
Jacob, Daniel

Working Paper

CATE meets ML: Conditional average treatment effect and
machine learning

IRTG 1792 Discussion Paper, No. 2021-005

Provided in Cooperation with:
Humboldt University Berlin, International Research Training Group 1792 "High Dimensional
Nonstationary Time Series"

Suggested Citation: Jacob, Daniel (2021) : CATE meets ML: Conditional average treatment effect and
machine learning, IRTG 1792 Discussion Paper, No. 2021-005, Humboldt-Universität zu Berlin,
International Research Training Group 1792 "High Dimensional Nonstationary Time Series", Berlin

This Version is available at:
https://hdl.handle.net/10419/233509

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/233509
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

IRTG 1792 Discussion Paper 2021-005

CATE Meets ML: Conditional
Average Treatment E↵ect and

Machine Learning

Daniel Jacob *

*
Humboldt-Universität zu Berlin, Germany

This research was supported by the Deutsche

Forschungsgesellschaft through the

International Research Training Group 1792

”High Dimensional Nonstationary Time Series”.

http://irtg1792.hu-berlin.de

ISSN 2568-5619

In
te
rn
at
io
n
al

R
es
ea

rc
h
T
ra
in
in
g
G
ro
u
p
1
7
9
2

http://irtg1792.hu-berlin.de

Noname manuscript No.
(will be inserted by the editor)

CATE Meets ML
Conditional Average Treatment Effect and Machine Learning

Daniel Jacob

Received: March 31, 2021/ Accepted: date

Abstract For treatment effects - one of the core issues in modern econometric
analysis - prediction and estimation are flip-sides of the same coin. As it turns
out, machine learning methods are the tool for generalized prediction models.
Combined with econometric theory allows us to estimate not only the average
but a personalized treatment effect - the conditional average treatment effect
(CATE). In this tutorial, we give an overview of novel methods, explain them
in detail, and apply them via Quantlets in real data applications. We study
the effect that microcredit availability has on the amount of money borrowed
and if the 401(k) pension plan eligibility has an impact on net financial assets,
as two empirical examples. The presented toolbox of methods contains meta-
learners, like the Doubly-Robust, the R-, T- and X-learner, and methods that
are specially designed to estimate the CATE like the causal BART and the
generalized random forest. In both, the microcredit and the 401(k) example,
we find a positive treatment effect for all observations but diverse evidence of
treatment effect heterogeneity. An additional simulation study, where the true
treatment effect is known, allows us to compare the different methods and to
observe patterns and similarities.

Keywords Causal Inference ⋅ CATE ⋅ Machine Learning ⋅ Tutorial

Financial support of the European Union’s Horizon 2020 research and innovation program
“FIN-TECH: A Financial supervision and Technology compliance training programme” under
the grant agreement No 825215 (Topic: ICT-35-2018, Type of action: CSA), the European
Cooperation in Science & Technology COST Action grant CA19130 - Fintech and Artifi-
cial Intelligence in Finance - Towards a transparent financial industry and the Deutsche
Forschungsgemeinschaft’s IRTG 1792 grant is gratefully acknowledged.

Daniel Jacob
School of Business and Economics
Humboldt-Universität zu Berlin
Blockchain Research Center
Unter den Linden 6, 10099 Berlin, Germany
E-mail: daniel.jacob@hu-berlin.de

mailto:daniel.jacob@hu-berlin.de

2 Daniel Jacob

1 Introduction

Estimation and prediction of treatment effects are important tasks for every
economist and financial econometrician since treatment effects are often the
basis for policy and business decisions. As an illustration, let us look at an
idea of microcredits, dating back to Muhammad Yunus, a Nobel Price winner,
who discovered in 1976 that very small loans could make a disproportional
difference to a poor person. Microcredits work as shown in Figure 1. They can
increase investments since such credit is easy to get and to pay back. Business
activity is hence more flexible and could be improved. Increasing gains from
a business could increase the household income and further allow for more
savings which can be invested in, for example, education.

Microcredit Product Business
Investment

Business Activity Increased
Household
Income

Increased
Household
Savings

Improved
Well-Being

Fig. 1: The theory of microcredits.

This specific example was recently applied by Crépon et al. (2015) who
studied the setting where certain villages in Morocco get access to microcredit
(the treatment group) while others don’t (the control group). As economists,
one is interested in the effect that microcredit availability has on the amount
of loans which could be an indicator of how demanded such microcredits are.
Since we observe certain characteristics for each household we can condition on
such observed variables to see if there is heterogeneity in the effect from the
microcredit. Figure 2 shows an example of what we want to do. The goal is to
find subgroups based on characteristics where we believe that the treatment
effect is different. As an example, we can partition the households by age and
look at young vs. older household members. In both subgroups, we need to
make sure that we observe people that are treated and others that did not
receive treatment. We can estimate the average treatment effect (ATE) for the
young household members by e.g. taking the difference of their mean outcome
given treatment status. We repeat this for the subgroup of older households.
Recent methods to estimate the ATE using nonparametric methods on the
whole sample include target maximum likelihood estimation (TMLE) (van der
Laan, 2010) and double machine learning (Chernozhukov et al., 2018a). If the
data has many covariates (let us say it has high-dimensionality) and if we don’t
know which specific subgroup we should focus on, as is the case here, we can
use methods that are presented in this tutorial. These methods estimate a
treatment effect for each observation based on their covariates, the conditional
(on covariates) average treatment effect (CATE). In a further step, we can then

CATE Meets ML 3

look at the heterogeneity and try to link characteristics that are drivers for
different treatment effects.

All households

young households

treatment group control group

CATE = 2000

older households

treatment group control group

CATE = 900

Fig. 2: CATE example for microcredits

High-dimensionality of a dataset does not necessarily mean that one has
more covariates than observations by default. However, if we are unsure about
the structural form we could include interaction and quadratic terms, and soon
the number of dimensions increases. For example, if we have 1000 Observations
and 30 covariates then by only including quadratic interactions the amount of
covariates increases to 495. Including up to cubic terms leads to a dimension
of 5455. If we further assume that only a few covariates are of interest (the
so-called approximate sparsity) the task transfers into a selection problem
where standard parametric models are limited and we might want to use
machine learning (ML) methods. The reason why this is the case is either that
we have more covariates than observations or that the functional forms are
complex and we don’t know which interaction terms to include in a linear
model. The simplest approach to get the CATE is to estimate two conditional
mean functions, one for the treated observations and one for the non-treated
(the control group). For each observation, we can predict the outcome under
treatment and control by plugging each observation in both functions. Taking
the difference between the two outcomes results in the CATE. Mapping the
support of X on Y is a classic regression task for which machine learning
methods are well suited to find generalizable predictive patterns. Since we
are only interested in getting a good prediction of the conditional mean, we
do not need to know the underlying structural form of this function which
enables vanilla ML methods to be sufficient. We call such functions, where
the parameters are not of immediate interest a nuisance function. While the
above example to estimate the CATE is quite simple and intuitive, we will see

4 Daniel Jacob

that there are more efficient or automated methods to estimate heterogeneous
treatment effects.

This tutorial is structured as follows. First, we provide an overview of the
potential outcome framework and state the necessary assumptions to interpret
our parameter of interest as a causal parameter. We then explain different
methods that we consider, methods that are very flexible in the choice of the ML
algorithm, and methods that are specifically designed to estimate the CATE
and mostly rely on tree-based algorithms. As in classical ML, we make use of
sample splitting to limit overfitting and allowing for less restrictive assumptions
on the nuisance functions. We cover explanations on why and how to do sample
splitting and cross-validation. Next, we investigate two empirical datasets, the
microcredit example, and the 401(k) pension plan survey. Last, we include a
simulation study where we generate the true treatment effect. This allows us to
directly compare all different methods in terms of accuracy. Whenever possible
we provide and link to Quantlets that are ready-to-use code snippets to
implement the discussed methods (the Quantlets are all written in R). The files
are not only a replication code for the empirical analysis and the simulation
study but contain functions to implement novel methods that aim to estimate
the CATE directly. During this tutorial, we will use the terms model, method,
and algorithm interchangeably.

Figure 3 gives an idea of how a causal structure may look like. In the first
graph, only the treatment has an impact on the outcome while the second
graph also includes covariates that might make the treatment effect dependent
on some characteristics. The same is true for the third graph but now the
covariates also influence the treatment probability. We say that such a setting is
from an observational study since the researcher has no control of the treatment
assignment. The first two settings can be seen as a randomized controlled trial
(RCT) but only in the second and the third one can we hope to observe
treatment heterogeneity and hence estimate the CATE.

treatment outcome

1. ATE
(RCT)

treatment outcome

covariates

2. CATE
(RCT)

treatment outcome

covariates

3. CATE
(observational)

Fig. 3: Simple causal diagrams - from ATE to CATE.

https://github.com/QuantLet/Meta_learner-for-Causal-ML

CATE Meets ML 5

2 Methods

Let us start with an introduction of the potential outcome framework for which
we use the following notations: Each observation has two potential outcomes,
Y 1 and Y 0 of which we only observe one, namely the former if someone was
treated or the latter if not. We denote this by the binary treatment indicator
D ∈ {0; 1} and denote observed covariates X ∈ Rp. To interpret the estimated
parameter as a causal relationship, the following assumptions are needed; see,
for example, Rubin (1980):

1. Conditional independence (or conditional ignorability/exogeneity or
conditional unconfoundedness):

�Y 1
i , Y

0
i � ⊥⊥Di�Xi.

2. Stable Unit Treatment Value Assumption (SUTVA) (or counterfactual
consistency):

Yi = Y 0
i +Di(Y 1

i − Y 0
i).

3. Overlap Assumption (or common support or positivity):

∀x ∈ supp(Xi), 0 < P (Di = 1�Xi = x) < 1,
P (Di = 1�Xi = x) def= e(x). (1)

4. Exogeneity of covariates:

X1
i =X0

i .

Assumption 1 together with Assumption 4 is very natural since they state
that the treatment assignment is independent of the two potential outcomes and
that the covariates are not affected by the treatment. Assumption 2 ensures
that there is no interference, no spillover effects, and no hidden variation
between treated and non-treated observations. Assumption 3 states that no
subpopulation defined by Xi = x is entirely located in the treatment or control
group, hence the treatment probability needs to be bounded away from zero
and one. Equation (1) is called the propensity score.

Now we define the conditional expectation of the outcome for the treatment
or control group as

µd(x) = E[Yi�Xi = x,Di = d] with D ∈ {0,1}.

6 Daniel Jacob

If we don’t use any subscript, we refer to this function as the general conditional
expectation.

Our parameter of interest is the CATE (⌧(x)), which is formally defined as:

⌧(x) = E �Y 1
i − Y 0

i �Xi = x� = µ1(x) − µ0(x). (2)

Equation 3 shows how the two conditional mean functions can represent
the two potential outcomes and hence, by taking the difference, lead to the
CATE.

⌧(x) = µ1(x) − µ0(x)= E [Yi �Di = 1,Xi = x] −E [Yi �Di = 0,Xi = x]
= E �Y 1

i �Di = 1,Xi = x� −E �Y 0
i �Di = 0,Xi = x�

= E �Y 1
i �Xi = x� −E �Y 0

i �Xi = x�
= E �Y 1

i − Y 0
i �Xi = x� (3)

This estimator is of special interest in many areas like medicine or policy
actions since it tells us if there are differences in the treatment effect in the
population and how big these differences are. It could be, for example, that the
average treatment effect of a policy is +2, containing half of the people with a
treatment effect of +6 and the other half of −2. Instead of treating everyone, we
should only treat people that have a positive effect from the policy (if positive
means better). If this is not possible, let us say due to laws or ethical reasons,
the policy should not be implemented at all. The CATE will tell us exactly
the distribution of the effects and, at best, allows us to identify subgroups.
To estimate the CATE we are not primarily interested in the coefficient from
regressing X on Y , nor are we interested in the coefficients from the propensity
score model. What we want instead is to have a good approximation of the
function and hence good estimates from e.g. µ1(x) and µ0(x). This is why ML
methods are so suited for the job.

When reviewing recently proposed methods for the estimation of the CATE,
we can categorize them into two groups. The first group contains methods that
are build on off the shelf machine learning methods (such as the lasso, random
forest (RF), Bayesian Adaptive Regression Trees (BART), boosting methods or
neural networks) Since the base learners are not designed to estimate the CATE
directly the literature calls them meta-learners, or generic ML algorithms. The
second group of methods alters existing machine learning methods in a way
that they can be used to estimate the CATE directly (examples are causal
boosting by Powers et al. (2018), causal forest by Athey et al. (2019) or
Bayesian regression tree models for causal inference by Hahn et al. (2020)). See
Künzel et al. (2019) for a comparison between meta-learners like the S-, T-,
and X-learner as well as the causal forest in a simulation study. Knaus et al.
(2020) compare the meta-learners like the inverse probability weighting (IPW)
estimator, doubly-robust (DR), modified covariate method (MCM), R-learner,
and different versions of the causal forest in an empirical Monte Carlo study

CATE Meets ML 7

while Nie and Wager (2017) compare their R-learner with the S-, T-, X- and
U-learner as well as causal boosting. Regarding the base learners (the ML
methods), Künzel et al. (2019) use a random forest (RF) and Bayesian additive
regression trees (BART). Knaus et al. (2020) use RF and the lasso while Nie
and Wager (2017) use boosting and the lasso for the estimation of the nuisance
functions. In high dimension, the use of machine learning methods, such as
boosting or random forests to estimate the propensity score, works quite well
as McCaffrey et al. (2004) and Wyss et al. (2014) show. The estimation of
probabilities given a large set of covariates is nothing less than a prediction
problem in where ML methods are superior. Table 1 lists all the methods
by category, including links to the Quantlets. The references refer to recent
papers that use these methods and provide theoretical properties as well as
implementation examples.

Table 1: Methods to estimate CATE

Category Method Reference Quantlet

Meta-Learner DR-learner Kennedy (2020) DR

R-learner Nie and Wager (2017) R

T-learner Hansotia and Rukstales (2002) T

X-learner Künzel et al. (2019) X

Modified ML
Methods

Causal Forest Athey et al. (2019) GRF

Causal Boosting Powers et al. (2018) CB

Causal BART Hahn et al. (2020) CBART

2.1 Meta-Learners

In the following, we briefly describe the considered meta-learners. Except for
the T-learner, all other methods generate a pseudo-outcome in the first step
which can be seen as an approximation of the conditional average treatment
effect. The last step regresses this function on the covariates to get the final
estimate and to make predictions on new observations. The reason is that
data after a treatment assignment includes the outcome, covariates, and the
treatment assignment variable. If we want to classify new observations we only
observe the covariates. Hence we need a model that maps the covariates on
the estimated treatment effect. The DR-, R- and X-learner also require to
estimate the propensity score as an additional nuisance function to further
control for any confounding bias. Currently, R-packages are available for the R-,
S-, T-, U-, and X-learner (install_github("xnie/rlearner")) and the M-,
S-, T-, and X-learner (install_github("soerenkuenzel/causalToolbox")).

https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/DR-learner
https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/R-learner
https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/T-learner
https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/X-learner
https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/GRF
https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/Causal-Boosting
https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/Causal-BART

8 Daniel Jacob

Causal analysis via the potential outcome framework and causal graph theory
for Python can be found in Sharma et al. (2019). For heterogeneous treatment
effect analysis via machine learning in Python see EconML (2019).
Single (S-learner) and two-model learner (T-learner):

Let us first start with a very simple and intuitive method, the T-learner. It is
a two-step approach where the conditional mean functions µ1(x) = E[Y 1�Xi = x]
and µ0(x) = E[Y 0�Xi = x] are estimated separately with any generic machine
learning algorithm. The difference between the two functions results in the
CATE as shown in Table 2 and as seen in equation 3. One problem with the
T-learner is that it aims to minimize the mean squared error for each separate
function rather than to minimize the mean squared error of the treatment effect.
By splitting the sample in two groups there is only information on one group.
This might be problematic if the two functions shrink different covariates which
are actually important in both groups. This is especially the case in a RCT.
See, for example, Künzel et al. (2019); Kennedy (2020) for settings when the
T-learner is not the optimal choice. An alternative is to model only one function
and taking the treatment assignment into this function. This approach is called
the S-learner. See for example, Hill (2011) and Foster et al. (2011) for early
examples of proposing the S-learner.

Algorithm 1: S-learner
Input :Zi = {Yi,Di,Xi}i∈N

1 Split sample Z into subsets St = z1, ..., z�n�2� and Sv � St

2 regress Yi = µ̂ (Xi,Di) + Ûi, with i ∈ St

3 estimate Ŷ 0
i = µ̂ (Xi,D = 0), with i ∈ Sv

4 estimate Ŷ 1
i = µ̂ (Xi,D = 1), with i ∈ Sv

5 create ⌧̂(Xi) = µ̂(Xi,D = 1) − µ̂(Xi,D = 0)

Algorithm 2: T-learner
Input :Zi = {Yi,Di,Xi}i∈N

1 Split sample Z into subsets St = z1, ..., z�n�2� and Sv � St

2 regress Y 0
i = µ̂0 �X0

i � + Û0
i , with i ∈ St�D = 0

3 regress Y 1
i = µ̂1 �X1

i � + Û1
i , with i ∈ St�D = 1

4 estimate Ŷ 0
i = µ̂0 (Xi), with i ∈ Sv

5 estimate Ŷ 1
i = µ̂1 (Xi), with i ∈ Sv

6 create ⌧̂(Xi) = µ̂1(Xi) − µ̂0(Xi)

Doubly-Robust learner (DR-learner):
A more efficient method than the T-learner can be the DR-learner. It builds

on the T-learner and adds a version of the inverse probability weighting (IPW)
scheme on the residuals of both regression functions {Y d − µ̂d(x)}. We can
think of it as combining two different models and hence avoid drawbacks like

CATE Meets ML 9

the minimization goal from the T-learner and a potentially high variance from
an IPW model when some propensity scores are small. The doubly-robust
learner takes its name from a double robustness property which states that
the estimator remains consistent if either the propensity score model or the
conditional outcome model is correctly specified. This is at least true for
the average treatment effect (Lunceford and Davidian, 2004). Recently, this
estimator has gained popularity to estimate the CATE, especially in high-
dimensional settings. See, for example, the work by Fan et al. (2019) and
Zimmert and Lechner (2019). Most recently, Kennedy (2020) find that for
estimating the CATE, the finite-sample error-bound from the DR-learner at
most deviates from an oracle error rate by the product of the mean squared
error of the propensity score and the conditional mean estimator.

Algorithm 3: DR-learner
Input :Zi = {Yi,Di,Xi}i∈N

1 Split sample Z into subsets St = z1, ..., z�n�2� and Sv � St

2 for b in {1, . . . ,B} do
3 Split sample St into K random subsets
4 for k in {1, . . . ,K} do
5 assign Sample Sa = St � Sk and Sm = Sk

6 regress Di = ê (Xi) + V̂i, with i ∈ Sa

7 regress Y 0
i = µ̂0 �X0

i � + Û0
i , with i ∈ Sa�D = 0

8 regress Y 1
i = µ̂1 �X1

i � + Û1
i , with i ∈ Sa�D = 1

9 estimate D̂i = ê0 (Xi), with i ∈ Sm

10 estimate Ŷ 0
i = µ̂0 (Xi), with i ∈ Sm

11 estimate Ŷ 1
i = µ̂1 (Xi), with i ∈ Sm

12 create ̂DR = µ̂1(x) − µ̂0(x) + D {Y − µ̂1 (x)}
ê (x) − (1 −D) {Y − µ̂0 (x)}(1 − ê (x))

13 regress ̂i = t̂DR(Xi) +Wi, with i ∈ Sm

14 estimate ⌧̂k(Xi) = t̂DR(Xi), with i ∈ Sv

15 end
16 cross-fit ⌧̂b(Xi) = 1

K ∑K
k=1 ⌧̂k(Xi)

17 end
18 create ⌧̃(Xi) =median{⌧̂b(Xi)}Bb=1

R-learner:
The orthogonal-learner makes use of the idea of orthogonalization to cancel

out any selection bias that may arise in observational studies from observed
covariates. Here, the residuals from the regression of Y on X are regressed
on the residuals from the regression of D on X and weighted by the squared
residuals, {D− ê(x)}2. This is similar to the double machine learning approach
from Chernozhukov et al. (2018a) where their estimator of interest is the ATE.
Nie and Wager (2017) develop a general class of two-step algorithms for the
estimation of the CATE. The R-learner, as from residualized and a homage
to Robinson 1988, makes explicit use of machine learning methods. Achieving

10 Daniel Jacob

Neyman orthogonality using a residuals-on-residuals (or debiasing) approach
has a long history in econometrics (see the Frisch–Waugh–Lovell theorem from
the 1930s for linear regression) and mainly builds on the work by Robinson
(1988) who replaces the linear parts by non-parametric kernel regression. The
CATE from the R-learner is obtained by the following minimization task:

⌧̂(⋅) = argmin⌧ � 1n
n�
i=1
��Yi − µ̂(−i) (Xi)�

−�Wi − ê(−i) (Xi)� ⌧ (Xi)�2 +⇤n{⌧(⋅)}� .
(4)

The superscript (−i) indicates the sample splitting. The conditional mean
functions are trained without the i-th observations and evaluated only for i.
We will explain certain sample splitting procedures later. The term ⇤n{⌧(⋅)}
can be interpreted as a regularizer on the complexity of the ⌧(⋅) function.
In practice, this regularization term could be explicitly given as in penalized
regression or implicitly introduced, e.g., as provided by a carefully designed
deep neural network.

Algorithm 4: R-learner
Input :Zi = {Yi,Di,Xi}i∈N

1 Split sample Z into subsets St = z1, ..., z�n�2� and Sv � St

2 for b in {1, . . . ,B} do
3 Split sample St into K random subsets
4 for k in {1, . . . ,K} do
5 assign Sample Sa = St � Sk and Sm = Sk

6 regress Di = ê (Xi) + V̂i, with i ∈ Sa

7 regress Yi = µ̂ (Xi) + Ûi, with i ∈ Sa

8 estimate D̂i = ê0 (Xi), with i ∈ Sm

9 estimate Ŷi = µ̂ (Xi), with i ∈ Sm

10 create ̂R = (Yi−µ̂(Xi)(Di−ê(Xi))
11 regress ̂i = t̂R(Xi) +Wi and weights (Di − ê(Xi)), with i ∈ Sm

12 estimate ⌧̂k(Xi) = t̂R(Xi), with i ∈ Sv

13 end
14 cross-fit ⌧̂b(Xi) = 1

K ∑K
k=1 ⌧̂k(Xi)

15 end
16 create ⌧̃(Xi) =median{⌧̂b(Xi)}Bb=1

X-learner:
Künzel et al. (2019) propose the X-learner which estimates a treatment

effect separately for the control and the treatment group. This might be
especially helpful in situations where the proportion of the two groups is highly
imbalanced. The X-learner has several steps. The first step is identical to
the T-learner, namely estimating the two conditional mean functions. In the

CATE Meets ML 11

second step, we take the difference of the groups separately and from the
observed outcome rather than from the two estimated functions (as we would
do when applying the T-learner). This results in two imputed treatment effects
(̂1

X
def= Y 1 − µ̂0 �x1� and ̂0

X
def= µ̂1 �x0� − Y 0) which are now used in a third

step to regress them individually on the covariates to obtain ⌧̂0(x) (the CATE
for the control group) and ⌧̂1(x) (the CATE for the treatment group). The
final estimator combines the two estimators plus some weights, g(x):

⌧̂(x) = g(x)⌧̂0(x) + {1 − g(x)}⌧̂1(x).
The weights can, for example, be set to 1 − ê(x) for the treatment group

and ê(x) for the control group estimate, respectively.

Algorithm 5: X-learner
Input :Zi = {Yi,Di,Xi}i∈N

1 Split sample Z into subsets St = z1, ..., z�n�2� and Sv � St

2 for b in {1, . . . ,B} do
3 Split sample St into K random subsets
4 for k in {1, . . . ,K} do
5 assign Sample Sa = St � Sk and Sm = Sk

6 regress Di = ê (Xi) + V̂i, with i ∈ Sa

7 regress Y 0
i = µ̂0 �X0

i � + Û0
i , with i ∈ Sa�D = 0

8 regress Y 1
i = µ̂1 �X1

i � + Û1
i , with i ∈ Sa�D = 1

9 estimate D̂i = ê0 (Xi), with i ∈ Sv

10 estimate Ŷ 0
i = µ̂0 (Xi), with i ∈ Sm

11 estimate Ŷ 1
i = µ̂1 (Xi), with i ∈ Sm

12 create ̂1
X

def= Y 1 − µ̂0 �x1�
13 create ̂0

X
def= µ̂1 �x0� − Y 0)

14 regress ̂1
X = t̂1(Xi) +W 1

i , with i ∈ Sm

15 regress ̂0
X = t̂0(Xi) +W 0

i , with i ∈ Sm

16 estimate ⌧̂1k(Xi) = t̂1(Xi), with i ∈ Sv

17 estimate ⌧̂0k(Xi) = t̂0(Xi), with i ∈ Sv

18 average ⌧̂k(Xi) = ê(Xi)⌧̂0k + (1 − ê(Xi))⌧̂1k
19 end
20 cross-fit ⌧̂b(Xi) = 1

K ∑K
k=1 ⌧̂k(Xi)

21 end
22 create ⌧̃(Xi) =median{⌧̂b(Xi)}Bb=1

Summary of meta-learners:
We summarise the considered meta-learners in Table 2 where ̂ states the

pseudo-outcome or estimator for each of the learners. The last column counts
the number of nuisance functions needed to estimate the pseudo-outcome or
estimator. In brackets, we state the total number of models needed to get the
final CATE estimate. Note that the X-learner is regressed only for the treated

12 Daniel Jacob

observations and again only for the observations in the control group. This is
why we need two more additional models for the final estimate.

Table 2: Summary of meta-learners

Method Estimator/Pseudo-outcome Weights (wi) # of Models

S-learner ̂S = µ̂(x, d = 1) − µ̂(x, d = 0) 1 1 (2)

T-learner ̂T = µ̂1(x) − µ̂0(x) 1 2 (3)

DR-learner
 ̂DR = ̂T + D {Y − µ̂1 (x)}

ê (x)
− (1 −D) {Y − µ̂0 (x)}(1 − ê (x))

1 3 (4)

R-learner ̂R = {Y − µ̂ (x)}{D − ê (x)} {D − ê(x)}2 2 (3)

X-learner
 ̂1
X

def= Y 1 − µ̂0 �x1�
 ̂0
X

def= µ̂1 �x0� − Y 0
1 3 (5)

Notes: Considered meta-learners that estimate the CATE. # of Models counts
the number of nuisance functions to estimate the pseudo-outcome. Numbers
in brackets count the total number of models to train to get the final CATE
estimate.

The estimators from Table 2 can be represented as a weighted minimization
problem which solves the following:

min
⌧
�N−1 N�

i=1
wi � ̂i − ⌧ (x)�2� .

The choice of ML algorithms for meta-learners:
The accuracy of the CATE estimation depends on the accuracy of the

nuisance functions and hence on the choice of the ML method. To minimize
the dependence of the ML methods on our estimates, we do not assign specific
machine learning methods for the estimation but consider a range of different
popular methods. To choose which ML method to use for each nuisance function
as well as for any additional functions, we use a stacking method. In such a
setting, not only one ML method may be chosen but an ensemble of methods
that are stacked together with different weights. We use the SuperLearner
package as proposed by Polley et al. (2011). It also enables us to choose different
models for each nuisance function and setting. The package offers a general
class of prediction methods to be considered by the ensemble. From the 42
different algorithms, we select the lasso (glmnet) and random forest (ranger)
for our analysis. This list can of course be extended to e.g. Gradient boosted
trees (xgboost) and or Neural Network (nnet). Note that the R-learner needs
to include weights in the algorithm, so we need to make sure that the ML
methods we use have this possibility included.

CATE Meets ML 13

We use 10-fold cross-validation to estimate the performance of all machine
learning models. Cross-validation is a resampling procedure used to evaluate
ML models on a finite data sample. Depending on the ML model, the data
can be fit perfectly and hence produce a high variance (overfitting). This is,
however, on the training sample and the model can behave poorly on unseen
data. Hence, we have to validate our models. We could use a part of the data
for validation. Since there is never enough data, removing a part of it poses
a potential for underfitting (we might lose trends in the data or important
patterns). What we require instead, is a method that provides enough data
for training the model and also leaves enough data for validation. K-fold cross-
validation does exactly that. This approach involves randomly splitting the
set of observations into k groups, or folds, of approximately equal size. The
model is fit on folds 2 to k while the first fold is used as a validation set. It
is also important that any preparation of the data before fitting the model
occur on the training sample that is used for cross-validation within the loop
rather than on the broader data sample. This also applies to any tuning of
hyperparameters e.g. the number of trees, the minimum observations within
a node, learning rates, or shrinkage parameters. There is no formal rule for
the choice of k but usually, it is set to 5 or 10. These values have been shown
empirically to yield test error rate estimates that suffer neither from excessively
high bias nor from very high variance. The reason is the following: The larger
k, the smaller the difference in size between the (original) training set and
the resampling subset (k − 1 folds). As this difference decreases, the bias of
the technique becomes smaller. This means that the bias is smaller for k = 10
than for k = 5. A special case of cross-validation is the so-called leave-on-out
cross-validation (LOOCV). In this case, k is set to the sample size and only
one observation is the validation sample. In all procedures, the k resampled
estimates of performance are summarized (e.g. by the mean and the standard
error).

Since we apply multiple models to estimate the nuisance functions we create
a weighted average among all models. Using stacking, we can find the optimal
combination of a collection of prediction algorithms or even different settings
within one model. In other words, we build a linear model that uses the outcome
variable of the validation set as the dependent variable and all different base
learners as the input variables. For the random forest we set the following
tuning parameters: n.trees=1000, min.node.size=10.

2.2 Modified ML-methods

We now describe some methods that modify existing ML methods to estimate
the CATE directly. In contrast to meta-learners that are flexible in the choice of
the ML algorithm, these methods use a specific ML method (mostly tree-based
algorithms). Packages or code in R are available for the causal forest (grf),
the causal Boosting (https://github.com/saberpowers/causalLearning)
and the causal BART (install_github("vdorie/bartCause"). Since causal

14 Daniel Jacob

boosting is computationally expensive we do not consider this method in our
analysis.
Causal Forest:

The causal forest method, part of the generalized random forest (GRF) by
Athey et al. (2019) builds on a random forest algorithm to find neighborhoods
in the covariate space. These neighborhoods are built by recursive splitting the
covariates into subgroups while the criterion to do so is based on heterogeneity
in treatment effects. The idea is to find leaves where the treatment effect is
constant but different from other leaves. If we knew that ⌧(x) were constant over
some neighbourhood N(x), we could solve a partially linear model over N(x)
using the residual-on-residual approach (see e.g. Robinson (1988)): First we
estimate e(x) = E[Di�Xi = x] and second, µ(x) = E[Yi�Xi = x]. We can use any
non-parametric method like the lasso, random forests, boosting methods, neural
networks and others. The final step is to estimate ⌧(x) over the neighbourhood
N(x):

⌧̂(x) = ∑{i∶Xi∈N (x)} {Yi − µ̂ (Xi)}{Wi − ê (Xi)}
∑{i∶Xi∈N (x)} {Wi − ê (Xi)}2 . (5)

Note that this approach looks similar to the R-learner. Chernozhukov et al.
(2018a) showed that when using any of the aforementioned ML methods to
estimate the nuisance functions and then use the residual-on-residual approach
to estimate the average treatment effect the following regularity condition
holds:

Given that,

E �{µ (Xi) − µ̂ (Xi)}2� 12 � 1

n1�4 , E �{e (Xi) − ê (Xi)}2� 12 � 1

n1�4 , (6)

we get a central limit theorem such that
√
n(⌧̂ − ⌧)⇒N (0, V). The treatment

effect is the above setting, however, has to be constant. We can assume that
with heterogeneous treatment effects there are subgroups such that the constant
effect assumption holds. The question of how to find such accurate subgroups
is exactly where the (causal) random forest comes into play. To create leaves
that consist of observations with the same (average) treatment effect the
splitting criterion has to rely on maximizing the heterogeneity in treatment
effects between leaves (similar to maximize the variance between the leaves).
Here we use again the method from equation (5). In observational studies
where self-selection into treatment is present, the first splits might not be
a good representation of the treatment effect rather than differences due to
confounding variables. To overcome this problem Athey et al. (2019) suggest
applying local-centering. This means that we use the residuals of the outcome
and treatment variable as data instead of the original values. Therefore one
has to train two nuisance functions beforehand to predict the conditional mean
which is used to create the residuals. While machine learning methods rely on
sample splitting to avoid overfitting the causal random forest integrates this

CATE Meets ML 15

via an honesty condition. A tree is honest if, for each training sample i it only
uses the response Yi to estimate the within-leaf treatment effect or to decide
where to place the split, but not both.

So far we have looked how a single tree is build and how the final treatment
effect can be estimated. To extend this procedure to multiple trees lets view a
forest as a weighting function:

µ̂(x) = B−1 B�
b=1

n�
i=1

Yi
1{Xi ∈ Lb(x)}�Lb(x)� = n�

i=1
YiB

−1 B�
b=1

1{Xi ∈ Lb(x)}�Lb(x)���
↵i(x)

. (7)

Instead of seeing a forest as a double average over observations within a
leaf and the B single trees, we can integrate the first sum to be a weighted
average over all Xi that fall into the leaf Lb(x) and divide by the total number
of observations within the leaf (�Lb(x)�). This weighted average tells us how
often Yi falls into a certain leaf and hence the weight that we have to apply to
control for the different proportions. The weights can be represented as ↵i(x).
We can now use these weights to weight each observation in a generalized
method of moments estimator where we apply a linear model, regressing the
residuals of Di on the residuals of Yi and weight by ↵i. This is how we get
the CATE using a random forest. The algorithm is implemented in the grf
package. See Friedberg et al. (2018) for an extension of this approach to local
linear forests.
Causal Boosting:

An alternative to random forest based causal inference is given by Powers
et al. (2018) who introduces boosted trees and causal multivariate adaptive
regression splines (MARS). By iteratively fitting weak learners to the residuals
of a model, an approximation of the function is build. The idea is to fit a
causal tree in the style of Wager and Athey (2018) while setting the basis
function Ĝ(x,D) to zero. Now we estimate the residuals by Yi − ✏ × ĝk(Xi,Di)
and update Ĝk = Ĝk−1 + ✏ × ĝk. k defines the terminal nodes from the tree
and ✏ is the learning rate parameter. After K iterations we return ĜK(x,D).
Estimating the CATE is done by setting D to 1 for the treated observations
and 0 for the control-group observations, such that:

⌧̂(x) = ĜK(x,1) − ĜK(x,0). (8)

Like in the causal forest the problem remains how to control for overfitting.
Especially boosting methods are prone to overfit the data since the trees are
not built independently. While a random forest would benefit from using more
trees over which to average, in gradient boosting the number of trees is an
important tuning parameter that needs to be controlled. In supervised ML we
would ideally apply cross-validation. In our case, the parameter of interest is
the CATE and we do not observe the true value for each observation. Hence,

16 Daniel Jacob

cross-validation does not apply here. Instead, we can do something like the
honest approach from the causal forest.

Powers et al. (2018) propose to split the data into two distinct sets. The
training set is used to build the causal boosting. Using the split-points and
split-variables from the training-set we use the covariates from the validation
set, lets call it Xv, for validation and get new estimates based on Dv and Yv

for each terminal node. This procedure is done for any of the K trees, using
again the residuals (this time from the validation set tree) to reestimate the
terminal nodes of the next causal tree. This allows estimating a validation error
for each of the original K models. The overall validation error for a causal
boosting model is given by the differences of the CATE from the original vs.
the validation trees.
Causal BART:

While the (causal) boosting relies on multiplying each sequential tree by the
learning rate (✏), the idea developed by Chipman et al. (2010) is to estimate a
posterior distribution of the prediction by explicitly setting priors for the trees
and ensemble structure (e.g. the depth of the tree, the probability of a new
split). Using a Bayesian approach allows for a broader set of information than
the point estimate from regression and classification methods. The Bayesian
Additive Regression Trees (BART) approach is a combination of three methods:
Using gradient boosting trees, a Bayesian framing for each individual tree,
and Markov chain Monte Carlo (MCMC) sampling to do backfitting (using
additive and generalized additive models for posterior sampling). Hill (2011)
proposes to use such nonparametric Bayesian models to estimate treatment
effects. Given strong ignorability, one way to estimate treatment effect is to
estimate the response function µ(Xi,Di). This function is estimated in one
step instead of estimating two functions. Hence, the prior is set directly for the
response surface. This approach is also called the S-learner - train one function
and set Di to 1 and 0 for each observation to get estimates for both potential
outcomes. Hahn et al. (2020) extends the idea of using a Bayesian approach to
estimate treatment effects but expresses the response surface as:

E [Yi � xi,Di = di] = µ{xi, ê (xi)} + ⌧ (xi)di, (9)

where ê(x) is the estimated propensity score and the functions µ(⋅) and
⌧(⋅) are independent BART priors. The inclusion of the estimated propensity
score can be seen as a covariate dependent prior to control for confounding bias.
The method is specially designed to estimate the CATE from observational
studies with small effect sizes and heterogeneous effects. The package we use is
build on the model by Hill (2011) (install_github("vdorie/bartCause")).
A package that implements the method proposed by Hahn et al. (2020) is
in development (install_github("socket778/XBCF"). This package is also
available for Python. Note that the causal BART produces credible intervals
as a contrast to confidence intervals. They are estimated from the posterior
probability function and hence rely on the prior distribution while confidence
intervals are based on data only. We will only use the term confidence interval

CATE Meets ML 17

on all methods, however, we do mean credible intervals for the causal BART
and (frequentists) confidence intervals for all other methods.

2.3 Sample splitting and cross-fitting

To aim for a consistent estimator, we need to assume certain complexity
conditions on the nuisance functions. Specifically, we want them to be smooth
(i.e. differentiable) and the entropy of the candidate nuisance functions to
be small enough to fulfill Donsker conditions (e.g. if we assume Lipschitz
parametric functions or VC classes). In high-dimensional settings (p>n) or
when using ML methods that are complex or adaptive, the Donsker conditions
might not hold; see, for example, Robins et al. (2013), Chernozhukov et al.
(2016) and Rotnitzky et al. (2017). As Chernozhukov et al. (2018a) noticed,
verification of the entropy condition is so far only available for certain classes of
machine learning methods, such as lasso and post-lasso. For classes that employ
cross-validation or for hybrid methods (like the SuperLearner), it is likely
difficult to verify such conditions. Luckily, there is an easy solution available:
sample splitting. When splitting the sample we can use independent sets for
estimating the nuisance functions and constructing the treatment estimation
equation. By using different sets, we can treat the nuisance functions as fixed
functions which allow avoiding conditions on the complexity. It also allows us
to use any ML method such as random forest or boosting or even an ensemble
of different methods. The sample splitting approach to avoid smoothness
conditions dates back at least to Bickel (1982) and was extended to also use
cross-fitting by Schick (1986). For the meta-learners, we have to do sample
splitting and cross-fitting manually while the causal forest as well as the causal
boosting relies on honest-estimation and does sample splitting by default.

To overcome a potential loss in efficiency, since only a subset of the data
is used when estimating the CATE, cross-fitting is an increasingly popular
approach to combine ML methods with semi-parametric estimation problems;
see, for example, Chernozhukov et al. (2018a), Newey and Robins (2018) and
Athey and Wager (2017). Cross-fitting works like this: We split the data into
two parts, subset A and M. We use data A to train the nuisance functions and
then estimate the parameter of interest using the subset M. Now we switch
the roles of the sets, using subset M for training and subset A for estimation.
The two results are then averaged. If we want to use this procedure to make
predictions, we would build two prediction models based on the roles of the
samples and average the resulting values for each observation.

We give an example of the benefit from cross-fitting in Figure 4. We show
the MSE from the true treatment effect for a single estimator (⌧̂s(x) with dots)
and the cross-fit estimator (⌧̃cf(x) with triangles) based on a 50:50 sample
split. We used the R-learner as the meta-learner and create 50 Monte Carlo
replications of the data using the same data generating process (DGP) which
simulates a RCT and has the following properties: N = 2000, X = R10, e0(X)
= 0.5, and ⌧(x) =X1 + 1(X2) +W with W ∼N (0,0.5). Using cross-fitting

18 Daniel Jacob

decreases the MSE compared to the single estimator in about 90% of the cases.
We also find that the variance is smaller compared to the single estimator.

0.4

0.5

0.6

0 10 20 30 40 50
Replication

M
SE

Estimator single cross−fit

Fig. 4: Single vs. cross-fit estimation of CATE. CF

In this tutorial, we apply 5-fold sample splitting and use 80% of the data for
training the models and 20% to evaluate the CATE. We rely on bootstrapping
on the training data to create confidence intervals. Cross-fitting is achieved
by splitting the training data again into two parts. We repeat this process 20
times and estimate the CATE on the test set for each repetition. We then
take the median on the, already cross-fitted, estimates from the test-data for
each observation. An alternative is also to take the mean. See Jacob (2020)
for a Monte Carlo study about the implications of different sample-spitting,
cross-fitting, and averaging approaches for meta-learner methods.

3 Empirical Examples

To illustrate the methods presented in the previous sections we consider two
empirical examples. In the first example, we examine the effect that microcredits
have on the total amount of loans, resulting from a randomized experiment in
Morocco. In the second example, we study the effect of 401(k) eligibility on
accumulated assets. This example deviates from random treatment assignment
and contains self-selection into a treatment. While all methods condition on
the observed pre-treatment variables to estimate the CATE, using the latter
example we have to control for the covariates in all steps to eliminate the
self-selection bias.

https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/Cross-Fitting

CATE Meets ML 19

3.1 Effect of microcredits on borrowing

We start with an empirical dataset to analyze the effect of microcredit availabil-
ity on borrowing activities such as the amount of loans (see Crépon et al. (2015)
for a recent study using this dataset). Looking beyond the ATE and finding
heterogeneous treatment effects is important to target specific groups and to
make better policies. The allocation of treatment was randomized between 162
villages in Morocco. The villages were divided into pairs with similar observable
characteristics. Then the treatment was randomly assigned to either one of the
pair while the counterpart was assigned to the control group. Treatment as
microcredit availability in this context means that between 2006 and 2007 a
microfinance institution started operating only in the treated villages. In 2009,
5551 households were surveyed as a follow-up study. We use the results from
this survey to estimate conditional average treatment effects using different
methods and also show some strategies to get some insight into which charac-
teristics are responsible for heterogeneity in treatment effects. We select the
following pre-treatment covariates that are observed characteristics for each
household such as head age, the number of adults and number of children,
the total number of members in a household, indicators for households doing
animal husbandry, other non-agricultural activity, household spouse responded
to the survey, the education of the head, having an and outstanding loan over
the last year. Table 3 shows the mean value for some covariates. They are
categorized by all observations, the treated and the control group. Given these
unconditional means, we see that the amount of loans for the treatment group
is much higher (2,930) than for the control group (1,802). We also see that
the mean of the characteristics is quite balanced across the two groups. This
reassures us that the treatment assignment was randomly selected and that
there are no confounding variables that lead to self-selection into treatment.
While there are small differences in some covariates this is not concerning
since all methods that we use here use the propensity score or condition on
the covariates to estimate the treatment effect only on similar subgroups. For
example, more people in the treatment group already have a loan in the last
twelve months. We can estimate the probability of being in the treatment group
given this variable and reweigh the treatment and control group to adjust for
these differences. The dataset and R-code for the microcredit analysis can be

found here emp.

Table 4 shows a summary for the heterogeneous treatment. Namely the
effect for the 20% least affected, the ATE, and the effect for the 20% most
affected observations. Especially for the quantiles, we find differences between
the estimates given the methods that we consider. This holds for the lower 20%
where the effect ranges from 450 to 1140 as well as for the 20% most affected
with the lowest treatment effect from the DR-learner with 1300 and the highest
estimate from the causal BART with 2500. The high value in the upper quantile
from the causal BART is because it predicts some extreme values at the tail of
the distribution. The T-learner has the highest variance in terms of treatment

https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/Microcredit-Example

20 Daniel Jacob

Table 3: Descriptive statistics of households (mean)

All Treated Control
Outcome Variable

Total Amount of Loans 2,359 2,930 1,802
Baseline Covariates

Number of Household Members 3.879 3.872 3.886
Number of Children 1.2664 1.261 1.272
Head Age 35.976 35.937 36.014
Declared Animal Husbandry Self-employment Activity 0.415 0.426 0.404
Declared Non-agricultural Self-employment Activity 0.146 0.129 0.164
Borrowed from Any Source 0.210 0.224 0.196
Spouse of Head Responded to Self-employment Section 0.067 0.074 0.061
Member Responded to Self-employment Section 0.044 0.048 0.041

Table 4: CATE results for different methods.

Category Method 20% Least ATE 20% Most

Meta-Learner DR-learner 1043.6 1222.0 1299.7

R-learner 1140.4 1247.7 1342.5

T-learner 449.4 1391.5 2274.3

X-learner 733.9 1282.2 1791.7

Modified ML

Methods

Causal BART 743.8 1409.3 2502.7

Causal Forest 1127.6 1323.6 1608.6

effect with a range from 450 amount of loans to 2270 loans on average for the
specific quantiles. The ATE is around 1300 for all methods and there is no
big difference between the methods. Figure 5 shows the treatment effect for
each observation, sorted by the size of the effect. We also show 95% confidence
intervals (CI). They are estimated via bootstrapping with B = 500 replications.
Here we adopt the procedure for the construction of CI’s from Künzel et al.
(2019). We first split our entire dataset into a training and test-set. We use
the training set for bootstrapping by creating a sample from the training data
of the same size with replacement. For each meta-learner and each bootstrap
sample from the training data, we use the test set to estimate the confidence
intervals. In total, we end up having B estimates for each observation. Now we
calculate the standard deviation (�̂) for each observation. The lower and upper
bound is: [⌧̂med(x)−q↵�2�̂; ⌧̂med(x)+q1−↵�2�̂]. Especially for the meta-learners,
we have a high variance between the bootstrapped samples indicating that even
if the CATE is different there might not be a significant heterogeneity. This
is also in line with the estimates from the causal BART and the causal forest
that show tighter bounds but also an almost flat CATE curve. To calculate the
CATE, denoted by ⌧̂med(x), we use the whole training data, not a bootstrapped
version. We then split the training data again into two parts, one to train the
nuisance function and one to predict (for example, the propensity score). We

CATE Meets ML 21

build the transformed outcomes based on these two samples and then regress
them on the covariates to predict on the test set. We repeat this procedure 20
times and take the median. This can be seen as the cross-fitting approach with
median averaging as described in Jacob (2020).

T−learner X−learner

DR−learner R−learner

Causal−BART Causal−Forest

0 300 600 900 0 300 600 900

0 300 600 900 0 300 600 900

0 300 600 900 0 300 600 900

0

2000

4000

0

2000

4000

0

2000

4000

0

2000

4000

0

2000

4000

0

2000

4000

Ordered Observation

Tr
ea

tm
en

t E
ffe

ct

Fig. 5: Microcredit: Observations sorted by level of treatment effect. sort

Figure 5 shows quite similar values for at least four of the methods. Only the
T- and X-learner have heavier tails and even predict a negative effect for some
observations. Given the wide confidence intervals, this might not necessarily
be true. The most homogeneous prediction comes from the causal forest.

If we believe that there is at least some difference in the effect between
the least and most affected observations then we can look at the average
characteristics of these groups to understand what are potential drivers for the
heterogeneity. Here we adopt a simple approach introduced by Chernozhukov
et al. (2018b), namely the Classification Analysis. The idea is to regress the
least and most affected groups on some pre-chosen characteristics with Gq

being the observations given a specific group of the treatment effect:

�least = E[g(X)�Gleast] and �most = E[g(X)�Gmost].
Here we focus on the head age, the probability of being self-employed

in a non-agricultural sector, and whether someone had an outstanding loan
over the past 12 months (borrowed from any source). In Table 5 we show
the average of the characteristics for the two groups as well as if there is a
significant difference between the groups. We show results for two methods,

https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/Microcredit-Example

22 Daniel Jacob

the doubly-robust meta-learner (DR-learner) and the causal forest. The full
Table that includes all methods can be seen in the Appendix (9). For both
methods, we find a significant difference in head age, the probability of being
self-employed in a non-agricultural sector, and the probability of having a loan.
The most affected people seem to be younger, while older people are the least
affected. Low values in the head age arise since many people did not respond
to that question. However, we believe that the non-respondents are missing at
random. This allows us to interpret the difference between the two. Looking at
employment we find that people who benefit most from microcredits are those
who are working in the non-agricultural sector. Agriculture equipment might
be more expensive which is why microcredit might not be the first choice. We
also find that people who already have a loan (with a higher probability) are
less affected by microcredit availability.

Table 5: Classification results for DR-learner and causal forest.

DR-learner Causal Forest

Most Affected Least Affected Difference Most Affected Least Affected Difference

Head age 25.64 46.25 -20.61 3.82 57.21 -53.39

(22.63,28.66) (43.24,49.26) (-24.87,-16.34) (2.12,5.53) (55.54,58.12) (-55.00,-51.49)

- - [0.000] - - [0.000]

Non-agricultural

self-employed

0.380 0.018 0.362 0.222 0.029 0.192

(0.333,0.427) (-0.029,0.065) (0.295,0.429) (0.139,0.264) (-0.038,0.041) (0.121,0.232)

- - [0.000] - - [0.000]

Borrowed from

any source

0.122 0.317 -0.195 0.025 0.271 -0.247

(0.069,0.175) (0.263,0.370) (-0.270,-0.119) (-0.048,0.048) (0.241,0.329) (-0.351,-0.219)

- - [0.000] - - [0.000]

Notes: 90% confidence interval in parenthesis and p-values in brackets.

3.2 Effect of 401(k) eligibility on accumulated assets

While the microcredit data is based on a randomized controlled trial, the
eligibility of a 401(k) pension plan is not. Only some firms offer access to a
401(k) and hence there is self-selection into treatment. It might be the case
that more educated people chose firms that provide a 401(k) pension plan and
that they have higher financial assets in the first place. Poterba and Venti
(1994) argue, that conditioning on observed characteristics, like the income,
can restore the random assignment mechanism. The dataset we use is the same
as in Chernozhukov and Hansen (2004) which is based on the 1991 Survey of
Income and Program Participation. We are interested in the question if 401(k)
eligibility, our treatment variable, has an impact on accumulated assets (here we
use the net financial assets as the outcome variable). We control for income and
other variables related to the job choice that may have an impact on treatment
assignment and assets. In total, we have 9915 observations and 13 covariates
consisting of age, family size, income, years of education, and indicator variables
for married, two-earner status, defined benefit pension status, homeownership,

CATE Meets ML 23

and IRA participation. We split the dataset into different parts and use 2000
observations to estimate the final treatment effect. The dataset and R-code for
the 401(k) analysis can be found here emp.

Table 6: Descriptive statistics of observations (mean)

All Treated Control
Outcome Variable

Net financial assets 18,052 30,347 10,788
Baseline Covariates

Age 41.06 41.48 40.81
Income 37,201 46,862 31,494
Years of education 13.21 13.76 12.88
Proportion of being married 0.60 0.67 0.56
Proportion of two-earners 0.38 0.48 0.31
Proportion of home-ownership 0.63 0.74 0.57

Table 6 shows the mean values for the net financial assets and for some
pre-treatment covariates. The amount of assets is higher in the treatment group
than in the control group. Concerning the self-selection into treatment we
see that some characteristics are different between the treatment and control
group. For example, the proportion of home-ownership, years of education,
and income is higher for treated people. There are further reasons to believe
that such characteristics are positively correlated with financial assets. In this
case, we have to control for such variables to account for the self-selection into
treatment.

Table 7: CATE results for different methods.

Category Method 20% Least ATE 20% Most

Meta-Learner DR-learner 4998 7120 9806

R-learner 4250 7410 11320

T-learner -4171 7579 25326

X-learner -285 7631 18648

Modified ML

Methods

Causal BART 2466 9055 21525

Causal Forest 5210 8228 12360

Table 7 shows the estimated CATE for the 20% least affected and 80% most
affected as well as the ATE. The ATE is positive and ranges from 7,120 to
9,055, depending on the method. Its variance between the methods is quite low,
compared to the estimates for the least and most affected groups. While the T-
and X-learner predict a negative effect from 401(k) eligibility on financial assets
for the lowest group, all other methods predict a positive effect. The highest

https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/401k-Example

24 Daniel Jacob

T−learner X−learner

DR−learner R−learner

Causal−BART Causal−Forest

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000
−10000

0

10000

20000

−10000

0

10000

20000

−10000

0

10000

20000

−10000

0

10000

20000

−10000

0

10000

20000

−10000

0

10000

20000

Ordered Observation

Tr
ea

tm
en

t E
ffe

ct

Fig. 6: 401k: Observations sorted by level of treatment effect. sort

affected group has values from 9,806 (from the DR-learner) to 25,326 (from
the T-learner). The causal forest predicts values with the lowest heterogeneity.
Except for the causal forest, all other learners predict extreme values in the
tails of the CATE. If we would use a majority vote from all the methods to
interpret the estimated effects, then it is reassuring that everyone has a positive
effect from the 401(k) eligibility as can be seen in Figure 6. Given the wide
confidence intervals, the evidence of treatment effect heterogeneity is not so
clear.

4 Simulated Data

Since the true treatment effect is never known beforehand, we provide a simu-
lation to evaluate different approaches in terms of performance for parameter
estimation. The data-generating process allows controlling the number of ob-
servations, the dimensionality, and the distributions of the variables. The
possibility to specify datasets for different simulations and scenarios helps to
investigate the methods used in this tutorial. Note that simulated data often
miss realistic data structures. An alternative is to rely on synthetic data where
only the treatment effect is artificially added. Since a simulation study in the
type of a Monte Carlo study is not the main focus of this tutorial we will
only use two simulated data generating processes. The purpose is to give an
idea of how to simulate data and test different methods. Instead of relying
on purely artificial data, Wendling et al. (2018) creates synthetic data based

https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/401k-Example

CATE Meets ML 25

on real covariates and treatment assignment mechanism. Only the outcome is
simulated base on non-parametric models of the real outcome.

4.1 Data Generating Process

The basic model used in this tutorial is a partially linear regression model
based on Robinson (1988) with extensions:

Y = ⌧0D + g0(X) +U, E[U �X,D] = 0, (10)
D =m0(X) + V, E[V �X] = 0, (11)

⌧0 = t0(Z) +W, E[W �Z] = 0, Z ⊂X. (12)

Let Y be the outcome variable . ⌧0 is the true treatment effect or population
uplift, while D is the treatment status. The vector X = (X1, ...,Xp) consists of
p different features, covariates, or confounders, while the vector Z is a subspace
of X and represents the variables on which the treatment effect is dependent. U ,
V and W are unobserved covariates which follow a random normal distribution
= N(0,1).

Equation 11 is the propensity score. In the case of completely random
treatment assignment, the propensity score is constant for all units, and if
equally distributed then m̂0(Xi) = 0.5. The covariates X are generated from a
random multivariate normal distribution (N(0,1)). Note that all values are
continuous. In business applications, discrete values (categorical variables) are
very common. For the data generation process as well as for the evaluation of
most models it would make no difference if such variables are present. This is
because vanilla machine learning methods can handle categorical variables quite
well. An exception is the causal forest where one has to use one-hot encoding,
transform the variable into dummies. Next, we describe the generation of the
functions in detail.

Covariates (X)

1. Generate a random positive definite covariance matrix ⌃ based on a
uniform distribution over the space p × p of the correlation matrix. Let
p = 20.

2. Scale the covariance matrix. This equals the correlation matrix and can
be seen as the covariance matrix of the standardized random variables
⌃ = X

�(X) .
3. Generate random normal distributed variables XN×p with mean = 0 and

variance = ⌃.

The function g0(X) is calculated via a linear function with interaction
terms and contains the following covariates:

26 Daniel Jacob

g0(X) =X1 +X2 +X3 ⊗X4. (13)

Next, a description of how to build the function m0(X) as well as how
to create a heterogeneous treatment effect is given. A varying treatment ef-
fect implies that its strength differs among the observations and is therefore
conditioned on some covariates X. Regarding the treatment assignment (D)
two options are considered. Option 1 assumes D to be completely randomly
assigned among the observations. In this case, D is just a vector of random
numbers with values 0 or 1. In the second option, the treatment assignment is
dependent on the covariates. The binary treatment assignment is generated
through a Bernoulli function. This implies per default a sort of uncertainty or
random error. Even if the probability from the propensity score is at 90% for
D = 1 there is still a 10% chance that it is generated to be zero. The functions
are generated as follows:

Treatment Assignment (m0(X, ⌧))
Option 1: m0

D
ind.∼ Bernoulli(m0), with m0 = c ∈ (0,1)

Option 2: m0(X)
1. Dependence is linear: a(X) =X1 +X2 +X3 −X4.
2. Calculate the probability distribution for the vector a from the normal

distribution function:

m0(X) = ��a − µ(a)
�(a) � =

1

2
�1 + erf �a − µ(a)

�(a)√2 ��
3. Apply a random number generator from a Binomial function

B{N,m0(X)} with probability for success = m0(X). This creates a
vector D ∈ {0; 1} such that D

ind.∼ Bernoulli{m0(X)}.
Regarding the treatment effect, two different options are considered. First,

⌧0 depends linear on covariates X, and second, ⌧0 has a non-linear, more
complex form concerning the covariates. In both settings, we can examine
heterogeneous treatment effects. The vector b = 1

l with l ∈ {1, 2, ..., p} represents
weights for every covariate.

CATE Meets ML 27

Treatment Effect (⌧0)

Option 1: linear dependence

⌧(X) =X1 +X2 +X3 +X4 +W with W ∼N (0,0.5).
Option 2: non-linear dependence

⌧(X) = sin(X1∶3 × b1∶3) + cos(X4).
The simulated data that include the true treatment effect can be found

here: sim.

4.2 Results

To evaluate the different methods we consider two data generating processes
(DGP). Setting 1 is a randomized controlled trial with a constant propensity
score of 0.3 (this is more realistic than 0.5 since treatment is often expensive).
The treatment effect depends linear on covariates (setting 1 equals option 1).
In setting 2 we consider confounding variables, namely that the treatment
probability now depends on covariates (linear) while the treatment effect is
calculated via non-linear functions of the covariates. This mimics option 2. In
both settings we set N = 1000 and p = 20. Table 8 shows the mean squared
error (MSE) for all considered methods and both settings.

Table 8: CATE results for different methods. res

Category Method MSE Setting 1 MSE Setting 2

Meta-Learner DR-learner 0.47 1.01

R-learner 0.47 0.45

T-learner 0.57 2.20

X-learner 0.49 0.65

Modified ML

Methods

Causal BART 0.33 0.20

Causal Forest 0.60 0.39

Notes: The estimated CATE is retrieved by taking the median over 20

repetitions with different sample splits.

Figure 7 and 9 show the sorted treatment effect heterogeneity with 95%
confidence intervals for setting 1 and 2, respectively. While the causal BART
method produces the lowest MSE it has high credible intervals. The same is true
for the causal forest, which performs almost as well as the causal BART but
again has a higher variance compared to the DR-learner. This shows that the

https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/Simulation-Example
https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/Simulation-Example

28 Daniel Jacob

calculation of CI’s and their interpretation might not always be a measure of
the accuracy in these specific cases. Figure 12 in the Appendix shows boxplots
of all methods and their variation. The blue line indicates the true ATE, hence
we can see how accurate all methods are to predict the ATE. Figure 8 and 10
shows scatterplots for the estimated vs. the true CATE. The blue line indicates
a linear regression estimate with pointwise confidence intervals (around the
mean) for each method. As we have seen from the MSE, the causal BART
method performs best along with the whole interval and in both settings. The
DR-learner and T-learner have the highest variance with observations outside
the interval of the true treatment effects.

One observation from this simulation is clearly that the meta-learners can
improve in terms of MSE the simpler the functions are. We note that the results
heavily depend on the choice of the ML methods one uses. If the data structure
is quite complicated and non-linear, a lasso model might not be the best choice.
While we used a possible selection of the lasso and the random forest we would
need to validate how accurate the estimation of the nuisance function is and,
in the case of the SuperLearner which model was picked. Here we find that
for setting 1 the lasso was chosen in 90% of the cases while in setting 2 a
combination of the lasso and the random forest was chosen. Including more
ML methods could improve the prediction accuracy depending on the data
generating process.

T−learner X−learner

DR−learner R−learner

Causal−BART Causal−Forest

0 100 200 300 400 0 100 200 300 400

0 100 200 300 400 0 100 200 300 400

0 100 200 300 400 0 100 200 300 400
−1

0
1
2

−2

0

2

4

−2

0

2

−2

0

2

−2

0

2

−2

0

2

Ordered Observation

Tr
ea

tm
en

t E
ffe

ct

Fig. 7: Setting 1: Observations sorted by treatment effect. S1

https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/Simulation-Example

CATE Meets ML 29

T−learner X−learner

DR−learner R−learner

Causal−BART Causal−Forest

−2 −1 0 1 2 3 −1 0 1 2 3

−1 0 1 2 −1 0 1 2

−1 0 1 2 −0.5 0.0 0.5 1.0 1.5

−2

0

2

4

−2

0

2

4

−2

0

2

4

−2

0

2

4

−2

0

2

4

−2
0
2
4

Estimated CATE

Tr
ue

 C
AT

E

Fig. 8: Setting 1: Scatterplot of estimated and true CATE. T1

T−learner X−learner

DR−learner R−learner

Causal−BART Causal−Forest

0 100 200 300 400 0 100 200 300 400

0 100 200 300 400 0 100 200 300 400

0 100 200 300 400 0 100 200 300 400
−1

0

1

2

−5.0
−2.5

0.0
2.5
5.0

−3
−2
−1

0
1
2

−2
−1

0
1
2

−3

0

3

6

−5.0
−2.5

0.0
2.5
5.0

Ordered Observation

Tr
ea

tm
en

t E
ffe

ct

Fig. 9: Setting 2: Observations sorted by treatment effect. S2

https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/Simulation-Example
https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/Simulation-Example

30 Daniel Jacob

T−learner X−learner

DR−learner R−learner

Causal−BART Causal−Forest

−2.5 0.0 2.5 5.0 −2 −1 0 1 2

−2.5 0.0 2.5 5.0 −1 0 1 2

−1 0 1 0.0 0.5 1.0 1.5

−1

0

1

2

−1
0
1
2

−1

0

1

2

−1

0

1

2

−1

0

1

2

−1

0

1

2

Estimated CATE

Tr
ue

 C
AT

E

Fig. 10: Setting 2: Scatterplot of estimated and true CATE. T2

https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/Simulation-Example

CATE Meets ML 31

5 Conclusion

In this tutorial, we present recent novel methods to estimate the conditional
average treatment effect using machine learning methods. We categorize the
methods into two branches. First, so-called meta-learners, that make use of
off-the-shelf machine learning methods by using a transformed outcome to
estimate the CATE. They are flexible in the choice of the machine learning
method as long as they converge with a specific rate. Research showed that one
can use the lasso, random forest, boosting methods, and neural networks. The
second branch contains machine learning methods that are specific designed to
estimate the ATE or the CATE. They often rely on trees or an ensemble of trees
like the random forest. While there are packages available for many methods,
the use of meta-learners needs special care since we have to transform the
outcome first to estimate the CATE. We, therefore, provide R-code for many of
such meta-learners and show how they can be used. We also demonstrate how
to use the second branch of methods by integrating the packages in R-code
that uses the same data structure as the meta-learners.

To demonstrate the strength and differences of all the methods that we
consider we present four examples. Two empirical examples, the first from a
randomized control trial and the second from an observational study. The third
and fourth example contains simulated data where the true treatment effect
can be observed and hence compared with the estimates from all the methods.
In the empirical examples, we find strong evidence of positive treatment effects
for each observation while significant heterogeneity in the effects is not that
clear. This is mainly if we base the conclusion on calculated confidence intervals
via the bootstrap or credible intervals from the causal BART. We do, however,
find differences in the width of the confidence intervals and also in the CATE
prediction among the methods. These differences also occur in the simulated
data. We, therefore, recommend that practitioners should not rely on only
one method but rather use multiple methods and compare the results. One
should also carefully think about the different tuning-parameters that can be
set when using machine learning methods. Depending on the method there can
be a variety of options to consider. We try to avoid the problem of manually
selecting such parameters through cross-validation and the selection of different
ML methods for each nuisance function. Sample splitting and averaging is a
further necessary step to get robust estimates among the methods.

Conflict of interest

The authors declare that they have no conflict of interest.

32 Daniel Jacob

References

Athey S, Wager S (2017) Efficient policy learning. ArXiv preprint, https:
//arxiv.org/abs/1702.02896

Athey S, Wager S, Tibshirani J (2019) Generalized random forests. Annals of
Statistics 47(2):1148–1178, DOI 10.1214/18-AOS1709

Bickel PJ (1982) On adaptive estimation. Annals of Statistics 10(3):647–671,
DOI 10.1214/aos/1176345863

Chernozhukov V, Hansen C (2004) The effects of 401 (k) participation on the
wealth distribution: an instrumental quantile regression analysis. Review of
Economics and statistics 86(3):735–751, DOI 10.1162/0034653041811734

Chernozhukov V, Escanciano JC, Ichimura H, Newey WK, Robins JM (2016)
Locally robust semiparametric estimation. ArXiv preprint, https://arxiv.
org/abs/1608.00033

Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey
W, Robins J (2018a) Double/debiased machine learning for treatment and
structural parameters. The Econometrics Journal 21(1):C1–C68, DOI 10.
1111/ectj.12097

Chernozhukov V, Demirer M, Duflo E, Fernandez-Val I (2018b) Generic ma-
chine learning inference on heterogenous treatment effects in randomized
experiments. ArXiv preprint, https://arxiv.org/abs/1712.04802

Chipman HA, George EI, McCulloch RE, et al. (2010) Bart: Bayesian additive
regression trees. The Annals of Applied Statistics 4(1):266–298, DOI 10.
1214/09-AOAS285

Crépon B, Devoto F, Duflo E, Parienté W (2015) Estimating the impact of
microcredit on those who take it up: Evidence from a randomized experiment
in morocco. American Economic Journal: Applied Economics 7(1):123–50,
DOI 10.1257/app.20130535

EconML MR (2019) EconML: A Python Package for ML-Based Heteroge-
neous Treatment Effects Estimation. https://github.com/microsoft/EconML,
version 0.x

Fan Q, Hsu YC, Lieli RP, Zhang Y (2019) Estimation of conditional average
treatment effects with high-dimensional data. ArXiv preprint, https://
arxiv.org/abs/1908.02399

Foster JC, Taylor JM, Ruberg SJ (2011) Subgroup identification from random-
ized clinical trial data. Statistics in medicine 30(24):2867–2880

Friedberg R, Tibshirani J, Athey S, Wager S (2018) Local linear forests. arxiv.
ArXiv preprint, https://arxiv.org/abs/1807.11408

Hahn PR, Murray JS, Carvalho CM (2020) Bayesian regression tree models
for causal inference: Regularization, confounding, and heterogeneous effects.
Bayesian Analysis DOI 10.1214/19-BA1195

Hansotia B, Rukstales B (2002) Incremental value modeling. Journal of Inter-
active Marketing 16(3):35, DOI 10.1002/dir.10035

Hill JL (2011) Bayesian nonparametric modeling for causal inference. Journal
of Computational and Graphical Statistics 20(1):217–240

https://arxiv.org/abs/1702.02896
https://arxiv.org/abs/1702.02896
https://arxiv.org/abs/1608.00033
https://arxiv.org/abs/1608.00033
https://arxiv.org/abs/1712.04802
https://arxiv.org/abs/1908.02399
https://arxiv.org/abs/1908.02399
https://arxiv.org/abs/1807.11408

CATE Meets ML 33

Jacob D (2020) Cross-fitting and averaging for machine learning estimation of
heterogeneous treatment effects. ArXiv preprint, https://arxiv.org/abs/
2007.02852

Kennedy EH (2020) Optimal doubly robust estimation of heterogeneous causal
effects. ArXiv preprint, https://arxiv.org/abs/2004.14497

Knaus MC, Lechner M, Strittmatter A (2020) Machine Learning Estimation
of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence. The
Econometrics Journal DOI 10.1093/ectj/utaa014

Künzel SR, Sekhon JS, Bickel PJ, Yu B (2019) Metalearners for estimating
heterogeneous treatment effects using machine learning. Proceedings of
the National Academy of Sciences 116(10):4156–4165, DOI 10.1073/pnas.
1804597116

van der Laan MJ (2010) Targeted maximum likelihood based causal inference:
Part i. The international journal of biostatistics 6(2)

Lunceford JK, Davidian M (2004) Stratification and weighting via the propen-
sity score in estimation of causal treatment effects: A comparative study.
Statistics in Medicine 23(19):2937–2960, DOI 10.1002/sim.1903

McCaffrey DF, Ridgeway G, Morral AR (2004) Propensity score estimation
with boosted regression for evaluating causal effects in observational studies.
Psychological methods 9(4):403

Newey WK, Robins JR (2018) Cross-fitting and fast remainder rates for
semiparametric estimation. ArXiv preprint, https://arxiv.org/abs/1801.
09138

Nie X, Wager S (2017) Quasi-oracle estimation of heterogeneous treatment
effects. ArXiv preprint, https://arxiv.org/abs/1712.04912

Polley EC, Rose S, Van der Laan MJ (2011) Super learning. In: Targeted
learning, Springer, pp 43–66, DOI 10.1007/978-1-4419-9782-1_3

Poterba JM, Venti SF (1994) 401 (k) plans and tax-deferred saving. In: Studies
in the Economics of Aging, University of Chicago Press, pp 105–142

Powers S, Qian J, Jung K, Schuler A, Shah NH, Hastie T, Tibshirani R
(2018) Some methods for heterogeneous treatment effect estimation in high
dimensions. Statistics in Medicine 37(11):1767–1787, DOI 10.1002/sim.7623

Robins JM, Zhang P, Ayyagari R, Logan R, Tchetgen ET, Li L, Lumley
T, van der Vaart A (2013) New statistical approaches to semiparametric
regression with application to air pollution research. Research report (Health
Effects Institute) (175):3

Robinson PM (1988) Root-n-consistent semiparametric regression. Economet-
rica: Journal of the Econometric Society pp 931–954, DOI 10.2307/1912705

Rotnitzky A, Robins J, Babino L (2017) On the multiply robust estimation
of the mean of the g-functional. ArXiv preprint, https://arxiv.org/abs/
1705.08582

Rubin DB (1980) Randomization analysis of experimental data: The fisher
randomization test comment. Journal of the American Statistical Association
75(371):591–593, DOI 10.2307/2287653

Schick A (1986) On asymptotically efficient estimation in semiparametric mod-
els. Annals of Statistics 14(3):1139–1151, DOI doi:10.1214/aos/1176350055

https://arxiv.org/abs/2007.02852
https://arxiv.org/abs/2007.02852
https://arxiv.org/abs/2004.14497
https://arxiv.org/abs/1801.09138
https://arxiv.org/abs/1801.09138
https://arxiv.org/abs/1712.04912
https://arxiv.org/abs/1705.08582
https://arxiv.org/abs/1705.08582

34 Daniel Jacob

Sharma A, Kiciman E, et al. (2019) DoWhy: A Python package for causal
inference. https://github.com/microsoft/dowhy

Wager S, Athey S (2018) Estimation and inference of heterogeneous treatment
effects using random forests. Journal of the American Statistical Association
113(523):1228–1242, DOI 10.1080/01621459.2017.1319839

Wendling T, Jung K, Callahan A, Schuler A, Shah N, Gallego B (2018) Com-
paring methods for estimation of heterogeneous treatment effects using obser-
vational data from health care databases. Statistics in medicine 37(23):3309–
3324, DOI 10.1002/sim.7820

Wyss R, Ellis AR, Brookhart MA, Girman CJ, Jonsson Funk M, LoCasale
R, Stürmer T (2014) The role of prediction modeling in propensity score
estimation: an evaluation of logistic regression, bcart, and the covariate-
balancing propensity score. American journal of epidemiology 180(6):645–655,
DOI 10.1093/aje/kwu181

Zimmert M, Lechner M (2019) Nonparametric estimation of causal het-
erogeneity under high-dimensional confounding. ArXiv preprint, https:
//arxiv.org/abs/1908.08779

https://arxiv.org/abs/1908.08779
https://arxiv.org/abs/1908.08779

CATE Meets ML 35

A Additional Plots

−2

−1

0

1

2

3

Causal−BART Causal−Forest DR−learner R−learner T−learner X−learner
Method

va
lu
e

Fig. 11: Setting 1: Boxplots of different Methods. Blue line shows true ATE.
B1

−2.5

0.0

2.5

5.0

Causal−BART Causal−Forest DR−learner R−learner T−learner X−learner
Method

va
lu
e

Fig. 12: Setting 2: Boxplots of different Methods. Blue line shows true ATE.
B2

https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/Simulation-Example
https://github.com/QuantLet/Meta_learner-for-Causal-ML/tree/main/Simulation-Example

36 Daniel Jacob

B Tables

B.1 Classification results for the microcredit example

Table 9: CLAN results for different methods.

DR-learner R-learner T-learner

Most Affected Least Affected Difference Most Affected Least Affected Difference Most Affected Least Affected Difference

Head age 25.64 46.25 -20.61 28.46 46.80 -18.34 26.43 44.86 -18.43

(22.63,28.66) (43.24,49.26) (-24.87,-16.34) (25.45,31.47) (43.80,49.80) (-22.59,-14.09) (23.35,29.51) (41.79,47.94) (-22.78,-14.08)

- - [0.000] - - [0.000] - - [0.000]

Non-agricultural

self-employed

0.380 0.018 0.362 0.305 0.077 0.228 0.389 0.032 0.357

(0.333,0.427) (-0.029,0.065) (0.295,0.429) (0.255,0.354) (0.027,0.127) (0.157,0.298) (0.341,0.438) (-0.017,0.080) (0.289,0.426)

- - [0.000] - - [0.000] - - [0.000]

Borrowed from

any source

0.122 0.317 -0.195 0.245 0.303 -0.058 0.145 0.290 -0.145

(0.069,0.175) (0.263,0.370) (-0.270,-0.119) (0.186,0.305) (0.244,0.362) (-0.141,0.026) (0.091,0.199) (0.236,0.343) (-0.221,-0.069)

- - [0.000] - - [0.350] - - [0.000]

X-learner Causal BART Causal Forest

Most Affected Least Affected Difference Most Affected Least Affected Difference Most Affected Least Affected Difference

Head age 26.39 44.81 -18.42 19.49 52.76 -33.27 3.82 57.21 -53.39

(23.35,29.43) (41.77,47.85) (-22.72,-14.13) (16.82,22.16) (50.09,55.42) (-37.04,-29.50) (2.12,5.53) (55.54,58.12) (-55.00,-51.49)

- - [0.000] - - [0.000] - - [0.000]

Non-agricultural

self-employed

0.416 0.018 0.398 0.235 0.045 0.190 0.222 0.029 0.192

(0.368,0.464) (-0.030,0.066) (0.331,0.466) (0.191,0.280) (0.001,0.090) (0.127,0.253) (0.139,0.264) (-0.038,0.041) (0.121,0.232)

- - [0.000] - - [0.000] - - [0.000]

Borrowed from

any source

0.122 0.335 -0.213 0.131 0.330 -0.199 0.025 0.271 -0.247

(0.068,0.176) (0.281,0.389) (-0.289,-0.137) (0.077,0.185) (0.276,0.385) (-0.276,-0.122) (-0.048,0.048) (0.241,0.329) (-0.351,-0.219)

- - [0.000] - - [0.000] - - [0.000]

Notes: Averages are taken from the mean of the CATE over 500 bootstrap iterations.

Algorithm 6: Bootstrap Confidence Interval
1 x ∶ features of the training data,
2 w ∶ treatment assignments of the training data,
3 y ∶ observed outcomes of the training data,
4 p ∶ point of interest)
5 S0 = {i ∶ wi = 0}
6 S1 = {i ∶ wi = 1}
7 n0 =#S0

8 n1 =#S1

9 for b in {1, . . . ,B} do
10 s∗b = c (sample(S0, S1))
11 x∗b = x �s∗b �
12 w∗b = w �s∗b �
13 y∗b = y �s∗b �
14 ⌧̂∗b (p) = learner �x∗b ,w∗b , y∗b � (p)
15 end
16 ⌧̂(p) = learner(x,w, y)(p)
17 � = sd ��⌧̂∗b (p)�Bb=1�
18 return �⌧̂(p) − q↵�2�, ⌧̂(p) + q1−↵�2��

IRTG 1792 Discussion Paper Series 2021

For a complete list of Discussion Papers published, please visit
http://irtg1792.hu-berlin.de.
001 ”Surrogate Models for Optimization of Dynamical Systems” by Kainat Khowaja,

Mykhaylo Shcherbatyy, Wolfgang Karl Härdle, January 2021.
002 ”FRM Financial Risk Meter for Emerging Markets” by Souhir Ben Amor, Michael

Althof, Wolfgang Karl Härdle, February 2021.
003 ”K-expectiles clustering” by Bingling Wang, Yingxing Li, Wolfgang Karl Härdle,

March 2021.
004 ”Understanding Smart Contracts: Hype or Hope?” by Elizaveta Zinovyev, Raphael

C. G. Reule, Wolfgang Karl Härdle, March 2021.
005 ”CATE Meets ML: Conditional Average Treatment E↵ect and Machine Learning”

by Daniel Jacob, March 2021.

IRTG 1792, Spandauer Strasse 1, D-10178 Berlin
http://irtg1792.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the IRTG 1792.

http://irtg1792.hu-berlin.de
http://irtg1792.hu-berlin.de

	Introduction
	Methods
	Empirical Examples
	Simulated Data
	Conclusion
	References
	Additional Plots
	Tables

