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Abstract
K-means clustering is one of the most widely-used partitioning algorithm in cluster

analysis due to its simplicity and computational efficiency, but it may not provide ideal
clustering results when applying to data with non-spherically shaped clusters. By consid-
ering the asymmetrically weighted distance, We propose the K-expectile clustering and
search the clusters via a greedy algorithm that minimizes the within cluster τ -variance.
We provide algorithms based on two schemes: the fixed τ clustering, and the adaptive τ
clustering. Validated by simulation results, our method has enhanced performance on data
with asymmetric shaped clusters or clusters with a complicated structure. Applications of
our method show that the fixed τ clustering can bring some flexibility on segmentation
with a decent accuracy, while the adaptive τ clustering may yield better performance. All
calculation can be redone via quantlet.com.
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1 Introduction
Clustering is a useful technique to discover and identify homogenous groups of data

points in a given sample. As an unsupervised learning algorithm, it aims to extract
information on the underlying characteristics via dividing the data into groups that
maximize common information. Obviously the information about homogeniety of groups
is key in such a sample dividing mechanism. Among the simplest choice is the K-means
clustering method described by Steinhaus (1956) and Hartigan (1975), which adopt the
Euclidean distance as neighbourhood measure, thus leading to spheres as silhouettes and
means as centers of clusters. Indeed, while keeping a balance between group size and
information gain, K-means is the most widely used partitioning algorithm due to its
simplicity, efficiency in computing and easiness of interpretation. Successful applications
include signal processing, image identification, customer segmentation.

The principle of a partitioning clustering algorithm is to assign data points to the
nearest cluster by optimising some objective function. The objective function of K-means
is the sum of within-group variance, and thus the correspondence cluster centers are the
mean of each cluster. Minimizing the objective function is equivalent to maximizing the
log-likelihood function with independent Gaussian density. Although K-means clustering
is often viewed as a "distribution free" algorithm, it is actually partitioning using equal
sized spherical contour lines which can be considered as assuming independent identically
distributed (i.i.d.) Gaussian clusters. Therefore, K-means approach works better for
cluster in the symmetric distribution than the skewed ones.

On the other hand, when applied on skewed or asymmetric distributed data whose
characteristics may not be fully captured by the first two moments, new methods are
required for non-spherical cluster. To account for within-cluster skewness, Hennig et al.
(2019) introduce the K-quantile clustering algorithm based on the assymmetric absoluate
discrepancy. Then they linked their approach to a fixed partition model of genralized
asymmetric Laplace distributions. This quantile discrepancy based density relies on both
the quantile level τ and some additional scale/penalty parameter λ. However, τ and λ
are assumed the same across different clusters to reduce the computation complexity. An
analogous work on quantile based clustering is proposed in Zhang et al. (2019), where they
developed a model-based iterative algorithm to identify subgroups with heterogeneous
slopes. In particularly, they consider clustering across multiple quantiles to capture the
full picture of heterogeneity. For that accordance, how to specify the appropriate quantile
level vector τ could be a problem for large dimensional data.

This motivates us to consider a novel method, K-expectile clustering. This method
is based on a similar idea as K-means but with an expectile cluster center and aims at
minimizing the so-called τ -variance, which is a weighted quadratic loss to take into account
asymmetry. Besides being simple and fast, our algorithm can be applied on wider range
of data compared with K-means. In particular, we consider two schemes, either with a
pre-specify τ level or an adaptive τ that may vary across different dimensions or clusters,
which accommodates either a fixed cluster shape or a data-driven cluster shape to capture
heterogeniety.

To better understand the basic ideas of K-expectile clustering, we recall some basic
knowledge about tail events. Quantile regression (Koenker and Bassett Jr, 1978) and
expectile regression (Newey and Powell, 1987) have been suggested for displaying the
whole picture of the conditional distribution of response variable on covariates, especially
for data not sufficing the condition of homoskedasticity or conditional symmetry. For a
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random variable X ∈ R drawn from distribution F , a location model of τ -th tail event
measure with τ ∈ (0,1) could be defined as:

xi = θτ + εi, i = 1, . . . , n.

With an assumption on the τ -th quantile or expectile of the cdf of ε being zero, θτ is by
definition the τ -th quantile or expectile of X accordingly. An estimator of the location
model of quantiles and expectiles can be naturally formed:

θ̂τ = arg min
µ∈R

E [ρτ(X − µ)] ,

where the loss function ρτ(⋅) is defined as:

ρτ(u) = ∣u∣α∣τ − I{u≤0} ∣,

with α = 1 and α = 2 respectively.
Although the concept of expectiles is natural analogues of quantiles, expectiles enjoy

the computation efficiency over quantiles (Schnabel, 2011). In finance, the expectile might
be preferred as a favorable risk measures due to its desirable properties such as coherence
and elicitability (Kuan et al., 2009, Ziegel, 2016). Recently, the use of expectiles attracts
more and more attention, such as the nonparametric expectile regression by Sobotka and
Kneib (2012) and Yang et al. (2018), the principle expectile analysis by Tran et al. (2019).
Our proposed K-expectile clustering allows us to take into account tail characteristics and
asymmetry when identifying homogenous groups of data, while simulation studies and
applications justify its excellent performance.

The rest of the paper is organized as follows. In section 2, we will briefly review the
classical K-means algorithm, and then propose our K-expectile clustering in two schemes.
In section 3, we present the simulation study that includes data from different distribution
and compare the performance of K-expectiles clustering with other methods. Section
4 applies our method to real crypto currency market analysis and image segmentation.
Codes of all the functions, applications and data are uploaded to quantlet.com.

2 Methodology

2.1 K-means clustering

Suppose the data set X = {Xi}
n
i=1 comes from a random sample in Rp. A clustering algo-

rithm denoted by Q(⋅) generates K subsets {G1,G2, . . . ,GK} each with distribution pk(X).
Any clustering algorithm maps X into a membership vector C = (c(1), c(2), . . . , c(n)), i.e.
Q(xi) = c(i), and Gk = {xi ∶ c(i) = k}, c(i) ∈ {1,2, . . . ,K}.

A clustering criterion is defined via a cost function. In K-means clustering, the cost
is defined as the sum of squared Euclidean distance between cluster members to the
cluster centroids. Indeed the centroids can be considered as location parameters for
clusters. In K-means clustering, cluster centroids are actually cluster means and the cost
function is the sum of within-cluster variance. Let G(⋅) be the K-means objective function,
Θ = (θ1, θ2, . . . , θK) be a set of cluster centroids with θk ∈ Rp,

G(Θ,C,X) = min
Θ

K

∑
k=1

∑
xi∈Gk

∥xi − θk∥
2.

2
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Clustering is now turned into an optimisation problem and is solved via iteration. For a
fixed Θ, partition c(i) is achieved by assigning each point to the nearest cluster centroid.

c(i) = arg min
k∈{1,2,...,K}

∥xi − θk∥
2.

For a fixed membership vector C, the centroid θk can be estimated by taking the within-
cluster mean.

θ̂k = x̄k =
1

∣Gk∣
∑
xi∈Gk

xi.

Suppose X are drawn i.i.d. from an equally-weighted Gaussian Mixture Model, with
conditional unknown expectation µk and variance Σk. The estimation of this model
requires the EM algorithm, and the details are explained in Deisenroth et al. (2020). If
let µk be the k-th cluster centrioid, and covariance matrix simply equals to the identity
matrix, then the K-means objective function is coincide with the expectation function
in EM algorithm of a Gaussian Mixture Model with equal mixture weights. By a "hard"
assignment of data points to nearest cluster centroid in K-means algorithm as described
in MacKay and Mac Kay (2003), the computation of parameter Θ can be easily conducted
by independently estimating cluster means. Simoultaneously K-means clustering is a
distribution-free but distance based clustering technique.

2.2 K-expectiles clustering

Now consider a set of data with skewed or asymmetrically distributed clusters, i.e.,
cluster centroids Θ are not located on means and cluster variances are heterogeneous
on different sides around centroids. As said before, it is the information measure of
homogeneity that yields the clusters. A distance with cluster centroids offset from means
and a distance metric which takes asymmetry into account is certainly a more flexible way
of dividing groups.

For that purpose, assume each cluster is a group of data drawn independently from
some distribution. Define the cluster centroid θk as the τ expectile of cluster distribution,
and assign points according to expectile distances. Take the univariate random variable
X ∈ R as an example. For a fixed τ ∈ (0, 1), the τ -th expectile of X as proposed by Newey
and Powell (1987) is identified as the minimizer of the asymmetric quadratic loss

eτ(X) = arg min
µ∈R

E [ρτ(X − µ)] , (1)

ρτ(X − µ) = τ(X − µ)
2
+ + (1 − τ)(µ −X)2

+, (2)

where (x)+ = max(x,0). It is worth noting here that the expectile location estimator can
be interpreted as a maximum likelyhood estimator of a normal distributed sample with
an unequal weight placed on positive and negative disterbances, showed in Aigner et al.
(1976).

For X ∈ Rp, define (X)+ = ((X1)+, . . . , (Xp)+)⊺, then the multivariate expectile is:

eτ(X) = arg min
µ∈Rp

E [τ∥(X − µ)+∥
2 + (1 − τ)∥(µ −X)+∥

2] . (3)

Here the dependence is taken into account by using the norm. Note that the construction
of the multivariate expectiles are related to the dependence structure of each components.
The choice of dependence modelling may differ according to the practical goal. For
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simplification, we first elaborate the case when the dependence structure is ignored. Then
the multivariate expectile eτ ∈ Rp can be defined via the marginal univariate expectiles,
eτ(X) = (eτ(X1), . . . , eτ(Xp))

⊺, where

eτ(Xj) = arg min
µ∈Rp

E [τ{(Xj − µj)
2
+} + (1 − τ){(µj −Xj)

2
+}]

We could gain further flexibility and more power of expectiles in p dimension by setting
τ = (τ1, τ2, . . . , τp)⊺ ∈ Rp, making the τ level variable over dimensions. Then we obtain
eτ(X) = (eτ1(X1), . . . , eτp(Xp))

⊺, where

eτj(Xj) = arg min
µ∈Rp

E [τj{(Xj − µj)
2
+} + (1 − τj){(µj −Xj)

2
+}]

The empirical version reads as:

êτ,n(X) = arg min
µ∈Rp

1

n

n

∑
i=1

p

∑
j=1

{τj(xij − µj)
2
+ + (1 − τj)(µj − xij)

2
+}, (4)

whose idea is to consider an asymetrically weighted distance function with L2 norm and fix
the cluster centroids at the empirical expectile of the k-th cluster, i.e. θ̂k = êτ,n(X ∈ Gk).

Instead of specifying an asymmetric form of distribution, we form a K-expectile
objective function by defining an asymmetric τ -variance as described in Tran et al. (2019),
which yields to an axis-aligned elipsoid unit ball. To include covariance or correlation,
usually a matrix form of multivariate expctile will be considered. By introducing a p × p
symmetric matrix Σ, one can form a score function as described in Maume-Deschamps
et al. (2016),

eΣ
τ (X) ∈ arg min

µ∈Rp
E [τ(x − µ)⊺+Σ(x − µ)+ + (1 − τ)(x − µ)⊺+Σ(x − µ)+] . (5)

In Figure 2.1, the contour lines of unit circles of bivariate τ -variance with various τ
levels on each axis are shown along with unit circles of a symmetric variance in the back.
The covariance matrix is the inverse matrix of Σ in function (5). The last sub-plot shows
the unit circles with different scales on two axis. These are equivalent to the contour lines
of independent bivariate asymmetric normal distributions in comparison with the contour
lines of independent normal distributions. Figure 2.2 shows the 3D contour surface of
τ -variance unit ball with different τ -levels on each dimension, or the 3D cluster shapes.

2.3 Fixed τ clustering

Recall that for a univariate observation x ∈ R, we could define τ -distance as

d(x, τ, θ) = {τ + (1 − 2τ) I{x<θ}} (x − θ)2, (6)

which coincides with loss function (2). Therefore, for a pre-specified τ vector, define the
objective function

GFixed(τ,Θ,C,X) =
K

∑
k=1

∑
xi∈Gk

p

∑
j=1

d(xij, τj, θk) (7)

=
K

∑
k=1

∑
xi∈Gk

p

∑
j=1

{τj + (1 − 2τj) I{xij<θk,j}} (xij − θk,j)
2, (8)
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Figure 2.1: Contour lines of unit balls of various τ variances in
comparison to unit balls of symmetric variance

KEC_cluster shapes

which aims to detect expectile-specified clusters by minimizing the sum of within-cluster
τ -variance.

For known (τ,C), cluster centroids Θ are found by:

θ̂k = arg min
µ∈Rp

∑
xi∈Gk

p

∑
j=1

{τj + (1 − 2τj) I{xij<µj}} (xij − µj)
2 (9)

= arg min
µ∈Rp

∑
xi∈Gk

p

∑
j=1

wij(τj)(xij − µj)
2 (10)

where w(τ) is a weight function which is related to µ(τ), the location parameter at the
given τ level.

wij(τj) =

⎧⎪⎪
⎨
⎪⎪⎩

τj if xij ≤ µj(τj)
1 − τj if xij > µj(τj).

(11)

This implicit dependence of w on µ(τ) leads to the application of the Least Absolute
Square Estimator (LAWS), a version of the Stochastic Gradient Algorithm. For a fixed
µj(τj), the weight wij(τj) in equation (11) is calculated, therefore a closed form solution
of µj(τj) can be expressed as

µj(τj) =
τj∑i∈I+τj

xij + (1 − τj)∑i∈I−τj
xij

τjn+ + (1 − τj)n−
(12)

5
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Figure 2.2: 3D contour surface of unit balls of various τ variances.
Left: τ = [0.1,0.2,0.1]. Right: τ = [0.4,0.5,0.8].

KEC_cluster shapes

where

I+τ = {i ∈ {1, . . . , n} ∶ wij = τj, c(i) = k}

I−τ = {i ∈ {1, . . . , n} ∶ wij = 1 − τj, c(i) = k}

n+ = ∣I+τ ∣ n− = ∣I−τ ∣.

Cluter centroids can be estimated by iteratively repeating the two steps until the location
of µj(τj) does not change, see:

Algorithm 1 LAWS
Input: The set of points in cluster Gk; The vector of parameter, τ ;
Output: Estimated cluster centroids, Θ
1: Initialize µ0

j(τj) as mean of j-th column of xi ∈ Gk

2: repeat
3: Assign weight wt+1

ij (τj) to each point xij based on µt(τ)
4: Update µt+1(τ) according to equation (12) with input wt+1(τ)
5: until ∥{µ(τ)t, µ(τ)t−1∥ ≤ threshold

The K-expectiles clustering algorithm now read as follows:

6
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Algorithm 2 Fixed τ clustering
Input: Data, X; Vector parameter, τ ; # of clusters, K;
Output: Cluster membership vector, C; Estimated cluster centroids, Θ
1: Initialize centroids Θ0 = Θk−means
2: repeat
3: Calculate cluster membership

c(i)t+1 = arg min
k∈{1,2,...,K}

p

∑
j=1

∑
i∶c(i)t=k

{τj + (1 − 2τj) I{xij<θtk,j}
}(xij − θ

t
k,j)

2

4: Update θt+1
k by applying Algorithm (1) with input c(i)t+1

5: until ∥θt − θt−1∥ ≤ threshold

2.4 Adaptive τ clustering

In the last section, clustering with fixed cluster shapes by pre-specifying the τ vector
has been discussed, and this senario is shown in Sub-plot 1 of Figure 2.3. In comparison,
regarding the issue of clusters with different shapes as shown in Sub-plot 2 of Figure 2.3,
we present the result of a fully adaptive algorithm, both for different dimensions and
for different clusters. Without pre-defined τ , we now assume τ is a (K × p) matrix. We
optimize the following cluster objective function with respect to τ as well.

Figure 2.3: Different senarios regarding to cluster shapes
KEC_cluster shapes
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GAdaptive(τ,Θ,C,X) =
K

∑
k=1

∑
xi∈Gk

p

∑
j=1

d(xij, τk,j, θk,j) (13)

=
K

∑
k=1

∑
xi∈Gk

p

∑
j=1

{τk,j + (1 − 2τk,j) I{xij<θk,j}} (xij − θk,j)
2, (14)

For given (Θ,C), to optimize τ , require

τ̂k = arg min
τ∈(Rp)K

GAdaptive(τ,Θ,C,X). (15)

By taking first order condition, we get the unique solution:

τk,j =
γk,j

1 + γk,j
, (16)

where
γk,j =

n−∑i∈I+τ θk,j − xij

n+∑i∈I+τ xij − θk,j
.

Then the clustering algorithm for adaptive τ can be described as: The clustering
algorithm can be implemented as follows:

Algorithm 3 Adaptive τ clustering
Input: Data, X; # of clusters, K;
Output: Cluster membership vector, C; Estimated cluster centroids, Θ
1: Initialize centroids Θ0 = Θk−means; τ 0

k,j = 0.5
2: repeat
3: Calculate the cluster membership by

c(i)t+1 = arg min
k∈{1,2,...,K}

p

∑
j=1

∑
i∶c(i)t=k

{τ tk,j + (1 − 2τ tk,j) I{xij<θtk,j}
}(xij − θ

t
k,j)

2

4: Update θt+1
k by applying Algorithm (1) with input τ tk

5: Update τ t+1
k according to equation (16) with input θt+1

k

6: until ∥θt, θt−1∥ ≤ threshold

Finally, we point out that our algorithm has the numerical convergence.

Proposition 2.1. The sequence produced by the adaptive τ clustering algorithm could
converge to its optimal solution.
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3 Simulation
To evaluate the performance of K-expectiles clustering, we design four simulated

samples with K clusters. Let k = 1, . . . ,K, each cluster represented by Gk is an i.i.d.
random sample drawn from a p-variate distribution in the size of (n1, n2, . . . , nk). Each
component of the multivariate distribution is assumed to be independent. Data set can
be written as X = (G1,G2, . . . ,Gk). Scale, location and skewness of the distribution can
cause the overlapping of multiple clusters which in turn influece the cluster shapes and
within-cluster data density, thus hinder the accuracy of grouping results. The simulated
samples are designed to reserve some extend of overlap while ensure certain discrimination
between clusters, in order to achieve the purpose of evaluating the robustness of the
algorithms.

Sample 1: In the first sample we generate K multivariate Gaussian clusters with unit vari-
ance and different location parameters. Gk ∼ N(µk,Ip), where µ1 is a p-dimensional
integer vector whose elements are randomly generated in interval (1,10), and then
shift the location of other clusters by µk = µ1 + 2k. Clusters are in the same size of
nk = n/k.

Sample 2: To include some asymmetry on the basis of Sample 1, the second sample
is designed as a mixture of K asymmetric normal distributions. Each cluster Gk

is considered as a p-dimensional i.i.d. sub-sample, where Gk = (W1,W2, . . . ,Wp)
⊺.

The probability density function of Wj can be expressed as following, with µj(j =
1,2, . . . , p) as location parameters, and σl, σr as standard deviation of two sides
around µ,

p(Wj ∣ θ) =
p

∏
j=1

√
2

π

1

σlj + σrj

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

⎧⎪⎪
⎨
⎪⎪⎩

−
(Wj − µj)2

2σ2
lj

⎫⎪⎪
⎬
⎪⎪⎭

Wj < µj

exp

⎧⎪⎪
⎨
⎪⎪⎩

−
(Wj − µj)2

2σ2
lj

⎫⎪⎪
⎬
⎪⎪⎭

Wj ≥ µj

,

Now let eτ (τ -expectile of the variable) be the location parameter, and σj be the
overall standard deviation of the variable, the density function of asymmetric normal
distribution can be rewritten as:

p(Zj ∣ eτ , σj, τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p

∏
j=1

¿
Á
ÁÀ

1

2π(τ−
1
2σj)

2
√

1 − τ
√

1 − τ +
√
τ

exp{−
(Zj − eτ)2

2(τ−
1
2σj)2

} Zj < eτ

p

∏
j=1

¿
Á
ÁÀ

1

2π((1 − τ)−
1
2σj)

2
√
τ

√
1 − τ +

√
τ

exp{−
(Zj − eτ)2

2((1 − τ)−
1
2σj)2

} Zj ≥ eτ

,

which means the asymmetric normally distributed variable Wj(j = 1,2, . . . , p) can
be converted from univariate Gaussian distributed variables Zj according to the
formula:

W k
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
√
τ kj

√
1 − τ kj +

√
τ kj

⋅
1

√
1 − τ kj

⋅Zj + eτkj Zk
j < 0

2
√

1 − τ kj
√

1 − τ kj +
√
τ kj

⋅
1

√
τ kj

⋅Zj + eτkj Zk
j ≥ 0

,
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in our sample, each Zk
j ∼ N(0, 25). Parameter τ kj is given by using random generator

with interval [0.1, 0.9], and location parameter eτ1j is randomly generated in (0, 10)k-
th cluster, then the location of k-th cluster can be shifted by eτkj = eτ1j +7(−1)j(j −1).

Sample 3: In the third sample we want to test the algorithm on skewed but not leptokurtic
clusters, namely Beta-distributed clusters. For variables in cluster{k = 2c + 1, c ∈ Z},
W i
j ∼ Beta(aj, bj), (j = 1, 3, . . . , p−1), and in cluster {k = 2c, c ∈ Z},W i

j ∼ Beta(bj, aj),
(j = 2,4, . . . , p). We generate parameter aj randomly from interval (1,10) and bj
from interval (10,20), again K = 3.

Sample 4: For the last sample, skewed and leptokurtic clusters are being considered. We
set 2 different scenarios:

• K skewed generalized t-distributed samples. We first generated a random sample
with dimension p = 2, parameters df = [10,10,10], nc = [3,−1.5,2.5], location
randomly fluctuated with the difference of 0.5 around [[0,2], [1,0], [0.5,1]],
scale = 0.5. And generate data repeatedly until p reaches 10 and 50.

• K multivariate F -distributed clusters. For variables in the first cluster, W 1
j ∼

F (aj, aj)+1, and when j = 1, 3, . . . , p−1; W 1
j ∼ F (bj, bj)+1, when j = 2, 4, . . . , p,

where aj and bj are integers randomly selected from interval (51,60) and
(21, 30). In the second cluster, W 2

j ∼ F (bj, bj), j = 1, 3, . . . , p−1, W 2
j ∼ F (aj, aj),

j = 2,4, . . . , p, where aj and bj are integers randomly selected from interval
(5, 15) and (25, 35). In the third cluster, W 3

j ∼ F (aj, bj), j = 1, 3, . . . , p − 1, and
W 3
j ∼ F (bj, aj), j = 2,4, . . . , p, where aj and bj are integers randomly selected

from interval (15,25) and (60,70).

For each of the first three samples, we evaluate combinations of p = 50,100,500, n =

300, 1500. For the last sample, p = 2, 10, 50. For each simulation setting, we re-generate the
data 50 times and test the algorithms each round, and take the average of the Adjusted
Rand Index (ARI) of the yielded classification compared with the true cluster membership.
Rand Index measures the pair-wised agreement between data clustering. When it is
djusted for the chance grouping of elements, this is the Adjusted Rand Index. Given two
partitions X =X1,X2, . . . ,Xr , Y = Y1, Y2, . . . , Ys, and the contingency table,

XÓ
Y Y1 Y2 ⋯ Ys sums

X1 n11 n12 ⋯ n1s a1

X2 n21 n22 ⋯ n2s a2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

Xr nr1 nr2 ⋯ nrs ar
sums b1 b2 ⋯ bs

,

the Ajusted Rand Index is defined as:

ARI =
∑ij (

nij
2
) − [∑i (

ai
2
)∑j (

bj
2
)]/ (

n
2
)

1
2
[∑i (

ai
2
) +∑j (

bj
2
)] − [∑i (

ai
2
)∑j (

bj
2
)]/ (

n
2
)
.

Results are shown in Apendix, where the demonstrated values are the 100 times of ARI.
We have considered other distance based clustering algorithms such as K-means denoted by
K-means, spectral clustering (Shi and Malik, 2000) denoted by spectral, Ward hierarchical
clustering (Ward Jr, 1963) denoted by h-ward, and Quantile based clustering (Hennig
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et al., 2019) as well as K-expectile clustering with adaptive τ . Note that Quantile based
clustering algorithm allows quantile level (skewness parameter) τ to change variable-wisedly
and introduces a scale/penalty parameter. CU, CS, VU, VS stands for the four modes of
Quantile based clustering, corresponding to Common skewness parameter and Unscaled
variables, Common skewness parameter and Scaled variable-wise, Variable-wise skewness
parameter and Unscaled variables, Variable-wise skewness parameter and Scaled variable-
wise. Note that spectral clustering sometimes does not work appropriate on data with
outliers which lead to a not fully connected graph. This scenario can be easily occured in
a highly skewed sample or sample with large dimensionality.

From Table 7.1 we can conclude that K-expectile, as an algorithm that generalize
K-means, works as good as but sometimes even better than K-means on spherical clusters.
Meanwhile it is better than all the other clustering algorithms, incluing Ward hierarchical
clustering (hierarchical clustering with the metric of Euclidean distance), spectral clustering,
and quantile based clustering. For asymmetric normal distributed clusters, as Table 7.2
shows, K-expectile outperforms all the listed algorithms. Since the contour lines of the
real distribution of the data correspond to the assumption of K-expectile cluster shapes,
K-expectile yields a significantly better result than other algorithms. For more general
skewed distributed clusters as demonstrated in Table 7.2, 7.3, 7.4 and 7.5, K-expectile
still has a robust and outstanding performance.
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4 Application

4.1 Application of adaptive τ clustering on CRIX and VCRIX
data

An application based on the CRIX and VCRIX data is presented in this section.
CRIX (CRyptocurrency IndeX) developed by Trimborn and Härdle (2018) provides a CC
market price index weighted by market capitalization with a dynamic changing number of
constituents of representative cryptos. The mechanism of selecting CRIX constituents with
Akaike Informstion Creterion is introduced in the mentioned paper. VCRIX, developed
by Kim et al. (2019) is a volatility index built on CRIX which offers a forecast for the
mean annualized volatility of the next 30 days, re-estimated daily by using Heterogeneous
Auto-Regressive (HAR) model.

The data are downloaded from thecrix.de, consists of two time series, CRIX and
VCRIX, collected daily from 2017-01-02 to 2021-02-09, in total 1497 observations in two
dimensions. Here we scaled the data by dividing each varaible by their standard deviations
to ensure the data has equal variance. The descriptive statistics and density plots of the
two variables are listed as following.

Min. 1st Qu. Median Mean 3rd Qu. Max Skewness Kurtosis JB statistic
CRIX 0.080 0.621 1.056 1.246 1.443 7.257 2.450 10.988 5481.283
VCRIX 0.801 1.814 2.225 2.458 2.884 6.565 1.370 5.360 816.166

Table 4.1: Descriptive statistics of location and dispersion for 1497
scaled data for the period from January 02, 2017 to
February 09, 2021.

From Table 4.1, it is evident that neither of the two variables are normally distributed
and both of them are skewed. This fact can be seen in Figure 4.1 as well, due to the longer
right tail of the densities of both variables. From the plot of marginal distribution one
might suspect several clusters exist.

Results of K-means clustering, K-expectile clustering with adaptive τ and Spectral
clustering are shown in Figure 6.3. To select the appropriate K, we consider the clustering
evaluation cretaria including silhouette score and Davies-Bouldin score (Figure 6.1 and
6.2), both of them showed that K = 3 might be an appropiate choice which balances the
cluster efficiency and number of clusters from a maximising similarity perspective. Hence
we fix K = 3 and let the algorithm find the optimal location of the cluster center based on
the skewness nature of the data. Our adaptive τ clustering approach yields a form of a
(K × p) matrix [[0.515, 0.448]T , [0.222, 0.301]T , [0.299, 0.300]T ], corresponding to the blue,
green and grey clusters in Figure 6.3 respectively. For comparison, we consider K-means,
K-expectile and spectral clustering.

Figure 2.3 shows the shapes and distribution of the three clusters on the two dimensional
space consisting of CRIX and VCRIX. From the plot we can observe that the three clusters
of K-expectile represents different types of correlation between price and volatility index.
The three clusters can be described as ’low-price-low-volatility cluster’, ’low-price-high-
volatility cluster’, and ’positively correlated price and volatility cluster’, corresponding to
color blue, green and grey.
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Figure 4.1: Variable densities. The red line and the blue line are the
result of kernel density estimation of scaled CRIX and
VCRIX.

KEC_application

It is worth noting that the grey cluster only appears shortly in the end of 2017 and
from the end of 2020 till now. Positive correlation between price and volatility of crypto
markets means that the volatility and price drives each other in the same direction. Higher
price and higher volatility shows an ’exciting’ signal other than a ’panic’ expectation, this
phenomenon mostly occurs in the securities market dominated by individual investors,
where increased volatility is a signal of market activation. On the other hand, low-volatility
cluster appears in most period of the CC market, which means CC market is highly
dominated by instituational investors most of the time. High volatility means unstable
market sentiment and high trading volumn, and the green cluster often appears when the
price start to change.

4.2 Application of fixed τ clustering on image segmentation

Image segmentation is a technique widely used in image processing, which partition
an image into multiple parts sharing similar characteristics. Image segmentation includes
separating foreground from background, or clustering regions of pixels based on color
or shape. One of the commenly used methods in color-based segmentation is K-means
clustering. In this case, pixel values are regarded as independent random samples in the 8
bits color space, and divided into K discrete regions which has minimal variances. The
output of K- means segmentation can be visualized by converting all the pixels in a group
to the color of the cluster centers.
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By applying K-expectile clustering, we expect a more flexible choice of centers and
thus a more flexible segmentation output of the image. Besides the adaptive τ clustering
approach, we also consider two ways to prespecified τ , which put more weights on group-
wised and dimension-wised tail behavior respectively. In particular, we set a group-specified
τ as [0.2,0.7,0.1,0.9] to include groups emphasizes on both left tail and right tail for a
choice of K = 4 groups. We also consider a dimension-specified τ as [0.1, 0.8, 0.9] for these
3-dimensional RGB valued data to involve information on both tails. To evaluate the
performance of K-expectile clustering, we take K-means clustering result as benchmark
and bring Quantile based clustering results into comparison.

Figure 4.2: Image segmentation results using different clustering
methods.
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The original image is an aerial photo of Berlin, for pre-processing, we transform the
image into pixel values in RGB color space, and flatten the data into a two-dimensional
array. Figure 4.2 shows the original image and the segmented image, which can be
considered as filtered image with 4 color clusters. Important information can be extracted
from the image by displaying some clusters and mute others. The subplots showed in
Figure 4.3 are image with only one cluster enabled.

Figure 4.3: Segmented image with only one cluster displayed.

To evaluate the performance of segmentation methods, we use two indices, Mean Square
Error (MSE) and Peak to Signal Noise Ration (PSNR). Given an m × n monochrome
image I, Mean Square Error measures how much the approximation K differs from it.
MSE is defined as:

MSE =
1

mn

m−1

∑
i=1

n−1

∑
j=1

{I(i, j) −K(i, j)}2.
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Peak to Signal Noise Ration is usually used to measure the quality of the compressed
image. PSNR is the proportion between maximum attainable powers and the corrupting
noise that influence likeness of image. It is defined as following:

PSNR = 10 log10(
MAX2

I

MSE
),

where MAXI is the maximum possible pixel value of the image I, which equals to 225
when the sample is in 8 bits. The higher value of PSNR and the lower value of MSE,
the better the fitting of the approximated image.

Table 4.2 shows the MSE and PSNR values of segmented image using multiple
methods. Although MSE is usually calculated on monochrome data, here we take the
average MSE on three RGB dimensions. Moreover, we convert both the original image
and the segmented image from RGB data into GRAY and YCrCb color space. From the
table, it can be concluded that the pre-specified parameter τ scheme, in both senario, gives
us some flexibility to customize segmentation, but the adaptive τ scheme performs better.

GREY YCrCb RGB
MSE PSNR MSE PSNR MSE PSNR

K-means 509.18 21.06 839.12 18.89 742.53 28.96
K-expectiles_vtau 429.47 21.80 835.66 18.91 741.17 28.97
CS 2001.30 15.12 2886.34 13.52 2841.61 23.14
CU 2217.68 14.67 3546.76 12.63 3639.46 22.06
VS 5338.85 10.86 2799.57 13.66 2398.98 23.87
VU 2030.67 15.05 3332.15 12.90 3507.04 22.22
K-expectiles_gp_spec_tau 519.81 20.97 1449.73 16.51 1203.65 26.87
K-expectiles_dim_spec_tau 876.31 18.70 1304.86 16.97 1214.55 26.83

Table 4.2: Performance of different clustering methods on image
segmentation. Data is transformed into RGB, GREY and
YCrCb space. Algorithms listed from top to bottom are
K-means, K-expectile with adaptive τ , four modes of
Quantile based clustering: Common skewness parameter and
Scaled variable-wise, Common skewness parameter and
Unscaled variables, Variable-wise skewness parameter and
Scaled variable-wise, Variable-wise skewness parameter and
Unscaled variables, K-expectile with group-specified τ and
K-expectile with dimension-specified τ .
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5 APPENDIX
Proof of Proposition 1: In order to proof the convergence of the algorithm, we first

recall the objective function:

GAdaptive(τ,Θ,C,X) =
K

∑
k=1

∑
xi∈Gk

p

∑
j=1

d(xij, τk,j, θk,j)

=
K

∑
k=1

∑
xi∈Gk

p

∑
j=1

{τk,j + (1 − 2τk,j) I{xij<θk,j}} (xij − θk,j)
2.

Then define

θ̂C(i),j = arg min
θj
∑

C(i)=k

p

∑
j=1

{τC(i),j + (1 − 2τC(i),j) I{xij<θj}} (xij − θj)
2,

τ̂C(i),j = arg min
τj
∑

C(i)=k

p

∑
j=1

{τj + (1 − 2τj) I{xij<θC(i),j}} (xij − θC(i),j)
2.

Let C(t−1)
(i) be the previous partition, θ̂(t−1)

k,j and τ̂ (t−1)
k,j be previous estimated centroid

and τ parameters, C(t)(i) be the new partition,

G(C
(t)
(i)) ≤

K

∑
k=1

∑

C
(t)
(i)=k

p

∑
j=1

{τ̂
(t−1)
k,j + (1 − 2τ̂

(t−1)
k,j ) I{xij<θj}} (xij − θ̂

(t−1)
k,j )2.

New partition C(t)(i) minimises∑Kk=1∑C(i)=k∑
p
j=1 {τ̂

(t−1)
k,j + (1 − 2τ̂

(t−1)
k,j ) I{xij<θj}} (xij−θ̂

(t−1)
k,j )2

over all possible partitions:

K

∑
k=1

∑

C
(t)
(i)=k

p

∑
j=1

{τ̂
(t−1)
k,j + (1 − 2τ̂

(t−1)
k,j ) I{xij<θj}} (xij − θ̂

(t−1)
k,j )2

≤
K

∑
k=1

∑

C
(t−1)
(i) =k

p

∑
j=1

{τ̂
(t−1)
k,j + (1 − 2τ̂

(t−1)
k,j ) I{xij<θj}} (xij − θ̂

(t−1)
k,j )2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
G(C(t−1)(i) )

.

Therefore, G(C
(t)
(i)) ≤ G(C

(t−1)
(i) ). As G(C

(t)
(i)) −G(C

(t−1)
(i) ) is a monotonically nonincreas-

ing sequence that converges to 0, we conclude that the limit point obtained from the
adaptive τ clustering algorithm is the optimal solution.
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6 Figures

Figure 6.1: Sillouette score of K-expectiles clustering results with
different number of clusters

KEC_application

Figure 6.2: Davies-Bouldin scoreof K-expectiles clustering results with
different number of clusters

KEC_application
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Figure 6.3: Clustering results of K-means, K-expectiles and Spectral
clustering. The two variables are plot along x-axis and
y-axis. Clusters are shown in different colours, whereas
cluster centroids are shown by stars.

KEC_application

Figure 6.4: Clustering results of K-means, K-expectiles and Spectral
clustering on CRIX .Clusters are shown in different colours.

KEC_application
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Figure 6.5: Clustering results of K-means, K-expectiles and Spectral
clustering on VCRIX .Clusters are shown in different
colours.

KEC_application
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7 Tables
For all tables below, algorithms listed from top to bottom are K-expectile with

adaptive τ , K-means, Spectral clustering, Ward hierarchical clustering and four modes
of Quantile based clustering: Common skewness parameter and Scaled variable-wise,
Common skewness parameter and Unscaled variables, Variable-wise skewness parameter
and Scaled variable-wise, Variable-wise skewness parameter and Unscaled variables, K-
expectile with group-specified τ and K-expectile with dimension-specified τ . We report
the adjusted rand index (ARI).

Table 7.1: Sample 1: Simulation results of Gaussian clusters

KEC_simulations
n =1500 n = 300

p=10 p=50 p=100 p=10 p=50 p=100
ARI ARI ARI ARI ARI ARI

K-expectiles_vtau 99.36 99.60 99.87 97.00 97.99 97.99
K-means 99.36 99.60 99.60 97.00 97.99 97.99
Spectral 31.22 86.74 27.48 85.03
h-ward 99.20 99.60 99.87 93.54 97.99 97.99
CS 99.24 99.60 99.87 96.61 97.99 97.99
CU 99.24 99.60 99.87 96.61 97.99 97.99
VS 99.28 99.60 99.87 96.03 97.99 97.99
VU 99.20 99.60 99.87 96.61 97.99 97.99

Table 7.2: Sample 2: Simulation results of Asymmetric normal clusters

KEC_simulations
n =1500 n = 300

p=10 p=50 p=100 p=10 p=50 p=100
ARI ARI ARI ARI ARI ARI

K-expectiles_vtau 93.22 99.60 99.60 92.20 97.99 97.99
K-means 91.19 99.59 99.60 81.70 97.99 97.99
Spectral -0.02
h-ward 77.19 99.52 99.60 76.98 97.01 97.99
CS 86.61 99.58 99.60 88.98 97.99 71.74
CU 80.73 99.28 94.70 72.76 93.36 76.27
VS 88.86 99.59 99.57 93.16 91.71 97.99
VU 85.74 99.55 99.60 80.41 93.73 97.99
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Table 7.3: Sample 3: Simulation results of Beta-distributed clusters

KEC_simulations
n =1500 n = 300

p=10 p=50 p=100 p=10 p=50 p=100
ARI ARI ARI ARI ARI ARI

K-expectiles_vtau 94.04 99.60 99.60 93.17 97.99 97.99
K-means 94.79 99.60 99.60 93.16 97.99 97.99
Spectral 93.63 99.60 99.60 93.17
h-ward 94.80 99.60 99.60 88.88 97.99 97.99
CS 68.92 96.89 82.52 92.20 97.99 65.54
CU 68.14 94.08 73.26 92.17 93.36 65.62
VS 93.28 97.47 79.84 91.98 91.71 62.46
VU 94.03 94.69 73.28 92.56 93.73 46.90

Table 7.4: Sample 4-1: Simulation results of generalized t-distributed
clusters

KEC_simulations
n =1500 n = 300

p=2 p=10 p=50 p=2 p=10 p=50
ARI ARI ARI ARI ARI ARI

K-expectiles_vtau 96.50 97.99 97.99 95.10 97.99 97.99
K-means 96.26 97.99 97.99 94.80 97.99 97.99
Spectral 96.21 26.31 94.81 93.10 92.43
h-ward 96.24 97.99 97.99 94.29 97.99 97.99
CS 96.48 97.99 97.99 95.01 97.99 97.99
CU 96.08 97.99 97.99 94.57 97.99 97.99
VS 96.48 97.99 97.99 95.10 97.99 97.99
VU 96.07 97.99 97.99 94.57 97.99 97.99

Table 7.5: Sample 4-2: Simulation results of F -distributed clusters

KEC_simulations
n =1500 n = 300

p=2 p=10 p=50 p=2 p=10 p=50
ARI ARI ARI ARI ARI ARI

K-expectiles_vtau 95.80 99.60 99.60 94.58 99.60 99.60
K-means 95.19 99.60 99.60 94.01 99.60 99.60
Spectral 94.89 26.31 93.82
h-ward 96.82 99.60 99.60 95.25 99.60 99.60
CS 97.96 99.60 99.60 96.03 99.60 99.60
CU 95.42 99.60 99.60 94.19 99.60 99.60
VS 97.72 99.60 99.60 95.64 99.60 99.60
VU 95.44 99.60 99.60 94.19 99.60 99.60
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