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Optimizing agricultural demand for reducing costs of renewable energy 1 

integration 2 

Tarun Khanna 3 
Hertie School, Friedrichstr. 180, 14059 Berlin, Germany. khanna@hertie-school.org 4 

While demand response is recognized as a useful tool in reducing costs of integrating renewable 5 
electricity, the related literature in developing countries has been limited due to lack of data on end use 6 
load profiles. Meanwhile, while the water-energy-nexus is well researched, the value of agricultural 7 
pumping load as a demand side resource is ignored.  This article fills these gaps by using agricultural load 8 
data from two distribution utilities in the Indian state of Gujarat and a mixed integer cost optimization 9 
model to estimate the reduction in renewable integration costs using agricultural demand response. We 10 
estimate that agricultural load management reduces total system costs by 5% in the current system. 11 
Going forward, profile costs of integrating 50% VRE are estimated at $33/MWhVRE. Agriculture demand 12 
management can reduce these costs by 24%, by reducing renewables curtailment by 4-7% and improving 13 
system flexibility. Deploying decentralized solar irrigation pumps instead of large-scale solar power plants 14 
enables higher absorption of peak solar generation and reduces costs further. We conclude that in power 15 
systems with moderate share of pumping load, agricultural demand response can be a low-cost tool for 16 
renewables integration. Where these costs are disproportionately borne by end consumers, it also has 17 
significant consumer welfare effects.  18 
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1. Introduction 19 

Demand side management, or the electric utility activities designed to influence customer uses of 20 
electricity in ways that will produce desired changes in the utility’s load shape (Gellings 1985), can play a 21 
key role integrating large amounts of intermittent electricity (Pina, Silva, and Ferrão 2012; Szinai et al. 22 
2020; Olkkonen et al. 2018; Yang et al. 2014). Within the demand response literature, relatively little 23 
research has explored the value of direct load control to large power systems, despite it being widely 24 
prevalent and showing great potential for renewable energy integration (Strbac 2008). Demand response 25 
analyses have also often been implemented only in small systems and overwhelmingly in OECD countries. 26 
A key barrier to understanding the role and potential of demand side measures in developing countries is 27 
that many studies do not utilize real-world load control data, limiting their ability to draw conclusions 28 
about the impacts of demand side measures. Several studies assume demand response potential as a 29 
percentage of peak demand, without accounting for time series of consumption patterns for different 30 
end uses (McPherson and Stoll 2020). For example, in a regulated power system like India, direct load 31 
control by utilities can allow for flexible load dispatch to be centrally optimized, accounting for output of 32 
variable renewables energy from wind and solar plants, inflexible load, and usage of transmission and 33 
distribution. It is anticipated that load control can provide the flexibility required to integrate higher 34 
shares of renewable energy (S. Kumar and Madlener 2016). But barring estimates provided by McPherson 35 
and Stoll (2020) for the city of Bengaluru, no estimates are available especially at the state or national 36 
level. This paper addresses this gap by using new, utility scale agricultural load control data from two 37 
electricity utilities in India.  38 

We use this data to quantify the value of agricultural pumping load in demand side management in the 39 
Indian power system, and in doing so add a different perspective to the literature on water-energy-nexus 40 
(Bazilian et al. 2011; Opejin et al. 2020) in developing countries. Agricultural consumption is a major 41 
source of electricity demand in developing countries. For example, in Bangladesh irrigation season 42 
increases the peak electricity demand almost by a quarter, in Iran groundwater pumping constitutes 11% 43 
of total electricity consumption (IRENA 2016), and in northern China annual energy consumption for 44 
groundwater pumping was 13.67 billion kWh (Chen et al. 2019). In India, electricity demand for irrigation 45 
is about 20% of the total load. Electricity supply for agricultural pumping is also heavily subsidized and 46 
even free in many states. To limit the subsidies and prevent their misuse, the supply is controlled by the 47 
state-owned electricity utilities and is provided only for maximum of 8 hours in a day. This is enabled by a 48 
unique system of separate power distribution network for irrigation supply and household supply in rural 49 
areas that allows uninterrupted supply to non-agricultural consumers and complete control over 50 
agricultural supply. But agricultural pumping load managed through this system is also a valuable demand 51 
resource that can be exploited to reduce the cost of integrating high shares of renewables.  52 

The increasing cost of integrating the generation from intermittent wind and solar generation is a major 53 
challenge facing the Indian power sector (Srikanth 2018). But this challenge is not uniformly distributed. A 54 
few renewable resource rich states lead the energy transition. At the national level, the share of variable 55 
renewable electricity (VRE) like solar and wind in total generation was 8% in 2018, but in the states of 56 
Karnataka, Tamil Nadu, Rajasthan, Andhra Pradesh, Gujarat, and Telangana, VRE generation has already 57 
surpassed 15% (IEA 2020). Agricultural pumping also constitutes a large share—between 15 to 40%—of 58 
total electricity consumption (Figure 1) in these states. In this paper we focus on the western state of 59 
Gujarat, which has total electricity consumption comparable to that of the Netherlands. The share of VRE 60 
in Gujarat was 13% in 2019 (CEA 2019) and is expected to increase to 40-50% by 2030 (IEA 2021). At the 61 
same time, agricultural consumption represents around 20% of the total demand and has been growing 62 
5-7% annually (GERC 2017a). Using a short-term electricity production cost optimization model, we 63 
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quantify the value of agricultural demand response and its potential for renewables integration in the 64 
state. The potential in other states, with greater share of irrigation load is likely to be even higher. 65 

Figure 1: Share of agriculture in electricity consumption vs. share of VRE in electricity generation in large Indian 66 
states. Size of the bubble represents total electricity consumption in 2015.  67 

  68 
Source: Tariff orders, Central Electricity Authority (CEA) 69 

2. Data, modeling methods and scenarios 70 

2.1. Agricultural load 71 

Non-availability of data on end use profiles in India is a major constraint while evaluating demand 72 
response options. Previous analyses have used representative end use profiles available from study of a 73 
handful of electric feeders, and even these are not available in the public domain (McPherson and Stoll 74 
2020). This article uses data published publicly by the distribution utilities (PGVCL and UGVCL) in Gujarat1 75 
to construct the agricultural supply curves. We call them supply curves and not demand curves, as they 76 
do not represent the unconstrained electricity demand of agricultural consumers in response to price 77 
signals. This is because electricity supply to agriculture in Gujarat, like much of India, is not on demand 78 
but rather is limited to a supply of 8 hours a day. In Gujarat, the agricultural consumers of UGVCL and 79 
PGVCL are divided into agricultural groups and power is rostered between the different groups 80 
throughout the day in a manner that ensures that all consumers get an uninterrupted supply of 8 hours a 81 
day. 82 

 

1 We are only able to access this data for PGVCL and UGVCL. However, these two utilities together constitute 90% of 
the total agricultural demand in Gujarat. 
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Figure 2: Month-wise average hourly supply to agricultural consumers in Gujarat (PGVCL and UGVCL) 83 

  84 

Figure 3: Average agricultural supply (PGVCL and UGVCL) as a percentage of total Gujarat demand 85 

 86 

Every week the utilities publish the quantum of power to be supplied to each group and the time during 87 
which power will be supplied on their websites (PGVCL 2020; UGVCL 2020). But the utilities do not 88 
archive this information on the website, and it is not available for research either. We electronically 89 
scraped this information from the website of the utilities each week for period of one year from 90 
November 2019 to October 2020 using an automated computer algorithm. An example of the scrapped 91 
supply information is shown in the appendix. This enabled us to create the hourly power supply curve for 92 
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each agricultural group over the 24 hours of the day. Summing the power supply across the agricultural 93 
groups of each utility (64 for PGVCL and 59 for UGVCL) we created the power supply curve for each 94 
utility, and in turn the agricultural power supply curve for the state (Figure 2).  95 

Even though we derived them indirectly, the estimated agricultural supply curves are an accurate 96 
representation of the actual supply. First, the curves have expected shape: power to agricultural 97 
consumers as a group is supplied mostly at night when the demand from other consumers is low. Only a 98 
minimal amount of power is supplied to agricultural consumers during evening peak load hours. This is in 99 
line with our understanding of the power management practices of the utility. Second, considering 100 
distribution loss of 19.5% for the PGVCL and 9.7% for UGVCL, our agricultural supply curves imply total 101 
agricultural sales of around 18,000 GWh compared to approved agricultural sales of 18,700 GWh (GERC 102 
2017b; 2017a). The difference of 4.3% is reasonable considering the uncertainty in actual distribution 103 
losses in the agriculture sector in Gujarat.  104 

The estimated agricultural supply curves show the sizable scale of demand management by Gujarat 105 
utilities. Agricultural supply is only 13% of overall demand during peak hours in non-monsoon months but 106 
increases to 35% during off-peak night hours (Figure 3). The pattern holds in monsoon months, though 107 
the differences are lower due to lower agricultural demand. Additionally, the peak amount of power 108 
supply to agricultural consumers is around 4500 MW, against a total connected load of approximately 109 
11,500 MW. This implies that the utilities supply only about a third of the consumers even during the 110 
peak supply hours. From a power system management perspective, this has the combined benefit of 111 
ensuring that agricultural pumping contributes minimally to peak demand, and of supplementing lower 112 
overnight load allowing conventional plants such as coal-fired generation to maintain a more stable 113 
operation. 114 

2.2. Other model inputs   115 

Our mixed integer production cost model minimizes the operational cost of Gujarat power system. In the 116 
Indian power sector merit order dispatch of power plants is based on this contracted capacity i.e., Gujarat 117 
can only dispatch the capacity of power plants (both within the state and outside) that are contracted by 118 
it. To enable an accurate representation of the power available to the state of Gujarat, our production 119 
cost model maps all the (in state and out of state) power plants which have a power purchase agreement 120 
with Gujarat and considers only the capacity contracted by Gujarat.  121 

We used hourly load for the state of Gujarat for 2018-19 (Energy Analytics Lab 2020) for modeling the 122 
aggregate demand in the model. The load was disaggregated to different discoms using historical power 123 
requirement data from GERC tariff orders. Agricultural load was deducted from the overall load to 124 
calculate the inflexible load in the system.  125 

The actual conventional power plants and the quantum of capacity for each is considered as per the 126 
Gujarat Electricity Regulatory Commission’s (GERC) tariff orders (GERC 2017a). We also take the fixed cost 127 
(including investment cost, O&M, and depreciation) and variable cost (fuel cost) of operation taken as per 128 
that approved by GERC. Operational parameters for the thermal power plants are based on generic data 129 
from Central Electricity Authority. Deterioration in parameters due to lower capacity factors is not 130 
considered. For renewable energy, we consider the actual installed capacity for the base scenario and 131 
assume higher capacity for various scenarios (see scenarios). The generation profile of RE power plants is 132 
based on data collected average hourly generation profiles by month for 2018-19 published by Gujarat 133 
SLDC (Gujarat SLDC 2019).  134 
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2.3. Production cost model in PLEXOS® 135 

This paper used a production cost model built for the state of Gujarat in PLEXOS® Integrated Energy 136 
Model, an industry standard commercial energy market modelling tool provided under an academic 137 
license by Energy Exemplar (Energy Exemplar 2021). The PLEXOS® engine has four separate phases that 138 
can be run separately or in combination: long term (LT), projected adequacy of system assessment 139 
(PASA), medium term (MT) and short term (ST), which performs Unit Commitment and Economic 140 
Dispatch (UC-ED). Each phase has a separate function and if run in combination, the higher-level phases 141 
pass results to the lower phases. Each step is optimized as a whole, taking the starting condition from the 142 
previous step and with no ‘awareness’ of the coming step. Thus, there is perfect foresight for the intervals 143 
within the step but no information on future steps.  144 

The UC-ED problem formulated in the ST phase is a combination of Unit Commitment, where the set of 145 
generators operating (committed) in any given time interval is determined, and Economic Dispatch, 146 
where the lowest-cost configuration of power output levels is determined in each period for committed 147 
generators. This combination of binary (generator on or off) and linear (output of each committed 148 
generator) decisions is solved using mixed integer-linear programming (MILP). The main optimization 149 
objective is minimizing operating costs of the power system subject to the condition that hourly demand 150 
must be equal to supply. Further constraints are imposed to account for generator operational 151 
characteristics, including minimum and maximum operating levels for each generator, ramp rates etc. 152 
Other key features of the modelling are hourly economic dispatch over a 1-year period with a 1-day 153 
planning horizon and an additional 1-day look-ahead at 8-hourly resolution.  154 

2.4. Modeling agricultural load optimization  155 

The modeling approach for agricultural load follows the flexible load representation by Hungerford, 156 
Bruce, and MacGill (2019). Agricultural load is modelled using the PLEXOS® ‘purchaser class’ that allows a 157 
specified quantity of load to be bid into the wholesale market at a particular price. This is mathematically 158 
equal to,   159 

𝑑𝑡 = 𝑑𝑡
𝐼 + ∑ 𝑑𝑗,𝑡

𝐹𝐽
𝑗=1  (1) 160 

Further constrained by: 161 

𝑑𝑗,𝑡
𝐹 ≤ 𝑃𝑗,𝑡

𝐹     (2) 162 

∑ 𝑑𝑗,𝑡
𝐹 =

𝑇𝑢
𝑡 𝐸𝑗,𝑢

𝐹   (3) 163 

where: 164 

dt is the system demand (MW) in each time period 165 

𝑗 is the index of flexible demands   166 

𝑡 is the index of time periods 167 

𝑢 is the index of days 168 
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𝑇𝑢 is the set of time periods in day u 169 

𝐽 is the total number of flexible demands  170 

𝑑𝑡
𝐼 the level of inflexible demand in time period t (MW)  171 

𝑑𝑗,𝑡
𝐹  the level of flexible demand dispatched for end use object j in time period t (MW)  172 

𝑃𝑗,𝑡
𝐹  is the maximum instantaneous level of flexible demand for end use object j in time period t (MW) 173 

𝐸𝑗,𝑢
𝐹  is the required energy of flexible demand for end use object j on day u (MWh) 174 

In the current supply scenario, the level for flexible demand (𝑑𝑗,𝑡
𝐹 ) in each discom is taken equal to the 175 

actual power supplied to agricultural consumers in that hour as derived in section 2.1 such that equation 176 

(4) is binding with an equality sign. In the optimized supply scenario, the level of flexible demand (𝑑𝑗,𝑡
𝐹 ) in 177 

each discom in equation (5) is considered less than or equal to the maximum supply to agriculture in the 178 

current system (i.e., 𝑃𝑃𝐺𝑉𝐶𝐿,𝑡
𝐹  = 2500 MW and 𝑃𝑈𝐺𝑉𝐶𝐿,𝑡

𝐹  = 2000 MW). Additionally, the daily required 179 

energy of flexible demand (𝐸𝑗,𝑢
𝐹 ) in equation (6) is taken equal to the daily energy supplied currently to 180 

agricultural consumers on a particular day (a day in PLEXOS® is from 00:00 hours to 23:59 hours). Taken 181 
together, these constraints allow the model to optimize costs by varying agricultural supply during the 182 
day while keeping intact the constraints in peak supply on account of distribution system capacity and 183 
seasonal variations in agricultural supply. But to keep the optimization problem tractable given limited 184 
computing power, a restriction of 8-hour continuous supply is not applied in the optimized scenario. In 185 

the solarization scenario, the total energy the maximum instantaneous level of flexible demand (𝑃𝑗,𝑡
𝐹 ) is 186 

assumed to be equal to 1.5 times the connected load of the agricultural consumers in the discom, which 187 
is the maximum solar capacity for which subsidy is given. 188 

2.5. Modeling scenarios 189 

Generation scenarios  190 

• Current generation mix: The model maps all the existing thermal power plants in the state. The 191 
current generation mix scenario replicates the generation from this power plants in the year 192 
2018-19. This also serves as the validation scenario for the model.   193 

• High renewables portfolio: At present renewables account for 13% off overall generation in the 194 
state. Since Gujarat does not plan to build any new coal power plants this is expected to rise in 195 
the future. In our high renewable energy scenarios, we consider the share of renewable energy 196 
being 20%, 30% and 50% of the overall generation, in line with the plans laid out by the state 197 
government for development of renewables (IEA 2021). To account for differences in energy 198 
profile depending higher wind or solar development, we modeled three sub-scenarios—High 199 
Wind (ratio of solar to wind generation = 1:4), High Solar (ratio of solar to wind generation = 2:1) 200 
and Equal Wind-Solar (ratio of solar to wind generation = 1:1).   201 

Agricultural demand scenarios  202 

• Current supply: The supply hours and quantity of power supplied to agricultural consumers is 203 
taken equal to the curves estimated using the supply data in section 2.1.  204 
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• Unconstrained agricultural demand: Since agricultural demand is managed it is difficult to 205 
understand the true extent of load control exercised by electricity utilities in Gujarat. We try to 206 
estimate this by creating a hypothetical supply scenario wherein farmers are provided most of 207 
the power during the daytime hours between 8h-20h. This helps us assess the flexibility provided 208 
by agricultural load to the current power system.  209 

• Optimized agricultural supply: We optimized agricultural supply to minimize system wide 210 
generation cost. Optimized supply assumes a) same daily energy supplied for irrigation as per 211 
current schedule, only timing varies b) the max agricultural load served by a utility at any point is 212 
equal to the maximum load currently served to account of the distribution system level grid 213 
constraints. See section 2.4 for detailed mathematical treatment.  214 

• Solarization: To estimate the impact of solarization of agriculture, 50% or 100% of agriculture 215 
load is shifted to solar pumps. The impact is considered to reflect the gross metering schemes 216 
that are being proposed for solarization of agricultural pumps.  217 

3. Results  218 

3.1. Overview and key trends  219 

The maximum hourly demand in Gujarat in 2018-19 was 18000 MW in September and the min was            220 
7600 MW in November. This demand was met through a predominantly coal based system which 221 
constitutes about 80% of total generation. VRE accounted for 13% of the overall electricity generation in 222 
2018-19, with most of the generation from wind—the ratio of solar: wind in RE generation is 1:4. But this 223 
is expected to change due to increasing deployment of solar power plants. This paper models the Gujarat 224 
power system under various scenarios with the share of renewables varying between 20% and 50% of 225 
total generation, including sub-scenarios for higher share of wind, higher share of solar or equal share of 226 
wind and solar (Figure 4). At higher renewable shares, the operation of coal power plants changes. The 227 
weighted average capacity factor of coal power plants declines from 75% in the current system to 47% in 228 
a system with 50% VRE.  There are frequent start/stops and increasing/decreasing (ramping) the output 229 
of coal power plants that is detrimental to their performance and imposes additional cost. The system is 230 
unable to absorb VRE at certain times leading to curtailment. The curtailment is highest during the 231 
months of Dec-Feb and May-Jun, when solar generation is high and net load is low. Total curtailment 232 
increases sharply as VRE share crises to about 50% and is estimated at 10.1% for solar and 6.9% for wind. 233 
It should be noted that this is the scheduled curtailment on account of imbalance between demand and 234 
supply. It does not account for curtailment due to forecast errors in RE generation and local grid 235 
congestion that cause curtailment in the system even with current RE penetration and could persist also 236 
in the future.  237 
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Figure 4: Model output showing curtailment of wind and solar electricity under increasing penetration of renewable 238 
energy and major system parameters. These results are derived for VRE shares of 20%, 30% and 50% considering 239 
1:1 ratio of solar to wind in VRE generation. 240 

   241 

3.2. Value of agricultural demand control to Gujarat’s electricity system 242 

The current supply schedules are highly optimized for the coal-based generation mix. Figure 5, left panel 243 
shows the average current supply to agriculture by PGVCL and UGVCL, along with the optimized supply to 244 
agriculture chosen by the PLEXOS model assuming the current capacity mix. The two curves overlap 245 
neatly, and the differences could be on account of practical limitations in shifting load and providing 8 246 
hours of continuous supply. Disaggregating the supply curves by season – monsoon and non-monsoon – 247 
reveals similar trends. To quantify the benefit derived by the Gujarat discoms from direct load control of 248 
agriculture, we created a hypothetical demand curve for agricultural consumers at the state level wherein 249 
most of the power is demand during daytime (8-20h). The current demand management practises reduce 250 
total system costs by about 5%, due to lower start and shut down expenses, decreases ramping costs and 251 
lower fuel costs. Coal power plants are operated much more efficiently as evident from the reduction unit 252 
starts and ramping (Figure 5, right panel). In the Indian power system agricultural load is seen as a liability 253 
because of the subsidies that need to be provided in addition to the maintenance of the vast rural supply 254 
network. However, this analysis shows that direct load control of agriculture is a valuable system service 255 
that is undervalued by system planners. Provision of similar scale of demand response service through the 256 
market mechanism, if even possible, would be imply an additional cost to utilities.  257 
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Figure 5: Actual and optimized supply hours to agriculture (left panel) and reduction in unit starts and ramping due 258 
to direct load control of agriculture (right panel) 259 

 260 

It is optimal to shift agricultural supply to day to increase the share of solar generation. The current 261 
supply schedules would not need to change much if ratio of solar: wind generation remains at current 262 
levels, except during monsoon months when higher wind generation during the day allows daytime 263 
supply. The current supply schedules will however need to change with higher RE significantly if 264 
significant amount of solar capacity is added to the system. 265 

Figure 6: Actual and optimized supply hours to agriculture under various renewable energy scenarios. The supply 266 
curves are derived for models with 50% VRE share.  267 

 268 

Agricultural load control lowers integration costs. Shifting agricultural supply to daytime hours reduces 269 
ramping requirements and unit starts for coal power plants, providing the higher flexibility that is 270 
particularly needed in the system that relies exceedingly on solar. The capacity factor of coal power plants 271 
also improves, from an average of 61% to 63% as more efficient coal plants are deployed for a longer 272 
duration. There is also significant decrease in curtailment of VRE, especially solar as the system is better 273 
able to absorb the peak time day generation. Solar curtailment reduces from 10.1% to 2.9% and wind 274 
curtailment reduces from 6.9% to 3.1% in the scenario with 50% VRE share. Agricultural demand 275 
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management can therefore reduce the imbalances in the power system allow for a more efficient 276 
operation of the existing thermal power plants, while simultaneously enabling increased absorption of 277 
renewable energy in the system.  278 

Figure 7: System metrics for scenario with 50 percent share of renewable scenarios. These results are derived for 279 
VRE shares of 50% considering 1:1 ratio of solar to wind in VRE generation. 280 

 281 

An obvious challenge in doing so would be that peak solar generation occurs only for about a couple of 282 
hours during the day. The current agricultural supply is organized such that all farmers are guaranteed a 283 
fixed amount of supply for 8 hours. With increasing share of solar, the discoms can switch most 284 
consumers from nighttime to daytime hours but that would not allow the agricultural demand to be 285 
flexible enough to deal with the solar peak. This implies finding alternative ways of dealing with the solar 286 
peak or curtailing the peak generation. 287 

3.3. Centralized vs. decentralized solar deployment 288 

Solar deployment in India has so far been dominated by centralized, utility scale solar power plants. 289 
Against a total of 34,197 MW of utility scale solar capacity, only 6792 MW of decentralized solar capacity 290 
has been added till date (Bridge to India 2020). The recently launched government of India PM-KUSUM 291 
policy marks a major shift.  Component-C of the policy incentivizes solarisation of grid connect irrigation 292 
pumps at the individual farm level, wherein the government will provide subsidies up to 70% of capital 293 
cost (GOI 2019). The scheme can be operationalized in either the net metering or gross-metering mode. 294 
Under the net metering scheme, the agriculture pump will continue to run at the rated capacity taking 295 
power from solar panels and balance power from grid, if required. Since the pumps will be kept ‘ON’ 296 
during the sunshine hours from morning to evening, there is a possibility that the farmer may run the 297 
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pump during the peak hours drawing power from the grid and feeding surplus solar power during the off-298 
peak hours. Under the gross metering scheme, the pump will only be run on the solar power as in case of 299 
stand-alone solar pump and no power will be drawn from the grid for the operation of pump. The existing 300 
motor pump set will have to be replaced to run directly on solar power. When solar power is not being 301 
used for irrigation, it can be fed into the grid. 302 

We capture solarization with gross metering in our model by removing the agricultural load from the 303 
system and instead increasing the solar power capacity by an amount equal to 1.5 times the connected 304 
load that it replaces as per the scheme provisions. Solarization with gross metering seems to be the most 305 
system optimal way of achieving high levels of solar energy penetration as it allows load to vary exactly 306 
with solar output. Because solar pumps can vary their output with the energy generated from the panels, 307 
they can absorb the peak solar generation. As can been seen in Figure 8, solarization can achieve the 308 
“ideal” optimal agricultural supply curve under high solar penetration. This results in variation in the 309 
quantum of water pumped but as pilots with off-grid pumps have shown that does affect the farmers in 310 
any significant manner (DSUSM 2017).  311 

Figure 8: Agricultural supply hours – centralized vs. decentralized solarization  312 

 313 

Solarization allows for an additional gain system cost optimization that is not possible in state-wide 314 
dispatch as the constraint of 8-hour continuous supply and distribution level grid constraints limit the 315 
amount of agricultural demand that can be met at any time. Comparing the system cost and performance 316 
metrics under various shows that the solarization is a more effective means of reducing costs and impact 317 
of integrating solar energy. While there are minimal incremental gains in reduction in unit starts for coal 318 
and gas power plants, ramping requirement is further reduced. Importantly, solarization allows for 319 
greater absorption of renewable energy in the grid. Solar curtailment reduces from 3-10% and wind 320 
curtailment reduces from 3-7% in other scenarios to almost nothing.  321 

3.4. Economic costs of VRE integration 322 

Integrating large shares of RE imposes costs on the power system that can be categorized into—the 323 
impact of temporal variability or “profile costs”, the  impact of uncertainty or “balancing costs”, and the 324 
impact of location or “grid-related costs” (Ueckerdt et al. 2013; Hirth, Ueckerdt, and Edenhofer 2015). Of 325 
these, profile costs have been shown to be the largest component of integration costs (Hirth, Ueckerdt, 326 
and Edenhofer 2015). Profile costs reflect the market value of electricity at different moments in time and 327 
the opportunity costs of matching VRE generation and load profiles. They can further be decomposed 328 
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into flexibility costs and the utilization effect. Flexibility costs are incurred due to adjusting the output of 329 
thermal plants through higher ramping, starts and shutdowns. Utilization effect is the cost imposed by 330 
VRE on system due to their generation profile – their unavailability during certain times of the day, which 331 
leads to lowered utilization of thermal capacity and curtailment of VRE during certain hours of the day 332 
when the system cannot absorb the excess generation. Previous studies (McPherson and Stoll 2020; 333 
Hummon et al. 2013) on RE integration in India have focused on capacity credit or adequacy costs. 334 
However, adequacy costs only address the low-capacity credit of VRE, while the utilization effect is more 335 
general: thermal utilization is reduced as the residual load curve becomes steeper and VRE utilization is 336 
reduced as generation needs to be curtailed (Hirth, Ueckerdt, and Edenhofer 2015). Hence, profile costs 337 
and the utilization effect can be understood as a generalization of adequacy costs.  338 

Flexibility costs. We estimate flexibility costs for the Gujarat system to be between on an average $1-339 
2/MWh using standard data for cycling costs (N. Kumar et al. 2012). The marginal increase in costs per 340 
unit of VRE generation is estimated to around $2/MWhVRE at 50% VRE penetration (Table 1). These 341 
estimates are in line with those from other power systems (Hirth, Ueckerdt, and Edenhofer 2015). As 342 
expected, the costs increase with share of VRE in the system, though the marginal increase is relatively 343 
stable. Optimizing agricultural supply keeps flexibility costs to less than $1/MWh, with a negligible 344 
increase in marginal costs. While small, it should be noted that these estimates are for scheduled ramping 345 
and starts, while uncertainty-related ramping and cycling are reflected in balancing costs. Further, they 346 
do not consider the impact of frequent cycling on plant heat rates.  347 

Table 1 Economic (profile) costs of RE integration under various shares of VRE, and with and without agricultural DR 348 

 With current agricultural supply With optimized 
agricultural supply  

Current 
energy mix 

20% VRE 30% VRE 50% VRE 
Current 

energy mix 
50% VRE 

Flexibility costs 

Generation (TWh) 120 120 120 120 120 120 

VRE generation (MWh) 14,153 22,844 34,003 57,335 14,153 60,709 

Start up/shut down charges ($'000/a) 95,405 1,09,857 1,32,585 1,75,841 81,266 78,922 

Ramping charges ($'000/a) 9,131 12,547 16,288 17,735 5,088 10,587 

Flexibility costs ($/MWh) 0.87 1.01 1.23 1.60 0.72 0.74 

Marginal increase in flexibility costs 
($/MWh VRE) 

 2.06 2.37 1.92  0.07 

Marginal increase in VRE capacity 
costs (₹/kWh VRE) 

 0.14 0.17 0.13  0.00 

Utilization effect–thermal capacity  

Thermal capacity (GW) 19 19 19 19 19 19 

Thermal generation (GWh) 105,605 97,055 85,970 62,701 105,689 59,351 

Capacity factor (%) 64% 59% 52% 38% 64% 36% 

Thermal capacity costs ($'000/a) 1,887,785 1,887,785 1,887,785 1,887,785 1,887,785 1,887,785 

Thermal capacity costs                   
($/MWh thermal) 

18 19 22 30 18 32 

VRE generation (MWh) 14,153 22,844 34,003 57,335 14,153 60,709 

Marginal increase in VRE capacity 
costs due to utilization ($/MWh VRE) 

 18 19 22  22 

Marginal increase in VRE capacity 
costs due to utilization (INR/kWh VRE) 

 1.23 1.35 1.53  1.54 

Utilization effect–VRE utilization 
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 With current agricultural supply With optimized 
agricultural supply  

Current 
energy mix 

20% VRE 30% VRE 50% VRE 
Current 

energy mix 
50% VRE 

VRE potential generation (MWh) 14,153 22,845 34,118 62,541 14,153 62,541 

VRE generation (MWh) 14,153 22,844 34,003 57,335 14,153 60,709 

VRE curtailment (MWh) - 2 115 5,206 - 1,832 

VRE curtailment (%)  0% 0% 8%  3% 

Marginal increase in VRE capacity 
costs due to curtailment ($/MWh VRE) 

- 0 0 9 - 3 

Marginal increase in VRE capacity 
costs due to curtailment (INR/kWh 

VRE) 
- 0.00 0.03 0.62 - 0.19 

Utilization effect. The economic value of wind and solar generation is often lower than the average 349 
electricity price and it decreases with penetration due to reduced utilization of thermal plants, and 350 
curtailment of VRE generation. Gujarat currently has 19 GW of thermal power capacity with a total fixed 351 
cost payment of $ 1888 M/a (INR 13,200 crore/a). As per long-term PPAs between the distribution utility 352 
and thermal power plants, this amount is payable irrespective of the actual utilization of the thermal 353 
capacity. The average thermal capacity utilization decreases from 64% in the current system to 38% with 354 
50% VRE generation. Increasing VRE share from current to 50% increases fixed cost from $18/MWhthermal 355 
to $30/MWhthermal. This corresponds to a marginal increase of $20/MWhVRE in thermal capacity costs at 356 
50% VRE share. Reduced thermal plant utilization is not only a transitory phenomenon. Not only does a 357 
swift introduction of renewables reduces thermal plant utilization, high VRE shares lead to lower average 358 
plant utilization even in the long-term equilibrium (Hirth, Ueckerdt, and Edenhofer 2015). Optimizing the 359 
agricultural supply does not prevent a decline in capacity utilization of thermal power plants. The second 360 
component of utilization costs is due to VRE curtailment. We estimate that VRE curtailment increases 361 
sharply as VRE share reaches around 50% and the marginal increase in VRE capacity costs rises sharply to 362 
$9/MWhVRE. Note that these costs are due scheduled curtailment on account of imbalance between 363 
demand and supply. It does not account for curtailment due to forecast errors in RE generation and local 364 
grid congestion.  Optimizing the agricultural supply allows for utilization of the peak time solar generation 365 
and sharply reduces VRE curtailment from 8% to 3% and the marginal increase in utilization costs reduces 366 
by more than half to $3/ MWhVRE.  367 

Sharing of profile costs. Under perfect and complete electricity markets in long-term equilibrium, profile 368 
costs estimated above would appear as reduced revenues from the day-ahead spot market, implying 369 
reduced average revenue for all power plants in the short term and permanently reduced revenues for 370 
VRE plants in the long term (Hirth 2013). However, 90% of the power in India is traded not on the 371 
wholesale market but rather through long-term contracts between distribution companies and 372 
generators. Legacy contracts for thermal generators are based on a two-part tariff (fixed cost and fuel 373 
cost calculated and calculated separately on cost plus basis) and contracts for renewable generators 374 
consist of single tariff (calculated either on cost plus basis or increasingly in RE auctions). The contracting 375 
structure in India implies that profile costs are shared in a way that little incentive exists to reduce them. 376 
Flexibility costs are typically borne by the generation companies in the contracting structure outlined 377 
above. Though thermal power plants can ask to be compensated on account of frequent start-stops and 378 
ramping, most of these costs must be absorbed as higher operational expenses. The largest component 379 
of profile costs—the utilization effect of thermal power plants is borne completely by distribution 380 
companies who are required to pay the fixed costs irrespective of the capacity utilization. The second 381 
component of profile costs—the utilization effect of VRE plants will also add to power purchase cost of 382 
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utilities. In most Indian states, VRE power plants have a must run status and generators need to be 383 
compensated by the distribution company for scheduled curtailment. Often curtailment of VRE is claimed 384 
by utility on grounds of system security and generators are not compensated. To the extent that investors 385 
in RE power plants can anticipate curtailments and price their bids in renewables auctions accordingly, 386 
costs are again likely to be borne by the distribution companies. Despite the increased cost, distribution 387 
companies have little incentive to remedy the situation. Power purchase costs are completely 388 
recoverable in regulator mandated retail tariffs, increase in integration costs will therefore directly 389 
translate into in increase in retail prices and reduced consumer welfare.    390 

4. Conclusions and discussion 391 

Agricultural pumping load is seen as a liability by electricity utilities in India due to poor paying capacity of 392 
farmers and heavy cross-subsidization. Farmers are provided electricity supply only for a few hours a day 393 
and that too late in the night when demand from other sources is lacking. This article shifts perspective by 394 
looking at the value of agricultural pumping demand as demand side resource. Enabled by the system of 395 
segregated power supply for irrigation, pumping load has long been used to flatten the load curve but its 396 
value to the system service has largely been ignored.  397 

We collected data on hourly supply to 124 agriculture groups in two distribution utilities in the Indian 398 
state of Gujarat for one year and integrated the derived agriculture supply curves in a production cost 399 
optimization power model. We find that agriculture pumping load provides a valuable system service to 400 
the grid through the direct load control on the agricultural pumps in India. We estimate that in the Indian 401 
state of Gujarat this leads to a reduction of 5% in total system costs and allows for smoother operation of 402 
coal power plants by reducing number of starts and ramping requirement. Such demand side 403 
management will continue to be valuable especially from the point of view of renewables integration. 404 
Appropriate management of pumping load can help reduce curtailment of renewable energy by 3-6% in s 405 
system with 50% VRE share.  406 

Further, optimization of agricultural demand can limit increase in flexibility costs to under $1/MWhVRE and 407 
reduce marginal increase in profile costs on account of VRE utilization from $9/MWhVRE to $3/MWhVRE. 408 
Since neither of these costs are directly borne by the distribution companies, they lack incentives to 409 
optimize demand to enable higher RE deployment. This may partly explain why demand response 410 
programs of all kinds, including agricultural demand shifting, have been implemented only to a limited 411 
extent. This is mitigated when the must run status of VRE is enforced, or distribution companies are 412 
provided other incentives to undertake demand shifting policies.       413 

A potential limiting factor in the use of agricultural load control may be that such direct load control over 414 
agricultural pumps may no longer be possible when the recently launched KUSUM scheme, which will 415 
support farmers to replace existing diesel pumps with solar PV pumps (with both on-grid and off-grid 416 
features) is implemented. But this paper shows that if correctly implemented a decentralized approach to 417 
deployment of renewables is superior from a power system cost-optimization perspective.  418 

There are however limits to solarization of solar pumps on a massive scale. First, solarization with gross 419 
metering requires an additional expense by farmers to convert their solar pumps to run directly on solar 420 
power. Second, unchecked use of solar panels (with zero marginal cost electricity) can worsen the 421 
problem of ground water utilization, which is currently controlled by limiting the supply of electricity. 422 
Importantly, gross, or net metering schemes that provide time varying feed-in-tariffs would need to be 423 
used to provide incentive to farmers to feed electricity into the grid at the time when it is beneficial for 424 
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the grid. Well-designed feed in tariffs can also provide additional income to farmers, besides providing 425 
incentives for conserving water (Shah, Verma, and Durga 2014). If such feed-in-tariffs are priced correctly, 426 
farmers can be moved from a system of “load control” to “demand response”, wherein they are suitably 427 
reimbursed for the demand response services that they provide to the power system.  428 

The predominance of agricultural load in the power system is not uniquely Indian, nor is the usefulness of 429 
agricultural demand response. Agricultural consumption is a major source of demand in emerging and 430 
developing countries. More research into ways of exploiting this demand side resource would provide 431 
policymakers and system planners across the developing world an additional, cheap flexibility option to 432 
facilitate integration of renewables. 433 
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