Otherwise, we must still find a well-
performing feasible integer solution to (MP).
We achieve this by solving the final (RMP) after col-

umn generation as an integer program, thus with
enforced Integrality Constraints (12), and denote it by
CG (column generation) approach. Such an approach
has recently been applied by Alvarez et al. (2013,
2015), Arts (2017), and Drent and Arts (2020). Alvarez
et al. (2013, 2015) showed that it performs better than
using the fractional solution of (RMP) as a starting
point for local search as done by Kranenburg and Van
Houtum (2007, 2008).

4.2. Marginal Analysis Approach
Our second solution approach applies marginal anal-
ysis to all periods of the planning horizon. In every
period, it considers the projected state of the inven-
tory system, based on decisions of previous periods,
different lead times of the parts, projected part
demand, and restrictions on the base stock level
sequences. We refer to this approach as marginal
analysis approach (MA approach).
We perform a two-stage algorithm on the planning

horizon T to determine all transient base stock levels

sti , t ¼ 1, ::, T � li. With the vector �s ¼ ð�s1,�s2, . . .,�sjIjÞ
that contains the base stock level sequences �si of all
parts i, the system fill rate in period t is

βtð�sÞ ¼ ∑i∈Iλi�βtið�siÞ
Λ and the expected system inventory

holding cost in t is ctð�sÞ ¼ ∑i∈Ici �ohtið�siÞ. To initialize

the algorithm, we set sti ¼ sitemi 8t≤ 0 and

sti ¼ minfsitemi , s
system
i g8t>0 and compute the corre-

sponding values for βtð�sÞ and ctð�sÞ, t = 1, . . ., T.
The first stage of our algorithm only adapts the

transient base stock levels for parts with increasing
base stock levels. At the beginning of each period
t¼ 1, :::,T we determine which parts are applicable for
a base stock level increase. Because of the transient
behavior of the system, βtð�sÞ and ctð�sÞ are not affected
by the base stock levels of the current period t but by
the base stock levels of period t� li. We therefore
check for which parts the base stock levels st�li

i can be
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increased without violating the requirements for the
base stock level sequence (t> li and st�li

i <s
system
i ). Then

we apply marginal analysis to this subset of parts,
starting with the current base stock levels st�li

i . We
incrementally increase the base stock level st�li

i with
the highest relative improvement in system fill rate
compared to the impact on expected system inventory
holding cost. A part is removed from the marginal
analysis whenever an increase by one unit would vio-
late the budget in period t or the requirements for the
base stock level sequence. When the base stock level
of no part can be further increased, the marginal anal-
ysis finishes. For all parts with increasing base stock
levels, the base stock levels of periods greater than
t � li are set to the value of st�li

i and βτð�sÞ and cτð�sÞ of
later periods τ > t are updated. In the last period T,
all base stock levels sτ�li

i , τ>T � li are set to the system
approach base stock levels.
The second stage only adapts the transient base

stock levels for parts with decreasing base stock
levels. For this subset of parts, the second stage fol-
lows the process of the first stage with two adap-
tions. First, we do not only check the impact of a
base stock level increase on the budget of period t,
but also on the budget of all succeeding periods
τ¼ t, :::,T. This is necessary as for parts with decreas-
ing base stock levels, the expected inventory holding
cost in period τ depends on the decision in period t
(and not only on the decision of period τ � li). Sec-
ond, we do not change any base stock levels of peri-
ods greater than t � li after the marginal analysis in
period t.
The detailed marginal analysis approach is pro-

vided in pseudocode in the Online Appendix.
We split the approach into two stages to miti-

gate the negative effects of its myopicness. The
algorithm optimizes the base stock levels of the
different periods successively. As a result, the
transition to new base stock levels could be pro-
longed unnecessarily without the two stages. For
parts with decreasing base stock levels, the
myopicness of the approach could keep the base
stock levels sti high for too many periods, delaying
the increase of parts with sitemi <s

system
i . The base

stock levels could stay high because the effects on
the expected system inventory holding cost are
small enough to still fulfill the budget constraint
in the current period t. However, this decision also
leads to budget consumption in succeeding periods.
This can prevent the buildup of budget gaps that
would allow for the base stock level increase of
expensive parts with sitemi <s

system
i .

The two-stage approach addresses this issue and
ensures that base stock levels converge quickly to the
target base stock levels, since it prioritizes the increase
in base stock levels for parts with sitemi <s

system
i over the

delayed decrease in base stock levels for parts with
sitemi >s

system
i . The second stage ensures that base stock

levels for parts with sitemi >s
system
i are only kept high if

there is spare budget for the base stock level above
the system base stock level in all later periods.
To guarantee the adherence to the budget con-

straint during the transition, only the first stage of
the MA approach is crucial. Depending on the
characteristics of the inventory system, the second
stage can additionally increase the transient system
fill rate during the transition, for example, if parts
with increasing base stock levels have long lead
times and parts with decreasing base stock levels
have short lead times and high demands. For
most inventory systems in the numerical study,
however, the impact of the second stage is limited
and most benefits are realized by applying the
first stage.
The objective of the MA approach differs from

the objective of the original problem (PT), since
the MA approach is myopic and optimizes the
system fill rates in the periods t = 1, . . ., T sequen-
tially instead of considering the average system fill
rate over the planning horizon holistically. How-
ever, the constraints are identical. Therefore, every
solution obtained by the MA approach is feasible
and can be used as the starting solution of the
CG approach of section 4.1. We show the effec-
tiveness of our MA approach in the numerical
study. Benchmarking it to the upper bound
obtained from column generation, we observe
average gaps below 0.1% and a maximum gap
below 1.2% across all tested instances. This close-
to-optimal performance together with the short
runtimes makes the MA approach particularly
valuable for controlling inventory transitions of
large systems.

5. Numerical Study

The numerical study presented in this section consists
of two parts. First, we compare the performance of the
CG approach and the MA approach for small to med-
ium-sized inventory systems with medium-length
planning horizons (section 5.1). Second, we analyze the
value of optimizing the inventory transition in a case
study based on company data (section 5.2). After
applying the MA approach to a real-world inventory
system in section 5.2.1, we analyze the impact of
changes in system characteristics in an extensive sensi-
tivity analysis (section 5.2.2) and discuss managerial
implications (section 5.2.3). We implemented all
approaches in C++ and used Gurobi to solve the linear
and integer programs. We conducted the computations
on a Windows 10 64-bit system with 16 GB memory
and two Intel Xeon 2.30 GHz processors.
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5.1. Performance Evaluation of the Solution
Approaches
We benchmark the performance of the CG approach
and the MA approach against the upper bound for
small to medium-sized inventory systems. The inven-
tory systems are characterized by the number of parts,
the initial system fill rate under the item approach,
and the distributions of demand rates, unit holding
costs, and lead times. Moreover, we vary the planning
horizon of the transition. To obtain robust results, we
randomly generate inventory systems with different
parameter values. To get realistic scenarios, we base
the parameter ranges on data from the company that
motivated our research. Table 1 contains the parame-
ter values that we cover in a full factorial analysis. We
test the solution approaches for inventory systems
with 20, 35, and 50 parts. Demand rates λi are drawn
from a lognormal distribution. This distribution type
best describes the spare parts data from our industry
partner, which reveals a highly skewed distribution
of demand rates: most of the parts in the inventory
system have very low demand rates, but a few parts
have high rates. Our observations are in line with the
literature, which observed that demand rates in spare
parts systems with many independent parts follow
lognormal distributions (Wright 1991, 1992). We also
draw the spare parts’ unit holding costs from a log-
normal distribution. This distribution describes the
situation of many spare parts inventory systems very
well: only a small fraction of parts contributes to the
majority of the system inventory holding cost. By fit-
ting the lognormal distribution to the spare parts set,
we obtain the distribution parameters μd = 0.55 and
σ2d ¼ 1:75 for the demand rates. The holding costs are
best described by σ2c ¼ 6 and we normalize μc to 1
without loss of generality. To show the robustness of
the computational results for inventory systems that
run under different conditions, we vary μd and σ2d by
�50%, keeping theσ2-to-μ-ratio constant. We also vary
σ2c by �50%. The demand and holding cost distribu-
tions are truncated at F(�) = 0.99 to avoid extreme out-
liers and provide realistic inventory system
representations.
We analyze four lead time settings. In the first set-

ting, all parts have a lead time of 1 period. In the other
settings, lead times are drawn from a discrete uniform

distribution between 1 and an upper bound of 2, 3,
and 4. We solve all instances with a minimum part fill
rate of 50% and initial system fill rates of 75%, 85%,
and 95%. The planning horizons are set to 10, 12, and
14 periods, which are reasonable time spans for the
considered lead times. The combination of parameter
values results in 35 × 4 = 972 settings. We randomly
generate 20 instances per setting, leading to a total of
19440 instances. For all instances, we determine item
approach and system approach base stock levels and
then optimize the inventory transition with both solu-
tion approaches.
We assess the performance of the two approaches

by evaluating the solutions and the runtimes for each
instance. The solution quality is measured by compar-
ing the objective value of the respective solution
approach (z�CG and z�MA) to the upper bound (z�UB) that
is provided by applying column generation to the
restricted master problem (RMP). We compute the
relative gap to the upper bound with

GapUB�x ¼
z�UB� z�x
z�UB

, x∈fCG,MAg:

Table 2 summarizes the computational results for
the 19440 tested instances. We report averages and
maximum values for the gaps to the upper bound and
runtimes with respect to the different parameter val-
ues (Table 2a–f) and present results across all
instances at the end (Table 2g). The gaps to the upper
bound are reported in percent. Across all instances
(Table 2g), we observe that both solution approaches
perform well with an average gap to the upper bound
of 0.025% (CG approach) and 0.058% (MA approach).
The maximum gaps of all 19440 instances are 0.644%
and 1.163%, respectively. The gap of the CG approach
to the upper bound is always smaller than or equal to
the gap of the MA approach to the upper bound, as
the base stock level sequences from the MA approach
act as the starting solution for the CG approach. On
average, the CG approach is able to close approxi-
mately half of the gap of the MA approach.
Analyzing the influence of different parameter val-

ues, we observe that the gap to the upper bound
decreases with an increasing number of parts
(Table 2a), thus with increasing problem size. This is

Table 1 Parameter Values for the Performance Evaluation

Parameter Values

(a) Number of parts in I 20, 35, 50
(b) System fill rate β̂ 75%, 85%, 95%
(c) Demand rates λi ∼ lognormðμd , σ2d Þ ðμd , σ2d Þ∈fð0:28, 0:87Þ, ð0:55, 1:75Þ, ð0:83, 2:63Þg
(d) Holding costs ci ∼ lognormðμc , σ2cÞ ðμc , σ2cÞ∈fð1, 3Þ, ð1, 6Þ, ð1, 9Þg
(e) Lead times l i ∼ uðâ, b̂Þ â ∈ f1g; b̂ ∈ f1, 2, 3, 4g
(f) Planning horizon T 10, 12, 14
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particularly convenient since instances of real-world
size, like the ones we investigate in section 5.2, are
large. The gaps also decrease with an increasing ini-
tial system fill rate β̂ (Table 2b). With regard to the
characteristics of the parts in the inventory system,
the average gaps to the upper bound decrease with
increasing μd and σ2d (Table 2c) and σ2c (Table 2d). We
do not observe a strong effect of the lead time upper
bound b̂ for the CG approach and a decreasing gap
with increasing b̂ for the MA approach (Table 2e). An
increasing planning horizon T (Table 2f) has no strong
influence on the gap of the CG approach to the upper
bound. For the MA approach, we observe a slight
increase in the average gap with an increasing plan-
ning horizon but the maximum gaps are decreasing.
While both solution approaches perform well with

respect to gaps to the upper bound, the differences in
runtimes are substantial. The MA approach provides
a solution within milliseconds for all instances (maxi-
mum runtime of 13 milliseconds). The runtimes of the
CG approach vary strongly. Across all instances, the
average CG runtime is 45.92 seconds. However, the
runtimes of single instances reveal large differences
between 0.02 seconds (not explicitly shown in Table 2)
and 26,122 seconds (7.25 hours). We observe this vari-
ation because the runtimes of the CG approach

depend on the specific size of every instance, that is,
the number of potential decision variables.
The problem size is driven by three elements: the

number of parts in the system, the length of the plan-
ning horizon, and the difference between the item
approach and the system approach base stock levels.
The increase in average and maximum runtimes for
the first two elements can be observed in Table 2a–f,
respectively. An increasing number of parts and an
increasing planning horizon result in longer runtimes.
The third element, the difference in the base stock
levels, drives the large spread of runtimes across all
instances. It also drives the increasing runtimes for
increasing demand parameters (Table 2c). In systems
with low demand rates, more parts have minimum
base stock levels of 1 under both the item approach
and the system approach, thus fewer differences in
the base stock levels and smaller problem sizes. Sys-
tems that transition from a lower system fill rate β̂
(Table 2b) are more difficult to solve, resulting in
longer runtimes. Regarding the variation in unit hold-
ing costs (Table 2d), runtimes of the CG approach
decrease with increasing σ2c . The higher σ2c , the bigger
the differences in unit holding costs within a system,
which leads to clearer decisions when optimizing the
transition. Runtimes of the CG approach are also

Table 2 Summary of the Performance of the CG Approach and MA Approach

Parameter value

Gap to upper bound (%) Runtime (sec)

CG MA CG MA

avg max avg max avg max avg max

(a) Number of parts in I0
20 0.036 0.644 0.085 1.163 12.47 1,478 0.002 0.013
35 0.023 0.352 0.053 0.616 41.61 19,115 0.002 0.006
50 0.016 0.262 0.037 0.426 83.71 26,122 0.002 0.011
(b) Item approach fill rate β̂
75% 0.039 0.644 0.096 1.163 51.31 26,122 0.002 0.009
85% 0.025 0.390 0.057 0.746 50.13 19,115 0.002 0.011
95% 0.011 0.217 0.021 0.296 36.32 5,905 0.002 0.013
(c) Demand parameter ðμd ,σ2d Þ
(0.28, 0.87) 0.030 0.644 0.074 1.163 18.59 387 0.002 0.006
(0.55, 1.75) 0.026 0.584 0.058 0.875 28.38 5,101 0.002 0.013
(0.83,2.63) 0.019 0.535 0.042 0.815 90.82 26,122 0.002 0.011
(d) Holding costs parameter σ2c
3 0.031 0.644 0.067 0.758 50.19 26,122 0.002 0.008
6 0.024 0.609 0.056 0.829 44.85 24,121 0.002 0.013
9 0.020 0.593 0.050 1.163 42.72 11,919 0.002 0.011
(e) Lead time upper bound b
1 0.024 0.609 0.067 1.163 13.15 2,147 0.002 0.013
2 0.024 0.593 0.062 1.130 37.46 2,135 0.002 0.006
3 0.024 0.500 0.053 0.792 47.17 5,388 0.002 0.006
4 0.025 0.644 0.051 0.815 85.90 26,122 0.002 0.011
(f) Planning horizon T
10 0.025 0.644 0.050 1.163 22.19 3,053 0.002 0.011
12 0.025 0.490 0.060 0.829 42.96 19,115 0.002 0.006
14 0.024 0.584 0.064 0.753 72.61 26,122 0.002 0.013
(g) Total 0.025 0.644 0.058 1.163 45.92 26,122 0.002 0.013
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increasing with the increasing upper bound on lead
time (Table 2e).
The results of the full factorial analysis demonstrate

that applying column generation becomes impractica-
ble for large inventory systems and long planning
horizons. However, with the MA approach, we can
obtain close-to-optimal solutions at short runtimes.
To get further indications on how this performance
might scale to larger inventory systems with longer
planning horizons, we relax the full factorial setup.
We fix the system parameters at the values for which
we observed the maximum gaps of the MA approach
to the upper bound (β̂ ¼ 75%, ðμd, σ2dÞ ¼ ð0:28, 0:87Þ,
ðμc, σ2cÞ ¼ ð1,9Þ, b̂ ¼ 1). Figure 2 shows the develop-
ment of the average gap for planning horizons up to T
= 40 and inventory systems with up to 100 parts. Even
for the parameter values that led to the largest gaps in
the full factorial analysis, the gaps to the upper bound
remain low.
This further strengthens the positive indications for

utilizing the MA approach for transitions that are
impractical to solve with column generation. We will
apply this solution approach to solve the real-world
inventory systems in the next section. Although we
cannot provide upper bounds for the large systems,
the results in this section suggest that we can expect
the good performance of the MA approach also for
larger planning problems.

5.2. The Value of Controlling the Transition
We benchmark the controlled transition obtained from
our solution approach against the default solution of
directly applying the system approach base stock
levels, which we will refer to as the uncontrolled transi-
tion. We first analyze the transition of a large-scale
real-world inventory system (section 5.2.1). We
demonstrate the resulting cost savings of controlling
the transition and the impact on the system fill rate
compared to the uncontrolled transition. To better
understand the effects of the inventory system charac-
teristics on the results, we then perform an extensive

sensitivity analysis (section 5.2.2). We conclude with
discussing managerial implications of the results (sec-
tion 5.2.3). As we solve large systems with many
spare parts, long replenishment lead times and long
planning horizons, all inventory transitions in this
section are solved with the MA approach.

5.2.1 Real-World Application. We analyze the
value of controlling the inventory transition based on
data from the global manufacturer that motivated our
research. The inventory system contains 3191 spare
parts. Replenishment orders can be initiated on a
daily basis (corresponding to a review period of one
day) and arrive after lead times between 1 and 373
days. The demand rates vary between 0.5 and 1,524
units per year. The annual unit holding costs range
between below 0.10 euros and above 30,000 euros per
spare part, with an average of 416.80 euros.
Currently, the base stock levels of the system are

determined with the item approach and the initial
system fill rate is 85%. This results in annual system
inventory holding cost of approximately 2.2 million
euros. With a required minimum part fill rate of 50%,
we predict an increase in the system fill rate of 13 per-
centage points with similar holding cost when mov-
ing the inventory system from an item approach to a
system approach.
Figure 3 shows the development of the annual sys-

tem inventory holding cost and the system fill rate for
the uncontrolled and the controlled transition. We
observe that directly implementing the system
approach base stock levels (the uncontrolled transi-
tion) results in violations of the allowed holding cost
budget of up to 15%, 100 days after the new base stock
levels are introduced. On average, the budget is
exceeded by 6.3% (142,000 euros) during the first year
and by 1.8% (40,000 euros) during the second year of
the transition.
The controlled transition does not exceed the bud-

get. The savings in holding cost go along with minor
losses in the system fill rate of 0.7% on average during
the first year and 0.1% during the second year, with a
maximum of 1.8% on day 100. Those losses are the
consequence of deliberately delaying the increase of
base stock levels for certain parts to stay within the
budget constraints in the controlled transition. This
leads to a delayed increase in fill rates for the corre-
sponding parts, and a lower system fill rate in the con-
trolled transition than in the uncontrolled transition.
However, the differences in system fill rate are mar-
ginal compared to the savings in system inventory
holding cost. Similar to the uncontrolled transition,
the system fill rate steeply increases at the beginning
of the transition and the largest share of system fill
rate improvement is realized quickly.

Figure 2 Average Gap of the MA Approach to the Upper Bound
Depending on Planning Horizon and Number of Parts in the
System
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Figure 4 shows the base stock level transition and
the resulting on-hand inventory development for
three exemplary parts. The first part (Part A) has a
high demand over lead time, resulting in a higher sys-
tem approach base stock level than under the item
approach. Since it has relatively high unit holding
cost, the increase of base stock levels is delayed and
the system approach base stock level is reached rela-
tively late in the transition. The changes in base stock
levels are reflected in inventory after the lead time (90
days). Prolonging the base stock level increase of
expensive parts is reasonable since all considered
parts are of high criticality and any available part pro-
vides similar value to the company’s B2B customers.
Considering the benefit per monetary unit, it is there-
fore more beneficial to increase the base stock level of
less expensive parts with a similar demand over lead
time earlier. This can be observed for Part B. It has a
similar demand over lead time but lower unit holding
cost than Part A. Therefore, the base stock levels are
increased earlier during the transition. The third part
(Part C) has a rather low demand over lead time and
relatively high unit holding cost. This results in a
lower system approach base stock level than under
the item approach. The system approach base stock
level is set directly in period 1, however, it takes time

until the projected steady-state on-hand inventory
value is reached.

5.2.2 Sensitivity Analysis. In the real-world
application analyzed in the previous section, we
observe significant savings in system inventory hold-
ing cost and only marginal losses in system fill rate
when controlling the transition. In this section, we
investigate how the characteristics of the inventory
system (demand rates, unit holding costs, lead times,
and initial system fill rates under the item approach)
influence the impact on system holding cost and sys-
tem fill rate during the transition.
We must find appropriate representations of the

real-world inventory system’s characteristics that can
be varied subsequently. Therefore, we describe the
inventory system by the distributions of demand
rates, unit holding costs, and lead times. We fitted
various distributions to the parameter value realiza-
tions and found that the demand rates and the unit
holding costs for different spare parts are well repre-
sented by lognormal distributions (μd = − 4.50 and
σ2d ¼ 1:60 for the demand rate distribution and
μc = 0.87 and σ2c ¼ 2:30 for the unit holding cost distri-
bution; parameters obtained by maximum likelihood
estimation). The lead times are well represented by a

Figure 3 Comparison of the Controlled and the Uncontrolled Transition - System Inventory Holding Cost (left) and System Fill Rate (right)

(a) (b) (c)

Figure 4 Transition of Base Stock Levels and Expected On-Hand Inventories for Three Exemplary Parts
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zero-truncated negative binomial distribution
(r = 3.03 and p = 0.05). Details on the distribution
selection and the fitting of parameters are provided in
the Online Appendix.
We substitute the original values for the part char-

acteristics with the theoretical values obtained from
the distributions. For every part in the original data-
set, we first determine the percentile ranks of its
demand rate λi, unit holding cost ci, and lead time li
(denoted by ρλi , ρ

c
i , and ρli). Then, we substitute the

empirical demand rate λi, unit holding cost ci, and
lead time li with the theoretical demand rate λ̂ðρλi Þ,
unit cost ĉðρci Þ, and l̂ðρliÞ obtained from the quantile
functions of the fitted distributions at the correspond-
ing percentiles. For example, a part at the 75th
demand percentile, 32th unit cost percentile, and 10th
lead time percentile in the original dataset, will be at
the same percentiles of the dataset generated from the
theoretical distributions. This procedure generates an
inventory system that is close to the original dataset
and, therefore, has a similar transition as shown in
Figure 5. Without loss of generality, we normalize the
budget to 1.
To analyze in which settings controlling the inven-

tory transition is particularly beneficial, we vary the
characteristics of the inventory system by modifying
the corresponding distribution parameters. For the
demand rates of the system’s spare parts, we increase
and decrease μd and σ2d by 25% and 50%. For the unit
holding costs, we analogously vary σ2c (since μc has no
influence on the relative transition). Moreover, we
vary the mean of the lead time distribution (denoted
by μl) and the variance (denoted by σ2l ) by 25% and
50%. The initial system fill rate β̂ is varied between
75%, 85%, and 95%.
We analyze the transition for all different parameter

combinations. Figures 6a–e show the aggregated
effect of the different parameter values on the savings

in system inventory holding cost during the first year
of the controlled transition, compared to the uncon-
trolled transition. Across all systems, we observe the
highest savings in system inventory holding cost for
systems with high initial system fill rates β̂. The
higher the initial system fill rate, the higher the initial
item approach base stock levels. The system approach
reduces those base stock levels for expensive parts.
With the resulting freed-up budget, base stock levels
of inexpensive parts are increased. As a result, we
observe a larger number of base stock level changes
with an increasing magnitude for higher initial sys-
tem fill rates β̂. This leads to a more expensive uncon-
trolled transition. For a similar reason, the spread in
unit holding costs influences the cost savings (Fig-
ure 6a). A higher spread in unit holding costs leads to
larger differences between the item approach and sys-
tem approach base stock levels and the larger the dif-
ferences, the higher the temporary increase in system
inventory holding cost during the uncontrolled transi-
tion.
The distribution of lead times also affects the cost

savings. Longer lead times (Figure 6b) positively cor-
relate with the savings due to their influence on the
demand over lead time, which is the main driver for
base stock levels. A higher demand over lead time
yields higher initial base stock levels, and therefore
more budget flexibility. The variance of the lead times
(Figure 6c) has only little effect on the cost savings.
We observe a weak positive influence of a higher
spread in lead times, which is mainly driven by the
long lead time for some parts and the truncation of
the lead time distribution at 1.
The impact of demand parameters on the cost sav-

ings is ambiguous. Figure 6d shows the influence of
the demand parameter μd. We observe two competing
effects that result in the inverted u-shape of the cost
functions. On the one hand, a higher value for μd

Figure 5 Comparison of the Transitions of the Real and the Fitted Inventory System - System Inventory Holding Cost (left) and System Fill Rate
(right)
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results in higher mean demand rates and faster con-
sumption of excess stock for decreasing base stock
levels. This leads to a faster transition and less cost
savings when controlling the transition (first effect).
On the other hand, base stock levels are bounded
from below by 1 due to the minimum fill rate require-
ment for all parts. With lower demand rates, more
parts will be planned with a base stock level of 1, for
both the item approach and the system approach. As
a result, there are fewer differences in the base stock
levels of the two approaches and the impact of con-
trolling the transition declines (second effect). The ini-
tial system fill rate β̂ influences the turning point at
which the relative dominance of one effect over the
other changes. With a higher initial fill rate, fewer
parts are planned with a base stock level of 1; thus,
the first effect dominates the second effect for smaller
values of μd compared to systems with lower initial
fill rates. The spread σ2d in demands (Figure 6e) has
only limited effect on the cost savings.
We next analyze the impact of the inventory sys-

tem characteristics on the relative difference in

average system fill rate between the controlled and
uncontrolled transition during the first year (Fig-
ure 7a–e). Across all system parameter values, the
differences in average system fill rate are small and
rarely exceed 1.5%. This underlines the value of
controlling the inventory transition since it allows
to save a significant amount of money while not
significantly affecting the system fill rate. We also
observe that the higher the initial system fill rate β̂,
the lower the difference in average system fill rate
when controlling the transition. The spread in unit
holding costs has a relatively strong influence on
the difference in average system fill rate. For sys-
tems with a smaller spread, the relative difference
is higher than for systems with a higher spread
(Figure 7a). The lead time characteristics of the
inventory system have only very limited influence
on the difference in average system fill rate (Fig-
ure 7b and c). Regarding the demand parameters,
the relative differences in fill rate are decreasing
with increasing μd and σ2d.

(b) (d)

(a) (c) (e)

Figure 6 Average Savings in System Inventory Holding Cost When Controlling the Transition Depending on the Inventory System Characteristics
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The maximum periodic cost savings and the maxi-
mum fill rate difference during the transition show
similar patterns for different system characteristics as
the discussed cost savings and differences in average
system fill rate. Please see the Online Appendix for
the corresponding graphs.
In summary, the sensitivity analysis reveals that the

value of controlling the inventory transition is particu-
larly sensitive to the initial system fill rate and the
spread in unit holding costs. We can achieve the largest
benefits in terms of system holding cost savings and
small loss in average system fill rate by controlling the
transition of systems that operate under a high system
fill rate at the beginning of the transition. Also, the lar-
ger the spread in unit holding costs, the larger the bene-
fits. Longer lead times and a higher spread in lead times
increase the cost saving potential as well. The impact of
demand parameters is ambiguous and needs further
analysis for each particular situation.

5.2.3 Discussion of Managerial Implications. The
results of the case study and sensitivity analysis

provide important managerial insights. They
demonstrate that companies can realize large sav-
ings in inventory holding cost with moderate losses
in system fill rate by controlling the transition as
opposed to adapting an optimized solution for all
parts at a single point in time. The magnitudes of
the savings and losses depend on the inventory
system characteristics, such as the initial system fill
rate, the spread in unit holding costs, and the
demand rate distribution. The savings and losses
evolve over time and it can take long until the
optimal inventory levels have been reached by all
parts of the system. Thus, the required time for
reaching the optimal solution for all parts will typi-
cally exceed reasonable lengths of the planning per-
iod. This raises the issue on the appropriate length
of planning horizon T. Our solution approaches
only require it to be longer than the maximum part
lead time. However, a planning horizon T that is
too short might not allow for a sufficient number
of parts to reach their projected steady-state inven-
tory levels during the transition. Our approach

(a) (c)

(b)

(e)

(d)

Figure 7 Relative Differences in Average System Fill Rate When Controlling the Transition Depending on the Inventory System Characteristics
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ensures that the expected system inventory holding
cost is within the budget until period T, but not
necessarily beyond period T. Consequently, the
inventory holding cost might be above budget in
periods t > T.
Figure 8 presents three metrics for the inventory sys-

tem of section 5.2.1 as a function of the planning hori-
zon T. Figure 8a depicts how the realized cumulative
holding cost savings when controlling the transition
depend on T. Compared to the total holding cost sav-
ings that were possible with an infinite planning hori-
zon (corresponding to cost savings of 100%), we
observe that the largest savings are realized at the
beginning of the transition. The marginal savings
decrease in the planning horizon. Figure 8b shows the
excess inventory holding cost above the system
approach cost for parts with decreasing base stock
levels. This cost corresponds to the expected system
inventory holding cost above the budget b for periods
after T + 1. The excess inventory holding cost
decreases with longer planning horizons T and is mod-
erately above target after one year. However, requiring
it to completely diminish would result in very long
planning horizons T. Figure 8c shows the expected per-
centage of parts that have reached the system approach
on-hand inventory at T. The vast majority of parts
reach their system approach levels within a year.
The length of an appropriate planning horizon

depends on the goals of the company and the charac-
teristics of the inventory system. Companies can, for
example, set a maximum percentage x+ ≥ 0 of the
expected excess inventory holding cost above budget
in period T + 1:

cTþ1ð�sÞ≤ð1þxþÞ �b: (14)

To determine an appropriate planning horizon T,
Equation (14) could be included in Problem (PT) with

T as a decision variable. However, this would make
(PT) difficult to solve. Instead, companies can utilize
Equation (14) and analyze the expected system inven-
tory holding cost in period T + 1 of the uncontrolled
transition, with �su denoting the corresponding vector
of base stock level sequences. Since cTþ1ð�suÞ is mono-
tone decreasing in T for T > lmax, they can determine
the smallest T > lmax for which Equation (14), �s ¼ �su,
is fulfilled. If base stock level decreases are delayed in
the controlled transition, the system inventory hold-
ing cost in period T + 1 can exceed cTþ1ð�suÞ. In our
numerical study, this is negligible. For the case study
of section 5.2.1, a percentage x+ of 5%, 1%, and 0.5%
results in planning horizons of 373, 720, and 1001
days, respectively.
To reduce the inventory above budget after the

transition, companies can decide on whether to
extend the planning horizon T or to remove excess
inventory from stock at T. For our application, stock
removal is rather undesirable since the company
holds durable, specialized spare parts without an
external market value. Therefore, removing inven-
tory from stock is expensive. This particularly holds
for the parts with lower base stock levels under the
system approach than under the item approach.
Due to the nature of the system approach, those
parts will be the expensive ones in the spare parts
portfolio.

6. Conclusion

In this study, we have analyzed how the transition of
inventory systems can be controlled when the inven-
tory policy changes from an item approach to a sys-
tem approach. We have shown that an uncontrolled
transition results in severe violations of operational
constraints, which can jeopardize the successful
implementation of the system approach in practice.

(a) (b) (c)

Figure 8 Effect of Planning Horizon T in Days on Performance Metrics
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We have formulated an optimization problem that
enables a smooth adaptation of base stock levels over
time with the objective to maximize the average sys-
tem fill rate without exceeding the inventory holding
cost budget during the transition. We have presented
two approaches to solve the problem. The first
approach is based on decomposition and column gen-
eration and provides an upper bound and a well-per-
forming feasible solution to the maximization
problem. However, it requires long runtimes for
large-scale inventory systems and long transition
periods. The second solution approach is a heuristic
that is based on marginal analysis. It is able to solve
the transition of large-scale inventory systems with
very short runtimes. We have demonstrated the per-
formance of both approaches in an extensive numeri-
cal study.
Our research provides important managerial impli-

cations. First, it raises awareness for the unique chal-
lenges companies have to face when optimizing an
existing inventory system. In such situations, it is not
only important to establish a new target state of the
system but it is also important to consider the transi-
tion period. Second, we provide insights on why the
inventory system performance might fall short of the
target performance during a transition period and
how severe this deterioration can be. Even if man-
agers decide against transition period control and
cope with the resulting disturbances instead, our
research helps to understand the implications and to
avoid wrong interpretations and actions. It might also
reduce the stress put on responsible units within a
company. Third, we provide a solution approach that
enables companies to keep inventory cost within a
budget during the transition period. We also provide
guidance on how to choose an appropriate length for
the transition period. The suggested controlled transi-
tion is easy to apply in practice as the recommended
base stock levels during the transition period can be
integrated in existing operational routines and ERP
systems.
To maximize the average system fill rate without

exceeding the inventory holding cost budget, we allow
the base stock levels to change gradually during the
transition period. If a gradual adaptation is not desired,
our approach could be simplified to a single-adjustment
policy per item. Pinçe et al. (2015) have demonstrated
that such a policy performs well for the base stock level
transition of a single item in continuous-time. Going for-
ward, it would be interesting to analyze how such a pol-
icy performs in our multi-item setting.
Even though we have focused on the introduction

of the system approach in an inventory system that
has been operated under the item approach before,
our approach is suited for any adaptations of base
stock levels in an inventory system that should

eventually operate under a system approach. This
makes our approach applicable for a broad range of
situations, for example, if new information regard-
ing demand or reliability of parts is available, unit
holding costs change, parts are substituted, or new
supply sources are explored. If resulting changes in
base stock levels are not quickly reflected in inven-
tory, controlling the transition is important and
valuable.

Appendix Characteristics of (PS)
For the fill rate βiðsiÞ and Poisson-distributed demand
it holds:

PROPERTY 1. The fill rate βiðsiÞ is concave increasing for
si ≥ λi

lnðliþ1Þ�lnðliÞ � 1.

For the expected inventory holding cost ci �ohiðsiÞ it
holds:

PROPERTY 2. The expected inventory holding cost
ci � ohiðsiÞ is convex increasing in si for si ≥ 0.

From Property 1 and 2 and Fox (1966 sect. 8), it fol-
lows that Problem (PS) can be solved efficiently by
marginal analysis for si ≥ λi

lnðliþ1Þ�lnðliÞ � 1. In the fol-
lowing, we provide proofs for Property 1 and 2.

PROOF OF PROPERTY 1. The fill rate βiðsiÞ is concave
increasing in si if the first-order difference
ΔβiðsiÞ ¼ βiðsi þ 1Þ � βiðsiÞ≥ 0 and the second-order dif-
ference Δ2βiðsiÞ ¼ Δβiðsi þ 1Þ � ΔβiðsiÞ≤ 0.
Let us assume that

λi
lnðliþ1Þ� lnðliÞ�1≤si

which is equivalent to

ðsiþ1Þ � lnðλi � liÞ≤ � λiþðsiþ1Þ � lnðλi � ðliþ1ÞÞ:
With ex being a monotone increasing function in
x∈, e�λi�li >0 and ðsi þ 1Þ!>0, this is equivalent to

e�λi�li � ðλi � liÞ
siþ1

ðsiþ1Þ! ≤e�λi�ðliþ1Þ � ðλi � ðliþ1ÞÞsiþ1

ðsiþ1Þ! : (A1)

Since Di is Poisson-distributed with demand rate
λi, Dli

i and Dliþ1
i are Poisson-distributed with λi � li

and λi � ðliþ1Þ and Equation (A1) can be rewritten as

PðDli
i ¼ siþ1Þ≤PðDliþ1

i ¼ siþ1Þ: (A2)

From Equation (A2), it follows that ΔβiðsiÞ ¼
E½Di��1 �∑∞

d¼siþ1 PðDliþ1
i ¼ dÞ � PðDli

i ¼ dÞ
� �

≥ 0 and
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Δ2βiðsiÞ ¼ E½Di��1 � PðDli
i ¼ si þ 1Þ � PðDli þ1

i ¼ si þ 1Þ
� �

≤ 0

if si ≥ λi
lnðliþ1Þ�lnðliÞ�1. Therefore, βiðsiÞ is concave increasing

in this domain.

PROOF OF PROPERTY 2. From

ΔohiðsiÞ¼ ohiðsiþ1Þ� ohiðsiÞ¼ ∑
si

d¼0

PðDliþ1
i ¼ dÞ≥0,

it follows hat ohiðsiÞ is increasing for all si ≥ 0. Fur-
thermore,

Δ2ohiðsiÞ¼Δohiðsiþ1Þ�ΔohiðsiÞ¼PðDliþ1
i ¼ siþ1Þ≥0,

which shows that ohiðsiÞ is convex in si for all si ≥ 0.
Therefore, with ci ∈þ, ci �ohiðsiÞ is convex increas-
ing for all si ≥ 0.

Appendix B: Column Generation
The solution of the master problem (MP) is an optimal
solution to the original problem (PT). However, solv-
ing (MP) optimally becomes numerically intractable
even for moderate problem sizes. To overcome this
computational challenge, we relax the integrality con-
straints on xni and apply column generation which
provides an upper bound to (MP). We present this
approach in the following.

B.1. Computing an Upper Bound
Our master problem (MP) contains all possible base
stock level sequences per part as decision variables.
We introduce a restricted master problem (RMP) that

contains only a subset of possible sequences �S
0
i ⊆ �Si,

for example the naı̈ve sequences of applying the mini-
mum of the item approach and system approach base
stock levels up to period T � li and the system
approach base stock levels starting from period
T � li þ 1. The (RMP) is smaller and easier to solve.
Moreover, we relax the Integrality Constraints (12) to
generate a linear program.
After solving the initial (RMP), we search for

sequences that can be added to the sets �S
0
i to improve

the solution. For parts with sitemi ¼ s
system
i , there is

exactly one feasible sequence. No additional
sequences can be added and we will disregard those
parts in the following. Let yt be the dual variables of
the Budget Constraints (10) and zi the dual variables
of Constraints (11) that ensure one policy per part.

ðSUBiÞ max
λi
Λ
�∑

T

t¼1

βtið�siÞ� ci �∑
T

t¼1

ohtið�siÞ �yt� zi

s:t: sti ¼ sitemi 8t≤0

sti ¼ s
system
i 8t>T� li

�si is monotone

sti∈0 8t¼ 1, . . .,T:

(A3)

If (SUBi) has a solution with a positive value of the
Objective Function (A3), adding the obtained
sequence to �S

0
i improves the solution of (RMP). We

solve the subproblem for every part i and add the
sequence with the largest positive objective value to
the corresponding set �S

0
i.

We repeatedly solve (RMP) with the updated set �S
0
i,

record the new dual variables and add new sequences
obtained from the subproblems until no subproblem
with a positive objective value remains (i.e., no
sequence can be added to further improve (RMP)).
The optimal solution of the final (RMP) is also an opti-
mal solution to (MP) with relaxed integrality con-
straints. Therefore, the solution is an upper bound to
the original problem.

B.2. Generating New Sequences by Solving the
Subproblem
To apply column generation, it is crucial to solve
the subproblem (SUBi) efficiently. Generally, every
sequence with a positive objective value of (SUBi)
can improve the restricted master problem (RMP).
However, an optimal solution of (SUBi) ensures
that the most promising sequence is added. As
shown in section 3.2, transient fill rates and tran-
sient on-hand inventories are calculated differently
for parts with increasing and decreasing base
stock levels. While for parts with increasing base
stock levels, the values in period t only depend
on the base stock level in period t� li, for
decreasing base stock levels the whole sequence of
base stock levels from period 0 to t� li needs to
be considered.
We exploit the characteristics of the transition for

increasing base stock levels to solve the subproblem
with an integer optimization problem:

ðSUBincr
i Þ max

λi
Λ
∑
T

t¼1

∑
s
system

i

s¼sitem
i

βiðsÞ � χt�li
s � ci �∑

T

t¼1

yt ∑
s
system

i

s¼sitem
i

ohiðsÞ � χt�li
s �zi

(A4)

s:t: σt ¼ sitemi 8t≤0 (A5)

σt ¼ s
system
i 8t>T� li (A6)

σt�1≤σt 8t¼ 1, . . .,T (A7)

∑
s
system

i

s¼sitem
i

s �χts ¼ σt 8t¼�li, . . .,T (A8)

∑
s
system

i

s¼sitem
i

χts ¼ 1 8t¼�li, . . .,T (A9)
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σt∈0 8t¼�li, . . .,T (A10)

χts∈f0,1g 8t¼�li, . . .,T: (A11)

Problem ðSUBincr
i Þ has two sets of decision variables,

σt with t ¼ ð� li, . . ., 0, . . ., TÞ for the base stock level in

each period and corresponding binary variables χts with

t ¼ ð� li, . . ., 0, . . ., TÞ and s∈ ðsitemi , . . ., s
system
i Þ, formal-

ized in Constraints (A10) and (A11). Constraints (A5)
and (A6) ensure that a feasible sequence starts with the

item approach base stock level sitemi and ends with the

system approach base stock level s
system
i . Constraints

(A7) guarantee the monotonicity of the sequences. Con-
straints (A8) connect the base stock level variables σt

with the corresponding binaries χts and Constraints
(A9) ensure one base stock level per period. With this
set of constraints we guarantee that newly generated
sequences fulfill the requirements outlined in section
3.2. The objective function is a reformulation of

Objective Function (A3) with βtið�siÞ ¼ ∑s
system

i

s¼sitem
i

βiðsÞ �χt�li
s

and ohtið�siÞ ¼ ∑s
system

i

s¼sitem
i

ohiðsÞ �χt�li
s .

For parts with decreasing base stock levels, we can-
not apply ðSUBincr

i Þ because the transient fill rates and
transient on-hand inventories in period t do not only
depend on the base stock level st�li

i but on the entire
sequence up to period t� li. We therefore solve (SUBi)
for decreasing base stock levels with enumeration of all
feasible sequences that are not in �S

0
i. We note that if sitemi

is much larger than s
system
i , this method is inefficient,

especially for large T (see Equation 13). However,
caused by the nature of the system approach, the differ-
ences between the initial and target base stock levels
are typically much smaller for parts with decreasing
base stock levels than for parts with increasing base
stock levels. Ceteris paribus, parts with decreasing base
stock levels are more expensive than parts with increas-
ing base stock levels. Therefore, small base stock level
decreases of the expensive parts allow for larger base
stock level increases of the less expensive parts. In our
numerical study, solving the subproblem for decreas-
ing base stock levels is not a bottleneck.
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