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Abstract

We propose a copula-based periodic mixed frequency generalized autoregres-
sive (GAS) framework in order to model and forecast the intraday exposure
conditional value at risk (ECoVaR) for an intraday asset return and the corre-
sponding market return. In particular, we analyze GAS models that account for
long-memory-type of dependencies, periodicities, asymmetric nonlinear depen-
dence structures, fat-tailed conditional return distributions, and intraday jump
processes for asset returns. We apply our framework in order to analyze the ECo-
VaR forecasting performance for a large data set of intraday asset returns of the
S&P500 index.
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1 INTRODUCTION

Intraday trading on financial markets has become increas-
ingly important over the last decades and increased the
need for traders and heads of trading desks to have
within-day access to market information in order to make
well-informed decisions. This finding spurred research
on modeling the time-series characteristics of intraday
returns, where recent contributions typically focus on uni-
variate volatility modeling; see, for example, Engle and
Sokalska (2012), Stroud and Johannes (2014), Rossi and
Fantazzini (2015), and Bekierman and Gribisch (2017).
Precise intraday volatility estimates are of considerable
importance for intraday risk management, that is, analyz-
ing and predicting intraday risk measures like the value at
risk (VaR) as an ingredient for portfolio selection, hedg-
ing, and placing limit orders. As, for example, noted by
Gourieroux and Jasiak (1997), intraday risk management
is constantly used by commercial banks in order to moni-

tor their internal trading desks. For example, traders have
to be able to constantly provide estimates of their risks
during the trading day. Although daily risk measures may
be adequate from a reporting perspective, traders typically
need up-to-date information on their risks in order to have
competitive advantages by reacting on risks in real time
(see also Liu & Tse, 2015).

In addition to the pure volatility aspect, financial risk
management increasingly focusses on the assessment of
dependencies in the tails of the bivariate return distri-
bution of the asset and the market: while the popular
VaR measure focusses on the single institution, more
up-to-date approaches incorporate systemic tail risk effects
via the connection of the institution with the whole
financial system. Prominent examples are the exposure
conditional VaR (ECoVaR) and the ΔECoVaR of Adrian
and Brunnermeier (2016). These measures are important
ingredients for the assessment of spillover and contagion
effects and the connectedness in network analysis and
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allow to reveal those institutions that are most at risk if a
financial crisis occurs (see, e.g., Bernardi & Catania, 2016;
Chen et al., 2019; Girardi & Ergün, 2013; Reboredo &
Ugolini, 2015). According risk estimates are clearly of
interest from an intraday monitoring perspective, where
the single trader is, for example, asked to provide an esti-
mate of the within-day vulnerability of his portfolio to
systemic effects.

While aspects of intraday VaR modeling have already
been discussed in the literature, we are not aware of con-
tributions on the intraday modeling of systemic risk mea-
sures. In fact, approaches based on daily data may easily
oversee important risk spillovers within the trading day,
as, for example, a zero open to close return on a given
trading day might still be the result of heavy return varia-
tion within the day with eventually hidden systemic effects
for the market as a whole. Derived intraday asset linkages
within the tails of the distribution might also be of inter-
est for high-frequency contagion and network analysis,
which become more and more important since crisis often
reveal patterns of high-speed information transmission
through markets.

In this paper, we propose a mixed frequency gener-
alized autoregressive score (MF-GAS) framework (see
Creal et al., 2013) in order to model and forecast the
intraday (Δ)ECoVaR measure. The (Δ)ECoVaR captures
tail-specific risk spillovers for the bivariate relationship
of an intraday asset return and the market by pro-
viding information on the VaR of the individual asset
conditional on the market being in distress. The compu-
tation of this systemic risk measure requires a bivariate
modeling of the intraday asset and market return while
accounting for long-memory type of dependence patterns
in the volatility and dependence processes, seasonalities,
and potential asymmetries in tail dependence. In particu-
lar, we propose to model the bivariate asset–market rela-
tionship in a dynamic seasonal copula framework with
time-varying volatilities and (a)symmetric tail dependen-
cies. Based on the copula specification, we obtain forecasts
of the (Δ)ECoVaR in a straightforward way by using the
approach of Mainik and Schaanning (2014) and Reboredo
and Ugolini (2015).

The copula approach allows us to separate the joint
distribution into the dependence process and the mar-
gins. The modeling of the marginal distribution of intra-
day asset returns is challenging for several reasons: the
returns feature heavy tails, discrete jump components,
and long-memory type of persistencies and periodicity
in the volatility process. Standard generalized autore-
gressive conditional heteroskedasticity (GARCH) models
(Bollerslev, 1986; Engle, 1982) have therefore proven to
be unsatisfactory for intraday return dynamics (see, e.g.,
Andersen & Bollerslev, 1997). A popular approach to

intraday volatility modeling is to factorize the conditional
variance into a product of daily and intraday compo-
nents (see, e.g., Andersen & Bollerslev, 1997, 1998), where
the daily component captures the long-range dependence
in the volatility series. Engle and Sokalska (2012) use com-
mercially available volatility forecasts in order to approx-
imate the daily volatility part. The remaining intraday
fluctuations are then modeled by short-memory GARCH
processes, where periodic intraday volatility patterns can
be estimated individually or approximated by flexible
Fourier forms (see, e.g., Payne, 1996).1 An alternative
approach, which has, for example, been analyzed by Rossi
and Fantazzini (2015), builds on periodic fractional inte-
grated exponential GARCH (FI-PEGARCH) models for
the intraday return series. A similar (though nonperiodic)
approach has been used by Janus et al. (2014) in order
to model long-memory dynamics in the copula depen-
dence parameters for daily asset returns. A fractionally
integrated GAS (FIGAS) approach for daily returns is
analyzed by Opschoor and Lucas (2019). ARFIMA-type
processes model ‘true’ long memory but tend to induce
complications and instability in model estimation and
suffer from problems related to the initialization of the
long-memory process.

Our approach in contrast builds on mixed frequency
GAS dynamics for the individual asset log-volatilities and
the dynamic copula parameters. The mixed frequency
structure offers a flexible and robust approximation to
long-memory while preserving stationarity of the volatil-
ity and dependence components and computational ease
of estimation. The model builds on latent short-term and
long-term components that move at different frequencies.
Here, we assume that the long-term component moves
at the daily and the short-term component at the intra-
day frequency, which results in a framework that is sim-
ilar in spirit to the Engle and Sokalska (2012) approach
but explicitly models the long-term component instead of
using exogenously determined commercial forecasts. The
model also shows similarities to the popular mixed data
sampling (MIDAS) schemes for volatility modeling (see,
e.g., Colacito et al., 2011; Engle et al., 2013; Ghysels et al.,
2006) but is more close to the stochastic volatility (SV)
literature due do the flexible GAS assumption (see, e.g.,
Koopman et al., 2016).

Although not formally belonging to the class of
long-memory models, multiple component models are
well known to reproduce highly persistent long-memory
type of dependence structures by aggregating indepen-
dent autoregressive dynamics at different frequencies (see,

1Related studies on the component-modeling of intraday volatilities
are found in Andersen and Bollerslev (1997, 1998), Bekierman and
Gribisch (2017), and Beltratti and Morana (1999).
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e.g., Corsi, 2009; Granger, 1980; LeBaron, 2001). A fur-
ther advantage of using latent volatility components is that
the dynamic mixed frequency GAS structure can easily
be applied in order to model the dynamics of the cop-
ula dependence parameter, where, for example, MIDAS
schemes or the Engle and Sokalska model are not directly
applicable. The GAS approach optimally approximates the
innovation terms of the latent state processes by scaled
likelihood scores, which makes the model very flexible but
still simple to implement.2 The framework has also the
advantage that the optimal frequency for the long-term
component can be selected fully data-driven by compar-
ing the log-likelihood values obtained for different fre-
quencies and choosing the frequency associated with the
highest log-likelihood value. We finally extend our basic
model specification by considering conditional fat-tailed
distributions and GAS-driven autoregressive Poisson jump
processes for the marginal return specifications. For the
copula models, we consider the Gaussian copula, the Stu-
dent t copula and a mixture of the Clayton and the rotated
Clayton copula in order to allow for (a)symmetric and
possibly periodic tail dependence.

In fact, the application of GAS models with mixed fre-
quencies is not new to the literature. Gorgi et al. (2019)
propose a MIDAS-GAS model for economic time series
like inflation or GDP growth, where a low-frequency eco-
nomic variable is to be forecasted based on high-frequency
financial information using a weighted sum of the
high-frequency GAS innovations. This setting differs from
our MF-GAS approach and the high-frequency financial
data perspective: the MIDAS-GAS of Gorgi et al. (2019)
models mixed frequency data using latent GAS-driven
components at the lower frequency, while the MF-GAS
considers low- and high-frequency GAS components in
order to model data, which is observed at a single fre-
quency. Our intraday copula approach also shows some
similarities to recent work of Koopman et al. (2018). The
authors propose a GAS driven copula framework for U.S.
financial stocks at the tick-by-tick frequency and are
particularly interested in analyzing the intraday depen-
dence structure. In contrast to our approach, the model of
Koopman et al. (2018) does not allow for long-memory
type of dependence patterns and does neither consider
periodicity in the tail-dependence nor model the intraday
periodicity jointly with the GAS dynamics (which turns

2GAS dynamics (Creal et al., 2013) have been intensively used in recent
years in order to approximate the dynamics of unobserved component
models. Theoretical justifications for the use of the conditional score
as a flexible updating mechanism are, e.g., provided by Harvey (2013),
Creal et al. (2013), and Blasques et al. (2015). Applications of score driven
dynamics are, e.g., found in Creal et al. (2011), Janus et al. (2014), Harvey
and Sucarrat (2014), and Eckernkemper (2018).

out to be crucial for intraday (Δ)ECoVaR forecasting; see
below). The model is furthermore fitted separately for
each trading day, which stands in contrast to our mixed-
frequency approach for intraday volatility/dependence
across trading days.

We provide an empirical application to a data set of the
378 most liquid stocks from the S&P500, which have been
jointly traded between 2004 and 2012. We focus on ana-
lyzing the mixed frequency structure, long memory-type
of dependencies and seasonalities in intraday variances,
correlations, tail-dependencies, and jumps as well as their
effects on the resulting (Δ)ECoVaR estimates. We find
strong evidence of long memory and seasonalities in the
intraday variance and dependence processes. Residual
diagnostics show that the proposed mixed frequency GAS
model successfully captures these effects. Furthermore,
we find that those model specifications that allow for
fat-tailed conditional return distributions and symmetric
intraday tail dependencies are preferred. We also perform
an in-sample and out-of-sample analysis in order to ana-
lyze (i) the time series behavior of the intraday (Δ)ECoVaR
and (ii) the effect of seasonalities in the volatility and
dependence processes on the (Δ)ECoVaR forecasts. Our
results show significant intraday variation and periodicity
of the (Δ)ECoVaR and that the modeling of seasonalities in
the volatility and dependence process is essential in order
to obtain reliable (Δ)ECoVaR forecasts.

The remainder of the paper is organized as follows.
Section 2 gives an overview on the ECoVaR measure.
Section 3 presents the mixed-frequency GAS model for
intraday volatility and dependence including the model
extension to price jumps. The application of the mixed-
frequency GAS model to a large dataset of intraday asset
returns of the S&P500 index is provided in Section 4.
Finally, Section 5 summarizes the results and concludes.

2 (Δ)ECoVaR

The CoVaR of the market (or the financial system) con-
ditional on institution i is defined as the VaR of the mar-
ket return conditional on the event that institution i is
in distress (see Adrian & Brunnermeier, 2016; Girardi &
Ergün, 2013).3

Let ri, 𝜏 denote the return of institution i in period 𝜏 and
rm, 𝜏 the corresponding return of the market. The CoVaR is
then the 𝛽-quantile of the conditional distribution of rm, 𝜏 :

Pr
(

rm,𝜏 ≤ CoVaRm|i
𝛼,𝛽,𝜏

| ri,𝜏 ≤ VaRi
𝛼,𝜏 ,𝜏−1

)
= 𝛽. (1)

3Here and in the following sections, we will for simplicity refer to a single
institution i. We however note that for risk management applications, the
single institution is typically replaced by a portfolio of institutions.
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The VaR for institution i, VaRi
𝛼,𝜏 , is defined as the

𝛼-quantile of the conditional return distribution of asset i
in period 𝜏, Pr(ri,𝜏 ≤ VaRi

𝛼,𝜏)|𝜏−1) = 𝛼, where 𝜏 denotes
a filtration of the returns of the asset and the market up to
period 𝜏.

In order to measure the part of the systemic risk, which is
caused by the distress of institution i, we may compute the
ΔCoVaR as defined by Adrian and Brunnermeier (2016)
and Girardi and Ergün (2013):

ΔCoVaRm|i
𝛼,𝛽,𝜏

=
CoVaRm|i

𝛼,𝛽,𝜏
− CoVaRm|benchi

𝛽,𝜏

CoVaRm|benchi

𝛽,𝜏

, (2)

that is, the additional effect on the VaR of the market if
institution i is in distress, relative to the situation, where
the return of institution i is at its benchmark level. Here,
the benchmark level is defined as one standard deviation
about the mean event, conditional on 𝜏−1:

Pr
(

rm,𝜏 ≤ CoVaRm|benchi

𝛽,𝜏
|

𝜇i,t − 𝜎i,t ≤ ri,𝜏 ≤ 𝜇i,t + 𝜎i,t,𝜏−1

)
= 𝛽,

(3)

where 𝜇i, t and 𝜎i, t denote the mean and standard deviation
of the conditional distribution of ri, 𝜏 given 𝜏−1. The
ΔCoVaR measures the systemic risk part which comoves
with the distress of institution i and can therefore be
interpreted as a statistical tail dependence measure (see
Adrian & Brunnermeier, 2016). While the CoVaR itself is
highly dependent on the conditional variance of the mar-
ket return, the ΔCoVaR is mainly driven by the covariance
between the market and the institution.

The (Δ)CoVaR as defined above is typically used in
order to measure systemic risk contributions. In this paper,
however, we are particularly interested in the risk man-
agement perspective. Here, it appears useful to reverse the
conditioning of the CoVaR in order to obtain the expo-
sure CoVaR (labeled ECoVaR) as proposed by Adrian and
Brunnermeier (2016):

Pr
(

ri,𝜏 ≤ ECoVaRi|m
𝛼,𝛽,𝜏

| rm,𝜏 ≤ VaRm
𝛼,𝜏 ,𝜏−1

)
= 𝛽, (4)

where VaRm
𝛼,𝜏 denotes the VaR of the market. According to

Equation (2), the ΔECoVaR is then defined as

ΔECoVaRi|m
𝛼,𝛽,𝜏

=
ECoVaRi|m

𝛼,𝛽,𝜏
− ECoVaRi|benchm

𝛽,𝜏

ECoVaRi|benchm

𝛽,𝜏

(5)

and measures the institution's (or the portfolio's) exposure
to system-wide distress relative to a normal market situa-
tion. In the remainder of the paper, we will focus on the
(Δ)ECoVaR.

3 MF- GAS MODELING OF
INTRADAY (Δ)ECOVAR

The computation and forecasting of the ECoVaR requires
a joint conditional distribution for the asset- and market
return. A flexible way of modeling this distribution is pro-
vided by the copula approach, where the joint conditional
distribution is decomposed into the marginal distribu-
tions and the dependence structure, which is captured by
a copula function (see, e.g., Nelsen, 2006, for an intro-
duction to copulas). An attractive feature of the copula
approach is that it allows to compute the ECoVaR in a
straight-forward way (see Mainik & Schaanning, 2014;
Reboredo & Ugolini, 2015). In particular, we can rewrite
Equation (4) as

Pr
(

ri,𝜏 ≤ ECoVaRi|m
𝛼,𝛽,𝜏

, rm,𝜏 ≤ VaRm
𝛼,𝜏 |𝜏−1

)
Pr
(

rm,𝜏 ≤ VaRm
𝛼,𝜏 | 𝜏−1

) = 𝛽, (6)

resulting in
Pr
(

ri,𝜏 ≤ ECoVaRi|m
𝛼,𝛽,𝜏

, rm,𝜏 ≤ VaRm
𝛼,𝜏 |

𝜏−1) = Fri,𝜏 ,rm,𝜏

(
ECoVaRi|m

𝛼,𝛽,𝜏
,VaRm

𝛼,𝜏 |𝜏−1

)
= 𝛼𝛽,

(7)

where Frm,𝜏 ,ri,𝜏 denotes the joint cumulative distribution
function of ri, 𝜏 and rm, 𝜏 given all lagged return informa-
tion. Following the Sklar (1959) theorem, we now express
the joint cumulative distribution function by a conditional
copula function,

C(ui,𝜏 ,um,𝜏 |𝜏−1) = 𝛼𝛽, (8)

with ui,𝜏 = Fri,𝜏 (ECoVaRi|m
𝛼,𝛽,𝜏

|𝜏−1) and um,𝜏 =
Frm,𝜏 (VaRm

𝛼,𝜏 |𝜏−1) = 𝛼. Given known (or estimated)
marginal distribution functions and copula the ECoVaR
can be computed via a two-step procedure:

1. Solve C(ui,𝜏 , 𝛼|𝜏−1) = 𝛼𝛽 for ui, 𝜏 ;
2. Compute ECoVaRi|m

𝛼,𝛽,𝜏
via ECoVaRi|m

𝛼,𝛽,𝜏
= F−1

ri,𝜏
(ui,𝜏 |𝜏−1).

For the computation and forecasting of the ECoVaR,
we employ parametric specifications for the conditional
return distributions and the bivariate copula function. In
the upcoming two sections, we therefore develop flexi-
ble dynamic volatility models for intraday asset returns
and dynamic copula specifications, which account for
the time-varying and potentially nonlinear dependence
between the intraday asset and market return.

3.1 Volatility
3.1.1 The V-MF-GAS Model
Let Pt,𝓁 denote the intraday price of a particular asset at
day t, t = 1, … ,T, and intraday period 𝓁, 𝓁 = 1, … , S,
where S is the total number of intraday periods per trading
day (e.g., S = 390 for minute-returns). For the ease of nota-
tion, we define the overall period index 𝜏 = (t − 1)S + 𝓁
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FIGURE 1 Total volatility and its
components. Total log-volatility (solid black),
intraday (dashed dark blue), and diurnal (dotted
light blue) volatility components fluctuating
around the daily (dashed red) volatility level for
S = 26 intraday periods (corresponding to
15-min returns) and four trading days [Colour
figure can be viewed at wileyonlinelibrary.com]

with 𝜏 = 1, … , S · T. The demeaned continuously com-
pounded intraday return is then obtained as r𝜏 = 100 ×[

r̃𝜏 − (1∕(S · T))
∑S·T
𝜏=1 r̃𝜏

]
, where r̃𝜏 = [log P𝜏 − log P𝜏−1].4

We then model the stochastic evolution of the intraday
asset return r𝜏 via

r𝜏 =
√

h𝜏 𝜂𝜏 , where h𝜏 = Var(r𝜏 |𝜏−1), (9)

with 𝜏 = {r𝜏 , rt−𝜏 , · · ·} and 𝜂𝜏
iid∼ F(0, 1), where F(0, 1)

refers to a known parametric distribution with zero mean
and unit variance. Popular candidates are the normal and
the standardized Student's t distribution.

We follow Engle and Sokalska (2012) in assuming
a mixed frequency three-component structure for the
log-volatility process in order to capture the strong persis-
tence and periodicity of the intraday volatility dynamics:

h𝜏 = exp{𝜔𝓁 + z𝜏 + lt}. (10)
The period-specific intercepts 𝜔𝓁 capture the

well-known u-shaped periodicity in intraday volatilities
(the “volatility smile”; see, e.g., Andersen & Boller-
slev, 1997) and z𝜏 and lt are both short-memory latent
volatility components, which are realized at frequencies 𝜏
and t. More precisely, z𝜏 takes new values every period 𝜏,
while lt changes its value every S periods and stays con-
stant for the next S− 1 periods, until it changes again. Note
that, although being driven by short-memory stochastic
processes, the mixed-frequency GAS approach is able to
generate long-memory type of dependence patterns at the
intraday frequency by aggregating independent dynamic
stochastic volatility components at different frequencies
(see, e.g., Corsi, 2009; Granger, 1980). The dynamics of the
three volatility components are schematically illustrated
in Figure 1.

4Note that we skip the index i for the institution for notational con-
venience. Also note that we do not model the mean dynamics of the
intraday returns, since the data set illustrated in Section 4 does not show
significant serial correlation in the return levels.

We assume a GAS-driven autoregressive framework for
the stochastic evolution of z𝜏 and lt over time, that is,

z𝜏 = 𝛼
(z)
1 z𝜏−1 + 𝛼(z)2 𝜉

(z)
𝜏−1, (11)

lt = 𝛼
(l)
1 lt−1 + 𝛼(l)2 𝜉

(l)
t−1, (12)

where the innovations 𝜉(z)𝜏 and 𝜉(l)t are defined as the scaled
scores of log-likelihood contributions at the respective fre-
quencies:

𝜉
(z)
𝜏 = s(z)𝜏 ∇(z)

𝜏 , ∇(z)
𝜏 =

𝜕 log𝑓 (r𝜏 |𝜏−1)
𝜕z𝜏

, (13)

𝜉
(l)
t = s(l)t ∇(l)

t ,

∇(l)
t =

𝜕 log𝑓 (r(t−1)·S+1, r(t−1)·S+2, … , rt·S|(t−1)·S)
𝜕lt

.
(14)

While the definition of the innovation 𝜉
(z)
𝜏 in

Equation (13) is standard in the context of GAS models,
the definition of 𝜉(l)t in Equation (14) reflects the mixed
frequency structure of the model by taking into account
the informational content of all return information at
frequency t for the evolution of the process for lt. We
denote the framework as volatility mixed frequency GAS
(V-MF-GAS) model.

A typical choice for the scaling coefficients s(z)𝜏 and s(l)t
is the square-root of the inverse Fisher information, s(z)𝜏 =
(E[(∇(z)

𝜏 )2|𝜏−1])−0.5 and s(l)t = (E[(∇(l)
t )2|t−1])−0.5, which

allows for a straight forward analysis of weak stationar-
ity of the stochastic processes for z𝜏 and lt. The analytical
derivation of the Fisher information is however often prob-
lematic for complex stochastic models, such that a unit
scaling appears to be an obvious choice in such situa-
tions. For the GAS specifications proposed in the following
sections, we will employ analytical Fisher scaling when-
ever possible and unit scaling in all cases where analytical
expressions for the Fisher information are not available.

Our basic specification of the V-MF-GAS model (labeled
V-MF-GAS-N) assumes a normal distribution for the
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conditional return innovation 𝜂𝜏 in Equation (9). The
Gaussian log-likelihood contribution is given by

log 𝑓 (r𝜏 |𝜏−1) = −0.5 log(2𝜋)−0.5 log(h𝜏)−0.5r2
𝜏h−1

𝜏 . (15)

For the scores and Fisher information, we then obtain

∇(z)
𝜏 = 0.5

(
r2
𝜏h−1

𝜏 − 1
)
, E[(∇(z)

𝜏 )2|𝜏−1] = 0.5, (16)

∇(l)
t = 0.5

S∑
𝑗=1

(
r2
(t−1)·S+𝑗h

−1
(t−1)·S+𝑗 − 1

)
,

E[(∇(l)
t )2|t−1] = 0.5S.

(17)

Since intraday asset return data are typically character-
ized by heavy tails, it may be reasonable to replace the
normal by a standardized Student's t distribution. The
Student t log-likelihood contribution is given by

log 𝑓 (r𝜏 |𝜏−1) = logΓ
(
𝜈 + 1

2

)
− logΓ

(
𝜈

2

)
− 1

2
log(𝜈 − 2) − 1

2
log(h𝜏)

−
(
𝜈 + 1

2

)
log

(
1 +

r2
𝜏

(𝜈 − 2)h𝜏

)
,

(18)
where 𝜈 denotes the d.o.f. parameter. We then obtain

∇(z)
𝜏 = (𝜈 + 1)

2

(
1 +

r2
𝜏

(𝜈 − 2)h𝜏

)−1 r2
𝜏

(𝜈 − 2)h𝜏
− 1

2
, (19)

∇(l)
t =

S∑
𝑗=1

⎡⎢⎢⎣
(𝜈 + 1)

2

(
1 +

r2
(t−1)·S+𝑗

(𝜈 − 2)h(t−1)·S+𝑗

)−1

×
r2
(t−1)·S+𝑗

(𝜈 − 2)h(t−1)·S+𝑗
− 1

2

⎤⎥⎥⎦ ,
(20)

and

E[(∇(z)
𝜏 )2|𝜏−1] =

𝜈

2(𝜈 + 3)
, E[(∇(l)

t )2|t−1] =
S𝜈

2(𝜈 + 3)
.

(21)

The Student's t specification of the V-MF-GAS model
is labeled V-MF-GAS-t. Given the GAS innovations
defined above, the stochastic processes for z𝜏 and lt in
Equations (11) and (12) are weakly stationary if |𝛼(z)1 | < 1
and |𝛼(l)1 | < 1, respectively.

The V-MF-GAS models assume a mixed frequency
volatility process where the “long-term” volatility com-
ponent lt changes at the daily frequency. Although the
daily frequency is in line with the original approach of
Engle and Sokalska (2012), the V-MF-GAS framework triv-
ially allows to change the frequency to any desired change
point. For example, we could allow for changing volatil-
ity levels every hour or every half-day and so on. In fact,

we can also estimate the optimal change point by like-
lihood comparison over several hypothetical values for S
(see Section 3.3 for details on the ML parameter estimation
of the V-MF-GAS models). Initial estimations, however,
showed that a typical ML estimate for the change point is
the daily frequency, which led us to fix the frequency of
the long-term component lt to the daily one. This choice
is consistent with the work of Engle and Sokalska (2012),
offers a good fit to the data (see Section 4), and simplifies
model estimation without loss of flexibility.

The literature offers several approaches for modeling
the intraday periodicity {𝜔𝓁}S

𝓁=1: One could estimate all S
intercepts individually or apply splines or Fourier trans-
forms in order to save parameters (compare, e.g., Deo et al.,
2006; Koopman et al., 2017; Payne, 1996). In our case, the
data set comprises S intraday return observations for a
total of T trading days. Hence, we can easily estimate all
S intercepts individually in order to preserve a maximum
of flexibility without unduly increasing overall estimation
error.5

We finally note that it is also possible to model the
autoregressive parameters of the z𝜏 process periodically
as in Rossi and Fantazzini (2015). However, we refrain to
follow this approach since it dramatically increases the
number of model parameters and an initial investigation
did not indicate significant gains in model fit.

3.1.2 The V-MF-GAS-J Model
It is widely documented that intraday return data may be
affected by discrete price jumps induced by unusual news
events like earnings surprises. These events cause infre-
quent large moves in the returns, which tend to cluster
together. For example, market crashes can be realized as a
series of jumps over a short period of time (see, e.g., Maheu
& McCurdy, 2004).

In order to account for intraday price jumps, we extend
the V-MF-GAS approach to a mixed GAS-Jump model
(labeled as V-MF-GAS-J) based on a compound Poisson
jump process in the spirit of Maheu and McCurdy (2004):
We decompose the return process into two components,
𝜖1𝜏 and 𝜖2𝜏 , where 𝜖1𝜏 represents “normal” news events
inducing smooth price changes, and 𝜖2𝜏 denotes news
“surprises,” which cause relatively infrequent large price
changes. Under the basic assumption of Gaussian dis-
tributed return innovations, we obtain

r𝜏 = 𝜖1𝜏 + 𝜖2𝜏 , (22)

where
𝜖1𝜏 =

√
h𝜏 e𝜏 , e𝜏

iid∼ N(0, 1), (23)

5Note that each 𝜔𝓁 is estimated using roughly T observations (e.g., T =
2265 in the empirical application; see Section 4).
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𝜖2𝜏 =
n𝜏∑
𝑗=1

c𝑗𝜏 − 𝜃𝜆𝜏 , c𝑗𝜏
iid∼ N(𝜃, 𝛿2), (24)

and n𝜏 |𝜏−1 ∼ Poi(𝜆𝜏) with time-varying news arrival
intensity 𝜆𝜏 . Here, we assume that the conditional volatil-
ity h𝜏 is driven by the V-MF-GAS process of the previous
section. Under Gaussian innovations e𝜏 and cj𝜏 , we obtain

𝑓 (r𝜏 |n𝜏 = 𝑗,𝜏−1) ∼ N
(
𝜃( 𝑗 − 𝜆𝜏), h𝜏 + 𝑗𝛿2) . (25)

The corresponding volatility forecast is given by
Var(r𝜏 |𝜏−1) = h𝜏 + 𝜆𝜏(𝛿2 + 𝜃2).

We model the jump intensity by an autoregressive GAS
process, where

𝜆𝜏 = exp{𝑓𝜏}

𝑓𝜏 = 𝜙0 + 𝜙1𝑓𝜏−1 + 𝜙2𝜉
( 𝑗)
𝜏−1,

with

𝜉
( 𝑗)
𝜏 = s( 𝑗)𝜏 ∇( 𝑗)

𝜏 , ∇( 𝑗)
𝜏 =

𝜕 log𝑓 (r𝜏 |𝜏−1)
𝜕𝑓𝜏

.

We then obtain the likelihood contribution

𝑓 (r𝜏 |𝜏−1) =
∞∑
𝑗=0
𝑓 (r𝜏 ,n𝜏 = 𝑗|𝜏−1)

=
∞∑
𝑗=0

exp{−𝜆𝜏}𝜆𝑗𝜏
𝑗!
√

2𝜋(h𝜏 + 𝑗𝛿2)
exp{

−(r𝜏 + 𝜃𝜆𝜏 − 𝜃𝑗)2

2(h𝜏 + 𝑗𝛿2)

}
.

(26)

The jump-adjusted scores are given by

∇(z)
𝜏 = h𝜏

𝑓 (r𝜏 |𝜏−1)

∞∑
𝑗=0
𝑓 (r𝜏 ,n𝜏 = 𝑗|𝜏−1)

×
[
(r𝜏 + 𝜃𝜆𝜏 − 𝜃𝑗)2

2(h𝜏 + 𝑗𝛿2)2 − 1
2(h𝜏 + 𝑗𝛿2)

]
,

∇(l)
t =

S∑
𝑗=1

∇(z)
(t−1)·S+𝑗 ,

∇( 𝑗)
𝜏 = 𝜆𝜏

𝑓 (r𝜏 |𝜏−1)

∞∑
𝑗=0
𝑓 (r𝜏 ,n𝜏 = 𝑗|𝜏−1)

×
[[

𝑗

𝜆𝜏
− 1

]
− (r𝜏 + 𝜃𝜆𝜏 − 𝜃𝑗)𝜃

h𝜏 + 𝑗𝛿2

]
.

The infinite sums are truncated at 𝑗 = 20 for likeli-
hood evaluation.6 Since it appears difficult to derive a
closed-form expression for the Fisher information under
the V-MF-GAS-Jump framework, we follow the standard
approach in the literature and set all scaling coefficients
to one (s(z)𝜏 = s(l)t = s( 𝑗)𝜏 = 1). The resulting jump model is
labeled V-MF-GAS-N-J.

6In our empirical application, we seldom encountered nonzero probabil-
ity mass for more the 10 jumps (see also Maheu & McCurdy, 2004, for
a similar truncation). Our results also appear to be robust to increasing
truncation limits.

While the V-MF-GAS-N-J model builds on Gaussian
return innovations in the spirit of Maheu and McCurdy
(2004), it appears natural to replace the normal in
Equation (25) by its Student's t analog. While the resulting
V-MF-GAS-t-J specification is straightforward to imple-
ment, the practical estimation turned out to be unstable for
the majority of the 378 time series in our empirical appli-
cation (see Section 4) with frequent convergence problems
during the numerical optimization of the log-likelihood.
We attribute this instability to problems with model
identification: both the jump process and the Student t
innovations account for the heavy tails of the intraday
return data, and it appears to be hard to discriminate
between the contribution of the jump-part and the return
innovation part. We therefore focus on Gaussian innova-
tion processes. Details on the Student t jump specification
are available upon request.

3.2 Dependence
3.2.1 The C-MF-GAS Model
We employ a dynamic copula approach in order to model
the time-varying dependence between the market and the
individual asset return. In particular, we follow the Sklar
(1959) theorem, which states that the joint conditional
distribution can be decomposed into the marginal condi-
tional distribution functions and the conditional copula.

Consider the bivariate time series process {ri,𝜏 , rm,𝜏}T·S
𝜏=1,

where r·, 𝜏 follows one of the V-MF-GAS models of
Section 3.1. The standardized return residuals obtain as

𝜂i,𝜏 =
ri,𝜏√

Var(ri,𝜏 |𝜏−1)
and 𝜂m,𝜏 =

rm,𝜏√
Var(rm,𝜏 |𝜏−1)

,

(27)
with the conditional distribution of 𝜂𝜏 = (𝜂i,𝜏 , 𝜂m,𝜏)′ given
𝜏−1 denoted by

𝜂𝜏 |𝜏−1 ∼ F𝜂i,𝜏 𝜂m,𝜏 (𝜂i,𝜏 , 𝜂m,𝜏 |𝜏−1). (28)

According to Sklar's theorem, we can now write the joint
distribution as

F𝜂i,𝜏 𝜂m,𝜏 (𝜂i,𝜏 , 𝜂m,𝜏 |𝜏−1) = C(ui,𝜏 ,um,𝜏 ; 𝜃𝜏 |𝜏−1) , (29)

where C(·) denotes a conditional copula function with
n-dimensional dynamic dependence parameter 𝜃𝜏 =
(𝜃1,𝜏 , … , 𝜃n,𝜏 )′ and corresponding copula density c(·).
The copula is defined as a distribution function on
the two-dimensional hypercube with uniform marginals.
The arguments ui, 𝜏 and um, 𝜏 of the copula function are
obtained by the probability integral transform

ui,𝜏 = F𝜂i,𝜏 (𝜂i,𝜏 |𝜏−1) and um,𝜏 = F𝜂m,𝜏 (𝜂m,𝜏 |𝜏−1) , (30)

with F𝜂·,𝜏 (𝜂·,𝜏 |𝜏−1) being conditional distribution func-
tions given 𝜏−1, as implied by the volatility models for ri, 𝜏
and rm, 𝜏 . For the V-MF-GAS-N and V-MF-GAS-t models,
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the marginal distributions F𝜂·,𝜏 are standard Gaussian and
Student's t, respectively (compare the model specifications
in Section 3.1.1). For the jump specifications, the distri-
butions obtain as mixtures over the stochastic numbers
of jumps (see Equation 26) and can be approximated by
the empirical cdf of the estimated residual series {𝜂̂i,𝜏}
and {𝜂̂m,𝜏} obtained after ML estimation of the model
parameters.

Empirical applications of conditional copula mod-
els for daily asset returns typically report evidence of
long-memory type of dependence structures for the depen-
dence parameters (see, e.g., Janus et al., 2014; Grossmass
& Poon, 2015). We therefore employ the MF-GAS process
of Section 3.1 in order to model the copula dynamics. Let

𝜃𝜏 = g(𝜓𝜏), with (31)

𝜓𝜏 = 𝜔̃𝓁 + z̃𝜏 + l̃t, (32)

where 𝜔̃𝓁 = (𝜔̃1,𝓁 , … , 𝜔̃n,𝓁)′, z̃𝜏 = (z̃1,𝜏 , … , z̃n,𝜏)′ and
l̃t = (l̃1,𝜏 , … , l̃n,𝜏)′ are n-dimensional dynamic intra-
day and daily dependence components and g is an
n-dimensional monotonously increasing function, which
maps the dependence components into the domain of the
copula parameters. Note that we include periodic con-
stants 𝜔̃𝓁 in order to account for potential seasonality in
the copula parameters. Let

z̃𝑗,𝜏 = 𝛼̃
(z)
𝑗,1z̃𝑗,𝜏−1 + 𝛼̃(z)𝑗,2𝜉

(z)
𝑗,𝜏−1 (33)

l̃𝑗,t = 𝛼̃
(l)
𝑗,1l𝑗,t−1 + 𝛼̃(l)𝑗,2𝜉

(l)
𝑗,t−1, (34)

for 𝑗 = 1, … ,n. The GAS innovations 𝜉(z)𝑗,𝜏 and 𝜉
(l)
𝑗,t are

defined analogously to Equations (13) and (14):

𝜉
(z̃)
𝑗,𝜏 = s(z̃)𝑗,𝜏∇

(z̃)
𝑗,𝜏 , ∇(z̃)

𝑗,𝜏 =
𝜕 log c(u𝜏 |𝜏−1)

𝜕z̃𝑗,𝜏
, (35)

𝜉
(l̃)
𝑗,t = s(l̃)𝑗,t∇

(l̃)
𝑗,t, ∇(l̃)

𝑗,t

=
𝜕 log c(u(t−1)·S+1,u(t−1)·S+2, … ,ut·S |(t−1)·S)

𝜕l̃𝑗,t
,

(36)

with u𝜏 = (ui,𝜏 ,um,𝜏 )′. According to the previous section,
we denote the framework as Copula(C)-MF-GAS.

We investigate three popular copula functions, which
account for different kinds of dependencies:

1. The bivariate Gaussian copula with time-varying corre-
lation parameter 𝜃𝜏 = 𝜌𝜏 ∈ (−1, 1). The copula density is
given by

c(ui,𝜏 ,um,𝜏 |𝜏−1) =
1√

1 − 𝜌2
𝜏

exp{
−
𝜌2
𝜏(x2

i,𝜏 + x2
m,𝜏) − 2𝜌𝜏xi,𝜏xm,𝜏

2(1 − 𝜌2
𝜏)

}
,

(37)

where xi,𝜏 = Φ−1(ui,𝜏) and xm,𝜏 = Φ−1(um,𝜏) with Φ−1(·)
denoting the inverse of the Gaussian cdf. We define the
link function g as

𝜌𝜏 = g(𝜓𝜏) =
exp(𝜓𝜏) − 1
exp(𝜓𝜏) + 1

(38)

and obtain

∇(z̃)
𝜏 =

𝜌𝜏(1 − x2
i,𝜏 − x2

m,𝜏) + (1 + 𝜌2
𝜏)xi,𝜏xm,𝜏 − 𝜌3

𝜏

(𝜌2
𝜏 − 1)2

.
𝜌𝜏 ,

(39)

∇(l̃)
t =

S∑
𝑗=1

∇(z̃)
(t−1)·q+𝑗 , (40)

where .
𝜌𝜏 = 𝜕𝜌𝜏∕𝜕z̃𝜏 . We use the square-root of

the inverse Fisher information for the scaling of the
GAS innovations with the according formulas given in
Appendix A.

2. The bivariate Student's t copula with time-varying cor-
relation parameter 𝜃𝜏 = 𝜌𝜏 ∈ (−1, 1) and time-constant
degrees of freedom parameter 𝜅 > 4. The copula density
is given by

c(ui,𝜏 ,um,𝜏 |𝜏−1) =
Γ
(
𝜅+2

2

)
Γ
(
𝜅

2

)
Γ
(
𝜅+1

2

)√
1 − 𝜌2

𝜏

·

[
1 + 𝜅−1(1 − 𝜌2

𝜏)−1(x2
i,𝜏 + x2

m,𝜏 − 2𝜌𝜏xi,𝜏xm,𝜏)
]−(𝜅+2)∕2

[
(1 + x2

i,𝜏∕𝜅)(1 + x2
m,𝜏∕𝜅)

]−(𝜅+1)∕2 ,

(41)
where xi, 𝜏 = t−1(ui, 𝜏 ; 𝜅) and xm, 𝜏 = t−1(um, 𝜏 ; 𝜅) with t−1(·)
denoting the inverse of the Student t cdf. The link func-
tion g is defined as in Equation (38), and we obtain

∇(z̃)
𝜏 =

(
1 − 𝜌2

𝜏

)−2

×
[
(1 + 𝜌2

𝜏)(𝜋𝜏xi,𝜏xm,𝜏 − 𝜌𝜏) − 𝜌𝜏(𝜋𝜏x2
i,𝜏 + 𝜋𝜏x2

m,𝜏 − 2)
]

.
𝜌𝜏 ,

(42)

∇(l̃)
t =

S∑
𝑗=1

∇(z̃)
(t−1)·q+𝑗 , (43)

where

𝜋𝜏 = (𝜅 + 2)(𝜅 + m𝜏)−1,

m𝜏 =
(
1 − 𝜌2

𝜏

)−2
(

x2
i,𝜏 + x2

m,𝜏 − 2𝜌𝜏xi,𝜏xm,𝜏

)
,

.
𝜌𝜏 = 𝜕𝜌𝜏∕𝜕z̃𝜏 .

(44)

We use the square-root of the inverse Fisher information
for the scaling of the GAS innovations with the according
formulas given in Appendix A.

3. A mixture of Clayton and rotated Clayton copula
(labeled CrC Copula) with time-varying copula parame-
ters 𝜃1𝜏 > 0, 𝜃2𝜏 > 0 and time-constant mixture weight w
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(see, e.g., Eckernkemper, 2018, for an empirical applica-
tion of this type of copula). The copula density is given
by

c(ui,𝜏 ,um,𝜏 |𝜏−1)
= w · c1(ui,𝜏 ,um,𝜏 |𝜏−1) + (1 − w) · c2(ui,𝜏 ,um,𝜏 |𝜏−1)

(45)
with

c1(ui,𝜏 ,um,𝜏 |𝜏−1)

= (1 + 𝜃1𝜏)(ui,𝜏um,𝜏)−1−𝜃1𝜏

(
u−𝜃1𝜏

i,𝜏 + u−𝜃1𝜏
m,𝜏 − 1

)− 1
𝜃1𝜏

−2
,

(46)

c2(ui,𝜏 ,um,𝜏 |𝜏−1) = c1(1 − ui,𝜏 , 1 − um,𝜏 ; 𝜃2𝜏) . (47)

We define the two-dimensional link function g for 𝜃𝜏 =
(𝜃1𝜏 , 𝜃2𝜏)′ as

𝜃𝜏 = (exp(𝜓1𝜏), exp(𝜓2𝜏))′, (48)

and we obtain ∇(z̃)
𝜏 = (∇(z̃)

1,𝜏 ,∇
(z̃)
2,𝜏)

′ and ∇(l̃)
t = (∇(l̃)

1,t,∇
(l̃)
2,t)

′

as

∇(z̃)
𝜏 =

⎡⎢⎢⎣
(

w 𝜕c1(ui,𝜏 ,um,𝜏 |𝜏−1)
𝜕𝜃1𝜏

1
wc1(ui,𝜏 ,um,𝜏 |𝜏−1)+(1−w)c2(ui,𝜏 ,um,𝜏 |𝜏−1)

) .
𝜃1𝜏(

(1 − w) 𝜕c2(ui,𝜏 ,um,𝜏 |𝜏−1)
𝜕𝜃2𝜏

1
wc1(ui,𝜏 ,um,𝜏 |𝜏−1)+(1−w)c2(ui,𝜏 ,um,𝜏 |𝜏−1)

) .
𝜃2𝜏

⎤⎥⎥⎦ , (49)

∇(l̃)
t =

[∑q
𝑗=1 ∇

(z̃)
1,(t−1)·q+𝑗∑q

𝑗=1 ∇
(z̃)
2,(t−1)·q+𝑗

]
, (50)

where
.
𝜃1𝜏 = 𝜕𝜃1𝜏∕𝜕z̃1𝜏 and

.
𝜃2𝜏 = 𝜕𝜃2𝜏∕𝜕z̃2𝜏 . For

practical implementation, we set all scaling coefficients
for the GAS recursions to one. The copula derivatives in
Equation (49) are given in Appendix A.

The Gaussian copula allows for linear dependence while
Student's t copula captures both, linear dependence via
the correlation coefficient and non-linear symmetric tail
dependence via the additional d.o.f. parameter 𝜅. For a
given correlation level, the tail dependence increases by
decreasing 𝜅, and for a given value of 𝜅, the tail depen-
dence increases with increasing correlation. The mixture
copula finally captures both, symmetric and asymmetric
tail dependence, where the level of lower-tail (upper-tail)
dependence increases monotonically with the CrC copula
parameter 𝜃1𝜏 (𝜃2𝜏).

Note that our dynamic specification for 𝜓𝜏 in
Equation (32) allows us to investigate the presence of
intraday periodicity in the dynamic correlation and
tail-dependence structure. For the Student t copula, we
can separately analyze periodic patterns for the cor-
relation process and the d.o.f via allowing the copula
parameter 𝜅 to vary across intraday periods. In our empir-
ical application in Section 4, we consider the following

dynamic copula specifications: (i) the Gaussian copula
with GAS-driven correlation and intraday correlation
periodicity (labeled C-MF-GAS-G), (ii) Student's t copula
with GAS-driven correlation, correlation periodicity, and
nonperiodic d.o.f. 𝜅 (labeled C-MF-GAS-t𝜅), (iii) Student's
t copula with GAS-driven correlation, correlation period-
icity and periodic d.o.f. 𝜅 (labeled C-MF-GAS-t𝜅𝓁 ), and
(iv) the CrC copula with periodicity in both GAS-driven
copula parameters (labeled C-MF-GAS-CrC).

3.3 Estimation
We summarize all time-invariant model parameters in the
vector 𝜗 = (𝜗i, 𝜗m, 𝜗c)′, where 𝜗· denotes the vector of
parameters for the margins (institution and market) and
the copula. The parameter vector 𝜗 is then estimated by
maximum likelihood (ML). Asymptotic standard errors
are obtained by inverting a numerical approximation of the
Hessian at the ML parameter estimates.

As usual in the context of copula models, the parameters
are estimated in two steps (compare, e.g., Janus et al., 2014;

Hafner & Manner, 2012). In the first step, the parameters of
the margins as specified in Section 3.1 are estimated. The
corresponding log-likelihoods for the asset and the market
obtain as

i =
T·S∑
𝜏=1

log 𝑓ri,𝜏
(ri,𝜏 ; 𝜗i|𝜏−1) and m =

T·S∑
𝜏=1

log𝑓rm,𝜏
(rm,𝜏 ; 𝜗m|𝜏−1),

(51)

with 𝑓r·,𝜏 being Gaussian or Student's t for the
V-MF-GAS-N and V-MF-GAS-t models, respectively.
For the jump specification, the likelihood contribution
is obtained via Equation (26). The log-likelihoods in
Equation (51) are maximized over the model param-
eters of the marginal distributions, 𝜗i and 𝜗m, for all
assets and the market separately, using quasi-Newton
methods.

In the second step, the parameters of the copula
as specified in Section 3.2.1 are estimated. Therefore,
we compute the estimated residuals 𝜂̂i,𝜏 and 𝜂̂m,𝜏 using
Equation (27) based on the parameter estimates from
the first step. These residuals are then transformed
into ûi,𝜏 and ûm,𝜏 via the probability integral trans-
form based on the (estimated) conditional Gaussian
and Student's t distribution functions (V-MF-GAS-N and
V-MF-GAS-t models; see Equation 30), or using the
empirical cdf of the {𝜂̂i,𝜏}T·S

𝜏=1 for the jump specifications.
The remaining model parameters (𝜗c) for the copula
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process are then estimated via maximizing the copula
log-likelihood

c =
T·S∑
𝜏=1

log c(ûi,𝜏 , ûm,𝜏 ;𝜗c|𝜏−1) (52)

using quasi-Newton methods.

4 EMPIRICAL APPLICATION

4.1 Data
We now apply the proposed model specifications in order
to analyze the dynamics of volatilities, (non)linear depen-
dencies, and (Δ)ECoVaR measures for a data set of the
378 most liquid stocks from the S&P 500 index, which
are jointly traded between 2004 and 2012. The compara-
tively huge database gives us the opportunity to analyze
the robustness and reliability of our findings across stocks
and industry sectors. An overview on the included stocks
and GICS sectors is given in Table S1. The data set com-
prises 15-min intraday log returns for the period starting at
January 2, 2004, and ending on December 31, 2012, cover-
ing 2265 trading days and a total of 58,890 intraday trading
periods.7 For the computation of the (Δ)ECoVaR, we take
the S&P 500 as the market return.8

In the following subsections, we start with a separate
analysis of the full sample estimation results for the volatil-
ity and copula part of the model. Subsequently, we apply
those model specifications with the best in-sample fit in
order to analyze the resulting (Δ)ECoVaR measures and
provide an out-of-sample (Δ)ECoVaR forecasting appli-
cation. In all subsections, we provide detailed results for
three representative time series: the market return (S&P
500), American Express (AXP), and Microsoft (MSFT). In
addition, we also report aggregate results for all 378 time
series of the complete data set and the according GICS
industry sectors.

4.2 Volatility
We start with the discussion of the estimation results for
the volatility MF-GAS models of Section 3.1. We consider
the V-MF-GAS-N, V-MF-GAS-t, and the V-MF-GAS-N-J
model.

Table 1 reports the full sample ML parameter estimates
for the S&P 500, the AXP stock, and the MSFT stock. All
estimates are significant at the 1% level. We observe strong
persistence of the GAS volatility processes with autoregres-
sive coefficients for the intraday and daily components of

7The data have been obtained from www.quantquote.com.
8A typical issue with intraday data is the occurrence of missing values.
Following common practice, we replace such infrequent data gaps by
linear interpolation (see, e.g., Sun et al., 2008).

up to 0.98 and 0.99, respectively. All processes are weakly
stationary and the persistence of the daily volatility com-
ponent is always higher than its intraday counterpart. The
estimates for the V-MF-GAS-N-J model imply persistent
jump processes with autoregressive GAS parameters of
0.82 and 0.90 for the S&P 500 and the AXP stock, and
0.45 for the MSFT stock. For AXP and MSFT, we find
significantly positive mean parameters of the jump innova-
tions (𝜃), which induce a slightly positive skewness to the
return distribution. For the market return, the estimated
innovation mean is significantly negative. The overall best
in-sample fit is obtained under the V-MF-GAS-t specifica-
tion, which shows the highest value of the log-likelihood
and the lowest value of the Akaike information criterion
(AIC). The estimates of the Student t d.o.f. parameters are
very similar for the three return series and take values of
about 6.7, which induce rather heavy tails of the intra-
day return distributions and significant deviations from
normality. The table also reports the R2 of a regression
of the nonperiodic part of the log-volatility l𝜏 + z𝜏 on the
daily component l𝜏 . The GAS-driven daily volatility level
explains up to 94% of the total volatility variation and
allows the model to capture the highly persistent volatil-
ity dynamics without having to resort to ARFIMA-type
dynamics (see also the residual autocorrelation functions
in Figure 3).

Figure 2 depicts the estimated log-volatility components
ẑ𝜏 and l̂𝜏 together with the three representative return
series for the S&P 500 and the AXP and MSFT stocks.
The mixed-frequency GAS process for the daily compo-
nent l𝜏 generates a smooth long-term volatility pattern that
captures a main part of the intraday volatility variation.
Under the V-MF-GAS-N model, the estimated nonperi-
odic log-volatility ẑ𝜏+ l̂𝜏 show various distinguished peaks,
which are induced by sudden extreme return innova-
tions entering the GAS recursions. This indicates the pres-
ence of jump discontinuities and/or fat-tailed return inno-
vations. Both the V-MF-GAS-N-J and the V-MF-GAS-t
model account for these abnormal returns as seen by
the corresponding volatility plots in the third and fourth
row of Figure 2. The forecasts appear smoothest for the
AIC-preferred V-MF-GAS-t model. The figure also illus-
trates the problem of jointly identifying discrete return
jumps and fat-tailed return innovations as the intra-
day volatility patterns obtained by the V-MF-GAS-t and
V-MF-GAS-N-J models appear quite similar. Compared
with the jump specification, the Student t approach is how-
ever more parsimonious in parametrization, more easy to
implement, and faster to estimate in practice.

Figure 3 reports sample autocorrelation functions and
according 95% Bartlett confidence bounds for the squared
intraday returns and the squared standardized martingale
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FIGURE 2 Estimated conditional volatility components ẑ𝜏 and l̂𝜏 for the S&P 500, the AXP, and MSFT return series and the V-MF-GAS-N,
V-MF-GAS-t, and the V-MF-GAS-N-J models together with the corresponding return series. Dotted grey line: ẑ𝜏 + l̂𝜏 ; black line: l̂𝜏

FIGURE 3 Sample autocorrelation functions (500 lags) and according 95% Bartlett confidence bounds for the squared intraday returns of
the S&P 500, AXP, and MSFT return series and the squared standardized martingale difference residuals 𝜂2

𝜏 = r2
𝜏∕Var(r𝜏 |𝜏−1), obtained

under the V-MF-GAS-N, V-MF-GAS-t and the V-MF-GAS-N-J models
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difference residuals 𝜂̂2
𝜏 = r2

𝜏∕V̂ar(r𝜏 |𝜏−1). Under the
null of correctly specified volatility dynamics, the squared
residuals should be serially uncorrelated. The reported
sample autocorrelations are close to zero for all return
series and volatility models, which indicates that the
three V-MF-GAS models successfully account for the
strong persistence of the intraday return variation. At
the 1% significance level, Ljung–Box tests still reject the
null of zero autocorrelation for the V-MF-GAS-N-J (Mar-
ket, AXP, and MSFT) and V-MF-GAS-t (Market and
AXP) models. These test results should however not
be overinterpreted because the significance of the test
statistics is driven by a few peaks of the ACF. The
sample size of 58,890 intraday trading periods induces
tight confidence regions for the autocorrelation func-
tions under the null such that infrequent violations of
the confidence bands appear rather naturally and can
be taken as evidence against overfitting the sample ACF
of the data.

We now turn to the discussion of the estimation results
for the complete set of 379 intraday return series. The
left panel of Table 2 reports aggregate results for the
obtained log-likelihood values, AICs and Ljung–Box tests
on serial correlation in the squared martingale differ-
ence residuals. For the log-likelihoods and the AICs, the
table reports the absolute numbers and the percentage
of cases, where the respective model is selected. For the
Ljung–Box test, the absolute number and the percent-
age of rejections at the 1% significance level is reported.
Both the log-likelihood and the AIC criterion select the
V-MF-GAS-t approach as the best fitting model for all 378
return series. The jump specification is second-best in 379

and 378 out of 379 cases. Keeping in mind that the total
sample size amounts to 58,890 observations, the partly sig-
nificant Ljung–Box autocorrelation test results indicate an
overall good performance in fitting the volatility dynam-
ics while avoiding an overfitting of the sample ACF. The
best results are obtained under the V-MF-GAS-N model
(21.4% rejections of the null) followed by the V-MF-GAS-t
(61.5% rejections) and the V-MF-GAS-N-J model (69.1%
rejections). The relatively poor performance of the Stu-
dent t and the jump model is not completely unexpected.
Liesenfeld and Richard (2003), for example, report sim-
ilar findings for a Student t SV specification. Under the
jump and the Student t likelihood, extreme (and possi-
bly clustered) observations are effectively down-weighted,
resulting in a reduced fit to the autocorrelation structure of
the data.

Figure S1 depicts sample averages of the estimated intra-
day periodicities 𝜔̂𝓁 , 𝓁 = 1, … , 26, obtained by averaging
over the assets within each of the 11 GICS sectors. All
estimates are obtained under the V-MF-GAS-t model. We
observe the typical inverted U shape, which appears very
similar over the industries for the first 24 periods of the
trading day. Only the last two 15-min intervals show sig-
nificant differences across the sectors with the highest
average volatility for the consumer staples and the lowest
volatility for the real estate sector.

Based on the estimation results, we can conclude that
both the log-likelihood and the AIC criterion select the
V-MF-GAS-t specification as the best fitting volatility
model. We will therefore use this model specification in the
next section for modeling the marginal return dynamics
within the joint copula framework.

TABLE 2 Aggregate estimation results and model diagnostics for the complete set of 378 assets

V-MF-GAS C-MF-GAS
N N-J t G t𝜅 t𝜅𝓁 CrC

i 0 0 379 0 0 377 1
(0%) (0%) (100%) (0%) (0%) (99.7%) (0.3%)

AIC 0 0 379 0 286 91 1
(0%) (0%) (100%) (0%) (75.7%) (24.1%) (0.3%)

LB-test 81 262 233 - - - -
(21.4%) (69.1%) (61.5%)

AD-test - - - 55 11 9 201
(14.6%) (2.9%) (2.4%) (53.2%)

Note: The left panel reports aggregate results for the obtained log-likelihood values (i), AICs, and Ljung–Box (LB) tests on serial correlation in
the squared martingale difference residuals for the V-MF-GAS-N-, V-MF-GAS-N-J-, and V-MF-GAS-t models. For the log-likelihoods and the AICs,
the table reports the absolute numbers and the percentage of cases, where the respective model is selected. For the LB tests, the absolute number
and the percentage of rejections at the 1% significance level is reported. The right panel reports analog i and AIC results for the C-MF-GAS-G,
C-MF-GAS-t𝜅 , C-MF-GAS-t𝜅𝓁 , and C-MF-GAS-CrC models. AD-test: Number (percentage) of rejections for the Anderson–Darling (AD) test of the
null of independence of the Rosenblatt transformed 𝜂i, 𝜏 and 𝜂m, 𝜏 residuals, that is, the null of correct specification of the dependence structure
(see Manner & Reznikova, 2012).
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TABLE 3 Full sample ML parameter estimates for the bivariate asset- market relationships of the AXP stock and the MSFT stock
obtained under the C-MF-GAS-G, C-MF-GAS-t𝜅 , C-MF-GAS-t𝜅𝓁 , and C-MF-GAS-CrC models

C-MF-GAS-G C-MF-GAS-t𝜅 C-MF-GAS-t𝜅𝓁 C-MF-GAS-CrC
AXP MSFT AXP MSFT AXP MSFT AXP MSFT

𝛼
(z)
1,1 0.9213 0.8711 0.9129 0.8853 0.9137 0.8811 0.9016 0.9030

(0.0141) (0.0264) (0.0173) (0.0263) (0.0174) (0.0262) (0.0475) (0.0423)
𝛼
(z)
1,2 - - - - - - 0.8737 0.7327

- - - - - - (0.0661) (0.1144)
𝛼
(z)
2,1 0.0396 0.0392 0.0450 0.0391 0.0443 0.0379 0.1548 0.1706

(0.0040) (0.0046) (0.0051) (0.0054) (0.0051) (0.0052) (0.0394) (0.0418)
𝛼
(z)
2,2 - - - - - - 0.1572 0.2236

- - - - - - (0.0424) (0.0551)
𝛼
(l)
1,1 0.9811 0.9749 0.9793 0.9752 0.9789 0.9767 0.9811 0.9612

(0.0055) (0.0065) (0.0063) (0.0071) (0.0063) (0.0066) (0.0077) (0.0145)
𝛼
(l)
1,2 - - - - - - 0.9726 0.9723

- - - - - - (0.0100) (0.0120)
𝛼
(l)
2,1 0.0363 0.0337 0.0430 0.0369 0.0425 0.0346 0.1417 0.1628

(0.0041) (0.0038) (0.0051) (0.0045) (0.0050) (0.0041) (0.0283) (0.0364)
𝛼
(l)
2,2 - - - - - - 0.1571 0.1292

- - - - - - (0.0293) (0.0305)
𝜅 - - 13.8395 15.1975 - - - -

- - (0.8163) (0.9871) - - - -
w - - - - - - 0.4806 0.4994

- - - - - - (0.0084) (0.0090)
i 13,245.1117 11,337.6059 13,433.0312 11,486.3831 13,458.8492 11,505.7835 12,836.7121 10,954.3373
AIC −26,430.2233 −22,615.2117 −26,804.0623 −22,910.7662 −26,805.6983 −22,899.5669 −25,551.4242 −21,786.6747
R2

1 0.7865 0.8013 0.8014 0.8141 0.8015 0.8156 0.8383 0.7380
R2

2 - - - - - - 0.8429 0.7741

Note: The estimates are based on the estimated residuals 𝜂i, 𝜏 and 𝜂m, 𝜏 obtained under the AIC preferred V-MF-GAS-t model for the margins. Asymptotic
standard errors are given in parenthesis. The standard errors are obtained by inverting a numerical approximation of the Hessian at the ML parameter
estimates. The reported R2 statistics are obtained from a regression of the non-periodic part of the copula parameter l̃𝜏 + z̃𝜏 on the daily component l̃𝜏 . R2

1
and R2

2 refer to the two time-varying copula parameters of the C-MF-GAS-CrC model. AIC: Akaike information criterion. i: log-likelihood.

4.3 Copula
Table 3 reports the copula estimation results for the
bivariate asset-market relationships of AXP and MSFT.
All copula estimates discussed in this section are based
on the estimated residuals 𝜂i, 𝜏 and 𝜂m, 𝜏 obtained under
the AIC preferred V-MF-GAS-t model for the margins.9
We consider (i) the Gaussian copula with GAS-driven
correlation and intraday correlation periodicity (labeled
C-MF-GAS-G), (ii) Student's t copula with GAS-driven
correlation, correlation periodicity and non-periodic d.o.f.
𝜅 (labeled C-MF-GAS-t𝜅), (iii) Student's t copula with
GAS-driven correlation, correlation periodicity and peri-
odic d.o.f. 𝜅 (labeled C-MF-GAS-t𝜅𝓁 ), and (iv) the CrC cop-
ula with periodicity in both GAS-driven copula parameters
(labeled C-MF-GAS-CrC).

The estimates of the autoregressive GAS parameters
imply strong persistence of the intraday and daily GAS
components with a higher persistence of the daily compo-

9The copula results are found to be robust to alternative choices for the
volatility model.

nent for all copula specifications. All processes are weakly
stationary and the reported R2 statistics indicate that about
80% of the total variation of the estimated copula param-
eters is attributed to the daily component. The estimated
d.o.f. parameters of the C-MF-GAS-t𝜅 model are 13.84 for
AXP and 15.20 for MSFT. These values imply significant
deviations from the Gaussian copula and indicate the pres-
ence of tail dependence between the asset and the market
return. The strength of tail dependence is measured by the
tail dependence coefficient 𝜆, which is obtained as

𝜆 = lim
q→0

P(x2 ≤ F−1
x2
(q)|x1 ≤ F−1

x1
(q))

for a random vector x = (x1, x2)′, where 𝜆∈ (0, 1). For Stu-
dent's t copula models, 𝜆 is a function of the d.o.f. param-
eter and the time-varying correlation coefficient, that is, 𝜆
itself varies with time (see, e.g., Embrechts et al., 2015).
Under the C-MF-GAS-t𝜅 model, we obtain for AXP and
MSFT an average 𝜆 over the estimated time-varying corre-
lations of 0.0762 and 0.0516, respectively, implying a rather
low level of tail dependence. This picture changes slightly
by turning to the C-MF-GAS-t𝜅𝓁 specification with periodic

896



ECKERNKEMPER AND GRIBISCH

FIGURE 4 Mean correlation estimates 𝜌̂𝓁 , averaged over time (together with the according pattern estimates 𝜔̂𝓁), the estimated periodic
d.o.f. 𝜅𝓁 , and the mean estimate 𝜆̂𝓁 obtained by averaging over the time-varying correlations for each of the 𝓁 = 1, … , 26 trading periods. All
estimates are obtained under the C-MF-GAS-t𝜅𝓁 model and the V-MF-GAS-t model for the margins. 𝜅 estimates >40 are truncated to 40 for
better visibility. The Student t copula for more than 40 d.o.f. is virtually undistinguishable from the Gaussian case

d.o.f.: Figure 4 depicts the mean correlation estimates 𝜌̂𝓁 ,
averaged over trading days (together with the according
pattern estimates 𝜔̂𝓁), the estimated periodic d.o.f. 𝜅𝓁 ,
and the mean estimate 𝜆̂𝓁 obtained by averaging over the
time-varying correlations for each of the 𝓁 = 1, … , 26
trading periods. We observe a correlation pattern similar to
an inverted U shape with less correlation at the beginning
than at the end of the active trading hours and an over-
all increasing correlation trend. We also find an increasing
level of tail dependence in the second half of the trading
day which is caused by the high correlation level at the end
of trading together with an associated decrease of the d.o.f.
estimate. The correlation level and the tail dependence
measure vary within (0.4, 0.66) and (0.02, 0.22) ((0.37, 0.64)
and (0.00, 0.14)) for AXP (MSFT), respectively. We analyze
the significance of the patterns for AXP and MSFT by Wald
tests for the d.o.f. 𝜅𝓁 and periodicity F tests for the time
series of correlations and tail dependence measures.10 All
test results are significant at the 1% level with the exception
of the d.o.f. estimates for MSFT. The variation of tail depen-
dence over the trading day is particularly pronounced for

10The Wald test considers the null of equal d.o.f. 𝜅1 = 𝜅2 = … = 𝜅𝓁 . The
seasonality test is computed as a standard F test for a regression of the
correlations and tail dependence measures on a set of 26 dummies, one
dummy for each intraday trading period.

AXP—a finding that is also reflected by the model fit: The
AIC selects the C-MF-GAS-t𝜅 model for MSFT and the
C-MF-GAS-t𝜅𝓁 model for AXP as the best fitting specifica-
tions. The Gaussian and the CrC copula are clearly rejected
by the data.

Figure 5 depicts estimates of the time-varying copula
GAS processes for the two stocks and the four model
specifications. The time series show a high degree of per-
sistence and distinct patterns for AXP and MSFT. The
daily copula component evolves smoothly over time and
captures a major part of the overall variation in the depen-
dence parameters. We observe frequent negative correla-
tion peaks under the Gaussian copula, which are some-
what dampened by the Student t specifications. Under
the CrC copula, the two dependence processes for upper-
and lower tail dependence (CRC1 and CRC2, respectively)
evolve overall similar to the correlations of the Student t
specifications.

The aggregated estimation results for the complete set
of 378 asset-market combinations are provided in the right
panel of Table 2. The C-MF-GAS-t𝜅 model is AIC preferred
for 76% of the time series and the Gaussian and the CrC
copulas are clearly rejected by the data. This result is in
contrast to the findings of Koopman et al. (2018), who
select the Gaussian copula as the best fitting specification
within their copula approach on the tick-by-tick frequency.
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FIGURE 5 Estimates of the time-varying copula GAS parameters for the AXP and MSFT stocks and the C-MF-GAS-G, C-MF-GAS-t𝜅 ,
C-MF-GAS-t𝜅𝓁 , and C-MF-GAS-CrC models. All estimates are obtained under the V-MF-GAS-t model for the margins. Dotted grey line:
̂̃z𝜏 + ̂̃lt; black line: ̂̃lt. CrCi: i-th time-varying parameter of the CrC copula

The C-MF-GAS-t𝜅𝓁 model is AIC preferred for a subset of
91 assets (about 24%), which are dominated by the Indus-
trials, IT, and Materials sectors. We analyze the in-sample
fit of the four copula models via the Anderson–Darling
(AD) approach, which tests the null of independence of the
Rosenblatt transformed 𝜂i, 𝜏 and 𝜂m, 𝜏 residuals, that is, the
null of correct specification of the dependence structure
(see Manner & Reznikova, 2012). The results are provided
in the last line of Table 2. The in-sample residual analyses
for the Student t copulas with constant and periodic d.o.f
show remarkably good results with 2.9% and 2.4% rejec-
tions while the Gaussian and CrC copulas are rejected in
14.6% and even 53.2% of the cases.

Figure S2 reports sample averages of the estimated intra-
day correlation periodicities 𝜔̃𝓁 , the Student t d.o.f. 𝜅𝓁 , and
the average tail-dependence measures 𝜆𝓁 , computed over
the assets in each of the 11 industry sectors. All estimates
are obtained under the C-MF-GAS-t𝜅𝓁 model. The corre-
lation pattern show the inverted U shape and increasing
correlation trend, which have already been found for the
AXP and MSFT stocks. This structure appears consistent
over all industry sectors. The correlation “break-downs”
at the beginning and the end of the active trading hours
are accompanied by comparatively low 𝜅 estimates at 4:00
p.m. The high correlation at the afternoon together with

a slight tendency of decreasing 𝜅𝓁 results in a common
pattern of increasing tail dependence over the trading day.
For all industry sectors, the tail-dependence coefficient
reaches its maximum at 4 p.m. with a maximum value
of 0.16 for the industrial stocks. The positive correlation
trend along with the relatively low correlation levels at
the beginning and the end of the active trading hours can
be explained by the information flow over the 24-h cycle:
the rather low correlation level at the start of trading is
explained by a relatively large idiosyncratic information
component, which is generated by the incorporation of
overnight information. During the day however, available
pricing-relevant information can directly be processed into
stock prices. At the end of active trading, it can be expected
that many traders unwind their positions in order to limit
the overnight risk. This induces again a rise in the idiosyn-
cratic information component and generates a decrease in
the correlations, which induces the U shape (see also the
discussion in Koopman et al., 2018).

To summarize our results, we find that the C-MF-GAS-t𝜅
and C-MF-GAS-t𝜅𝓁 models provide a good fit to the
time-varying and highly persistent intraday dependence
processes. We also find an inverted U shaped intraday cor-
relation pattern with a positive common trend over the
trading day and a positive trend for the tail-dependence
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coefficient. The correlation pattern is consistent with the
findings reported by Bibinger et al. (2019) and Koopman
et al. (2018).

4.4 (Δ)ECoVaR
We now select the flexible and in-sample preferred
V-MF-GAS-t- and C-MF-GAS-t𝜅𝓁 copula models for the
margins and the dependence structure in order to com-
pute model-based forecasts for the ECoVaR measure.
These forecasts are obtained in a straight-forward fash-
ion by applying the approach of Mainik and Schaan-
ning (2014) and Reboredo and Ugolini (2015) as detailed
in Section 3 and plugging in the parameter estimates
and dynamic volatility and dependence forecasts from
the GAS-recursions. In our application, we consider both
the ECoVaR (denoted ECoVaRi|m

𝛼,𝛽,𝜏
) and the ΔECoVaR

(denoted ΔECoVaRi|m
𝛼,𝛽,𝜏

) as defined in Equation (5) of
Section 2. All forecasts are computed for the VaR levels
𝛼 = 𝛽 = 0.05. The ECoVaR reflects the absolute risk
level of the asset in extreme market situations and is there-
fore closely related to the asset's VaR and the individual
volatility dynamics. The ΔECoVaR in contrast measures
the exposure of asset i to system-wide distress relative to
normal market conditions. It can therefore be interpreted
as a measure of the robustness of the asset's VaR to turbu-

lent market conditions. For example, an individual asset
(or a portfolio) could feature a high absolute ECoVaR, but
a low ΔECoVaR which means that the asset has a high risk
level but is rather insensitive to market conditions turning
from normal to distress.

4.4.1 In-sample Analysis
Figure 6 depicts the time-series of in-sample ECoVaR- and
ΔECoVaR forecasts for the bivariate asset-market relation-
ships of AXP and MSFT. We observe strong serial depen-
dence for both measures and the ΔECoVaR appears more
noisy and less affected by the financial crisis episode of
2008 and 2009 relative to the ECoVaR. Comparing the
time-series plots in Figure 6 to the dynamic volatility and
dependence estimates in Figures 2 and 5 reveals a strong
correspondence of the ECoVaR- and ΔECoVaR dynamics
to the volatility and dependence pattern respectively. As
expected, we find that episodes of extreme risk like the
financial crisis are typically accompanied by high values
of the ΔECoVaR (e.g., up to 160% additional ECoVaR risk
for AXP relative to a normal market situation). But we
also find situations where the ΔECoVaR suddenly drops
down while the ECoVaR itself persists on a rather high
level (see, e.g., AXP in 2009). Such situations are gener-
ated by a sudden decrease in the asset-market dependence

FIGURE 6 In-sample ECoVaR (lower panel) and ΔECoVaR (upper panel) forecasts for the bivariate asset-market relationships of AXP and
MSFT. The forecasts are generated under the V-MF-GAS-t- and C-MF-GAS-t𝜅𝓁 models for the margins and the dependence structure. The
computation of the forecasts is based on the copula approach of Mainik and Schaanning (2014) and Reboredo and Ugolini (2015) (see Section
3.1) conditional on the full sample parameter estimates and the copula parameter forecasts from the GAS recursions
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while the individual volatility level remains persistently
high (compare the dependence pattern in Figure 5).

The dependence of the ECoVaR and ΔECoVaR mea-
sures on the intraday volatility and dependence process
suggests the existence of intraday seasonalities in the ECo-
VaR forecasts. These seasonalities are indirectly modeled
by the periodicities 𝜔𝓁 and 𝜔̃𝓁 in the MF-GAS recursions
for the volatilities and dynamic copula parameters. The
knowledge of such regularities in the ECoVaR measures
is important for the active portfolio manager since regular
risk-minimizing shiftings of portfolio components due to
neglected seasonal effects might induce unnecessary man-
aging costs. Figure 7 depicts mean values of the in-sample
ECoVaR and ΔECoVaR estimates for AXP and MSFT aver-
aged over time for each of the 26 intraday periods of the
trading day. We find a significant inverse U shape in the
ECoVaR estimates and a positive trend for the ΔECoVaR.
These patterns are generated by the volatility and corre-
lation periodicities analyzed in Sections 4.2 and 4.3 and
confirm the volatility and correlation sensitivity of the
ECoVaR and ΔECoVaR measures, respectively.

Figure S3 depicts heat-plots in order to illustrate the
variation of the intraday periodicity in the ECoVaR and
ΔECoVaR measures over the 378 assets of the complete

data set. We observe an overall increasing trend of the
ΔECoVaR, which reaches its peak between 2:15 and 3:45
PM and finally fades out at a reduced level at 4:00 PM.
The highest ΔECoVaR levels are obtained for the Finan-
cial, Industrial , IT , and Material sectors, which show a
particularly high risk level at the afternoon hours. Almost
all ECoVaR estimates exhibit the inverted U shape gen-
erated by the volatility process. The lowest level (highest
risk) of the ECoVaR is always obtained at the starting of
active trading at 9:45 a.m. The ECoVaR then increases and
finally slightly decreases again after 3:45 p.m. The lowest
average ECoVaRs are found for the Consumer Staples and
Utilities Sectors.

4.4.2 Out-of-sample Analysis
We now turn to an analysis of the out-of-sample
(Δ)ECoVaR forecasting performance. Here, we focus
on the importance of modeling the intraday volatility,
correlation, and nonlinear dependence patterns. In par-
ticular, we investigate the performance of four different
models (copula and margins), which are all based on
the V-MF-GAS-t- and the C-MF-GAS-t𝜅𝓁 specifications
but account for different aspects of intraday seasonality,
that is, seasonality in the volatilities, seasonality in the

FIGURE 7 Estimated intraday periodicities of the ECoVaR- and ΔECoVaR forecasts for the bivariate asset-market relationships of AXP
(left panel) and MSFT (right panel). The estimated periodicities are obtained as sample averages over the T = 2,265 observations for each
intraday period 𝓁 = 1, … , S = 26. The forecasts are generated under the V-MF-GAS-t- and C-MF-GAS-t𝜅𝓁 models for the margins and the
dependence structure. The computation of the forecasts is based on the copula approach of Mainik and Schaanning (2014) and Reboredo and
Ugolini (2015) (see Section 3.1) conditional on the full sample parameter estimates and the copula parameter forecasts from the GAS recursions
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Margins Copula
Periodicity in Periodicity in Periodicity in
Volatility Correlation Degrees of Freedom

Model 1
√ √ √

Model 2
√ √

×
Model 3

√
× ×

Model 4 × × ×

TABLE 4 Overview on the competing model specifications
for the out-of-sample forecasting evaluation

correlations, and seasonality in the d.o.f. Table 4 gives an
overview on the models.

Because the ECoVaR is a special case of a standard
VaR measure, we can readily apply the classical backtest-
ing approaches of the VaR literature in order to compare
the out-of-sample performance of various model specifica-
tions and periodic structures. Here, we condition on those
data points, where the market exceeds its VaR level (see
Girardi & Ergün, 2013). In particular, we rely on the stan-
dard Kupiec (1995) and Christoffersen (1998) VaR hit-rate
tests for those periods, where rm,𝜏 ≤ VaRm

𝛼,𝜏 . We define the
“hit sequence” of ECoVaR violations as

Ii|m
𝜏∗ =

{
1 if ri,𝜏∗ ≤ ECoVaRi|m

𝛼,𝛽,𝜏∗

0 else,

where the index 𝜏∗ refers to the subsample of observa-
tions of size T∗, where rm,𝜏 ≤ VaRm

𝛼,𝜏 . Adequate fore-
casts of the ECoVaR should satisfy unconditional coverage,
that is, P

(
Ii|m
𝜏∗ = 1

)
= 𝛼, which can be tested by the

likelihood-ratio (LR) test of Kupiec (1995). A sensible ECo-
VaR forecasting approach should however also account
for the temporal dependence in the ECoVaR estimates.
The null of independence in the hit-rate sequence can be
tested by the LR independence test proposed by Christof-
fersen (1998) against the alternative of first order Markov
dependence. The conditional coverage test of Christof-
fersen (1998) then jointly tests the null of unconditional
coverage and independence by combining the two individ-
ual LR testing procedures.

Unfortunately, it is not possible to design direct backtest-
ing devices in order to investigate the effect of neglected
periodicities on the ΔECoVaR. The key problem is that
we are not able to observe the “true” ΔECoVaR or any
series of hits that can be used for backtesting. We there-
fore follow an alternative approach and test independence,
unconditional coverage and conditional coverage jointly
for the two constituents of the ΔECoVaR: the ECoVaR,
ECoVaRi|m

𝛼,𝛽,𝜏
, and the benchmark ECoVaR, ECoVaRi|benchm

𝛽,𝜏

(see Equation 5). Our joint level-𝛼 test is conducted via
separate Kupiec (1995) or Christoffersen (1998) hit-rate
test for the ECoVaR and the benchmark ECoVaR with
Bonferroni correction. The resulting test tends to be con-
servative with significance level 𝛼∗ ≤ 𝛼, which accommo-
dates the data-rich environment and the related overfitting

issue since the huge intraday sample sizes easily drive the
individual test statistics into significance.

We obtain the (Δ)ECoVaR forecasts for all 378
asset-market combinations by splitting the data in the mid-
dle and reserving the second half of the time series as the
forecasting window. We consider two separate forecasting
periods: the period from July 2, 2008, to December 31,
2009, with comparatively high market volatility triggered
by the financial crisis, and the relatively calm post-crisis
period from January 2, 2010, to December 31, 2012. The
two periods together cover a total of 1133 × 26 = 29458
periods. Forecasts are generated iteratively with a rolling
window scheme11 and the models are re-estimated at
the end of each month. Hence, we obtain overall 1133
forecasts for each of the S = 26 intraday periods.

As a natural competitor for our MF-GAS approach, we
consider the fractionally integrated GAS (FIGAS) model
of Opschoor and Lucas (2019). The model was originally
proposed for the joint modeling of daily asset return vec-
tors and realized kernels but is easily adjusted to intraday
return series. Let r∗𝜏 = (ri,𝜏 , rm,𝜏)′ denote the bivariate
return vector comprising the individual asset return and
the market return. Under the FIGAS structure, we obtain

r∗𝜏 |𝜏−1 ∼ t2(V𝜏 , 𝛾𝓁), V𝜏 =
Ω𝓁

1 − 𝛽
+
(

1 − (1 − L)d(1 − 𝜙L)
1 − 𝛽L

)
S∗
𝜏 ,

(53)

where t2(V𝜏 , 𝛾𝓁) denotes a bivariate Student's t distribution
with zero mean, covariance matrix V𝜏 = (Vi𝑗,𝜏), and (pos-
sibly) periodic scalar-valued d.o.f. parameter 𝛾𝓁 . L denotes
the lag-operator,Ω𝓁 is a p.d. parameter matrix representing
the unconditional covariance matrix of r∗𝜏 , 0<𝛽 < 1, d≥ 𝛽,
and S∗

𝜏 is a p.d. GAS innovation matrix with

S∗
𝜏 = S𝜏 + V𝜏 , S𝜏 = S

𝜏

𝜕 log𝑓 (r∗𝜏 |V𝜏)
𝜕V𝜏

S′
𝜏
,

where S
𝜏
=
√

2V𝜏 . S∗
𝜏 then obtains as

S∗
𝜏 = 𝜔𝜏r∗𝜏 r∗𝜏 ′, with w𝜏 = (𝛾𝓁 + 2)(𝛾𝓁 − 2 + r∗𝜏 ′V−1

𝜏 r∗𝜏 )−1.

See Opschoor and Lucas (2019) for details on the model,
its derivation, and the ML estimation of the model
parameters. The FIGAS accounts for “true” long-memory,

11The estimation window size is 1132 × 26 = 29432 periods.
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TABLE 5 Out-of-sample (Δ)ECoVaR backtesting results: July 2, 2008, to December 31, 2012

ECoVaR ΔECoVaR
Specification (i)

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
𝛼 = 0.01 UC-test 22 22 17 323 369 372 367 378

(5.8%) (5.8%) (4.5%) (85.4%) (97.6%) (98.4%) (97.1%) (100.0%)
Ind-test 25 22 21 5 57 53 50 66

(6.6%) (5.8%) (5.6%) (1.3%) (15.1%) (14.0%) (13.2%) (17.5%)
CC-test 28 30 26 276 295 298 285 378

(7.4%) (7.9%) (6.9%) (73.0%) (78.0%) (78.8%) (75.4%) (100.0%)
𝛼 = 0.05 UC-test 49 48 46 353 377 377 376 378

(13.0%) (12.7%) (12.2%) (93.4%) (99.7%) (99.7%) (99.5%) (100.0%)
Ind-test 50 47 55 21 81 82 83 97

(13.2%) (12.4%) (14.6%) (5.6%) (21.4%) (21.7%) (22.0%) (25.7%)
CC-test 59 60 62 334 317 320 313 378

(15.6%) (15.9%) (16.4%) (88.4%) (83.9%) (84.7%) (82.8%) (100.0%)
Specification (ii)

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
𝛼 = 0.01 UC-test 76 69 50 72 364 370 367 375

(20.1%) (18.3%) (13.2%) (19.0%) (96.3%) (97.9%) (97.1%) (99.2%)
Ind-test 38 42 45 96 114 109 114 309

(10.1%) (11.1%) (11.9%) (25.4%) (30.2%) (28.8%) (30.2%) (81.7%)
CC-test 80 81 76 136 337 340 334 378

(21.2%) (21.4%) (20.1%) (36.0%) (89.2%) (89.9%) (88.4%) (100.0%)
𝛼 = 0.05 UC-test 134 119 98 111 375 375 372 377

(35.4%) (31.5%) (25.9%) (29.4%) (99.2%) (99.2%) (98.4%) (99.7%)
Ind-test 86 90 100 156 150 148 152 331

(22.8%) (23.8%) (26.5%) (41.3%) (39.7%) (39.2%) (40.2%) (87.6%)
CC-test 141 128 124 202 351 351 349 378

(37.3%) (33.9%) (32.8%) (53.4%) (92.9%) (92.9%) (92.3%) (100.0%)
Specification (iii)

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
𝛼 = 0.01 UC-test 308 313 319 378 345 351 357 378

(81.5%) (82.8%) (84.4%) (100.0%) (91.3%) (92.9%) (94.4%) (100.0%)
Ind-test 9 9 13 2 20 21 21 213

(2.4%) (2.4%) (3.4%) (0.5%) (5.3%) (5.6%) (5.6%) (56.3%)
CC-test 269 296 317 378 287 310 320 378

(71.2%) (78.3%) (83.9%) (100.0%) (75.9%) (82.0%) (84.7%) (100.0%)
𝛼 = 0.05 UC-test 330 335 349 378 358 367 368 378

(87.3%) (88.6%) (92.3%) (100.0%) (94.7%) (97.1%) (97.4%) (100.0%)
Ind-test 28 33 43 16 41 38 46 245

(7.4%) (8.7%) (11.4%) (4.2%) (10.8%) (10.1%) (12.2%) (64.8%)
CC-test 328 331 339 378 330 342 353 378

(86.8%) (87.6%) (89.7%) (100.0%) (87.3%) (90.5%) (93.4%) (100.0%)
Specification (iv)

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
𝛼 = 0.01 UC-test 18 17 22 169 378 376 376 378

(4.8%) (4.5%) (5.8%) (44.7%) (100.0%) (99.5%) (99.5%) (100.0%)
Ind-test 15 21 27 8 44 48 53 213

(4.0%) (5.6%) (7.1%) (2.1%) (11.6%) (12.7%) (14.0%) (56.3%)
CC-test 29 27 38 156 362 351 355 378

(7.7%) (7.1%) (10.1%) (41.3%) (95.8%) (92.9%) (93.9%) (100.0%)
𝛼 = 0.05 UC-test 52 50 53 246 378 378 378 378

(13.8%) (13.2%) (14.0%) (65.1%) (100.0%) (100.0%) (100.0%) (100.0%)
Ind-test 49 52 65 39 72 77 82 242

(13.0%) (13.8%) (17.2%) (10.3%) (19.0%) (20.4%) (21.7%) (64.0%)
CC-test 65 67 78 225 370 363 365 378

(17.2%) (17.7%) (20.6%) (59.5%) (97.9%) (96.0%) (96.6%) (100.0%)

Note: The table shows the number and percentage of rejections of the unconditional coverage (UC), independence (Ind) and conditional
coverage (CC) test for all 378 institutions at the 1% and the 5% significance level. Model 1 to Model 4 refer to the periodic model structures
given in Table 4.
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TABLE 6 Out-of-sample (Δ)ECoVaR backtesting results: July 2, 2008, to December 31, 2009

ECoVaR ΔECoVaR
Specification (i)

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
𝛼 = 0.01 UC-test 23 19 18 26 357 354 346 363

(6.1%) (5.0%) (4.8%) (6.9%) (94.4%) (93.7%) (91.5%) (96.0%)
Ind-test 12 8 9 2 36 35 29 42

(3.2%) (2.1%) (2.4%) (0.5%) (9.5%) (9.3%) (7.7%) (11.1%)
CC-test 20 19 18 16 297 295 278 336

(5.3%) (5.0%) (4.8%) (4.2%) (78.6%) (78.0%) (73.5%) (88.9%)
𝛼 = 0.05 UC-test 58 52 48 69 366 367 363 374

(15.3%) (13.8%) (12.7%) (18.3%) (96.8%) (97.1%) (96.0%) (98.9%)
Ind-test 33 34 27 4 63 62 57 72

(8.7%) (9.0%) (7.1%) (1.1%) (16.7%) (16.4%) (15.1%) (19.0%)
CC-test 48 39 40 52 337 341 330 363

(12.7%) (10.3%) (10.6%) (13.8%) (89.2%) (90.2%) (87.3%) (96.0%)
Specification (ii)

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
𝛼 = 0.01 UC-test 216 208 204 263 374 375 374 377

(57.1%) (55.0%) (54.0%) (69.6%) (98.9%) (99.2%) (98.9%) (99.7%)
Ind-test 20 22 23 22 61 61 59 88

(5.3%) (5.8%) (6.1%) (5.8%) (16.1%) (16.1%) (15.6%) (23.3%)
CC-test 189 184 179 224 374 374 374 378

(50.0%) (48.7%) (47.4%) (59.3%) (98.9%) (98.9%) (98.9%) (100.0%)
𝛼 = 0.05 UC-test 273 270 260 293 375 375 375 377

(72.2%) (71.4%) (68.8%) (77.5%) (99.2%) (99.2%) (99.2%) (99.7%)
Ind-test 54 51 65 57 97 93 104 127

(14.3%) (13.5%) (17.2%) (15.1%) (25.7%) (24.6%) (27.5%) (33.6%)
CC-test 253 245 239 285 376 376 376 378

(66.9%) (64.8%) (63.2%) (75.4%) (99.5%) (99.5%) (99.5%) (100.0%)
Specification (iii)

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
𝛼 = 0.01 UC-test 107 110 128 216 313 321 315 370

(28.3%) (29.1%) (33.9%) (57.1%) (82.8%) (84.9%) (83.3%) (97.9%)
Ind-test 4 3 7 1 6 8 7 57

(1.1%) (0.8%) (1.9%) (0.3%) (1.6%) (2.1%) (1.9%) (15.1%)
CC-test 98 104 123 191 221 226 227 358

(25.9%) (27.5%) (32.5%) (50.5%) (58.5%) (59.8%) (60.1%) (94.7%)
𝛼 = 0.05 UC-test 180 183 201 289 355 358 355 377

(47.6%) (48.4%) (53.2%) (76.5%) (93.9%) (94.7%) (93.9%) (99.7%)
Ind-test 22 27 24 10 24 23 26 97

(5.8%) (7.1%) (6.3%) (2.6%) (6.3%) (6.1%) (6.9%) (25.7%)
CC-test 161 166 184 269 278 289 289 372

(42.6%) (43.9%) (48.7%) (71.2%) (73.5%) (76.5%) (76.5%) (98.4%)
Specification (iv)

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
𝛼 = 0.01 UC-test 7 16 5 4 378 378 378 378

(1.9%) (4.2%) (1.3%) (1.1%) (100.0%) (100.0%) (100.0%) (100.0%)
Ind-test 11 10 8 2 20 19 14 56

(2.9%) (2.6%) (2.1%) (0.5%) (5.3%) (5.0%) (3.7%) (14.8%)
CC-test 10 14 8 3 378 378 378 378

(2.6%) (3.7%) (2.1%) (0.8%) (100.0%) (100.0%) (100.0%) (100.0%)
𝛼 = 0.05 UC-test 31 40 29 23 378 378 378 378

(8.2%) (10.6%) (7.7%) (6.1%) (100.0%) (100.0%) (100.0%) (100.0%)
Ind-test 34 35 37 10 41 42 42 75

(9.0%) (9.3%) (9.8%) (2.6%) (10.8%) (11.1%) (11.1%) (19.8%)
CC-test 35 42 28 16 378 378 378 378

(9.3%) (11.1%) (7.4%) (4.2%) (100.0%) (100.0%) (100.0%) (100.0%)

Note: The table shows the number and percentage of rejections of the unconditional coverage (UC), independence (Ind), and conditional
coverage (CC) test for all 378 institutions at the 1% and the 5% significance level. Model 1 to Model 4 refer to the periodic model structures
given in Table 4.

903



ECKERNKEMPER AND GRIBISCH

TABLE 7 Out-of-sample (Δ)ECoVaR backtesting results: January 2, 2010, to December 31, 2012

ECoVaR ΔECoVaR
Specification (i)

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
𝛼 = 0.01 UC-test 5 13 9 327 251 258 244 375

(1.3%) (3.4%) (2.4%) (86.5%) (66.4%) (68.3%) (64.6%) (99.2%)
Ind-test 11 14 15 5 43 47 44 58

(2.9%) (3.7%) (4.0%) (1.3%) (11.4%) (12.4%) (11.6%) (15.3%)
CC-test 12 16 15 310 137 134 128 375

(3.2%) (4.2%) (4.0%) (82.0%) (36.2%) (35.4%) (33.9%) (99.2%)
𝛼 = 0.05 UC-test 30 30 36 365 303 310 304 378

(7.9%) (7.9%) (9.5%) (96.6%) (80.2%) (82.0%) (80.4%) (100.0%)
Ind-test 36 36 32 17 66 72 71 95

(9.5%) (9.5%) (8.5%) (4.5%) (17.5%) (19.0%) (18.8%) (25.1%)
CC-test 38 39 47 349 183 201 189 376

(10.1%) (10.3%) (12.4%) (92.3%) (48.4%) (53.2%) (50.0%) (99.5%)
Specification (ii)

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
𝛼 = 0.01 UC-test 12 17 28 361 134 139 126 372

(3.2%) (4.5%) (7.4%) (95.5%) (35.4%) (36.8%) (33.3%) (98.4%)
Ind-test 7 12 10 5 70 70 73 272

(1.9%) (3.2%) (2.6%) (1.3%) (18.5%) (18.5%) (19.3%) (72.0%)
CC-test 14 17 24 352 118 123 129 377

(3.7%) (4.5%) (6.3%) (93.1%) (31.2%) (32.5%) (34.1%) (99.7%)
𝛼 = 0.05 UC-test 42 54 74 374 207 216 232 378

(11.1%) (14.3%) (19.6%) (98.9%) (54.8%) (57.1%) (61.4%) (100.0%)
Ind-test 32 31 32 29 101 106 100 306

(8.5%) (8.2%) (8.5%) (7.7%) (26.7%) (28.0%) (26.5%) (81.0%)
CC-test 44 63 75 368 165 173 180 377

(11.6%) (16.7%) (19.8%) (97.4%) (43.7%) (45.8%) (47.6%) (99.7%)
Specification (iii)

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
𝛼 = 0.01 UC-test 293 311 324 378 304 317 328 378

(77.5%) (82.3%) (85.7%) (100.0%) (80.4%) (83.9%) (86.8%) (100.0%)
Ind-test 3 5 4 3 16 15 17 234

(0.8%) (1.3%) (1.1%) (0.8%) (4.2%) (4.0%) (4.5%) (61.9%)
CC-test 278 296 309 378 264 279 301 378

(73.5%) (78.3%) (81.7%) (100.0%) (69.8%) (73.8%) (79.6%) (100.0%)
𝛼 = 0.05 UC-test 345 350 361 378 341 347 355 378

(91.3%) (92.6%) (95.5%) (100.0%) (90.2%) (91.8%) (93.9%) (100.0%)
Ind-test 15 19 21 13 29 26 41 264

(4.0%) (5.0%) (5.6%) (3.4%) (7.7%) (6.9%) (10.8%) (69.8%)
CC-test 325 338 350 378 312 327 338 378

(86.0%) (89.4%) (92.6%) (100.0%) (82.5%) (86.5%) (89.4%) (100.0%)
Specification (iv)

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4
𝛼 = 0.01 UC-test 18 10 27 253 253 232 231 374

(4.8%) (2.6%) (7.1%) (66.9%) (66.9%) (61.4%) (61.1%) (98.9%)
Ind-test 12 10 14 8 39 45 49 244

(3.2%) (2.6%) (3.7%) (2.1%) (10.3%) (11.9%) (13.0%) (64.6%)
CC-test 19 11 29 239 184 159 173 378

(5.0%) (2.9%) (7.7%) (63.2%) (48.7%) (42.1%) (45.8%) (100.0%)
𝛼 = 0.05 UC-test 48 44 64 324 295 273 284 378

(12.7%) (11.6%) (16.9%) (85.7%) (78.0%) (72.2%) (75.1%) (100.0%)
Ind-test 43 53 52 24 75 75 85 279

(11.4%) (14.0%) (13.8%) (6.3%) (19.8%) (19.8%) (22.5%) (73.8%)
CC-test 71 71 85 315 226 208 224 378

(18.8%) (18.8%) (22.5%) (83.3%) (59.8%) (55.0%) (59.3%) (100.0%)

Note: The table shows the number and percentage of rejections of the unconditional coverage (UC), independence (Ind) and conditional coverage
(CC) test for all 378 institutions at the 1% and the 5% significance level. Model 1 to Model 4 refer to the periodic model structures given in Table 4.
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while the MF-GAS approximates long-memory via a
mixed-frequency component framework, which combines
short-memory GAS processes at different frequencies.

Following the Sklar (1959) theorem, the conditional
bivariate Student's t distribution in (53) can be decom-
posed into univariate Student's t marginals coupled with
the Student t copula with conditional correlation param-
eter 𝜌𝜏 (see, e.g., Nelsen, 2006), similar to the MF-GAS
setting. According to the FIGAS model outlined above, we
obtain ri,𝜏 |𝜏−1 ∼ t1(V11,𝜏 , 𝛾𝓁), rm,𝜏 |𝜏−1 ∼ t1(V22,𝜏 , 𝛾𝓁)
and the Student t copula C(ui,𝜏 ,um,𝜏 ; 𝜌𝜏 , 𝛾𝓁|𝜏−1) with
𝜌𝜏 = V12,𝜏∕

√
V11,𝜏V22,𝜏 and (ui, 𝜏 , um, 𝜏) being the probabil-

ity integral transforms of (ri, 𝜏 , rm, 𝜏) based on the marginal
Student t cdf (compare Equation 30 and Equation 41 for
details on the Student t copula). Note that the parame-
ter matrix Ω𝓁 drives the unconditional covariance pro-
cess of r∗𝜏 . Hence, we can directly apply models 1–4 of
Table 4 for modeling the periodic structures of the FIGAS
model. For this purpose, we separate intraday periodic-
ity in volatilities (marginals) and correlations (copula) via
a variance/correlation decomposition of Ω𝓁 , whose ele-
ments are then estimated individually for each intraday
trading period 𝓁, similar to the MF-GAS setting.

We consider four different specifications for
out-of-sample forecasting of the (Δ)ECoVaR:

(i) The in-sample preferred V-MF-GAS-t- and
C-MF-GAS-t𝜅𝓁 copula models for the margins and
the dependence structure.

(ii) Similar to Specification (i) but without the intraday
volatility/dependence components z𝜏 and z̃𝜏 (z𝜏 =
z̃𝜏 = 0∀𝜏). The model structure then implies a GAS
setting, where intraday variation is restricted to the
periodicities.

(iii) Similar to Specification (i) but without the daily
volatility/dependence components l𝜏 and l̃𝜏 (lt =
l̃t = 0∀t). The model structure then implies a
standard short-memory GAS setting without mixed
frequency component.

(iv) The FIGAS model of Opschoor and Lucas (2019)
detailed above.

For each of the specifications (i)-(iv) we consider the four
seasonal structures of models 1–4 in Table 4.

Tables 5–7 provide the results on the out-of-sample
(Δ)ECoVaR backtesting application. The tables report
the absolute and relative number of rejections of the
null of unconditional coverage (UC), independence of
the hit-rate sequence (Ind), and conditional coverage
(CC) at the 1% and the 5% significance level for all 378
asset-market combinations. For the discussion of the test
results, we focus on the 5% level and the conditional cov-
erage test, which aggregates both unconditional coverage

and independence. Table 5 shows results for the complete
out-of-sample period from 2008 to 2012. The overall best
ECoVaR performance is achieved for the MF-GAS setting
of Specification (i) and Model 1. Hence, a flexible dynamic
modeling with periodicity in both, the volatilities and
the dependence structure, appears important for ECoVaR
forecasting. The FIGAS approach comes relatively close
to the MF-GAS setting but is overall outperformed. The
worst results are obtained for Specification (iii). We there-
fore conclude that long-term persistence as generated by
the daily volatiltiy/dependence component appears to be
crucial for ECoVaR forecasting. Turning to the ΔECoVaR,
we observe a sharp increase in the rejection rates, which
is explained by the joint testing for the ECoVaR and the
benchmark ECoVaR, where the hit-rate tests for the lat-
ter involve thousands of data points, which easily drive the
test statistics into significance. The best results are again
obtained for the MF-GAS setting under Specification (i).
From the discussion of Section 4.4.1, we would expect that
the dependence pattern matters most for the ΔECoVaR.
However, the overall best performance is achieved for
Model 3, which neither contains periodicity in the correla-
tion, nor the d.o.f. parameter. Nevertheless, Models 1 and
2 perform overall similar to Model 3 and only Model 4,
which contains neither volatility nor dependence patterns,
is clearly rejected by the data.

The results for the crisis period from 2008 to 2009 in
Table 6 show a really good ECoVaR performance for the
FIGAS model of Specification (iv) (Model 4) while the
MF-GAS of Specification (i) is second best under Model
2. For the ΔECoVaR however the FIGAS is clearly out-
performed with 100% rejection rates for all periodic model
structures. The bestΔECoVaR performance is achieved for
Specification (iii) under Model 1, that is, a standard GAS
model without daily component and with periodicity in
volatility and dependence—a result that may be explained
by short-lived volatility and dependence shocks generated
by single crisis events.

The best results for the calm period from 2010 to 2012 are
obtained under the full periodic structure of Model 1, that
is, periodicity for volatility and dependence (see Table 7).
While the MF-GAS of Specification (i) performs best for
the ECoVaR, the best ΔECoVaR forecasts are obtained
under Specification (ii), which only contains a daily volatil-
ity component and no intraday dynamics.

Overall, we can conclude that the MF-GAS approach
provides a solid out-of-sample (Δ)ECoVaR forecasting per-
formance, where Models 1 and 2 with periodicity in
both, the correlation and the volatility process, are typ-
ically the best performing models for the ECoVaR and
the (Δ)ECoVaR measure. Except for the crisis period,
the worst performance is typically obtained for Model 4,
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which contains no periodicity at all. Hence, accounting for
seasonal patterns in intraday volatilities appears to mat-
ter most for a solid (Δ)ECoVaR forecasting performance.
Interestingly, while we would expect that the volatility
(correlation) pattern is most important for the ECoVaR
(ΔECoVaR), we cannot clearly identify separate effects
of the respective periodicities in the hit-rate based back-
testing application. In fact, accounting for periodicities in
volatilities and correlations appears to be important for
both measures.

Our hit-rate based backtesting experiment gives insights
on the forecasting performance for a huge empirical
data set. However, the analysis appears restrained due
to the unavailability of the “true” (Δ)ECoVaR as a solid
benchmark for assessing the forecasting performance.
The results further represent an aggregation over various
asset/market relations with different degrees of periodic-
ity in the volatility and dependence structure. In order to
obtain a deeper insight into the effects of the periodic struc-
tures in volatilities and dependencies on the (Δ)ECoVaR
forecasts, we conduct an additional simulation-based fore-
casting experiment based on an artificial data set, which
shows significant periodic effects in both, volatilities and
dependence, and for which we observe the true sim-
ulated (Δ)ECoVaR measures. In particular, we use our

most flexible model specification with V-MF-GAS-t- and
C-MF-GAS-t𝜅𝓁 processes for the margins and the copula
(Specification (i)) in order to simulate an intraday return
series of length equal to our empirical data (T = 2265, S =
26). For the parametrization, we choose our estimates for
the PFG stock, which resembles data with significant intra-
day periodicity in all three cases: volatilities, correlations,
and tail-dependence measures. The periodic patterns used
for the simulation are depicted in Figure S4. We then con-
duct an out-of-sample forecasting experiment identical to
the one outlined above but restricted to the V-MF-GAS-t-
and C-MF-GAS-t𝜅𝓁 processes of Specification (i). Because
we observe the true ECoVaR andΔECoVaR measures from
the simulation, we are able to analyze the resulting fore-
casting errors directly.

Figure 8 uses boxplots in order to depict the distribution
of the ECoVaR forecasting errors for the 26 intraday peri-
ods and the four periodic model structures of Table 4. The
ECoVaR forecasts stay relatively unaffected by neglected
intraday patterns in (non-)linear dependencies (Model 1 to
Model 3) but are clearly influenced by the volatility pat-
tern. The resulting biases for Model 4 reflect the U shaped
seasonality in the volatilities: positive biases in the morn-
ing turn to negative biases after 10:15 a.m. until the bias
finally vanishes in the afternoon. The forecasting results

FIGURE 8 Distribution of the forecast errors of the out-of-sample ECoVaR forecasts for the simulated data set as detailed in Section 4.4.2 for
each of the 26 intraday periods. The out-of-sample results are obtained by splitting the data set in the middle and reserving the second half of
the time series as the forecasting window. The forecasting period then starts at July 2, 2008, and ends on December 31, 2012, covering a total of
1133×26 = 29,458 periods. Forecasts are generated iteratively with a rolling window scheme and the models are re-estimated at the end of each
trading day. Hence, we obtain overall 1133 forecasts for each intraday period. M1 to M4 refer to the periodic model structures given in Table 4
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FIGURE 9 Distribution of the forecast errors of the out-of-sample ΔECoVaR forecasts for the simulated data set as detailed in Section 4.4.2
for each of the 26 intraday periods. The out-of-sample results are obtained by splitting the data set in the middle and reserving the second half
of the time series as the forecasting window. The forecasting period then starts at July 2, 2008, and ends on December 31, 2012, covering a
total of 1133 × 26 = 29,458 periods. Forecasts are generated iteratively with a rolling window scheme and the models are re-estimated at the
end of each trading day. Hence, we obtain overall 1133 forecasts for each intraday period. M1 to M4 refer to the periodic model structures
given in Table 4

for the ΔECoVaR are depicted in Figure 9. We observe a
strong impact of neglecting volatility and correlation pat-
terns in forecasting the ΔECoVaR measure. In particular,
the biases under Model 3 show a negative trend over the
trading day, which is explained by the neglected correla-
tion trend in the data (see Figure S4). The impact of ignor-
ing periodicity in the tail dependence appears negligible in
most of the cases.

We can summarize that for the forecasting of the
(Δ)ECoVaR measure it appears crucial to account for intra-
day periodicities. In particular for the ΔECoVaR it appears
important to account for the positive trend of intraday
asset-market correlations. Overall, the V-MF-GAS-t- and
C-MF-GAS-t𝜅 models with constant d.o.f. for the cop-
ula part are a reasonable choice in practice. The models
are easy to implement, fast to estimate and provide good
out-of-sample results.

5 CONCLUSION

We propose a copula-based periodic mixed frequency
GAS framework in order to model and forecast the intra-
day ECoVaR for the bivariate relationship of an intra-
day asset return and the corresponding market return.

The model combines latent short- and long-term com-
ponents together with intraday seasonalities in order to
account for the presence of long-memory type of depen-
dence structures and periodicity in the marginal volatility
and dependence dynamics. Both the short- and long-term
components are assumed to follow individual GAS pro-
cesses on the intraday and the daily frequency. The model
is furthermore extended in order to account for intraday
price jumps. We further investigate fat-tailed conditional
return distributions for the univariate margins as well as
several copula specifications in order to account for lin-
ear dependence and (a)symmetric tail dependence in the
asset-market relationship.

We apply our framework to a large data set of intraday
asset returns for 378 NYSE traded stocks. The data com-
prises 15-min intraday log returns for the period starting
at January 2, 2004, and ending on December 31, 2012. The
empirical application shows four major results. First, we
find highly persistent intraday volatility and dependence
processes together with significant intraday periodicities
for volatilities, correlations, and nonlinear dependencies.
Second, the mixed frequency approach based on a Student
t copula with periodic or nonperiodic d.o.f. and Student's
t margins provides a good model fit and represents a rea-
sonable choice in practice in order to adequately estimate
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the ECoVaR on an intraday basis. Third, while the intraday
volatility pattern follows the typical inverted U shape, the
correlations and tail dependencies show a positive trend
over the trading day. Finally, the explicit modeling of the
volatility and correlation pattern appears important for
the out-of-sample forecasting of both the ECoVaR and the
ΔECoVaR measure.
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APPENDIX A

A.1 Gaussian Copula
For the bivariate Gaussian copula with time-varying cor-
relation parameter 𝜌𝜏 ∈ (− 1, 1), the Fisher information for
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the C-MF-GAS model obtains as

E[(∇(z̃)
𝜏 )2|𝜏−1] =

.
𝜌2
𝜏(1 + 𝜌2

𝜏)
(1 − 𝜌2

𝜏)2
, (A1)

E[(∇(l̃)
t )2|t−1] =

S∑
𝑗=1

E[(∇(z̃)
(t−1)·q+𝑗)

2|𝜏−1]. (A2)

A.2 Student's t Copula
For the bivariate Student's t copula with time-varying cor-
relation parameter 𝜌𝜏 ∈ (− 1, 1) and time-constant degrees
of freedom parameter 𝜅 > 4, the Fisher information for the
C-MF-GAS model obtains as

E[(∇(z̃)
𝜏 )2|𝜏−1] =

(
1 − 𝜌2

𝜏

)−2

×
(

1 + 𝜌2
𝜏 −

2𝜌2
𝜏

𝜅 + 2

)(
𝜅 + 2
𝜅 + 4

)
.
𝜌2
𝜏 ,

(A3)

E[(∇(l̃)
t )2|t−1] =

S∑
𝑗=1

E[(∇(z̃)
(t−1)·q+𝑗)

2|𝜏−1]. (A4)

A.3 CrC Copula
For the CrC copula with time-varying copula parameters
𝜃1𝜏 > 0, 𝜃2𝜏 > 0 and time-constant mixture weight w the
derivatives needed for the scores in Equations (49) and (50)
obtain as

𝜕c1(u1,𝜏 ,u2,𝜏)
𝜕𝜃1𝜏

=
⎧⎪⎨⎪⎩

(𝜃1𝜏 + 1)
(u1𝜏 u2𝜏)𝜃1𝜏+1

⎡⎢⎢⎢⎣
(

log(u1𝜏)
u1𝜏

𝜃1𝜏
+ log(u2𝜏)

u2𝜏
𝜃1𝜏

) (
1
𝜃1𝜏

+ 2
)

(
u1𝜏−𝜃1𝜏 + u2𝜏−𝜃1𝜏 − 1

) 1
𝜃1𝜏

+3

+
log

(
u1𝜏

−𝜃1𝜏 + u2𝜏
−𝜃1𝜏 − 1

)
𝜃2

1𝜏
(

u1𝜏−𝜃1𝜏 + u2𝜏−𝜃1𝜏 − 1
) 1
𝜃1𝜏

+2

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭

+
(
1 − log (u1𝜏 u2𝜏) (𝜃1𝜏 + 1)

)
(u1𝜏 u2𝜏)𝜃1𝜏+1 (u1𝜏−𝜃1𝜏 + u2𝜏−𝜃1𝜏 − 1
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𝜃1𝜏

+2

(A5)
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.

(A6)

Because it appears complex to derive the Fisher infor-
mation for the C-MF-GAS model under the CrC copula,
we set the corresponding scaling coefficients to one (s(z̃)𝜏 =
s(l̃)𝜏 = 1).
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