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Abstract
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1 Introduction

Cryptocurrencies are assets, ownership of which is recorded and verified by means of a

cryptography-based digital technology (blockchain being an example), rather than by a

financial institution like a bank or a central bank. The "currency" part of their name,

and related notions of "coins", "wallets", and "tokens", all suggest they are meant to serve

transactions, just like the central bank money. There are, however, important differ-

ences, such as lack of regulation, in particular for cross-border transfers, the anonymity of

transactions in cryptocurrencies, etc. For some, these represent crucial benefits.1 Trans-

actions in cryptocurrencies keep growing: bitcoin alone is reported to serve about 300 000

transactions daily by the end of 2020.2 At the same time, as an investment asset, cryp-

tocurrencies make headlines by exhibiting poor predictability and high volatility of their

exchange rate with traditional [central bank] currencies. In this paper, we investigate to

what extent the transactional nature and the added benefits, including but not limited

to anonymity, of cryptocurrencies can explain their co-existence with traditional monies

as well as their return and volatility patterns.

Our key idea is that of segmented markets: the utility of consuming goods ob-

tained in the market served by the central bank currency (e.g. dollars) differs from that

of consuming the same goods purchased for a cryptocurrency (e.g. bitcoins). The dif-

ference in utilities is justified by added benefits. In real life, these may be small, like

the satisfaction of one’s curiosity or desire to feel part of the "crypto-community", which
1Especially so in illegal activities involving payments in cryptocurrencies. Although the Silk Road

online black market for drugs was shut in 2013, cryptocurrencies continue to be used in illegal tenders,
such as cyber-attacks on universities and hospitals, with the UCSF being in the center of the news in June
2020, reportedly paying 116.4 bitcoins (USD 1.14 million) to re-gain control over its systems after the
hackers’ attack "How hackers extorted $1.14m from University of California, San Francisco" by Joe Tidy,
BBC, 29 June 2020 (https://www.bbc.com/news/technology-53214783). In August 2020, the University
of Utah paid just under a half of this amount: "The University of Utah pays more than $450,000 in
a ransomware attack on its computers", By Scott D. Pierce, The Salt Lake Tribune, August 21, 2020.
Foley et al. (2019) give an annual estimate of about $76 billion of illegal activity in bitcoins, which is
just under a half of all bitcoin transactions. A discussion of cryptocurrencies as assets and payment
instruments is in the recent review by Giudici et al. (2020), who, in particular, assert the fundamental
value of cryptocurrencies is effectively in their anonymity.

2"Number of daily Bitcoin transactions worldwide from 1st quarter 2016 to 2nd quarter 2020",
Statista.com. https://www.statista.com/statistics/730806/daily-number-of-bitcoin-transactions
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makes an ordinary T-shirt or a parking ticket paid with bitcoins more valuable than if

they were paid in dollars. Benefits can be also large if one considers drugs, prostitution,

ransom, or bribery, where the transacting parties want to preserve anonymity. We assume

benefits of transacting in dollars and benefits of transacting in bitcoins are governed by

different stochastic processes. Market segmentation then allows us to use the apparatus

of international finance to characterize the arbitrage-free price of bitcoins in dollars. In

particular, we show the two markets are governed by distinct pricing kernels. This is

due to the incompleteness, which stems from an impediment to hedge risks of stochastic

benefits: no hedging or insurance strategy in the dollar market can be constructed for a

bitcoin transaction without breaking anonymity.3 By establishing a relationship between

the two pricing kernels, we characterize the expected return (change in the bitcoin-dollar

exchange rate), its volatility, and the risk premium of bitcoins and end up with a build-

ing block – the co-existence of crypto- and central bank currencies, explained by the

heterogeneity of benefits from transactions in them.

Benefits are the fundamentals in bitcoin pricing. As long as they are non-negligible,

the cryptocurrency markets do not vanish.4 The empirical challenge is however to iden-

tify them and to quantify the benefits-driven pricing kernel. Assuming the iceberg-style

(Samuelson; 1954) effect of benefits on utility from consumption and the constant relative

risk aversion (CRRA) functional form for utility, we are able to decompose the kernels

into the benefits-based and consumption-based kernel components and distill the benefit-

related component from the fundamental pricing equation. In particular, we show the

benefits in the bitcoin market are empirically well captured by the number of coins sent

through the blockchain network. Empirically, on data from 2012 to 2020, we find the bit-

coin pricing kernel and its benefits-driven component exhibit an autoregressive behavior

coupled with a moving average effect, and the difference between the benefits in the two
3Generally, market segmentation does not automatically imply incompleteness. It is the risks of the

added benefits that create incompleteness: some states of nature in the bitcoin market are unobservable
for other participants and players in the dollar market.

4Pagnotta (2021) highlights security of transactions as the fundamental, yet notes that a sufficient
condition for bitcoins to be positively priced is that they are essential at least in some transactions. We
focus exactly on the reasons why bitcoins are essential. Security and security threats, are special cases
of what we call benefits.
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markets becomes stable. Along with that, we observe a decline in the volatility of the

bitcoin kernel, which is good news in terms of market stabilization. Noteworthy, while

the Covid-19 shock produced a pronounced spike in the dollar pricing kernel, its impact

on the bitcoin kernel was close to nil. This latter observation supports our theoretical

approach of having two distinct pricing kernels for crypto- and centralized currencies.

Recently, Schilling and Uhlig (2019) proposed a model of competition between a

crypto- and a traditional currency in a single market, with the key difference between the

two being the stability of the purchasing power, ensured by the central bank for the tra-

ditional currency. The model yields a characterization of the pricing kernel, which is used

to price the cryptomoney. Under an appropriate monetary policy regime, digital currency

can vanish in a long-run equilibrium. We adopt a similar transaction perspective on the

fundamental role of cryptocurrencies, yet we relax the perfect competition assumption:

consumers in our model derive extra utility from using the cryptocurrency as a payment

tool. We use anonymity as a leading example although we recognize there may be other

benefits or drawbacks of using digital currencies, including overcoming local regulatory

restrictions and risks of unconfirmed transactions, hacks and frauds. For example, in a

concurrent work by Foley et al. (2021) drawbacks of using bitcoins for transactions arise

due to congestion in data flows, resulting in longer transaction confirmation times, which

have increased from a couple of minutes at the beginning of the bitcoin system to about

an hour by now.

We obtain net expected benefits play a central role in determining the bitcoin

return, yet in our model, it is the pricing of their risks that matters: the riskier (higher

variation) the benefits of bitcoin transactions, the higher fluctuation of bitcoin returns.

From a modeling perspective, benefits in our paper explicitly affect utility (consonant to

the approach used in Bolt and Van Oordt; 2020), and subsequently the pricing kernel,

rather than the budget constraint (the approach adopted, e.g., in Biais et al.; 2020). One

of the advantages is that incorporating benefits in the pricing kernel allows us to use the

fundamental pricing equation to empirically characterize the benefits kernel and its dy-
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namics. Bolt and Van Oordt (2020) distinguish between adoption benefits (proportional

to the number of users in the cryptocurrency network) and fixed benefits (technological

preferences of individual consumers, reduced cross-border and another cost, privacy, and

anonymity), yet the currency choice in consumers’ decisions in their model is disjoint

from consumption choices. In our model benefits form part of the utility, along with

consumption, and the two types of benefits we consider capture the differences between

the centralized and the decentralized markets.5 A consumption-based approach is also

followed by Biais et al. (2020). In their model, bitcoins compete with bonds (debt in-

struments) and conventional currency (fiat money) as means of savings, to transfer value

between periods in an overlapping generation set up with a single consumption good;

they are equally good with money as means of payment. Benefits of using bitcoins either

expand or shrink the intertemporal budget constraint. This gives rise to an equilibrium

pricing for bitcoins (in dollars) as an investment asset, through the discounted value of

their expected net benefits over the infinite horizon. The solution is not unique: a random

perturbation of the equilibrium path may be designed without violating the equilibrium

condition. Empirically, the benefits, proxied by transaction costs and the number of

shops accepting bitcoins as means of payment, explain only a small fraction of long-term

bitcoin dynamics, hence from the perspective of this model it is the random perturbation

of the equilibrium path (extrinsic noise) that drives the cryptocurrency dynamics.

Addressing the issue of incomplete markets, the closest to ours are the works by

Bakshi et al. (2018) and Lustig and Verdelhan (2019). Following them, we focus on

the wedge, i.e. the difference between the exchange rate growth and the pricing kernel

differential (Backus et al.; 2001). The incompleteness in Lustig and Verdelhan (2019)

stems from the trade restriction they impose in the model; the wedge effectively prices

this trade barrier, and in econometric estimates can be proxied by taxes on cross-country

capital movements. In Bakshi et al. (2018), the incompleteness manifests in differing

stochastics of consumption and other macroeconomic variables across countries. In our
5This approach can be extended to incorporate different types of benefits in the crypto market, with

no qualitative changes to theoretical results.
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case, the incompleteness stems from the difference between stochastic benefits associated

with dollars and bitcoins, which effectively exemplifies a trade barrier: risks (if any) of

dollar benefits cannot be traded against risks of bitcoin benefits. The wedge then prices

the heterogeneity of stochastic benefits. In an economic environment with two sources

of uncertainty (consumption and benefits), to gauge an efficient decision in terms of the

payment means, we elaborate the stochastic dominance relationship between heteroge-

neous stochastic benefits, and conclude that once agents perceive a higher probability

of transaction benefits in the decentralized market relative to that in the counterpart

market, the price of Bitcoin in terms of dollar and the risk premium of bitcoin move up.

Empirically we find a persistent distributional dominance of benefits in decentralized over

centralized markets from 2016 to the present.

The rest of the paper is organized as follows. Section 2 assumes cryptocurrencies

and traditional currencies serve distinct parts of the economy, and derives some funda-

mental relationships, highlighting the essential role for market incompleteness. Section 3

explicitly introduces incompleteness by allowing for stochastic benefits in the two markets

and through that models the price dynamics of bitcoin, its variance and the risk premium.

Section 4 applies stochastic dominance analysis to benefits, in order to further character-

ize the difference between their kernels. The stochastic dominance analysis allows us to

qualify the conditions under which bitcoins co-exist with dollars. Section 5 empirically

evaluates the main parameters of the model from Bitcoin transaction data, estimates the

[unobserved] benefits and the benefit-related kernel, and elaborates on the evolution of

pricing kernels over time. The paper concludes with a summary and a discussion. All

proofs and auxiliary details are in the Appendix.

2 Segmented markets: preliminaries

Consider a world, in which two currencies - call them dollars and bitcoins (BTC) - can

be used as a means of payment in transactions in two separate markets, the centralized
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market using dollars and the decentralized market using BTC.6 Agents can buy and sell

goods in the two markets at no transaction costs. Time is discrete, time t consumption

is c$
t in the dollar-denominated market, and c-B

t in the BTC-denominated market. The

physical good is assumed the same in the two markets, yet consumption brings differ-

ent utilities, depending on the market where the good is obtained (e.g. consumption is

not anonymous in the centralized market, but is anonymous in the decentralized mar-

ket, therefore consumers who value anonymity derive higher utility in the latter), thus

notations c$
t and c-B

t effectively refer to the consumption-market tuple. Subjects derive

utility u(c$
t , c-B

t ) from consumption at time t. Marginal utilities in the respective mar-

kets are u′
$(c$

t , c-B
t ) and u′-B(c$

t , c-B
t ), with the subscripts denoting consumption of the good

served by the respective currency. If goods in the two markets are perfect substitutes, i.e.

u(c$
t , c-B

t ) = v(c$
t + c-B

t ), and hence u′-B(c$
t , c-B

t ) = u′
$(c$

t , c-B
t ), we obtain the case of Schilling

and Uhlig (2019) who consider one single market with one good and two currencies. Con-

version of BTC to dollars is possible at the spot exchange rate St. For example, agents

who desire anonymity may convert their dollar-denominated endowment into bitcoins for

possessing and consuming the good in the decentralized market. The expected utility is

then evaluated by the BTC-denominated marginal utility or pricing kernel.7 Uncertainty

about consumption is given by random shocks ζt = (ζ0, · · · , ζt) observable and measur-

able with respect to the filtration generated by the stochastic process. Pt = P (ζt) is the

price of the consumption good in dollars; Bt = B(ζt) the price of the consumption good

in bitcoins. In Section 3 we introduce further sources of uncertainty.

Introduce the following notation for the intertemporal marginal rates of substitu-

tion (IMRS) in the dollar- and the bitcoin-served markets respectively:

M$
t+1 = u′

$(c$
t+1, c-B

t+1)
u′

$(c$
t , c-B

t )
, M -B

t+1 = u′-B(c$
t+1, c-B

t+1)
u′-B(c$

t , c-B
t )

. (2.1)

6The centralized market encompasses the domestic and the foreign markets in the conventional in-
ternational trading mechanism, while the decentralized market launches new payment techniques to
purchase goods and services without third-party authorities’ supervision. The key innovation of de-
centralized markets is the implementation of cryptographic identification techniques into a distributed
ledger, known as blockchain.

7To ensure trade between agents and currency exchange, as in Schilling and Uhlig (2019), there are
two types of agents, whose generations alternate in consuming and producing the consumption goods.
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Currencies serve two purposes: storage of value (savings) between t and t+1 and transfer

of value between owners of assets and goods within each t. As a storage of value, they

serve the intertemporal substitution of consumption between t and t + 1, which is key

for the following fundamental pricing result, highlighting the potential existence of two

pricing kernels. The latter is due to imperfect competition between payment technologies:

consumption preferences depend on the currency in which payments are made.

Proposition 1 (Fundamental pricing equation). In the absence of arbitrage, there

exist admissible pricing kernels for the consumption goods denominated in dollars and in

BTC, respectively, in the two disparate markets, M$ and M -B, such that at any time t

holds

Et

[
M$

t+1
Pt

Pt+1

]
= Et

[
M -B

t+1
Bt

Bt+1

]
= 1. (2.2)

As a means of cross-sectional transfer, the two currencies can be priced against

each other. In general, if pricing kernels differ, the following holds for the nominal

exchange rate St in dollars per bitcoin:

St+1

St

= Pt+1

Pt

Bt

Bt+1

M -B
t+1

M$
t+1

, (2.3)

or, denoting Qt = St
Bt

Pt
the real exchange rate, and ∆qt+1 the log change in the real

exchange rate, Qt+1
Qt

, we obtain

∆qt+1 = m-B
t+1 − m$

t+1, (2.4)

where lowercase letters are natural logs of respective capitalized variables. This result is

standard in international finance for two countries with complete markets.

However, in a world with a single source of uncertainty the two kernels coincide.

Under discrete states of nature, SDFs can be interpreted as state prices divided by prob-

abilities of the states; an asset is then priced by the probability-weighted average of

its state-contingent payoffs multiplied with these probability-adjusted state prices (see,
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e.g., Campbell; 2000). If the dollar-served markets are complete, Arrow securities can

be constructed for all states of nature covered by the process ζ. The same stochastic

process governs the bitcoin-served segment, and hence the same states of nature occur

with the same probabilities, and the same system of Arrow securities suffices to price

assets. If markets are complete, state prices are unique, and so should be the pric-

ing kernels: this obtains if for any state of nature, given by the realization of ζt, holds

M$
t+1

Pt(ζt)
Pt+1(ζt+1) = M -B

t+1
Bt(ζt)

Bt+1(ζt+1) .

In our segmented markets, bitcoins co-exist with dollars as long as consumers

prefer to transact in bitcoins at least for some strictly positive quantity of consumption.

A condition for the bitcoin disappearance results in Schilling and Uhlig (2019) is that

at least at some date there is no goods transaction against bitcoins. This does not

hold in our setting if the utility function rules corner solutions out. A particular case

where a corner solution may arise is the perfect substitution between the two currencies,

the case considered in Schilling and Uhlig (2019). Similarly, in Benigno et al. (2019)

the cryptocurrency and the centralized money are equally liquid but the cryptocurrency

offers a better return, which generates a crowding-out issue. In our model, two features

prevent this: the preference structure, as explained above, and the incompleteness of

markets (introduced in the next section) which requires both currencies are in use to

span all states of nature.

Although preferences for bitcoins justify the co-existence of centralized and de-

centralized markets, the segmented markets approach degenerates to the case of a single

market if markets are complete. Of course, the dollar-denominated markets may also be

incomplete per se, in which case the pricing of the dollar-denominated assets would not be

unique, yet as long as all states of nature occurring in the bitcoin market are replicable by

dollar assets, bitcoin price is driven solely by the developments in the dollar market. Our

interest is, however, in Bitcoin-specific pricing fundamentals, appearing in (2.2) in the

form of the pricing kernel for the bitcoin-consumption market. The two pricing kernels

may only be distinct if incompleteness is essential to the overall bitcoin-dollar system,
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which in our case means shocks to prices in the bitcoin market cannot be hedged by assets

in the centralized market. With anonymity and illegal activities in cryptocurrencies being

our leading example, bitcoin consumption shocks are indeed not hedgeable: there is no

way to insure against a failure to complete a ransom deal, nor there is any way to hedge

against a failed anonymous transaction without disclosing anonymity. These shocks are

themselves random. This leads us to focus on the case of the incomplete market with two

distinct pricing kernels, which obtains if benefits from transacting in the bitcoin market

follow a stochastic process distinct from that in the dollar market.

3 Pricing kernel under stochastic benefits

In the above, benefits from transacting in bitcoins were deterministic, given by consumer

preferences. In a realistic case, benefits are not deterministic but rather stochastic, as in

Biais et al. (2020). Benefits reflect developments in the real economy that are relevant

to the usefulness of cryptocurrency, e.g. darknet activities, e-commerce, ransomware or

privacy-preserving transactions. Cong et al. (2021) consider the network effect as an

exogenous variable in pricing cryptocurrencies or more broadly tokens; our approach

explains the network effect through benefits arising from it: the more consumers use

cryptocurrency, the easier it is for any consumer to find a transaction counterpart, the

higher the utility she derives and the more valuable the coins/tokens are. However, the

adoption rate itself is stochastic. To keep tractability, we now restrict our attention to the

case where consumers can consume by transacting in one of the two markets but not in

both simultaneously.8 Consumers derive utility uj(cj
t) if transaction takes place in market

j ∈ {$, -B}. To introduce market-specific benefits, we make the following assumption on
8Our previous formulation u(c$

t , c-B
t ) was more general, allowing for consumption from both markets

simultaneously. By re-defining, in a slight abuse of notation, u(c$
t ) := u(c$

t , 0) and u(c-B
t ) := u(0, c-B

t ),
we arrive at the case of consumption confined to one market solely, which is typically the case when a
consumer decides to make an indivisible purchase. It looks like our results would also hold if consumers
can consume in both markets and derive utility v(c$

t , c-B
t ) = u(c$

t ) + u(c-B
t ). The function is separable,

marginal utility with respect to c$
t or c-B

t is the derivative of the first or the second term. This looks
less restrictive, and justifies why consumers may consume different levels of consumption in one and the
other market. The consumption bundle is identical, it is the level of consumption that differs.
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the utility function:

Assumption 1 (Benefits-adjusted utility).

uj(cj
t) = (cj

t)1−γ − 1
1 − γ

(3.1)

where cj
t ≡ θj,tCj,t, θj ∈ (0, ∞) stands for transaction benefits,and γ is the coefficient of

the relative risk aversion.

First, in Assumption 1, utility depends on the product of two random vari-

ables cj
t ≡ θj,tCj,t, representing the benefit-adjusted (or benefit-distorted) consumption,

whereby the consumption level Cj,t is distorted by the stochastic benefits θj,t. The inclu-

sion of the θj,t-term is in the spirit of the "iceberg" model of international trade (Samuel-

son; 1954; Dornbusch et al.; 1977): an amount C of the good purchased in and transported

from a foreign market arrives in the amount g(C) < C in the domestic market where

it is consumed9; the underway "meltdown" reflects transportation cost. In our case, θj,t

represents a distortion to the utility derived from the amount physically consumed, Cj,t.

As consumers can choose the market, as well as the consumption level, they maximize

utility by choosing the resulting effective consumption cj
t . We reserve θj,t to represent

non-hedgeable shocks due to which the system of markets is incomplete. In contrast, all

shocks that can be hedged by dollar-market instruments are in Cj,t.

Second, by Assumption 1 utility is CRRA, common in the consumption and de-

cision theory. Key results in the previous section hold generally, with minimum assump-

tions on preferences. As will become clear in a few steps, the CRRA utility significantly

simplifies the exposition and yields useful explicit representations in our model.

Consumption good in our framework corresponds to an average consumption bun-

dle, which is identical across the two markets10. A consumer decides on how much they
9 g(·) is a real-valued function in the support [0,1].

10An average consumption bundle (in the sense of averaging consumption bundles across all consumers)
would include ordinary goods (current and durable consumption) and also drugs, sex services, "services"
of removing malicious software and unblocking hacked databases (ransom), etc. - a "representative" or
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should consume in the bitcoin market or in the dollar market. The probability of re-

verting a transaction when purchasing ordinary goods, or the probability of being caught

for illegal use of drugs or a weapon trade may differ between the dollar and the bitcoin

markets. The ex-post utility from consumption depends on the realization of random

factors describing whether this average consumer can successfully receive online orders,

revert transactions, retain anonymity in illegal or unethical activities, etc, which we call

benefits. A state of nature determines for each element in the consumption bundle the

realization of these random factors.

Agents may enjoy transaction benefits in each market, albeit with different uncer-

tainties on benefits. We assume the amount consumed and the benefit are statistically

independent:

Assumption 2. θj,t and Cj,t are statistically independent for any j ∈ {$, -B}.

To justify assumption 2 consider, for example, anonymity: if anonymity is not

preserved, consumption takes place anyway, yet potentially at some dis-utility (θj,t ≤ 1).
11 Similarly, a failed transaction may be represented with θj,t = 0 so that θj,t · Cj,t = 0

but the decision to consume (and money spent) Cj,t does not depend on the realization

of θj,t. With this in mind, Cj,t can be seen as consumption that would take place in a

world with no extra benefits (θj,t = 1 deterministically). Recall that we reserved θj,t to

absorb all shocks that are non-hedgeable due to incompleteness, hence deterministic θj,t

describe a world with complete markets.

Lemma 1. With utility uj(cj
t) = (θj,t×Cj,t)1−γ−1

1−γ
, the SDFs in the two markets are 12:

M -B
t+1 =

(θ-B,t+1C-B,t+1

θ-B,tC-B,t

)−γ
= MC-B

t+1M
θ-B
t+1 (3.2)

a "median" consumer may find those latter ethically unacceptable and illegal, but they exist and enter
the average consumption basket. Foley et al. (2019) provide an account of their spread in the bitcoin
segment.

11It’s also possible to have a sharper dis-utility by letting θj,t ≤ 0.
12Marginal utility is computed with respect to cj

t , the product of two random variables.
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and

M$
t+1 =

(θ$,t+1C$,t+1

θ$,tC$,t

)−γ
= M

C$
t+1M

θ$
t+1, (3.3)

where M
Cj

t+1 =
(

Cj,t+1
Cj,t

)−γ
, M

θj

t+1 =
(

θj,t+1
θj,t

)−γ
with j ∈ {$, -B}

Lemma 1 formalizes the multiplicative decomposition of kernels characterizing the

two distinct markets. It is instrumental in that it decomposes the kernels into two compo-

nents, the complete-market consumption kernel M
Cj

t+1 and the incompleteness increment

M
θj

t+1. Given the multiplicative nature of most relationships, we will use small letters to

denote logs of capitalized variables, e.g. m-B
t+1 = log M -B

t+1. The additional assumption

below is needed for any operation requiring moment-generating functions.

Assumption 3. The log SDFs in the two markets, m-B, m$, mθ-B , mθ$, mC-B and mC$

are normally distributed.

3.1 Incompleteness

Let Ω = {ωs} be the set of states of nature. Extending the previous notation, associate

benefits with states of nature: θj,s is the benefit realized when the state of nature s

occurs; if the state of nature s = s(t) occurs at time t, we would write θj,t = θj,s(t).

Denote E$
k = {ωs|θ$,s = θk} the event (set of states of nature) that the transaction in the

dollar market is characterized by benefit θk. Similarly, denote E-B
k = {ωs|θ-B,s = θk} the

event that the transaction in the bitcoin market is characterized by benefit θk. Since θk

is a non-negative real number, E$
k ∩ E$

n = ∅ for any k and n; i.e. event sets E$
k form a

partition on Ω (same holds for the bitcoin sets). We can now formalize the nature of the

incompleteness in the model.

Proposition 2. If there exists at least one tuple (k, k1, k2) such that E$
k ⊇ E-B

k1 ∪ E-B
k2,

then a complete set of state contingent claims is unfeasible in the dollar market.

Condition E$
k ⊇ E-B

k1 ∪ E-B
k2 means that events E-B

k1 and E-B
k2 are indistinguishable

for observers in the dollar market: a player in the dollar market who observes E$
k cannot
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judge whether θk1 or θk2 occurs in the bitcoin market.13 Contingent claims to hedge these

events therefore cannot be constructed in the dollar market even if the dollar market

is complete in the sense that all events in the dollar market can be covered. The lack

of contingent claims or incapability of synthesizing contingent claims to reflect or hedge

transaction benefits gives rise to the consequence that payoffs cannot span all the possible

states of nature and some SDFs may lie outside the space of traded assets. Generally,

in incomplete markets there may be infinitely many pricing kernels. Proposition 1 in

Backus et al. (2001) demonstrates one can select from the set of all admissible kernels

those that satisfy conditions one would normally expect in the set of complete markets.

The key to their result is the possibility to use instruments that exist in one market to

hedge, or replicate, returns on investments in the second market. This implicitly assumes

states of nature that realize in the first market cover all states realizable in the second

market, and the realization of the states of nature in the second market is observable.

Anonymity of transactions in the bitcoin market is a feature that violates observability,

unless consumers wish to break it. If they break anonymity, the benefits of using bitcoins,

relative to dollars, disappear. In our formulation, this would mean transaction benefits

are governed by the same stochastic process, covering the same events, and the issue of

incompleteness does not arise.

By our assumption, incompleteness stems from the stochastic benefits, and hence

stochastic benefits determine the wedge in the sense of Lustig and Verdelhan (2019).

Once the wedge can be quantified and filtered out from the pricing kernel, the kernels

from the two markets are no longer contaminated by the benefit-related shocks, but only

reflect the consumption shocks. For this reason, the "benefit-free" kernel is unique. This

gives rise to the following relationship between the bitcoin and dollar-denominated pric-

ing kernels:

13One can replace -B and $ indexes with i and −i respectively, to denote some "designated" player i
and the rest of the market. In this case player i is able to distinguish between events Ek1 and Ek2 but
cannot hedge or insure against them separately because for the rest of the market they look as one event
Ek.
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Proposition 3. There exists a unique discount factor given by benefit-free kernels M-B
t+1

M
θ-B
t+1

and M$
t+1

M
θ$
t+1

:

M -B
t+1

M θ-B
t+1

= M$
t+1

M
θ$
t+1

Qt+1

Qt

, (3.4)

where Qt is the real exchange rate. Equation 3.4 is the counterpart of (2.4)

recognizing the differences between the two market kernels. In the log form, (3.4) becomes

∆qt+1 = m-B
t+1 − m$

t+1 − mθ-B
t+1 + m

θ$
t+1. (3.5)

To highlight the logic of Proposition 3, recall that θ-B,t+1 and θ$,t+1 capture incompleteness.

If both benefit kernels equal unity then by Lemma 1 holds m-B
t+1 = mC-B

t+1, m$
t+1 = m

C$
t+1. At

the same time, for complete markets (2.4) implies ∆qt+1 = m-B
t+1 − m$

t+1 = mC-B
t+1 − m

C$
t+1.

This latter equality also holds in our incomplete markets case exactly because kernels mC-B
t+1

and m
C$
t+1 are constructed to be free of incompleteness. For arbitrary mθ-B

t+1 and m
θ$
t+1, by

(3.2) and (3.3) in Lemma 1, holds mC-B
t+1 = m-B

t+1 − mθ-B
t+1 and m

C$
t+1 = m$

t+1 − m
θ$
t+1, which

leads directly to (3.5), and hence to (3.4) in Proposition 3.

The Euler equation in Proposition 1 can now be recast to account for the benefit

contamination and heterogeneity:

Et

[M$
t+1

M
θ$
t+1

Pt

Pt+1

]
= Et

[M -B
t+1

M θ-B
t+1

Bt

Bt+1

]
= Et

[M$
t+1

M
θ$
t+1

Qt+1

Qt

Bt

Bt+1

]
= 1 (3.6)

Note that Proposition 3 holds at each moment of time (in each state of nature), not only

in expectations.

3.2 Return and risk of Bitcoin under incompleteness

We are now ready to re-formulate the fundamental equations from Section 2 with an

explicit account of benefits obtainable in both markets. Utilizing Proposition 3 and

concerning incompleteness, the Euler equation for BTC holders can now be written as
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follows:

Et

[
M$

t+1
Qt+1

Qt

]
= Et

[
M -B

t+1
M

θ$
t+1

M θ-B
t+1

]
= 1

R-B
t+1

(3.7)

The Euler equation for dollar holders reads as:

Et

[
M -B

t+1
Qt

Qt+1

]
= Et

[
M$

t+1
M θ-B

t+1

M
θ$
t+1

]
= 1

R$
t+1

(3.8)

R-B
t+1 and R$

t+1 are the risk-free rate (in an exponential form) in the bitcoin and dollar

market, respectively. See more discussion in the Appendix (Proposition A). We follow

Lustig and Verdelhan (2019) to pin down the "perturbed SDF", i.e. the kernel multiplied

by the wedge, M
θ$
t+1

M
θ-B
t+1

, or by its reciprocal. The expected value of the perturbed SDF, like

the conventional SDF, is the risk-free rate.

Proposition 4. Under the assumptions in this section, the arbitrage-free expected return

on bitcoins is:

Et(∆qt+1) = r$
t − r-B

t + 1
2
[
Vart(m$

t+1) − Vart(m-B
t+1)

]
+ Etm

θ$
t+1 − Etm

θ-B
t+1. (3.9)

Both the first component of (3.9) in Proposition 4, i.e. the interest rate differential,

and the second component, i.e. the difference in the variance risk of two pricing kernels,

are rather common in the conventional asset pricing theory. The novelty is the last term,

the benefit-driven deviation of the market risk of two pricing kernels. This term arises

due to incomplete markets, as the incompleteness is benefits-driven. If benefits are not

present (complete markets) or are driven by the same stochastic process (in which case

the incompleteness is irrelevant as events that cannot be distinguished from each other

will never realize), the benefit-kernel differential turns zero.

Equation (3.9) implies that a relative rise Etm
θ$
t+1 over Etm

θ-B
t+1 leads to an ex-

pected appreciation of bitcoins. Etm
θ$
t+1 and Etm

θ-B
t+1 can be seen as the market price of

benefit-related kernels in the two respective markets. It implies a potential depreciation

once the market risk of benefit-related kernel in the decentralized market exceeds that
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of the centralized market. In Section 4, we will show the difference Etm
θ$
t+1 − Etm

θ-B
t+1

gets an interpretation of the stochastic benefit differential with the help of a dominance

relationship between distributions of θ-B and that of θ$.

Proposition 5. Under the assumptions in this section, the arbitrage-free variance of

bitcoin return is

Vart(∆qt+1) = Vart(m-B
t+1) + Vart(m$

t+1) + Vart(mθ-B
t+1) − Vart(mθ$

t+1) − 2Covt(m-B
t+1, m$

t+1)

(3.10)

Proposition 5 indicates that a high fluctuation of Bitcoin price (in dollars) is at-

tributed to the variance risk of the benefit-related kernel in the decentralized market,

relative to the variance of the benefit-related kernel in the centralized market. Uncer-

tainty associated with benefits from bitcoin transactions adds to the volatility of the

bitcoin exchange rate. Whenever consumers perceive benefit-driven uncertainty in the

decentralized market to be high, the exchange rate becomes more volatile in response. As

in the conventional international finance literature, Covt(m-B
t+1, m$

t+1) is inversely related

to the fluctuation of the bitcoin/dollar exchange rate: the stronger the negative correla-

tion between the kernels, the higher the volatility of the exchange rate. In the following

section, we elaborate, by matching the realized exchange rate volatility with the variance

of the implied kernels, the association between Covt(m-B
t+1, m$

t+1) and the second moment

deviation of the benefit-driven kernels, Vart(mθ-B
t+1) − Vart(mθ$

t+1).

3.3 Risk premium of bitcoins

The notion of risk premium or excess return for the Bitcoin market is rather heuristic

as the cryptocurrency world lacks a well-accepted interest rate or a regulated money

market.14 We make use of the synthetic interest rate, the reciprocal of the expected
14There has been a striking growth of the decentralized finance (DeFi), known as crypto lending

market. Such lending and borrowing activities are operated in Permissionless Lending Protocols, systems
that allow users to lend and borrow various digital assets typically through so-called smart contracts
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pricing kernel, explained in Proposition A in the Appendix, to derive the moment-based

determinants of the risk premium. For a modeling convenience, we assume the interest

rates in both markets exist and can be used in terms of lending and borrowing. Consider

the following strategy: borrow funds in the centralized market at r$
t , convert them to

Bitcoins, lend Bitcoins in the decentralized market, earn r-B
t , then convert back to the

centralized market at t + 1. This strategy defines the Bitcoin excess return, re:

Et(re
t+1) = r-B

t − r$
t + Et(∆qt+1) (3.11)

The Bitcoin risk premium is exactly this excess return: it shows the gains of lending in

bitcoins relative to those of lending in dollars. If markets were complete and there was

no difference in risk, the interest rate parity would imply Et(∆qt+1) = r$
t − r-B

t and hence

a zero excess return. The following corollaries characterize the excess return on bitcoins,

and in particular articulate the role of benefits, which are the source of incompleteness

in our model:

Corollary 1. Under the assumptions in this section, the expected arbitrage-free excess

return on bitcoins is:

Et(re
t+1) = 1

2
[
Vart(m$

t+1) − Vart(m-B
t+1)

]
+ Etm

θ$
t+1 − Etm

θ-B
t+1 (3.12)

The first term, the difference of the second moments of kernels, coincides with

the conventional asset pricing theory, while the second term underscores the impact of

incompleteness on the risk premium. Like (3.9), a relative rise Etm
θ$
t+1 over Etm

θ-B
t+1 leads

on the Ethereum blockchain. Smart contracts are not contracts in the legal sense; rather, they are
computer codes that effectively lives and executes on the Ethereum blockchain. Users that lend assets
are distributed the interest earned from their loans. Borrowers are required to post collateral in the form
of designated cryptos, typically featured by over-collateralization (value of collateral greater than the
value of the loan) to reduce credit risk, and pay interest rate by smart contract agreement to lender. The
risk in Permissionless Lending Protocols can be assessed by DeFi Score, a composite score comprises
of smart contract risk referring a risk that a smart contract is hacked, financial risk referring to the
volatility or downside risk of collateral; and intermediary risk about protocol Administration risk. Three
risk account for 45%, 35% and 25% roughly. Among the smart lending contracts, Dai savings rate is
considered as the safest (risk-free) one and is used as the base rate in the permissionless or trustless
lending markets, given the fact that by construction its coin value is pegged to U.S. dollar known as
stablecoin.
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to an increase of Bitcoin risk premium. In the case of a high market price of benefit-

related kernels in the decentralized market,Etm
θ-B
t+1, or high variance risk of Vart(m-B

t+1),

the Bitcoin users gain less excess returns.

4 Pricing the benefits: the stochastic dominance view

Decision makers in our model deal with two sources of uncertainties or two state variables,

consumption shocks and transaction benefits, constituting multi-dimensional uncertainty.

In our model, having different sources of uncertainty is a key feature of incomplete mar-

kets, manifesting in the benefit-related kernels mθ-B
t+1 and m

θ$
t+1 and playing a building

block in the bitcoin pricing. In this section, to get a deeper insight, we offer a stochastic

dominance view on the benefit-related kernels.

4.1 Two-dimensional uncertainty

We re-frame the multi-period model of Levy (1976) to accommodate two state variables

(consumption and benefits, both represent uncertainty) in our context and derive the

sufficient and necessary condition for the efficient consumption strategy. The notion

of “efficient” in Levy (1976) corresponds to strict preferences towards one or another

alternative, and is formulated in terms of the stochastic dominance analysis. This notion

of "efficiency" in our context defines consumers (and transactions) for whom bitcoins are

strictly preferred to dollars. Existence of these preferences (and contexts in which they

arise) explains the existence of the bitcoin market.

The utility function is of the specific form of u(x) = log(x), a special case of the

CRRA utility used in Section 3 with the risk aversion coefficient equal to unity. It is

worth noting that without loss of generality, the multi-uncertainty decision rule can be

applied to any kind of utility functions. However, the conditions to be not only sufficient

but also necessary hinge on the specification of the utility function, see more discussion in
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Levy and Paroush (1974). With the logarithmic utility, we obtain the following additively

separable representation:15

u(c · θ) = log(c · θ) = u1(c) + u2(θ) (4.1)

where u1(c) = log(c) and u2(θ) = log(θ). u1 and u2 are non-negative under a certain

range and non-decreasing function whose expected values exist with respect to F1 and G1

for u1 and F2 and G2 for u2. F1 and F2 are marginals of the joint distribution F (c, θ) in

the decentralized market, while G1 and G2 are marginals of the joint distribution G(c, θ)

in the centralized market. The logarithmic form of utility has nice properties such as non-

decreasing (u′(·) > 0) and non-increasing marginal utility (u′′(·) < 0) , a concave shape

of function alike. Note that the specification of utility in (4.1) implies that consumption

and transaction benefit are neither substitutes nor complements.

Given the utility functions, joint and marginal distributions of bivariate random

variables, the consumption strategy in the decentralized market with a joint probability

F (c, θ), is preferred to the strategy in the centralized market with G(c, θ), if

EF u(c, θ) − EGu(c, θ) =
∫

(G1(t) − F1(t))du1(t) +
∫

(G2(s) − F2(s))du2(s) (4.2)

=
∫

(G1(t) − F1(t))
1
t
dt +

∫
(G2(s) − F2(s))1

s
ds ≥ 0 (4.3)

Proposition 6 (First-order dominance). With the logarithmic utility functions which

are additively separable and joint probability F (c, θ), G(c, θ), marginal distribution F1(c),

G1(c), F2(θ), G2(θ), a necessary and sufficient condition for the dominance of decentralized-

type transaction over the centralized alternative in the first-order fashion is G1(c) ≥ F1(c)

and G2(θ) ≥ F2(θ), with strong inequality for at least some values in c or in θ.

For the second-order dominance (which is implied in Proposition 6), we separately
15Additively separable logarithmic utility functions was introduced by Samuelson (1954) and is picked

up again in the recent work by Miyake (2016).
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integrate the first and the second terms of (4.3) by parts to yield:

u1′(∞)
∫ ∞

1
(G1(t) − F1(t))dt −

∫ ∞

1
u

′′

1(t)
∫ t

1
(G1(s) − F1(s))dsdt =∫ ∞

1

1
t2

∫ t

1
(G1(s) − F1(s))dsdt ≥ 0

u2′(∞)
∫ ∞

1
(G2(t) − F2(t))dt −

∫ ∞

1
u

′′

2(t)
∫ t

1
(G2(s) − F2(s))dsdt =∫ ∞

1

1
t2

∫ t

1
(G2(s) − F2(s))dsdt ≥ 0

In the above two equations we make use of u1′(∞) = u2′(∞) = 0 and of the twice

differentiable logarithmic utility. This yields the following second-order dominance result.

Proposition 7 (Second-order dominance). Under assumptions of Proposition 6 and

u
′′
1 < 0, u

′′
2 < 0, a necessary and sufficient condition for the second-order dominance of the

decentralized-type transaction over the centralized alternative is
∫∞

t (F1(s) − G1(s))ds ≥ 0

and
∫∞

t (F2(s) − G2(s))ds ≥ 0 for all s > t with at least one strict inequality.

Under additive utility, the first- and the second-order dominance conditions for

efficient currency choice underscore the importance of marginal distributions .Combining

the above general formulation with an assumption of comparable consumption uncer-

tainties in the two markets (as we assumed in the main model), F1 ' G1, we obtain

the uncertainty about transaction benefits plays a pivotal role. Agents’ choice to make

Bitcoin payments reflects the projected expected utility with respect to the distribution

of bitcoin transaction benefits, F2.

4.2 Implications for Bitcoin pricing

To gain the insight into the extent to which the dollar value of Bitcoin reflects the

dominance relationship between the distribution of θ-B(F2) and that of θ$(G2), we re-visit

Eq. (3.9), with a focus on Etm
θ$
t+1 and Etm

θ-B
t+1. If a dominance of F2 over G2 is anticipated,

one should be able to infer Etm
θ$
t+1 ≥ Etm

θ-B
t+1 and subsequently a rise of Et(∆qt+1). The
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proof is sketched below:

Etm
θ$
t+1 − Etm

θ-B
t+1 = θ$,tEt

( 1
θ$,t+1

)
− θ-B,tEt

( 1
θ-B,t+1

)
=
∫ 1

t
dG2(t) −

∫ 1
t
dF2(t)

=
∫ 1

t
d(G2 − F2)

=
∫

(F2 − G2)d
1
t

= −
∫

(F2 − G2)
1
t2 dt

We assume θ-B,t = θ$,t = 1 or any scalar since they can be observed at t. The fourth

equality is derived after applying the Lemma of Levy and Paroush (1974). As long as F2

dominates G2 in the first-order sense indicated in Proposition 6, having G2(θ) ≥ F2(θ)

ensures Etm
θ$
t+1 − Etm

θ-B
t+1 > 0. In sum, Etm

θ$
t+1 ≥ Etm

θ-B
t+1 implies a dominance of F2 over

G2 and vice versa. Once agents perceive a higher probability of transaction benefits in

the decentralized market relative to that in the counterpart market, the price of Bitcoin

in terms of dollar in (3.9) moves up. This also holds for the expected log-excess return

of Bitcoins in (3.12).

5 Empirical application and discussion

To make sense of the model and understand the empirical counterparts of the key pa-

rameters, we first calibrate key parameters using interest rate data (T-bills for dollars

and the long-short spread in bitcoin futures) and use the implied wedge to get insights

on incompleteness. We then proceed with an empirical estimate of the benefit-related

kernels, the fundamental factors in our pricing approach, by using data on the number

of coins sent, assuming a positive association between the number of coins sent through

the Blockchain networks with benefits from trading in bitcoins. This approach further

helps understand the dynamics of the bitcoin price through the dynamics of underlying

kernels. Going ahead, our data stretches up to the Covid-19 pandemic, showing a pro-
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nounced impact of the latter on the dollar-consumption kernel accompanied by a much

milder effect on the bitcoin pricing kernel and on the benefits kernels.

5.1 Calibration and interpretation

This section aims to calibrate the implied moments of the benefits kernels. To do this,

we need the following: currency risk premium, maximum Sharpe ratio of risk premium

acting as the bound for volatility of the pricing kernel and the exchange rate between

BTC and dollar. Implied values Etm
θ$
t+1, Etm

θ-B
t+1, Vart(mθ$

t+1), and Vart(mθ-B
t+1) are obtained

from the theoretical results formulated above, as we demonstrate in this section. We will

use data for the period between February 2018 and September 2020, which allows us to

make use of Bitcoin futures data. The annualized volatility of BTCUSD in this period

has been around 80%, which does not come as a big surprise as coins like Bitcoin are

known to be notoriously volatile. Yet the period we focus on avoids extreme turbulence

periods (which some would refer to as the bubble period) as well as the extremely thin

trading period in the early-adoption phase. Note that this exchange rate between the

decentralized markets and the centralized markets exhibits more than seven times the

volatility of the exchange rates within the centralized markets themselves.

Bitcoin risk-free rate. For many purposes, we need a characterization of

the risk-free Bitcoin interest rate. Dollar investors in the centralized markets can buy

government-backed bonds to earn risk-free yields, in contrast to the decentralized mar-

kets, which lack purely risk-free assets such as those guaranteed by governments. One

way to synthesize the Bitcoin risk-free rate is to resort to the regulated derivative mar-

kets such as the Chicago Mercantile Exchange (CME). CME launched Bitcoin futures

contracts in the end of 2017 to offer a marketplace for hedgers and speculators to manage

their Bitcoin exposure. A synthetic Bitcoin risk-free rate obtains as a spread of taking

a long position in spot bitcoins and simultaneously taking a short position in Bitcoin

futures: the yield from this strategy is essentially risk-free. Instead of going long in the
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BTC spot market, we take a long position in the front-month contract and short the

back-month contract. For this exercise, we collect the near-term CME futures prices and

the futures contracts in longer terms, such as 3 months, expiring on a daily basis and

calculate the yield. The resulting average annualized interest rate is r-B = 2.45%.

Currency risk premium. Having the synthetic risk-free rate derived from the

BTC futures, one can quantify Bitcoin risk premium, re denoted in Corollary 1, as the

average carry trade excess return obtained by borrowing in low interest rate currency

and investing in high interest rate currency. The average risk premium corresponding

to the average carry trade excess return is 48.118% with the standard deviation 80.2%.

All numbers are annualized. The Bitcoin is thus characterized by a strictly positive risk

premium of re = 48.118%. For comparison, the equity market risk premium is in the

range 5-6%.16 Given the risk-free rates are low, the major part of the excess return comes

from the exchange rate fluctuations.

Sharpe ratio as the lower bound of the variability of a pricing kernel. Recall that

the maximum Sharpe ratio obtainable from the carry trade excess return determines a

lower bound on the variability of a pricing kernel, see Hansen and Jagannathan (1991)

using the covariance decomposition and Cauchy-Schwarz inequality. The Sharpe ratio

of bitcoin excess return imposes the restrictions on the volatility of pricing kernel, more

explicitly, σ(m-B)
Em-B ≥ Ere

σ(re) = 0.481
0.802 = 0.6.

Second moments of composite kernels. The maximum Sharpe ratio paves

the way for the theoretical pricing model so that it can be vital under the pricing errors.

The imposed lower bound to the volatility of m-B, from the derived maximum annual

Sharpe ratio, is 0.6, which is a relatively conservative estimate compared to the squared

weekly Sharpe-ratio 0.057 in Liu et al. (2019). The Sharpe ratio in the Bitcoin asset

is economically sizable. Following Lustig and Verdelhan (2019), we set the volatility of

m$ equal to σ(m$) = 0.5, which is a bit lower than volatility of m-B. We agree with
16See, e.g., the KPMG Equity Market Risk Premium Research Summary, https://assets.kpmg/con-

tent/dam/kpmg/nl/pdf/2019/advisory/equity-market-risk-premium-research-summary-31032019.pdf
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Lustig and Verdelhan (2019) in terms of preserving the volatility bound of kernels in a

conservative manner, in a consideration of not raising the bar for incomplete model too

much. In Lustig and Verdelhan (2019), the variance of wedge is proportionally increasing

with the variance of kernels, that is, a higher variance bound of kernels, a higher variance

of wedge.

Implied second moments of benefit kernels. The implied difference between

Vart(mθ-B
t+1) and Vart(mθ-B

t+1) can be inferred by re-arranging (3.10) in Proposition 5:

Vart(mθ-B
t+1) − Vart(mθ$

t+1) = Vart(∆qt+1) − Vart(m-B
t+1) − Vart(m$

t+1) + 2Covt(m-B
t+1, m$

t+1)

= 0.802 − 0.62 − 0.52 + 2Covt(m-B
t+1, m$

t+1)

= 0.03 + 2Covt(m-B
t+1, m$

t+1)

By matching the realized volatility of the exchange rate with the second moment of

implied kernels from a maximum Sharpe ratio, we obtain the benefits kernels in the two

markets are characterised by different volatilities if the covariance (correlation) of kernels

deviates from -0.015 (-0.06). In other words, if Cort(m-B
t+1, m$

t+1) is around -0.06, then

the two benefit kernel processes behave similarly in terms of the second moment of their

distributions. More explicitly, one could pay less attention to the wedge if the correlation

is around -0.06 but better be aware of the emerging wedge caused by a high positive or

negative correlation. To elaborate how the correlation of kernels implies the difference

between the volatility of the benefits kernels and the subsequent implied wedge in the

second moment notion, we depict in Figure 5.1 the difference between the variance of the

implied benefits kernels in the two markets against the implied correlation between m-B
t+1

and m$
t+1. It would be counterintuitive to assume the benefits kernel in the dollar market

is more volatile than that in the bitcoin market. Therefore, one should not expect the

correlation between the two kernels to be far below -0.06. In short, the derived insight

enables us to attribute a relatively higher fluctuation in the bitcoin benefits kernel, if it

is observed in the data, to an interdependence of the two kernels.
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First moments of benefits kernels. We switch our focus to the calibration of

the implied first moment of benefit-related kernels. Recall Corollary 1 for a relationship

between the Bitcoin risk premium and the expected benefit-kernel differential Etm
θ$
t+1 −

Etm
θ-B
t+1:

Et(re
t+1) = 1

2
[
Vart(mt+1) − Vart(m-B

t+1)
]

+ Etm
θ$
t+1 − Etm

θ-B
t+1.

The benefit-kernel differential characterizes the degree of market incompleteness (the

wedge): if Etm
θ$
t+1 = Etm

θ-B
t+1, we are back in the complete markets case. The expected

bitcoin excess return Et(re
t+1) has been calibrated above at 48.118%. Using the same

parameters for the second moments as above (see Figure 5.1), we obtain

0.481 = Et(re
t+1) = 1

2
[
Vart(mt+1) − Vart(m-B

t+1)
]

+ Etm
θ$
t+1 − Etm

θ-B
t+1

= 1
2(0.52 − 0.62) + Etm

θ$
t+1 − Etm

θ-B
t+1

= −0.055 + (Etm
θ$
t+1 − Etm

θ-B
t+1)

The calibrated value of Et(re
t+1) fits its theoretical decomposition only if the wedge is

strictly positive, Etm
θ$
t+1 − Etm

θ-B
t+1 = 0.536, as illustrated in Figure 5.2. The implied

wedge is qualitatively comparable with the empirical estimation in Figure 5.6 which will

be discussed later.

The implied wedge of 0.536 highlights incompleteness. From the stochastic dom-

inance analysis between the benefit distribution in the decentralized markets (F2 ) and

in the centralized market (G2), we infer that F2 dominates G2, given a strictly positive

wedge. In the economic context, agents perceive the probability of large transaction ben-

efits to be higher in the decentralized market than in the centralized market, which may

answer where the excess return comes from.
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Figure 5.1: The implied second moment of the benefits kernels and the correlation of the
kernels

The vertical axis is Vart(mθ-B
t+1) − Vart(mθ$

t+1) along with Cor(m-B
t+1, m$

t+1) ∈ [−1, 1] in the horizontal
axis. By (3.10), this figure is depicted assuming a maximum Sharpe ratio 0.6 in the Bitcoin market and

0.5 in the dollar market which follows Lustig and Verdelhan (2019) to obtain Vart(∆qt+1) = 0.64,
Vart(m-B

t+1) = 0.36 and Vart(m$
t+1) = 0.25.

Figure 5.2: Theoretical relation between Et(re
t+1) and Etm

θ$
t+1 − Etm

θ-B
t+1

Et(re
t+1) = −0.055 + (Etm

θ$
t+1 − Etm

θ-B
t+1). Green line is the mean log excess return in practice while the

blue line shows the implied wedge used to yield a coherence between theorems and practice.
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5.2 Explaining bitcoin price dynamics with benefits

In our framework, consumption and benefits are both state variables but only consump-

tion can be observed. To infer the benefit-related kernels, one can instead exploit the

data that encode real transaction activities in the Blockchain network to parametrize a

relation between the hidden benefits and the observed data. A model-free estimation

method like GMM can cope with estimation challenges. Recall the Euler equation in

Proposition 1 as the underpinning of the model:

Et

[
M -B

t+1
Bt

Bt+1

]
= Et

[
M θ-B

t+1M
C
t+1

Bt

Bt+1

]
= 1

Using Lemma 1, we obtain

Et

[(θ-B,t+1

θ-B,t

)−γ(Ct+1

Ct

)−γ Bt

Bt+1

]
= 1 (5.1)

Our strategy is to parametrize the pricing kernels by the GMM method, using the ob-

served transaction data reflecting real economic activities in Blockchain network.17 In

(5.1) we have dropped the market-specific index for the consumption kernel. The actual

consumption data for the bitcoin market is not readily available, see Foley et al. (2019)

for details on the elaboration of the consumption patterns. In our model, the link be-

tween the consumption kernels in the dollar and the bitcoin markets is given by (3.5),

however, this link involves the USD/BTC exchange rate. We could therefore use the real

exchange rate data to construct the time series of the bitcoin-consumption kernel using

(3.5), in order to test the internal consistency of the model. Instead, we seek to evaluate

the potential role of benefits in explaining the bitcoin price dynamics. Recall, benefits

were introduced to capture shocks that cannot be hedged by dollar instruments. We now

go one step further and focus on those consumption shocks that are identical in both

markets, namely the dollar-consumption kernel for its measurable feature. The benefits

term in (5.1) would thus absorb all other shocks. Although we may expect this estimate
17Note that we opt for this strategy because there is no options data for cryptocurrencies with the

quality that we can use for a non-parametric characterization (Aıt-Sahalia and Lo; 2000).
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overstates the volatility of the benefits kernel, the insights from this exploitation remain

robust. For Ct we will use the consumption spending data from the St Louis Fed.

Bitcoin inflation

The ratio Bt

Bt+1
in (5.1) reflects the purchasing power of Bitcoins. Colloquially, it is often

measured by the Bitcoin Big Mac index, which shows how many Big Mac hamburgers

one can buy with one bitcoin. This data is readily available from from BitcoinPPI18.

However, the BigMac index is computed from a local BigMac price in a local currency

(US dollars in our case) by converting it in bitcoins; as such, it is intrinsically based on

the BTC exchange rate Qt. If the BigMac price is relatively stable, the index effectively

measures the growth rate of the BTC price in USD, which is what we aim to explain. On

the one hand, the purpose of our exercise here is to estimate the benefit-related pricing

kernel, hence using the BigMac index may be instructive in testing the consistency of

our construct.19 On the other hand, the Internet marketplaces that accept bitcoins as

payment for goods (often luxury) and services (e.g. airport parking), obtainable in the

dollar market, set bitcoin prices as conversions from current dollar prices, using current

BTC-USD rate, exactly as done in the BigMac index.20 If these goods were the only

transactions in BTC, the BigMac index would correctly describe the bitcoin price level

for our purposes.

Instead, evidence suggests, and in our model we assume, there exist anonymous

undisclosed deals, for which we do not observe prices, but they enter the "average con-

sumption bundle" in the bitcoin market. We therefore seek an alternative measure for the
18http://bitcoinppi.com/
19The BigMac index was introduced to measure the purchasing power parity, which compares the price

of an identical good in two different markets, where prices are set by separate equilibrium processes; the
prediction is then that the exchange rate should reflect the difference in prices. This is not applicable in
our case as we have two distinct markets, but the good (BigMac) is priced only in one market, and then
the price is converted from dollars to BTC. The standard purchasing parity is thus met by construction.
Using the BigMac index in the kernel estimation is equivalent to assuming a market friction: in the
absence of a distinct market equilibrium mechanism in the BTC segment, sellers use the PPP to compute
the BTC price of goods; this only applies to goods and services available in both segments.

20Often they offer a discount for purchases in BTC, but still the price is a calculation from the dollar
price. The constant discount is irrelevant for the growth rate calculation.
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bitcoin price level. Formally, the price level is an average price of all transactions in the

market, or a hypothetical price of an average consumption bundle. With this in mind,

we resort to the quantity theory of money (QTM)21: equality MV = PT holds in any

period, here M is the total amount of money, V is the velocity of money circulation, P is

the price level and T is the number of transactions. Applying this to the bitcoin market

solely, we can define price level B as MV/T , where the total stock of bitcoins M and the

number of transactions in each month T are available. Velocity V can be estimated as

the number of coins sent N , divided by the total stock of bitcoins M . It follows that the

bitcoin price level in each month is

Bt = Nt

Tt

, (5.2)

where Nt is the number of coins sent in period t, and Tt is the total number of transactions

in period t. This gives the "average" price level in the bitcoin market, including anonymous

undisclosed transactions. If there was a big ransom deal, for example, the average price

Bt in that period would be high, this would add volatility to the price level. From this

we can compute the BTC inflation Bt+1/Bt.

We use both the QTM and the BigMac methods, as they represent two extreme

estimates of Bt: the latter assumes cross-sectionally and intertemporally homogeneous

consumption bundle, yet no distinct equilibrium mechanism in the bitcoin market, while

the former allows for a separate equilibrium in the bitcoin market, yet lacks the ho-

mogeneity of consumption. For a well diversified consumption bundle, if all sellers and

buyers use the same bitcoin rate to convert prices from dollars to bitcoins, as is currently

done by online shops, the two measures would coincide. If the QTM yields a different
21An interesting deviation from QTM is discussed in Pagnotta (2021), where an increase in the amount

of bitcoins does not necessarily devalue them because any such increase is intrinsically related to the
activity of miners, rewarding their contribution to the security of transactions, which in turn is valued
by bitcoin buyers. The value of bitcoins in this observation corresponds to the BTC/USD exchange
rate in our model. Our interest in this section is in the value of bitcoins in terms of goods and services
circulating in the bitcoin-served market. The two values coincide only if the purchasing power parity
holds. As we have shown, this is not the case in our model. The value of security is captured by θ,
as part of the benefits, and as such does affect the exchange rate. Similarly, it affects the number of
transactions, and thus the potential dis-proportionality between the bitcoin growth rate and its value is
also implicitly captured in the elaborations in this section.
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Figure 5.3: Bitcoin-market inflation Bt+1/Bt: September 2010 to December 2020.
Solid line is the monthly QTM bitcoin inflation with Bt defined in (5.2). Dashed line is the monthly

USD per BTC exchange rate growth Qt+1/Qt. Data source: blockchain.com.

price level, this shows there are transactions that are concluded at a price that differs

from the one dictated by the PPP.

In Figure 5.3 we use data from blockchain.com to compute the BTC price level

as "total BTC value of confirmed transactions" / "number of transactions" - this gives

the average value of a BTC market transaction in bitcoins, which corresponds to the

definition of a price level in (5.2). The data is collapsed to have monthly totals from Sep

2010 onwards. From these we computed an average monthly inflation, i.e. Bt+1/Bt and

the exchange rate growth Qt+1/Qt where Qt is the BTC rate in USD. After the November

2011 spike both exhibit rather bounded volatility around a horizontal trend with the

average BTC inflation from 2012 onwards being around 99.5% (signifying a monthly

deflation of 0.5% on average), and the average exchange rate growth (which would be

what the Big Mac index would give, adjusted by the Big Mac price growth) about 1.13

(i.e. on average a 13% monthly growth, quite different from the QTM estimate).22

22Reports on historical Big Mac prices vary, yet even the most pessimistic of them give at most a
50% price growth over the last 10 years, translating in about 0.3-0.4% average monthly Big Mac price
growth. For this reason, the 13% exchange rate growth figure is a good representation for the BigMac
inflation. Discarding the spikes in 2013 and 2104 makes no substantial changes to the estimates. Using
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Estimating benefit-related kernels

Although benefits are intangible and cannot be straightforwardly measured, they them-

selves are key drivers of real activities and incentivize transactions completed in decentral-

ized markets. As an indicator of activity on the bitcoin network, we choose the number

of coins Nt sent through the blockchain network at time t, collected from BitInfoCharts.

This number reflects the real activity that involves spending bitcoins in all on-chain trans-

actions (such as trades) between two addresses in the blockchain network. This approach

thus captures our view of Bitcoins as a medium of exchange and the benefits associated

with this role.

To parametrize, we assume the following relationship between benefits and bitcoin

transactions:
θ-B,t+1

θ-B,t

= κ0
(Nt+1

Nt

)κ1
. (5.3)

This functional form is not causal, i.e. we do not assume benefits depend on the

number of users or transactions in the network; we only posit a relationship between

benefits and the total number of coins sent. Log-linearity is numerically convenient given

our utility specification, and yet preserves the flexibility needed for the parametrization

exercise. The κ1 coefficient governs a relationship between the hidden and the observed

variables. With the specification in (5.3), the Euler equation turns into

Et

[(
κ0
(Nt+1

Nt

)κ1)−γ(Ct+1

Ct

)−γ Bt

Bt+1

]
= 1. (5.4)

Now the residual term in the GMM is defined as:

et+1 =
(

κ0

(
Nt+1

Nt

)κ1)−γ (
Ct+1

Ct

)−γ Bt

Bt+1
− 1, (5.5)

where κ0, κ1, γ are the parameters to be estimated. The instrumental variables that are

the BigMac index thus appears to overestimate the bitcoin price inflation, as compared to that given by
the QTM.
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Parameter coefficient (standard error) t value

Panel A: estimates with BigMac-based BTC inflation
κ0 1.225 (0.079) 17.383
κ1 0.828 (0.158) 5.243
γ 2.056 (0.812) 2.532

J-test(p-value) 1079(0.0001)

Panel B: estimates with QTM-based BTC inflation
κ0 2.362 (0.182) 12.996
κ1 0.750 (0.085) 8.815
γ 2.089 (0.702) 2.975

J-test(p-value) 1082(0.0001)

Table 1: Bitcoin kernel parameters: GMM estimates for (5.4).

used in the estimation are all adapted to the information set at t and t − 1. Bitcoin price

level is proxied by the BigMac index and by the QTM estimate, as explained above. All

variables are monthly, the sample period is from July 2011 to April 2020, totaling 107

monthly observations.

Estimation results are in Table 1 and are qualitatively the same for both mea-

sures of bitcoin inflation: the number of coins sent is positively related to benefits, as

expected.23 The relationship is non-linear, κ1 < 1, signifying, on the one hand, a dimin-

ishing marginal effect of an acceleration in network activity on benefits associated with

bitcoin payment;, on the other hand, an increasing marginal effect of shocks to benefits

on transactions: bitcoin transactions are sensitive to large changes in benefits. The co-

efficient of the relative risk aversion, γ ≈ 2 is comfortably within the most commonly

reported range of values (typically between 1 and 3, see, e.g., Gandelman et al.; 2015),

adding external validity to our approach.

Using the estimated coefficients, Figures 5.4(a) and 5.4(b) depict the relationships

separately for the two measures of inflation. Again, results are independent of the choice

of the inflation measure. The upper panels of Figures 5.4(a) and (b) depict the association
23In the GMM we apply the quadratic spectral kernel to compute the covariance matrix of the vector

of the sample.
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between the growth rate of benefits and the resulting growth rate of sent coins by plotting

the computed benefits growth against actual transactions data. Similarly, the middle and

the bottom panels display, respectively, the association between the growth rate of sent

coins and the implied benefit-related kernels, mθ-B
t , and the consolidated bitcoin kernel,

m-B
t . Both kernels inversely co-move with real activities, measured by numbers of sent

coins, in the on-chain transactions. Economically speaking, in the bad times, with a low

growth rate of sent coins, one observes increases in the pricing kernel.

Dynamics of kernels, benefits and prices

With the above parametrization, the dynamics of the benefits-related kernel are displayed

in Figure 5.5 over time, along with the time variation of growth rate of sent coins and

the Big Mac index of Bitcoin. The dynamics of the QTM-inflation and the exchange

rate are already depicted in Figure 5.3. Given the observed dynamics of consumption

and the benefits indicator, using (5.4) we are able to characterize the development of the

kernels over time. As kernel estimation is effectively independent of the choice of the

inflation measure, we only present one figure. In line with Figure 5.4, an inverse relation

between sent coins and benefit kernels is evident. In an early-adoption phase, roughly

from 2012 to 2013, we observe several spikes in mθ-B
t , signaling a bad time in Bitcoin

markets because the Darknet market that brought the popularity of cryptocurrency in

the drug, weapon, cyber-crime and other illegal transactions had been shut down by the

U.S. law enforcement. One of cases is the shutdown of the Silk Road in 2013, an online

black market and the first modern darknet market, best known as a platform for selling

illegal drugs.

In 2014, there was a sequence of cyber attacks on cryptocurrency exchanges. The

most impressive one was the collapse of MtGox, the former biggest cryptocurrency ex-

change, collapsed and shut down in February 2014. As a result, the transaction benefits

shrunk and the kernels increased. Parts of the benefits can be attributed to the illicit

activities that require anonymity, resulting in the exuberance of on-chain transactions
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(a) BigMac-based BTC inflation

(b) QTM-based BTC inflation

Figure 5.4: Benefit-related kernels versus the growth rate of coins used in real transaction

The top panel displays the growth rate of benefits implied by the growth rate of the numbers of coins
being sent in the Bitcoin network; the middle panel depicts the association between the benefits kernel
in the bitcoin market with the growth rate of the sent coins; the bottom one is to associate this growth
rate with m-B

t+1. 35



Figure 5.5: Evolution of the implied benefits-related kernel.
The top panel displays the dynamics of the sent coins; the middle panel is the dynamics of the implied
benefits kernel in the bitcoin market using the sent coins as a measure of benefits; the bottom one is

the dynamics of the BigMac index.

which is evident by the numbers of sent coins. We see a similar pattern between sent

coins time series and the time series of the estimated illegal Bitcoin users in Figure 4

of Foley et al. (2019). This similarity supports the use of the number of sent coins as

a measure of real activities. The parametrization of the kernel in the dollar market is

undertaken in the same fashion but is much simpler since the inflation rate in the dol-

lar market is directly measurable. We use the consumer price index from St Louis Fed.

Empirically, concerning that the benefits kernel in the centralized market, due to its long-

established transaction mechanism, may often fall into the steady status and behave less

stochastically, we impose a steady benefits kernel in the centralized market for numerical

tractability. Hence, the difference between the two benefits kernels is mainly driven by

the decentralized one.24

Characterizing the excess return is impeded by the lack of the risk-free rate in

the decentralized market. However, with Corollary 1, one can alternatively tackle it by
24The cost we pay for this presumption is a likelihood of overestimating wedge.
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characterizing the conditional moments of pricing kernels in the two markets, Vart(m$
t+1),

Vart(m-B
t+1), Etm

θ-B
t+1 and Etm

θ$
t+1. For this purpose, we fit the characterized kernels series to

the time series model, an ARIMA specification for the first moment and the generalized

autoregressive conditional heteroskedasticity (GARCH) for the second moment. The

goodness-of-fit is carried out by the BIC criteria. In the presence of fat tails in the

distribution of innovations of mθ-B as well as m-B, t-distribution, compared to Gaussian, is

more capable of capturing tail risk.25 Table 2 summarizes the estimated parameters across

the three kernels, again separately for the two measures of inflation. With the BigMac-

based bitcoin inflation measure (Table 2, Panel A), in the mean equation specification,

both mθ-B and m-B exhibit a positive AR(1) and negative AR(2) process, but a negative

MA(1) and positive MA(2) process. For the conditional volatility specification, we observe

a remarkable persistence of volatility with β = 0.991 in both mθ-B and m-B. With the

QTM-based inflation measure (Table 2, Panel B), we observe more consistency in the

specification for dollar, bitcoin and benefit kernels - all are MA(1). This shows it is

mainly shocks of the previous period that affect the kernel.

The past innovations, however, have no influence on the variance generating func-

tions, resulting in a smooth declining volatility of m-B in Figure 5.6, where again we show

two cases, for two inflation measures. A diminishing conditional volatility in both cases

is consistent with a lower variation of the characterized kernels in the later-adoption than

in the early-adoption phase shown in Figure 5.5. It also indicates a shrink of the variance

risk of pricing kernels in the decentralized market. A low variation of cryptocurrency ker-

nels in the recent years reflects the low variation in the dynamics of state variables. The

benefits inferred by the number of sent coins, become rather steady, suggesting substan-

tial economic activities using cryptocurrencies and considerable benefits. According to

the Internet organized crime threat assessment 2020, with the effort from the law enforce-

ment, regulators, and traditional financial institutions, as well as with the development

of trade in standard goods, criminal activities shrunk to 1.1% of total cryptocurrency

transactions, whereas using digital currencies for investment, trading and payment has
25m$ is free of this concern and fits Gaussian well.
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Parameter mθ-B
t m-B

t m$
t

Panel A: estimates with BigMac-based BTC inflation
µ 0.719 (0.056) 0.710 (0.059) 0.992 (0.006)

ar(1) 1.119 (0.084) 1.121 (0.092) -0.234 (0.268)
ar(2) -0.905 (0.076) -0.903 (0.080)

ma(1) -1.242 (0.044) -1.242 (0.049) 0.947 (0.010)
ma(2) 0.954 (0.046) 0.952 (0.048)

α 0.000 (0.030) 0.000 (0.143) 0.623 (0.205)
β 0.991 (0.005) 0.991 (0.005) 0.375 (0.277)
ν 3.044 (0.568) 2.990 (0.557)

logLikelihood 110.55 110.81 291.526

Panel B: estimates with QTM-based BTC inflation
µ 0.205 (0.012) 0.203 (0.012) 0.992 (0.006)

ar(1) 0.217 (0.209) 0.212 (0.221) -0.234 (0.268)
ma(1) -0.438 (0.224) -0.425 (0.221) 0.947 (0.010)

α 0.000 (0.030) 0.000 (0.143) 0.623 (0.205)
β 0.983 (0.069) 0.987 (0.028) 0.375 (0.277)
ν 3.608 (1.312) 3.593 (0.891)

logLikelihood 40.722 40.378 91.526

Table 2: Time series specification for kernels
ν is the shape parameter in t distribution. µ, ar(1), ar(2), ma(1), ma(2) are the ARIMA parameters,

while α and β are the parameters of variance equation specified by GARCH model. The standard
errors are in parentheses.
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become mainstream adoption.26 The fact that 98.9% of transactions appear legitimate

further encourages mainstream adoption as the medium of exchange. By contrast, in

2020 a spike of volatility of m$, mainly pertaining to the consumption-related kernel,

is caused by a consumption shock due to Covid-19 pandemic. However, the impact of

such shock on the benefits kernel in the decentralized markets is relatively modest, which

further supports Assumption 2.

Characterizing the excess return on cryptocurrency market via (3.12) also requires

information on the conditional mean of kernels and their difference. One observes that the

deviation of the benefit-driven kernels, signaling a distributional dominance of benefits in

the decentralized over centralized markets, moved erratically before 2016 but turns more

stable in the recent years. In the case of the BigMac inflation measure, we obtain a mean

value of the benefit difference around 0.473, while for QTM-inflation this value is around

0.79. Our calibrated implied wedge, 0.536 in Fig. 5.2 is of comparable size and falls

within the range given by the two estimations. In this respect, the empirical estimation

is consistent with the model calibration, and the reality is somewhere between the two

extreme cases given by the two approaches to estimate the bitcoin inflation.

Owing to a diminishing variance risk of m-B and the persistent positive wedge, we

note that starting from 2016 even these conservative estimates of excess returns (based on

the BigMac inflation) are overwhelmingly positive. Also worth noting is that the sharply

rising variance risk of m$ in 2020, caused by the consumption shock in the centralized

market, pumps up the excess returns. As a result, the cryptocurrency holders may count

on a strictly positive excess return, even by conservative estimates.
26The assessment can be downloaded from https://www.europol.europa.eu/

activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2020

39

 https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2020
 https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2020


(a) Estimates with BigMac-based BTC inflation

(b) Estimates with QTM-based BTC inflation

Figure 5.6: Kernel volatility, kernel difference, and the excess return on bitcoins.
The top two panels display the conditional volatility of m-B

t+1 and m$
t+1, respectively, followed by the

difference of the conditional means of the kernels in the two segmented markets; the bottom one is the
dynamics of the implied excess return.
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6 Conclusion

Unlike conventional financial assets, cryptocurrencies do not represent claims on physical

assets or future profits, thus the underlying fundamental is unclear. In this respect they

are similar to monies issued by central banks to serve transactions. However, unlike con-

ventional money, cryptocurrencies exhibit high return and volatility. We have developed

a model in which cryptocurrencies compete with money as a means of payment, yet this

competition is imperfect in the sense that the two means of payment are not identical:

consumers’ utility is affected by the type of currency used in transactions. This study

explains existence of cryptocurrencies by expectations of benefits they may bring about.

An example of benefits is anonymity of transactions. Furthermore, when benefits of using

cryptocurrencies are driven by a stochastic process defined on events that cannot be ob-

served by other market participants, the system of markets is essentially incomplete. The

non-observability of events may also be linked to anonymity: in an anonymous transac-

tion the parties by definition wish to keep the transaction unseen and undisclosed, thus

it is impossible for other market participants (including hedgers and insurers) to observe

the realized outcome and to insure against it. With incomplete markets, cryptocurrency

pricing is not anymore fully explainable by the factors inherent to the centralized mar-

ket, such as consumption shocks. The pricing of unobserved benefits is the essential

fundamental in the cryptocurrency pricing equation.

Although benefits are not observed, transactions are - at least in the form of the

number of coins sent over the system. We distill unobserved benefits from the fundamental

pricing equation and show their pricing kernel is well characterized by the dynamics of

the number of sent coins. This suggests a useful proxy for the unobserved benefits in the

empirical pricing of cryptocurrencies. Our estimates show the benefit-related kernel is

rather independent of the consumption kernel: while the latter was substantially affected

by the recent Covid-19 shock, the former did not strongly respond to it. Moreover,

the volatility of the benefits-related kernel has been diminishing over time between 2012

and 2020, which may be linked to the reduction of illegal activities in the market. The
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cryptocurrency holders are rewarded by the excess returns attributable to the diminishing

kernel variance risk and to the substantial probability of high benefits in the decentralized

marketplace.

As a final note, we have used to rather extreme proxies for bitcoin inflation. The

good news is that for a large part of the analysis the choice between the two does not

really make a difference. However the kernel dynamics crucially depends on the dynamics

of inflation: with BigMac-based inflation we obtain both the autoregressive and the

moving average characterization, as the kernel is intrinsically related to the exchange

rate embedded in the BigMac index. It is not the case for QTM-based estimates, where

the autoregressive behavior is not present. The other difference appears in estimated

excess returns: QTM-inflation leads to persistently positive excess returns, which is not

the case with BigMac-inflation. Which of the two measures should we rely on? On

the balance of evidence, we argue in favor of the quantity theory one: its construction

is independent of the exchange rate, it rules out the autoregressive feature and ensures

consistency in the dynamics across all kernels. Persistently positive (and growing) bitcoin

excess return obtains for the other inflation measure, too, from 2018 onwards, and as such

does not appear to be driven by the choice of the inflation measure. Further research

is required and more information on cryptocurrency transactions are needed to better

identify price dynamics in this market segment, in order to ultimately better understand

the fundamentals of this asset class.
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7 Appendix

7.1 Auxiliary results

The following proposition is a corollary to Proposition 3.8 allowing us to introduce risk-

free rates in the model.

Proposition A (Risk-free rate). For any t ≥ 0 there exist real numbers R$
t+1 > 0 and

R-B
t+1 > 0 such that

Et

[
M$

t+1
Pt

Pt+1

]
= R$

t+1 · Et

[
M$

t+1

]
(7.1)

and

Et

[
M -B

t+1
Bt

Bt+1

]
= R-B

t+1 · Et

[
M -B

t+1

]
(7.2)

An obvious interpretation of R$
t+1 is that of a risk-free interest rate. This inter-

pretation arises by applying (2.2) to (7.1 - 7.2):

Et

[
M$

t+1

]
= 1

R$
t+1

and Et

[
M -B

t+1

]
= 1

R-B
t+1

, (7.3)

where the expected value of the pricing kernel is, as usual, the risk-free interest rate

in the respective market (note, by our definition of SDF, we use the reciprocal of the

interest rate). We assumed both currencies can be used for savings, however savings in

either currency does not have to be free of risk. Numbers R$
t+1 and R-B

t+1 we introduce

now effectively describe interest rate on the risk-free savings. We do not assume risk-free

instruments are available and traded, however it may be useful to interpret R$
t+1 and R-B

t+1

as synthetic risk-free rates. Note that if M$
t+1 and Pt

Pt+1
were statistically independent,

R$
t+1 would reflect the expected [gross] inflation rate Et

[
Pt

Pt+1

]
. The same interpretation

holds for the bitcoin market and bitcoin-inflation. The real-life counterparts of R$
t+1 and

R-B
t+1 are discussed in Section 5.

The next proposition is needed for further proofs.
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Proposition B. Given (3.4) and under Assumption 2 and 3, we arrive at the following

propositions:

Covt(m-B
t+1 − mθ-B

t+1, m
θ$
t+1) = Etm

θ-B
t+1 − Etm

θ$
t+1 − 1

2
[
Vart(mθ-B

t+1) + Vart(mθ$
t+1)

]
+ Covt(m-B

t+1, mθ-B
t+1)

(7.4)

Covt(m$
t+1 + mθ-B

t+1, m
θ$
t+1) = Etm

θ-B
t+1 − Etm

θ$
t+1 + 1

2
[
Vart(mθ-B

t+1) + Vart(mθ$
t+1)

]
+ Covt(m$

t+1, mθ-B
t+1)

(7.5)

7.2 Proofs

Propositions 2, 3, 6 and 7 are explained in the text of the paper. Remaining proofs are

below.

Proof of Proposition 1. Due to imperfect substitution, utility from consumption differs

both intertemporally and cross-sectionally (across markets), for which reason one has to

distinguish between four consumption components: in dollars and bitcoins, both today

and tomorrow, captured by vector
(
c$

t , c$
t+1, c-B

t , c-B
t+1

)
, bound by budget constraints

c$
t · Pt + c-B

t · (Bt · bt) = wt − s$
t , (7.6)

and

c$
t+1 · Pt+1 + c-B

t+1 · (Bt+1 · bt+1) = wt+1 + s$
t , (7.7)

where wt and wt+1 are dollar endowments in each time period respectively (may be seen

as income in dollars), s$
t is the amount of savings in dollars at time t, and the rate of

return on savings is assumed zero as we consider cash holdings. As both currencies store

value intertemporally, consumers can keep part s$
t of savings in dollar cash and part s-B

t

in bitcoins. For simplicity, we only consider the case of all savings in either currency;

indifference between these two cases implies a mixed strategy offers the same payoff.
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The portfolio choice problem is thus separated from the consumption choice.27. While

consumers exhibit preferences towards the payment technology, which is reflected in the

utility function and in the adjusted PPP relationship, they are indifferent between the

storage technologies. Formally, the latter is reflected in savings entering the decision

problem only in the budget constraint, linearly, and hence consumers would seek to

maximise return on savings and choose the storage technology that offers the higher

return.

For consumption, the first-order conditions require marginal utilities of c$
t , c$

t+1, c-B
t , c-B

t+1

equal prices Pt, Bt · bt, Pt+1 and Bt+1 · bt+1 respectively, implying price ratios equal respec-

tive marginal rates of substitution. These intertemporal marginal rates of substitution

(IMRS) determine the pricing kernels in Proposition 1, and therefore holds

Et

[
m$

t+1
Pt

Pt+1

]
= 1 = Et

[
m-B

t+1
Bt · bt

Bt+1 · bt+1

]
(7.8)

Now let consumers transfer value from t to t+1 using bitcoins, which turns budget

constraints into

c$
t · Pt

bt

+ c-B
t · Bt = wt

bt

− s-B
t , (7.9)

and

c$
t+1 · Pt+1

bt+1
+ c-B

t+1 · Bt+1 = wt+1

bt+1
+ s-B

t , (7.10)

The same IRMS m$
t+1 and m-B

t+1 now equal new price ratios, yielding

Et

[
m$

t+1
Pt/bt

Pt+1/bt+1

]
= 1 = Et

[
m-B

t+1
Bt

Bt+1

]
. (7.11)

27Fisher’s separation theorem separates investment decisions of the firm from investors’ preferences.
The former corresponds to the optimal portfolio choice in our case, and the latter - to consumption
decisions.
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Proof of of Proposition 4. We utilize the proof for Proposition B, recall (3.4) and ∆qt+1 =

m-B
t+1 − m$

t+1 − mθ-B
t+1 + m

θ$
t+1.

Et∆qt+1 = Etm
-B
t+1 − Etm

θ-B
t+1 − Etm

$
t+1 + Etm

θ$
t+1

= r$
t − r-B

t + Etm
θ-B
t+1 − Etm

θ$
t+1 + 1

2
[
Vart(m$

t+1) − Vart(m-B
t+1)

]
+ Covt(m$

t+1, mθ-B
t+1)

+ Covt(m-B
t+1, mθ-B

t+1) − Covt(m-B
t+1 − mθ-B

t+1, m
θ$
t+1) − Covt(m$

t+1 + mθ-B
t+1, m

θ$
t+1)

= r$
t − r-B

t + 1
2
[
Vart(m$

t+1) − Vart(m-B
t+1)

]
+ Etm

θ$
t+1 − Etm

θ-B
t+1

Proof of Proposition 5. It makes use of Proposition B , recalls (3.4) and under Assump-

tion 2 and ∆qt+1 = m-B
t+1 − m$

t+1 − mθ-B
t+1 + m

θ$
t+1.

Vart(∆qt+1) = Vart(m-B
t+1) + Vart(m$

t+1) − Vart(mθ-B
t+1) − Vart(mθ$

t+1)+

2
[
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t+1) + Covt(mθ-B
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Proof of Proposition B. Proof of Proposition B makes use of (3.7):
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Given −r-B
t = Etm

-B
t+1 + 1

2Vart(m-B
t+1), the equality ensures

Covt(m-B
t+1−mθ-B

t+1, m
θ$
t+1) = Etm

θ-B
t+1−Etm

θ$
t+1−1

2

[
Vart(mθ-B

t+1)+Vart(mθ$
t+1)

]
+Covt(m-B

t+1, mθ-B
t+1).

Likewise, we can prove
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