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Abstract

Every year during school and college admissions, students and their parents devote con-

siderable time and effort to acquiring costly information about their own preferences. In a

market where students are ranked by universities based on exam scores, we explore ways to

reduce wasteful information acquisition–that is, to help students avoid acquiring information

about their out-of-reach schools or universities–using a market design approach. We find that,

both theoretically and experimentally, a sequential serial dictatorship mechanism leads to less

wasteful information acquisition and higher student welfare than a direct serial dictatorship

mechanism. This is because the sequential mechanism informs students about which univer-

sities are willing to admit them, thereby directing their search. Additionally, our experiments

show that the sequential mechanism has behavioral advantages because subjects deviate from

the optimal search strategy less frequently under the sequential than under the direct mech-

anism. We also investigate the effects of providing historical cutoff scores under the direct

mechanism. We find that the cutoff provision can increase student welfare, especially when the

information costs are high, although the effect is weaker than that of a sequential mechanism.
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periment
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1 Introduction

Every year, many students and parents devote considerable time and effort to screening universi-

ties and study programs. These activities include searching university websites and brochures as

well as talking to current students, alumni, and counsellors. University rankings and independent

guidebooks are consulted to collect information. Finally, campus visits are scheduled, often involv-

ing costly and time-consuming trips. Parents and students gather information regarding academic

quality and the programs offered by universities, in addition to costs and scholarships, the facilities

and location, housing opportunities, etc. This information helps them form preferences about these

universities and programs. A similar situation arises in school choice when parents and children

have to decide which schools to put on their wish list of preferences.

If parents and prospective students search too little or in the wrong places, this can lead to

an educational mismatch. It is often difficult to consider the right universities and to rank them

properly. While search behavior has been studied in empirical work that takes the organization

of the market as given, the question arises as to how admission procedures can be designed to

facilitate the search process for students and direct them toward appropriate and realistic options.

Despite its importance, the need to collect information in order to form preferences in matching

markets has not received much attention so far. The study of centralized and decentralized markets

has mainly focused on the stability and efficiency of outcomes, and the incentive properties of the

mechanisms. Regarding preferences, it is typically assumed that parents and students can rank

universities at no cost. Such models are at odds with the observed activities of parents and

students and the wealth of information on websites and in books and brochures. The assumption

of costless preference formation has led to a strong emphasis on mechanisms that elicit the complete

rank-order list from applicants. However, such mechanisms may turn out to be suboptimal when

students have to first collect costly information about universities to be able to rank them.1

Our paper aims to study which matching mechanisms lead to higher student welfare with costly

information acquisition to form preferences. As a first step, we use a simple model to derive optimal

search strategies and demonstrate welfare differences between mechanisms given optimal search.

As a second step, we empirically evaluate whether the mechanisms that perform better according

to the theory are also superior in a laboratory experiment. We conduct this second step because

in our setting as well as in real life, search strategy can be complicated and its complexity may

vary in different mechanisms. The experimental method allows us to investigate, from a behavioral

perspective, whether people can conduct optimal search with different mechanisms, and thus which

mechanism results in the highest welfare empirically.

1It could be argued that the cost of information acquisition is low compared to the benefit of choosing a suitable
study program. However, when the number of programs is high, gaining full knowledge of all details of all programs
is impossible or very costly in terms of time and effort. In this case, students have to decide about which programs
to acquire information, which is captured by the search costs in the model. We model search as a sequential process,
such that the marginal benefit of an additional step of search may not exceed its cost. In our lab experiments, we
investigate environments with low and high information costs.
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To avoid wasteful information acquisition, it is important for parents and prospective students

to search only among universities that are within their reach–that is, universities that would accept

the students in the course of the procedure. We say that such universities belong to the students’

budget set. When students are too pessimistic about their chances of being selected they may

not acquire information about the universities in their budget set. The budget set depends on

the preferences or priorities of universities, determined, for example, by the rank in admissions

exams or the school GPA, as well as the preferences and choices of other students. We focus on

situations where the priorities of universities are aligned and common knowledge, as is the case in

single-exam or GPA-based university admissions where all universities rank students in the same

way (e.g., in China, South Korea, Turkey, Denmark, Sweden, Tunisia, and Germany). Additional

applications are school-choice procedures that are based on a single average grade or exam score.

We model the formation of preferences as a costly process of information acquisition. Our

search technology is motivated by centralized university admission systems that rely on ordinal

rankings of the universities by the students, and allows students to learn their ordinal preferences

of the universities.2 In our model, although students may have different realized preferences over

universities, their prior belief before search is that any ordinal ranking of the universities is equally

likely.3 The exact search technology is not crucial for comparing the matching mechanisms but it

must be simple enough to allow for closed-form solutions of the model and for the experimental

implementation. In the first step of the search, each student can pay a cost to compare any two

universities. Then, for an additional cost, a student can choose another university to include

in this ranking. Thus, to learn the ordinal ranking of m universities, a student has to pay the

information cost (m − 1) times. Besides a uniform prior over all universities, we also consider a

tiered prior structure. Specifically, all students prefer a university in a better tier to a university

in a worse tier but their within-tier preference follows a uniform distribution. In this case, we

assume that this search technology applies to each tier separately.4 We assume that students can

also apply to universities for which they have not acquired information, since there is typically no

such requirement in university admissions.

In our environment where all universities rank students in the same way, we consider two mech-

2Ordinal preferences are enough to determine the optimal submission strategy, as we consider strategy-proof
mechanisms. This would not be the case, for instance, in the Immediate Acceptance mechanism, where cardinal
utilities might influence the equilibrium strategy.

3While the assumption of a uniform prior over all universities can be restrictive, it approximates the situation
in some real-life markets. For instance, in countries where students apply to subject-specific tracks (as in most
European countries, Russia, Brazil, etc.), the ranking of universities is often subject specific, and there is less
vertical differentiation between universities across subjects. In the case of school choice, there is typically less
information available about the quality of schools compared to the quality of university programs. Therefore,
assuming a uniform prior for school rankings in the consideration set is reasonable.

4A tiered prior structure approximates the situation in many university admission markets. For instance, uni-
versities have an exogenously determined tier structure in China, see Chen and Kesten, 2017, where the ranking of
universities within tiers differs between students. Even when there is no official categorization of universities into
tiers, the tiers could exist due to a general agreement regarding university quality or certain constraints such as
universities in the home region being preferred to those in other regions.
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anisms for implementing the serial dictatorship rule, namely one where students simultaneously

submit their preference lists, called the Direct Serial Dictatorship (DirSD) mechanism, and one in

which students sequentially select universities in the order of their priority, called the Sequential

Serial Dictatorship (SeqSD) mechanism.5

The DirSD mechanism is praised in the matching literature (Abdulkadiroğlu and Sönmez, 1998),

and variations of it are employed in Australia, China, Turkey, Greece, Denmark and Sweden for

university admissions. In DirSD, all students simultaneously submit their rank-order lists to the

clearinghouse. Then the serial dictatorship algorithm is run and the matching is determined.

There is no opportunity to learn about the preferences and choices of other students. Students

can only guess what their budget set and optimal search strategy are based on their expectations

regarding others’ choices. We consider DirSD as the baseline mechanism, and study two approches

to improve the welfare of students relative to this baseline.

The first approach is a sequential mechanism, SeqSD, which is motivated by both theory and

practice. In SeqSD, students take decisions sequentially in the order of their priority. The student

with the highest priority chooses a university first, then the student with the second highest

priority chooses a university among the universities that still have vacant seats, etc. Under this

mechanism, students do not face any uncertainty about their budget set: when it is their turn,

students observe their budget set, and can pick the most-preferred option. Importantly, students

can acquire information about their preferences after they have learned their budget set in SeqSD.

To our knowledge, this exact mechanism is not used for school or college admissions in practice,

but some countries employ similar dynamic mechanisms in which students can observe their set

of offers. For instance, France switched to a sequential university-proposing deferred-acceptance

mechanism in 2018. In this mechanism, students receive offers from the universities over several

weeks. Tunisia uses a three-step SD, in which the cohort is divided into three groups based on

priority orders. Starting from the highest-ranked group, the three groups sequentially submit

preference lists and are then assigned using the SD mechanism. After the assignment of each

group, the remaining vacancies are published before the next group submit their preference lists.

Germany and the Chinese province of Inner Mongolia also use dynamic mechanisms that reveal

partial information about the budget set to the participants. SeqSD is also adopted to allocate

faculty offices in renovated buildings in US professional schools, with lower ranked participants

observing the choices of their peers with higher priority (Baccara et al., 2012). To our knowledge,

we are the first to investigate the effects of a sequential mechanism on student welfare when taking

information acquisition into consideration.

The second approach is to provide historical cutoff scores under DirSD (Cutoff). When dif-

ferent cohorts have similar preferences over universities and similar distributions of exam scores,

historical cutoffs contain useful information about the selectivity of the universities. Thus, by

5When all universities rank students in the same way, the outcome of the Serial Dictatorship rule is the same as
that of the Top Trading Cycles rule and the Gale-Shapley Deferred Acceptance rule.
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observing historical cutoffs, students receive information about their admission chances, that is,

about their budget set. Cutoff is less time-consuming than SeqSD, especially in larger markets,

because students search and choose offers one-by-one under SeqSD, but submit preferences si-

multaneously under Cutoff. However, given that SeqSD provides accurate information about the

students’ budget set, cutoffs can be less effective than SeqSD in reducing wasteful information ac-

quisition if the distributions of preferences and exam scores fluctuate between years. For instance,

Ajayi and Sidibe (2020) show that the correlation between the school cutoffs in 2007 and 2008 in

Ghana was 0.84 for all schools, but is as low as 0.37 for less selective schools. Information about

cutoffs is widely used in practice. However, to our knowledge there is no empirical evidence yet

about the causal effects of historical cutoff provision on student welfare, and we aim to close this

gap.

Based on a model of information acquisition and in line with the intuition described above, we

show that student welfare is always higher under SeqSD than under DirSD. The model also allows

us to derive exact predictions concerning the optimal search behavior and submission strategies

under potentially incomplete preference information. Regarding the provision of historical cutoff

scores, student welfare is predicted to be higher than under DirSD, as historical cutoffs contain

information that can help students determine their budget set. However, welfare in treatment

Cutoff is predicted to be lower than in SeqSD, as the information contained in the cutoffs may not

be accurate due to differences between cohorts, such as the distribution of scores, as implemented

in our experiments.

The theoretical results show that both the sequential mechanism and the cutoffs improve stu-

dent welfare. However, the benefits of the two alternatives may not be fully captured by the

theory. To derive the optimal search strategy in the direct mechanism, a student needs to form

correct beliefs about the probability of each possible composition of her budget set and, based on

these beliefs, to weigh the benefit of an additional search against its cost. This is a rather com-

plicated problem to solve, and therefore inexperienced participants in real markets may deviate

substantially from the optimal search. The sequential mechanism significantly mitigates the search

complexity by precisely informing students about their budget set. Thus, it might have additional

behavioral benefits over the direct mechanism, which the theory does not capture.6 Cutoffs also

provide useful information about the budget set to students, which might simplify search. However,

the welfare gain from cutoffs relies on participants holding equilibrium beliefs about the search

strategies of previous generations. This may also be challenging for students and thus an empirical

test is crucial. Because search costs and student preferences are usually not observable in real-life,

it is difficult to identify the optimality of search strategies from field data. Therefore, a laboratory

experiment might be the best approach to address our research questions.

6Note that SeqSD is behaviorally simpler than DirSD for the students, even when we assume students have
complete knowledge of their own preferences, because it is obviously strategy-proof (Li, 2017). We study whether
the behavioral benefits of SeqSD extend to the search strategies.
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We design experiments to compare DirSD, SeqSD, and Cutoff in a centralized university ad-

missions experiment where we vary the monetary cost of information acquisition and the prior

of students about the quality of universities (a uniform prior or two tiers of universities). First,

as predicted by the theory, we find that student welfare is highest under SeqSD, second-highest

under Cutoff, and lowest under DirSD, with all differences being significant. The improvement of

SeqSD relative to DirSD is driven by higher payoffs from the resulting matching and lower infor-

mation acquisition costs. Cutoff and DirSD lead to similar average payoffs from the matching, but

the information acquisition costs are significantly lower under Cutoff especially when information

costs are high. With respect to optimal search strategies, we observe significant deviations in both

directions (over- and under-search) in both DirSD and SeqSD. However, the deviations from the

optimal search are significantly less frequent in SeqSD. Thus, SeqSD leads to higher welfare not

only due to the provision of the budget set but also due to fewer strategic mistakes in the search

strategies. As for Cutoff, we do not have point predictions, but we observe that participants

avoid information acquisition for universities with cutoff scores higher than their score, especially

when the search cost is high. Moreover, compared to DirSD and Cutoff, subjects under SeqSD

make fewer strategic mistakes in submission decisions given the search. Thus, in addition to the

theoretically predicted benefits of SeqSD, it has additional behavioral benefits because it is less

complex for participants to find the optimal search and submission strategies under SeqSD than

under DirSD.

Related Literature

Our paper contributes to the recent literature on information acquisition in matching markets,

which includes theoretical studies such as Bade (2015), Immorlica et al. (2018), Chen and He

(2019), and Artemov (2019), and experimental studies like Chen and He (2018).

Bade (2015) studies the house allocation problem and shows that when information acquisition

about one’s own preferences is costly, serial dictatorship is the unique ex-ante Pareto optimal

mechanism among all strategy-proof and nonbossy mechanisms. The paper allows for multiple

levels of information acquisition through partitions of the state space but does not explicitly model

the search process.

Immorlica et al. (2018) show that it is beneficial for students to know what their budget set

or set of feasible options is before acquiring costly information about universities. This creates

incentives to wait until the market has resolved before searching for information and accepting

an offer. As a result, information deadlocks arise when there is a cycle of students in which each

student’s information acquisition decisions depend on the demand of others. Immorlica et al. (2018)

utilize the Pandora’s box framework that is due to Weitzman (1979), to model the sequential search

problem. This framework allows for a closed-form solution of the optimal stopping point. However,

the model assumes that students can only be assigned to universities they inspect, and as shown

in Doval (2018), the Pandora’s box problem is not generally tractable without this assumption.7

7Without the assumption of obligatory inspection, Doval (2018) identifies sufficient parametric conditions under
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In real-life college admissions and school choice, this assumption rarely holds because schools

usually do not screen students based on their search decisions. Moreover, the centralized matching

mechanisms studied in this paper cannot ensure this assumption to hold, that is, DirSD and SeqSD

can assign students to a university independent of whether they have acquired information about

it or not. Thus, the Pandora’s box setup is not well suited to our research question. We therefore

assume a specific search technology to derive optimal strategies that can serve as a benchmark for

the experiment.

Chen and He (2018, 2019) compare students’ incentives to acquire information under the im-

mediate acceptance mechanism and the student-proposing deferred acceptance mechanism. In

both mechanisms, students have to submit rank-order lists upfront and do not receive informa-

tion about their budget set. In their theoretical contribution, Chen and He (2019) show that

only the immediate acceptance mechanism incentivizes students to learn their own cardinal and

the other participants’ preferences. In experiments, Chen and He (2018) find that overall, the

willingness-to-pay for information is too high across treatments, lowering aggregate welfare. In

contrast, we compare direct and sequential serial dictatorship mechanisms and study the effects

of cutoff provision with respect to information acquisition and student welfare. We also adopt a

different approach to model the information acquisition process. In Chen and He (2018, 2019),

this process is a binary choice: acquiring zero or full information. We develop a sequential search

model in which agents can choose various stopping points. This captures search processes in many

real-life scenarios, and it also provides us with rich data on search patterns.

Artemov (2019) finds that informational incentives provided by a random serial dictatorship

mechanism fall short of the social optimum in most cases, and he proposes policies to improve

information acquisition. Noda (2020) investigates the optimal disclosure policy regarding the

choice set–that is, the set of objects available, under a random serial dictatorship mechanism. The

paper concludes that the full-disclosure policy is typically Pareto inefficient due to the presence of

a positive externality in information acquisition. Similar to Chen and He (2018, 2019), Artemov

(2019) and Noda (2020) also simplify the search process to a binary choice of acquiring zero or

full information. Harless and Manjunath (2018) consider a setup where information acquisition

is costless but each agent can choose to learn his value for only one object. They show that the

top trading cycles rule outperforms serial dictatorship in terms of fairness, though the allocation

might not be Pareto efficient. Bó and Ko (2020) consider colleges’ incentives to acquire information

about the quality of applicants. They show that when screening costs are low, all schools acquire

more information about applicants, but this does not improve the quality of the admitted pool for

the lower-ranked colleges, as the best students are more likely to be assigned to better colleges.

Recent empirical work on school choice (Narita, 2018) and university admissions (Grenet et al.,

2019) provides indirect evidence of students searching and learning about their preferences during

which Weitzman’s policy remains optimal, and Beyhaghi and Kleinberg (2019) introduce a family of “committing
policies” that are approximately optimal.
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the application process. Narita (2018) studies re-application behavior for high schools in New York

City, and documents that a considerable proportion of students who have received their first choice

decide to re-apply. Such changes in demand create a welfare loss if they cannot be accommodated

by the market. Similarly, Grenet et al. (2019) document that university programs whose offers are

received earlier are more likely to be ranked higher than programs whose offers arrive later. This

can be explained with students’ costly search regarding the programs.

Cutoff scores have been studied by Azevedo and Leshno (2016) in a two-sided matching frame-

work with demand and supply. They show that cutoff scores can be interpreted as prices, such

that at any vector of cutoffs that equates supply and demand, the demand function yields a sta-

ble matching. The cutoffs are also used in studies employing a regression-discontinuity design to

estimate the causal impact of university or school attendance (see, for instance, Abdulkadiroğlu

et al., 2014; Hastings et al., 2013; Zimmerman, 2019; Luflade, 2019). Ajayi et al., 2020 run a field

experiment providing participants in school choice in Ghana with extensive information, including

information on admission chances. The information provision changes application behavior, but it

is hard to conclude which part of the information intervention drives the effect. To our knowledge,

our paper is the first to investigate the effect of providing historical cutoffs on search and market

outcomes.

Our paper relates to the recent literature on dynamic mechanisms with known preferences. Li

(2017) compares SeqSD and DirSD in the lab and finds that a significantly higher proportion of

participants use the optimal submission strategies in SeqSD than in DirSD. Klijn et al. (2019) and

Bó and Hakimov (2020) present similar results for the comparison of sequential and direct versions

of the deferred acceptance mechanism, and Bó and Hakimov (2020) for the top trading cycles

mechanism. Echenique et al. (2016) investigate the outcomes of the dynamic deferred acceptance

mechanism in laboratory experiments in a two-sided setup. Moreover, several papers analyze

dynamic mechanisms used in practice where offers, acceptances, and information can be spread

out over time. Other related experiments on matching markets are surveyed in Hakimov and

Kübler (2020). Bó and Hakimov (2019) and Gong and Liang (2016) analyze university admissions

mechanisms used in Brazil and Inner Mongolia, respectively. Both mechanisms are sequential

and include the provision of intermediate cutoff scores to students. Dur et al. (2017) analyze the

submission mechanism used in the Wake County Public School System where parents can wait and

observe how many others have applied to certain schools in order to gauge their chances of getting

a seat. Luflade (2019) studies the university admissions in Tunisia, where the SD mechanism is

implemented in three sequential stages, and documents that the sequential implementation has a

positive effect on the students’ welfare.

A set of papers (Das and Li, 2014; Kadam, 2015; Lee and Schwarz, 2017) analyzes interviews

through which agents acquire costly information about their preferences in decentralized matching

markets. Similar to the model of Weitzman (1979), these models assume that a school or firm

must interview an applicant before making an offer. The search and matching literature also
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explores the role of costly search in decentralized matching markets. For example, Shimer and

Smith (2000), Atakan (2006), and Eeckhout and Kircher (2010) focus on sequential and directed

search while Chade and Smith (2006) and Shorrer (2019) investigate simultaneous search. From a

different perspective, Rastegari et al. (2013) and Drummond and Boutilier (2014) consider eliciting

information about agents’ preferences using a minimal number of interviews, just enough to ensure

that a stable match is found. They show that this problem is computationally intractable in general,

but provide solutions for specific prior structures or approximate stability.

A large part of the theoretical work on matching markets assumes that applicants know their

priority at schools or universities, based, for example, on grades or entrance exams. This assump-

tion is relaxed when studying the consequences of not publicizing the results of entrance exams

before students have to submit their rank-order lists (Lien et al., 2016, Pan, 2019). In our study,

we provide full information about the priorities of students at universities but vary information

about the preferences and behavior of others.

2 Theoretical analysis

In this section, we present a model to analyze the strategies and welfare of students under the

Direct Serial Dictatorship (DirSD) and Sequential Serial Dictatorship (SeqSD) mechanisms. First,

we modify the standard school choice problem Abdulkadiroğlu and Sönmez (2003) to allow students

to acquire information about their own preferences before and during the matching process.8 Next,

we provide a detailed description of the DirSD and SeqSD mechanisms. We then discuss and

compare these two mechanisms in terms of information acquisition, preference submission, and

student welfare. Lastly, as an extension of our main theorem, we discuss the effect of providing

additional information under DirSD and generate predictions for our Cutoff treatment.

2.1 A university admissions problem

Students want to be assigned a seat at one of the universities. Each student has strict preferences

over all universities and each university has strict priorities over all students. There is a maximum

capacity at each university, but the total number of seats exceeds the total number of students. We

consider an environment in which every university’s priority ordering over students is determined

by exam rankings. Formally, the university admissions problem consists of:

1. A set of students I = {i1, . . . , in}, n ≥ 2.

2. A set of universities C = {c1, . . . , cm}, m ≥ 2.

8The school and college admissions markets investigated in this paper are more similar to the school choice
problem than to the college admissions problem (Gale and Shapley, 1962) in the matching literature because
universities are not strategic and we focus on students when conducting the welfare analysis.
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3. A capacity vector q = (q1, . . . , qm).

4. A vector of students’ ranks r = (r1, . . . , rn) in an exam, where ri denotes the rank of student

i among all students (with 1 being the highest rank). The ranking determines their priority

ordering at every university.

5. A list of strict student preferences ≻I= (≻i1 , . . . ,≻in). The preference relation ≻i of student

i is a linear order over C, where c ≻i c
′ means that student i strictly prefers university c to

university c′. Students prefer any university to remaining unmatched.9

6. For each student i ∈ I, a set of cardinal utilities ui = {u1
i , ..., u

m
i } associated with her ordinal

preferences: student i receives uj
i when assigned to a university ranked jth in her preference

relation ≻i. For any 1 ≤ j < j′ ≤ m, uj
i > uj′

i .
10

Let Ω be the set of all linear orders over C. The preference relation ≻i of student i is randomly and

independently drawn from Ω following a prior probability distribution. The priors of all students

are common knowledge to the entire market. Via costly information acquisition, student i can learn

more about the realization of her own preferences ≻i but not the realization of other students’

preferences ≻i′ , i
′ 6= i. The information acquired by each student is her private information. It is

common knowledge that every student knows her own rank in the exam. We assume all market

participants are risk neutral.

We define the budget set Bi as the set of all universities available to student i. That is, student

i can be assigned to university c ∈ Bi if she so desires, and cannot be assigned to any university

in the complement set C \Bi.11 In Section 2.4, we will discuss how the budget set of a student is

determined under each mechanism.

2.2 Mechanisms

Direct serial dictatorship mechanism (DirSD)

Every student simultaneously submits her rank-order list of universities. DirSD considers students

in the order of their exam ranking.

Step 1: The student who is ranked first in the exam (with the highest score) is assigned a seat at

the first choice on her submitted list.
9The assumptions that the total number of seats exceeds the total number of students, that students prefer any

university to remaining unmatched, and that universities prefer any student to leaving a seat empty are made to
simplify the exposition. They are not necessary for our discussion and can be relaxed easily.

10The cardinal utilities ui =
{
u1
i , ..., u

m
i

}
are fixed and known in advance. Given that these utilities are associated

with student i’s ordinal preference ≻i, the student only needs to acquire information about how she ranks the
universities. For example, student i knows that the university of her first preference gives her a utility of u1

i . She
can discover which university is her first preference by acquiring information about her ranking of the universities
≻i. Similar settings are used in other studies such as Coles and Shorrer (2014).

11We borrowed this terminology from Immorlica et al. (2018).
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In general, Step κ (κ ≥ 2) can be described as follows.

Step κ: The student ranked κth is assigned a seat at her best choice that still has vacant seats.

The procedure terminates when every student has been considered. Students can acquire informa-

tion about their own preferences before submitting their rank-order lists.

Sequential serial dictatorship mechanism (SeqSD)

Under SeqSD, students sequentially select universities in the order of their exam ranking.

Step 1: The student who is ranked first in the exam (with the highest score) selects one university

out of all universities. She is assigned a seat at this university.

In general, Step κ (κ ≥ 2) can be described as follows.

Step κ: The student ranked κth selects one university out of all the universities that still have

vacant seats. She is assigned a seat at this university.

The procedure terminates when every student has been considered. Students can acquire informa-

tion about their own preferences before and after it is their turn to select universities.12

We use “preference submission” or simply “submission” to refer to the students’ interaction with

a mechanism–that is, submitting a rank-order lists under DirSD and picking a university under

SeqSD.

2.3 Information acquisition

We assume that each student i’s realized preference relation ≻i is equally likely to be any linear

order in Ω. In other words, all universities are equally likely to be of any rank in ≻i. These uniform

priors can be interpreted as the initial state in which no one has acquired any information about

any university. In Appendix A.5, we introduce a tiered prior structure that allows for a common

and a private factor in students’ preferences and show that our main results with uniform priors

can be generalized to the case of tiered priors.

Each student i, with information cost ki > 0, can acquire information about her own preferences

using the following search technology:

Step 1: For a cost of ki, the student can choose any two universities and learn which of these two

universities is ranked higher in her own preference relation. Thus, for a cost of ki she can

learn the relative ordering of two universities.

12We adopted a slightly different description of SeqSD in our experiments to facilitate understanding. We framed
it as students sequentially receiving offers from universities that still have vacant seats and being asked to accept
one offer.
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Step 2: For an additional cost of ki, the student can choose a third university and learn how it

compares to the two universities previously investigated. Thus, for a total cost of 2ki she

can learn the relative ordering of three universities.

...

Step (m− 1): Finally, for an additional cost of ki, the student can learn how the m-th university

is compared to the (m− 1) universities investigated previously. Thus, for a total cost of

(m− 1) ki she can obtain full knowledge of her own preferences.

Students can choose to stop at any step in the above process. We use this search technology

to model a student who investigates universities one by one. After investigating each additional

university, she knows how to compare it to all the universities she has previously investigated.

Before the last step, she can only learn the relative ranking of the universities investigated, but

not their exact ranks among all universities. In our setting, the investigation of only one university

does not carry any information because the cardinal utility a student receives from a university

is determined by the rank of that university in her preferences. Therefore, we start the process

by having each student choose two universities to compare. One of these two universities can be

considered as an option the student knows from the start, for instance a local university or an

outside option, and every investment in information informs her of a new university. This search

technology captures important features of search in many real-life scenarios while being relatively

simple and easy to understand for participants in the experiment.

Suppose student i stops searching at step α (α = 1, 2, . . . ,m − 1), and the set of universities

she has chosen to search is given by CS (CS ⊆ C). This implies that for a cost of αki, the student

learns the relative ranking of the (α + 1) universities in CS, denoted as ≻S
i . She can then eliminate

the possibility of all linear orders in Ω that are not consistent with this ranking, and redistribute

the probability uniformly among the remaining rankings.13

With uniform priors, student i has the same expected utility for each university before searching,

which is given by

Vi (0) =
1

m

m∑

j=1

uj
i .

After conducting α steps of search, her updated expected utility for the university that is relatively

ranked γth in CS according to ≻S
i (γ = 1, . . . , α + 1) is given by

V γ
i (α) =

m∑

j=1

fγ (j, α) uj
i ,

13Formally, we say a linear order ω ∈ Ω is consistent with ≻S
i if c ≻S

i c′ implies cωc′, ∀c, c′ ∈ CS .
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in which

fγ (j, α) =

(

j − 1

γ − 1

)(

m− α− 1

j − γ

)

(j − γ)!×

(

m− j

α + 1− γ

)

(m− j − α− 1 + γ)!

(

m

α + 1

)

(m− α− 1)!

=

(

j − 1

γ − 1

)(

m− j

α− γ + 1

)

(

m

α + 1

)

calculates the probability that the γth-ranked university in ≻S
i is ranked jth in ≻i. Intuitively, be-

cause this university is ranked γth among the (α + 1) searched universities, if it is ranked jth in the

student’s complete preference ordering ≻i, we can identify (γ − 1) out of the j universities ranked

above it and (α + 1− γ) out of the (m− j) universities ranked below it in ≻i. The first term of the

numerator

(

j − 1

γ − 1

)(

m− α− 1

j − γ

)

(j − γ)! is the number of possible orderings of the univer-

sities ranked above it and the second term

(

m− j

α + 1− γ

)

(m− j − α− 1 + γ)! is the number of

possible orderings of the universities ranked below it. The denominator

(

m

α + 1

)

(m− α− 1)! is

the permutation of all universities after knowing the relative ranking of (α + 1) of them.14 When

α = m − 1, the student has full knowledge of her own preferences, and thus V γ
i (m− 1) = uγ

i .

When α < m−1, the student’s expected utility for those unsearched universities in C \CS remains

the same as the prior Vi (0). We illustrate the belief updating process using the following example.

Example 1. Consider a market with three universities C = {c1, c2, c3}. The first row of Table 1

lists all six possible preference orders over C (where we omit the subscript i to refer to student i).

Without acquiring any information (α = 0), a student holds the uniform prior belief. That is, she

assigns the same probability 1/6 to each of the six linear orders, which means that the expected

utility is the same for all three universities:

E [c1|α = 0] = E [c2|α = 0] = E [c3|α = 0] = V (0) =
1

3

(
u1 + u2 + u3

)
.

14Note that fγ (j, α) = 0 if j < γ or j > m − α + γ − 1 because there have to be at least (γ − 1) universities
ranked above the γth-ranked university in ≻S

i and at least (α+ 1− γ) universities ranked below it.
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1st preference
(
u1
)

c1 c1 c2 c2 c3 c3

2nd preference
(
u2
)

c2 c3 c1 c3 c1 c2

3rd preference
(
u3
)

c3 c2 c3 c1 c2 c1

Pr [≻ |α = 0] 1/6 1/6 1/6 1/6 1/6 1/6

Pr [≻ |α = 1, c3 ≻ c2] 0 1/3 0 0 1/3 1/3

Pr [≻ |α = 2, c1 ≻ c3 ≻ c2] 0 1 0 0 0 0

Table 1: Belief Updating Example

Suppose the student chooses to conduct the first step of searching (α = 1). Suppose she picks

universities c2 and c3 and learns that c3 ≻ c2. Now she is able to eliminate all orders over C that

are inconsistent with c3 ≻ c2 and redistributes the probability uniformly among the remaining

orders (see the third row of Table 1). Her updated expectation is

E [c1|α = 1, c3 ≻ c2] =V (0) =
1

3

(
u1 + u2 + u3

)
,

E [c2|α = 1, c3 ≻ c2] =V 2 (1) =
3∑

j=1

f 2 (j, 1) uj =
1

3
u2 +

2

3
u3,

E [c3|α = 1, c3 ≻ c2] =V 1 (1) =
3∑

j=1

f 1 (j, 2) uj =
2

3
u1 +

1

3
u2,

with E [c3|α = 1, c3 ≻ c2] > E [c1|α = 1, c3 ≻ c2] > E [c2|α = 1, c3 ≻ c2]. Suppose the student con-

tinues searching (α = 2) and learns that c1 ≻ c3 ≻ c2. She can then further eliminate the

possibility of any order inconsistent with c1 ≻ c3 ≻ c2 (see the fourth row of Table 1) and obtain

full knowledge of her preferences:

E [c1|α = 2, c1 ≻ c3 ≻ c2] =V 1 (2) = u1,

E [c2|α = 2, c1 ≻ c3 ≻ c2] =V 3 (2) = u3,

E [c3|α = 2, c1 ≻ c3 ≻ c2] =V 2 (2) = u2.

The example demonstrates an important feature of the updating process. In particular, after

discovering c3 ≻ c2 at α = 1, the student realizes that c2 cannot be her favorite university while c3

cannot be her least favorite. As she still holds the prior belief about the rank of c1, she now prefers

c3 to c1 and c1 to c2 in expectation. The proposition below states that this is a general property: a

student always prefers the higher-ranked searched universities to the unsearched universities, and

prefers the unsearched universities to the lower-ranked searched universities. This feature of the
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students’ posterior beliefs allows us to characterize the students’ strategies regarding preference

submission and their expected utility functions under the two mechanisms.

Proposition 1. For any i ∈ I, there exists a threshold rank γ̂i (α) at which V γ
i (α) > Vi (0) for all

γ ≤ γ̂i (α) and V γ
i (α) ≤ Vi (0) otherwise. Thus, there is a step-specific threshold rank that splits

all searched universities into two groups. The searched universities that are ranked higher than or

equally to the threshold are preferred to all unsearched universities. All unsearched universities are

weakly preferred to the searched universities that are ranked lower than the threshold.

The complete proof of Proposition 1 can be found in Appendix A.1. In Example 1, the threshold

rank after the first search step is γ̂i (1) = 1, meaning that the university ranked first among those

searched has a higher expected utility than the unsearched university, while the university with

a rank below one has a lower expected utility than the unsearched university. Thus, the higher-

ranked searched university c3 has a higher expected utility than the unsearched university c1, and

the lower-ranked searched university c2 has a lower expected utility than the unsearched university

c1.

In Appendices A.2 and A.3, we present the incentives and strategies of information acquisition

given the search technology. A student’s incentive to search depends on her expectation or knowl-

edge about the composition of her budget set, which is affected by her priority. Under SeqSD,

the marginal benefit of an additional search step among the available universities decreases, and

we characterize the optimal stopping point of the search process. In contrast, under DirSD the

marginal benefit of an additional search step may be non-monotonic. The optimal information

acquisition strategy is not necessarily unique, but it is unique for the parameters that we chose in

the experiment.

2.4 Preference submission and budget set

In the following proposition, we characterize the students’ preference submission strategy under

DirSD and SeqSD given partial or full knowledge of their own preferences.

Proposition 2. (1) Truth-telling is an optimal submission strategy under DirSD. That is, under

DirSD it is optimal for a student to rank universities according to the expected utilities (from high

to low) in her rank-order list.

(2) Truth-telling is an optimal submission strategy under SeqSD. That is, when it is her turn

to choose, it is optimal for a student to select the university with the highest expected utility.

The proof of Proposition 2 is straightforward. In each step of DirSD, the student whose turn

it is is assigned to the highest-ranked university in her submitted list from those that still have

vacant seats. Therefore, a student is never better off by ranking a university with a lower expected

utility above one with a higher expected utility. According to Proposition 2, she would rank the
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unsearched universities below the γ̂i (α)th-ranked searched university, but above the (γ̂i (α) + 1)th-

ranked searched university. In SeqSD, a student whose turn it is chooses from all universities that

are available to her, so it is optimal to simply choose the university with the highest expected

utility. Proposition 2 relies on the strategy-proofness of DirSD and SeqSD in environments with

complete information.

A student is indifferent between any unsearched universities. We make the following assumption

about her strategy.

Assumption 1. (1) In each step of the search process, a student is equally likely to choose any

one of the unsearched universities to investigate.

(2) If a student did not search all universities under DirSD, she is equally likely to choose any

relative order over the unsearched universities in her submitted rank-order list. If a student did

not search any universities that she is asked to select under SeqSD, she is equally likely to select

any one of these universities.

This assumption is crucial for the tractability of the problem. Together with the uniform prior

structure and Proposition 2, it implies that a student i, who by assumption cannot observe what

another student i′ 6= i has learned about her preferences ≻i′ , believes that i′ is equally likely to

submit any ranking in Ω under DirSD and is equally likely to select any university in C under

SeqSD.15 In other words, for student i the submission strategy of i′ always follows a uniform

distribution, regardless of the search strategy of student i′. This simplifies the analysis because

a student does not need to consider how much information other students acquire in equilibrium

when forming beliefs about the submission strategies of others.

Recall that student i’s budget set Bi is defined as the set of all universities available to her.

Under DirSD, if c ∈ Bi, i can be assigned to c unless she is assigned to another university that

is ranked higher than c in her submitted rank-order list; if c /∈ Bi, i cannot be assigned to c no

matter how she ranks c in her submitted list. Under SeqSD, when i selects universities, c would

be available to her if c ∈ Bi, and unavailable if c /∈ Bi.

Student i’s budget set is determined by her exam rank and the submission strategies of those

who are ranked above her. Since all rank-order lists are submitted simultaneously under DirSD, a

student decides what to search based on the ex ante probability distribution of her budget set. For

instance, consider a market with three universities C = {c1, c2, c3}, each of which has two seats.

The budget set of the student ranked third in the exam depends on the submitted rank-order

lists of the two students ranked before her. If, for example, they both place university c3 on the

top of their lists, which occurs with probability 1
3
× 1

3
= 1

9
, the budget set of the student ranked

third contains only c1 and c2. Under DirSD, the derivation of the ex ante probability distribution

of the budget set is especially challenging for the lower-ranked students, because they have to

15Assumption 1 can be considered an anonymity assumption in that universities are not labeled and are thus
selected at random when they have the same expected value.
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consider the submission strategies of many students. In contrast, under SeqSD a student selects

the preferred university after the higher-ranked students have made their choices. She therefore

observes the realization of her budget set before she makes her search and preference submission

decisions.16

2.5 Welfare comparison

Now we introduce our main theorem, which compares student welfare between the two mechanisms

SeqSD and DirSD. We focus on the welfare comparison at the ex-ante stage–that is, before students

acquire any information about their preferences–and assume that all students acquire information

optimally and adopt the truth-telling submission strategy under both mechanisms.

Theorem 1. Every student is weakly better off under SeqSD than under DirSD ex ante if all

students acquire information optimally and adopt the truth-telling submission strategy.

While the complete proof of Theorem 1 can be found in Appendix A.4, the key intuition comes

from the difference in the amount of information students have when they make their decisions.

Under DirSD, all students simultaneously submit their rank-order lists. Thus, they do not have

any opportunity to identify their budget sets by learning about the choices of others. In contrast,

the dynamic nature of SeqSD can provide additional information about which universities other

students have chosen and which are still available in the market, thus helping students to more

accurately identify their budget sets. By focusing on search within the budget set, a student can

reduce wasteful information acquisition and thus be weakly better off under SeqSD. The welfare

comparison of Theorem 1 holds true for any ex ante distribution over a student’s budget set, which

means that it applies to every student regardless of their exam rank.

In some real-life markets with direct mechanisms, students are provided with cutoff scores that

were necessary to be accepted by programs in previous years. Such information can be helpful to

determine the budget set. However, this information is often not precise enough to pin down the

exact budget set for every student in the market. Statistics such as the universities’ historical cutoff

scores or acceptance rates represent noisy information about the budget set because the distribution

of student preferences, the distribution of exam scores, and the capacities of universities may change

from year to year.

The following corollary states that when students are provided with noisy information about

their budget sets under DirSD, some students’ posterior beliefs may still be non-deterministic.

Therefore, Theorem 1 still applies and the welfare advantage of SeqSD over DirSD still holds.

16This suggests that the behavioral advantage of SeqSD could be especially pronounced when the structure of
the priors is more complicated than the uniform priors employed in our model and experiments. With non-uniform
priors, it is even more challenging to derive the ex ante probability distribution of the budget set under DirSD
because it also requires students to form correct beliefs about the search strategies of others, while the realization
of the budget set is directly observed under SeqSD.
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Moreover, the provision of information cannot decrease welfare under DirSD because students in

equilibrium hold correct beliefs about its informativeness and best respond to them.

Corollary 1. 1. Even when students are provided with noisy information about their budget

sets (for instance historical cutoffs) under DirSD, every student is weakly better off under

SeqSD than under DirSD ex ante if all students acquire information optimally and adopt the

truth-telling submission strategy.

2. Students cannot be worse off under DirSD ex ante when provided with noisy information

about their budget sets (for instance historical cutoffs).17

Further comparison between DirSD with noisy information and DirSD without noisy informa-

tion relies on the specific implementation. In Section 3.5, we show that in our experimental setting,

some students can be strictly better off when provided with historical cutoffs.

We also show in Appendix A.5 that theoretical results generalize to a tiered prior structure that

allows for a common component and a private component in students’ preferences. Specifically, all

students prefer a university in a better tier to a university in a worse tier but may have different

preferences over the universities within each tier (their within-tier preference follows a uniform

distribution). With these priors, each student only needs to consider universities in one tier as

long as all students adopt the truth-telling submission strategy. Therefore, we can consider each

tier of universities, together with the students who consider that tier, as an independent market,

and this market is identical to the market with uniform priors.

3 Experimental Design

We conducted an experiment to test the predictions of our information acquisition model, and

to compare the welfare of students under the three centralized matching procedures. The three

procedures (treatments) are studied in four different environments that are characterized by the one

and two-tier preferences of students’ preferences and two different costs of information acquisition.

3.1 Setup

In the experiments, 12 students competed for 12 seats at six universities. Each university had two

seats. All universities ranked students based on the exam scores. The score of each student was

randomly and independently drawn from a uniform distribution between 1 and 100. Students were

played by experimental subjects while the universities were not strategic and their actions were

17The ex-ante stage in Corollary 1 is before students acquire any information about their preferences but after
they are provided with noisy information about their budget sets.

18



simulated by the computer. Students knew their score and the rank of their score among the other

students in their group.18

Participants received 40 AUD for the assignment to their most-preferred university, 34 AUD

for the second most-preferred university, 28 AUD for the third most-preferred university, etc., and

10 AUD for the least-preferred university. At the beginning of each round, participants did not

know their preferences over universities but were told that each ranking was equally likely. They

had the opportunity to acquire costly information about their own ordinal preferences. The exact

timing, technology, and costs of this search process varied between environments and treatments.

Each round represented a new university admissions process for the students. In total, there

were eight rounds in the experiment. At the end of the experiment, one round was drawn randomly

to determine the subjects’ payoff.

3.2 Treatments

We conducted three treatments between subjects by varying the centralized allocation procedure

and the information provided:

In Treatment DirSD, the direct serial dictatorship mechanism is adopted. Participants can

learn their preferences at a cost before the procedure starts, i.e., before they submit the rank-order

lists to the system.

In Treatment SeqSD, the sequential serial dictatorship mechanism is adopted. Students can

search before the procedure starts or between steps, that is, before or after observing the set of

available universities.19

In Treatment Cutoff, we provide historical cutoff scores under the direct serial dictatorship

mechanism. All participants observe the cutoffs of all universities of the previous cohorts before the

procedure starts. To generate the cutoffs, we used the results of the DirSD sessions. More precisely,

we provided the average cutoff scores from all previous DirSD markets in the same environment.

Students with the same rank in the previous sessions had the same preferences over universities

as in the current session, which was explained to the participants in the current session. After

learning the cutoffs, subjects can acquire information about their own preferences and then submit

their rank-order list, just as in DirSD.

3.3 Environments

There were four environments in the experiments. The environments varied in two dimensions,

namely the prior about the quality of the universities and the cost of information acquisition.

18Although students under DirSD and SeqSD only need to know their ranks to make decisions, we also provided
them with scores because this enables us to conduct the treatment with cutoffs scores.

19Participants can also start to search before the procedure starts and continue with the search between steps.
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Dimension 1: Tiered versus non-tiered preferences. The first dimension of our environ-

ments was whether the preferences of students were tiered. That is, we varied the prior belief of

students about the position of universities in their preferences, and thus the degree of correlation

of preferences between students. We considered two preference structures:

Two tiers. The six universities A1, A2, A3, B1, B2, and B3 belonged to two different tiers:

Universities A1, A2, and A3 belonged to tier A, and Universities B1, B2, and B3 belonged to

tier B. Every student preferred a university in tier A to a university in tier B, which was common

knowledge. Students could have different preferences within each tier. For each tier, the within-tier

ordinal preferences of each student were independently and randomly drawn from the set of all

possible orderings of the three universities in that tier. Each ordering was equally likely.

For each tier of universities, the search process was as follows:

1. For a cost of $X, a student could pick any two universities belonging to the same tier and

learn which of these two universities was ranked higher in her preference ordering. Thus, for

a cost of $X a student could learn the relative ordering of two universities within a tier.

2. For an additional cost of $X, a student could learn how the third university from the same

tier compared to the two universities that she had chosen previously. Thus, for a cost of $2X

a student could learn her full ranking of universities within a tier.

The same process applied to both tiers of universities. Thus, for a total cost of $4X a student was

able to obtain full knowledge of her preferences.

One tier. The six universities, namely A, B, C, D, E, and F, belonged to one tier. The ordinal

preferences of each student were independently and randomly drawn from the set of all possible

orderings of the six universities. Each ordering was equally likely to be drawn.

The search process was as follows:

1. For a cost of $X, a student could pick any two universities and learn which of these two

universities was ranked higher in her preference ordering. Thus, for a cost of $X a student

could learn the relative ordering of two universities.

2. Next, for an additional cost of $X, a student could learn how a third university compares to

the two that she had chosen previously. Thus, for a cost of $2X a student could learn the

relative ordering of three universities.

3. ...

4. Finally, for an additional cost of $X, a student could learn the preference ordering of all six

universities. Thus, for a total cost of $5X a student was able to obtain full knowledge of her

preferences.
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We used the two-tier environment for two reasons. First, the strategies are more straightforward

than in the case of one tier, as each tier essentially represented a smaller separate market, and our

theoretical results apply to each tier separately.20 In equilibrium, the six higher-ranked students are

assigned to tier-A universities while the six lower-ranked students are assigned to tier-B universities.

Thus, each student in equilibrium only has incentives to search within one tier. Moreover, tiered

priors are more realistic in university admissions than uniform priors, since in practice students

often agree on how to group universities in terms of quality, but may have different preferences

within each group. We used one-tier environments because they generate higher variation in the

optimal search strategies, both between students of different ranks and between treatments.

Dimension 2: Cost of information acquisition. The second dimension of our environments

was the cost of information acquisition (the value of X). We considered two cost levels:

Low cost (X=$0.5) and High cost (X=$2.3).

When varying the cost, the predictions regarding the centralized admission procedures vary

greatly. The exact parameters were chosen such that the optimal search strategies ranged from

full search to no search, depending on the rank of a student. Thus, we allowed for deviations in

both directions, namely under-search and over-search.

Table 2 presents the summary of the design by sessions, including the treatments and the order

of the environments. The first four rounds were always the rounds with two tiers, while rounds

five to eight were the rounds with one tier. We chose to fix this order, since the rounds with two

tiers are simpler in terms of finding the optimal search strategies for subjects, and since we do not

intend to directly compare the two environments. Within the two-tier and one-tier environments,

there were two rounds with high cost and two rounds with low cost. To control for order effects

regarding the costs, we used two different orders: either two consecutive high-cost rounds preceded

the two low-cost rounds or vice versa.

3.4 Experimental procedures

Across all treatments, we assigned the same randomly generated preferences to students with

the same rank in the corresponding rounds and environments. For instance, the preferences of a

student with rank 1 were the same in round 1 of sessions 1, 2, 11, 3, 5, 12, 16, 17, 18, and in

round 3 of all other sessions. This is because we implemented two different orderings of the costs

(see Table 2). For the cutoffs from the previous sessions of the DirSD treatment to be informative

for the subjects in the Cutoff treatment, a correlation between the preferences of the two cohorts

is necessary. This correlation was created by students with the same rank who had identical

preferences in all treatments.

20See Appendix A.5 for details.
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Sessions Round 1 2 3 4 5 6 7 8

1, 2, 11
Treatment DirSD

Tier 2 1

Cost High High Low Low High High Low Low

4, 7, 10
Treatment DirSD

Tier 2 1

Cost Low Low High High Low Low High High

3, 5, 12
Treatment SeqSD

Tier 2 1

Cost High High Low Low High High Low Low

6, 8, 11
Treatment SeqSD

Tier 2 1

Cost Low Low High High Low Low High High

16, 17, 18
Treatment Cutoff

Tier 2 1

Cost High High Low Low High High Low Low

13, 14, 15
Treatment Cutoff

Tier 2 1

Cost Low Low High High Low Low High High

Table 2: Summary of sessions by treatments and environments

We used the same randomly generated scores in DirSD and SeqSD but re-generated the scores

for the Cutoff treatment. This was explained to the participants in the Cutoff treatment. This

design ensures that the cutoffs were informative about the competitiveness of universities, but

did not provide perfect information due to the fluctuation in the distribution of scores. It also

prevented the cutoffs from directly informing the students about the preferences of the previous

cohort.21

The experiment was conducted in the Experimental Economics Laboratory of the University

of Melbourne (E2MU) and was programmed using z-Tree. Upon entering the lab, subjects were

provided with experimental instructions for the treatment in the two-tier environment. Before the

start of the one-tier environment, an additional set of instructions was distributed. In total, we

conducted 18 sessions with 24 subjects each. Thus, we had 432 participants with average earnings

of 28 AUD. The sessions lasted around 80 minutes.
21Without regenerating scores for the Cutoff treatment, a subject in a Cutoff session could have directly observed

the allocation of her “copy” and thus infer the realization of her own preferences. For example, if a subject with score
85 learns that the cutoff score of University A was 85, she would know that her copy was allocated to University
A. This would have affected her decisions regarding information acquisition and preference submission. This is not
the type of information cutoffs carry in real markets, but is a result of a small and discrete market implemented in
the experiment.

22



3.5 Theoretical predictions

The main goal of the experiment is to compare the three treatments across the different environ-

ments. Our main interest is the welfare of students.

Prediction 1 (Welfare): In terms of student welfare, the following relationships hold for all

students in all environments: DirSD≤Cutoff≤SeqSD.

The comparison between DirSD and SeqSD follows from Theorem 1 and its extension to tiered

priors in Appendix A.5. Because the cutoff scores represent noisy information regarding the stu-

dents’ budget sets under DirSD, the comparison between SeqSD and Cutoff follows from Corollary

1 as well as its extension to tiered priors in Appendix A.5.

According to the theory, the provision of cutoffs cannot decrease welfare because subjects in

equilibrium hold correct beliefs about the informativeness of the cutoffs and respond optimally to

them. Given the way the cutoffs are generated, they can make some students better off because

the rank of a cutoff among all six cutoffs carries information about the chances of being accepted

by a certain university if the previous generation has searched enough. For example, consider the

one-tier low-cost environment. In equilibrium under DirSD, all students except the rank 12 student

acquire full information about their preferences and submit truthful rank-order lists. The highest

cutoff score among all universities cannot be the score of the students in ranks 8 to 12. Thus,

we know that the university with the highest cutoff cannot be in the budget set of the students

in ranks 8 to 12, the school with the second-highest cutoff cannot be in the budget sets of the

students in ranks 9 to 12, and so on. In this way, cutoffs can help some students to narrow down

the options that are potentially available to them. Therefore, we predict that cutoffs can improve

upon the welfare under DirSD in some settings.

Next we turn to the search behavior of students.

Prediction 2 (Search): Participants acquire information about their own preferences follow-

ing the predictions of the model. In Cutoff, students are less likely to search the universities with

cutoffs higher than their score compared to the universities with cutoffs lower than their score.

The optimal search strategies under DirSD and SeqSD are provided in Figures 4 and 5 in

Appendix B.1. The predictions regarding search depend not only on the treatment, but also

on each student’s rank. Because the rank essentially determines the budget set of the student,

the benefit of searching varies greatly between ranks. For instance, it is an optimal strategy to

never search for rank 12 student, as she always receives the last available seat. Similarly, the

rank 6 student never searches in the two-tier environment, since she prefers to be matched to the

last available seat in tier A. Note that the search incentives depend on the size and probability

distribution of the budget set. This explains why the incentive to search does not necessarily

decrease for lower-ranked students, and why students do not always search weakly less under

SeqSD than under DirSD, given their rank.
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In contrast to DirSD and SeqSD, it is challenging to derive point predictions for the optimal

search strategies in the Cutoff treatment. The main reason is that given the public information

on cutoffs, students update their beliefs about their budget sets, and their prior beliefs before

information acquisition are no longer uniform.22 Recall from Section 2.4 that uniform priors

are important in keeping our derivations of the optimal search strategies theoretically tractable.

Without uniform priors, each student needs to consider what information other students choose

to acquire in equilibrium when forming beliefs about her own budget set. We therefore choose to

focus on the empirical exploration of the effects of cutoffs in this paper. Specifically, we investigate

a simple strategy in the Cutoff treatment: whether subjects are less likely to search the universities

with cutoffs higher than their scores. This helps us understand whether subjects use the cutoff

information to narrow down the options in their budget sets and respond to it in their search

strategies.

Prediction 3 (Submission): In DirSD and Cutoff, students submit their preferences in the

order of decreasing expected utility of universities, given the updated beliefs after the search. In

SeqSD, a student who has searched selects the highest-ranked university among the searched ones.

The prediction directly follows from Proposition 2.

4 Experimental Results

We start with the analysis of market outcomes and then move to the analysis of individual strate-

gies. We can pool the sessions with different environment orderings (information cost), since the

order does not significantly affect the main variables of interest (see Table B.2 in Appendix B.2).

All results reported are significant at the 5% level if not stated otherwise. For all tests, we use

the p-values of the coefficient of the treatment dummy in regressions on the variable of interest.

Standard errors are clustered at the level of matching groups, and the sample is restricted to the

treatments that are of interest for the test. We use the sign “>” between treatments to express

“significantly higher,” and the sign “=” to express “no significant difference.”23

22For example, suppose that based on the cutoff information, other students can infer that the fourth ranked
student knows that her budget set is more likely to include Universities A and B than the other universities. Then
they would know this student is more likely to search Universities A and B and as a result, is more likely to rank
A or B as her top choice than other universities. This means that the submission strategy of this student no longer
follows a uniform distribution, which affects the beliefs of other students about their own budget sets.

23Due to a mistake in our code of the z-tree program, in one market of treatment SeqSD (the second round with
two tiers and high cost), rank 12 students were asked to choose a university before rank 11 students. In order to
keep the comparison of welfare balanced between procedures, we deleted the observations for the students ranked
11th and 12th in this round of all treatments. The inclusion of these data or the exclusion of these subjects from
analyses does not change the qualitative results.
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Notes: Vertical gray bars represent the 95% confidence intervals. The square marker indicates the theoretical
prediction for DirSD. The diamond marker indicates the theoretical prediction for SeqSD.

Figure 1: Average payoffs by treatments

4.1 Market outcomes

4.1.1. Welfare

Figure 1 shows the average payoffs of participants by treatments, aggregated over all environments.

The average payoff is highest in SeqSD, with the difference to DirSD and Cutoff being significant.

The markers in Figure 1 indicate the theoretical predictions for the average payoffs in DirSD

and SeqSD, showing that the higher welfare of participants under SeqSD compared to DirSD

is in line with the theoretical predictions. However, in both SeqSD and DirSD welfare is lower

than predicted: in DirSD, the average payoffs are 2.2 AUD lower than predicted, while in SeqSD

the difference is 1.2 AUD. This can be due to either suboptimal search strategies or suboptimal

submission strategies. We will investigate this in more detail in the following sections. In the Cutoff

treatment, as predicted by the theory, we observe that average payoffs of students are higher than

in DirSD (p = 0.05) and lower than in SeqSD (p < 0.01).24

To understand in which environments the Cutoff and SeqSD procedures have the greatest

advantage over DirSD, Table 3 presents the average payoffs of participants by treatments for each

tier and cost combination. First, SeqSD has significantly higher average payoffs than DirSD in all

environments (see column (4) for the p-values). This confirms our theoretical prediction. Regarding

the policy of providing historical cutoffs, we observe that cutoffs significantly improve the welfare

of students relative to DirSD in two out of four environments, namely in the environments with a

high cost of information acquisition. In these environments, the increase in welfare under Cutoff

24Since we do not calculate a point prediction for the Cutoff treatment, there is no marker for the predicted
average payoff under Cutoff in Figure 1.
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is similar to the increase under SeqSD relative to DirSD. SeqSD still generates higher welfare, but

the difference is not significant. In the environments with low costs, average payoffs of participants

are significantly higher in SeqSD than in Cutoff.

Treatment p-value for test of equality

DirSD SeqSD Cutoff DirSD=SeqSD DirSD=Cutoff SeqSD=Cutoff

(1) (2) (3) (4) (5) (6)

Two tiers & low cost 26.7 27.6 26.9 0.01 0.53 0.02

Two tiers & high cost 25.0 26.2 26.1 0.00 0.01 0.61

One tier & low cost 32.6 34.9 32.4 0.01 0.79 0.00

One tier & high cost 24.1 27.9 26.7 0.00 0.00 0.07

All 26.9 29.4 27.7 0.00 0.05 0.00

Notes: For the tests in columns 4-6, we use the p-values for the coefficient of the treatment dummy in the OLS
regression of payoffs on this dummy with standard errors clustered at the level of matching groups and with a
sample restricted to the treatments that are of interest for the test.

Table 3: Average payoffs of subjects by treatments and environments

Next we consider the two components of welfare separately. Figure 2 presents the average pay-

offs of participants from the university assignments and the average search costs by treatments. It

emerges that the welfare benefits of SeqSD relative to DirSD can be attributed to both sources,

namely more efficient matching outcomes and lower costs of information acquisition. Both treat-

ment differences are predicted by the theory and turn out to be significant in the experiment

(p < 0.01). At the same time, in both DirSD and SeqSD, participants receive lower than predicted

payoffs from the university assignment, despite higher than predicted search costs on average. The

left panel shows that the difference between the predicted and realized payoffs from the assignment

is higher in DirSD than in SeqSD in the sense that in SeqSD, the predicted payoff lies in the 95%

confidence interval of the realized payoffs, which is not the case in DirSD.

For the Cutoff treatment, the improvement in welfare relative to DirSD is mainly due to lower

search costs. There is no significant difference in the assignment payoffs between DirSD and Cutoff

(p = 0.58) but search costs are significantly lower under Cutoff than under DirSD (p < 0.01). The

search costs in Cutoff are also significantly lower than in SeqSD (p = 0.01).

We summarize these findings in the following result.

Result 1 (Welfare):

(i) For the average payoff of participants the following relationships hold: SeqSD>Cutoff>DirSD .

(ii) For the average payoff of participants from the university assignments the following relation-

ships hold: SeqSD>DirSD, SeqSD>Cutoff, DirSD=Cutoffs. For search costs the following rela-

tionships hold: DirSD>SeqSD>Cutoff.
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Notes: Vertical gray bars represent the 95% confidence intervals. Square markers indicate the theoretical predictions
for DirSD. Diamond markers indicate the theoretical predictions for SeqSD.

Figure 2: Average payoffs from the assignment and search costs by treatments

4.2 Individual behavior

4.2.1 Search strategies

In this section we study the subjects’ search strategies acrossthe different treatments and environ-

ments.

First we present the main results on the search optimality in DirSD and SeqSD. The detailed

analysis of search strategies by ranks and environments is presented in Appendix B.1. In the low-

cost environments in DirSD, all subjects, except those ranked last in each tier, are predicted to

obtain full knowledge about their preferences, but they under-search on average. Unlike in DirSD,

in the low-cost environments in SeqSD, the deviations from the predicted number of searches are

small. In the high-cost environments, none of the subjects are predicted to obtain full knowledge

about their preferences, but we find that on average they search too much in both DirSD and

SeqSD.

The left panel of Figure 3 presents the average deviation from the predicted number of searches

for low- and high-costs environments in DirSD and SeqSD. In low-cost environments, students

under-search on average, with significantly more under-search in DirSD than in SeqSD. In high-

cost environments, we observe over-search on average.

Combining and averaging positive and negative deviations can substantially mask the actual

deviations from the theory. Therefore we also consider absolute deviations. The right panel of

Figure 3 presents the average absolute deviation from the predicted number of searches for low-

and high-cost environments in DirSD and SeqSD. The average absolute deviation is significantly

lower in SeqSD than in DirSD independent of the costs. The difference is significant for the pooled
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Notes: Vertical gray bars represent the 95% confidence intervals. The left panel presents average deviations

with under-search as a negative value and over-search as a positive value. The right panel presents average

absolute deviations which are calculated as the absolute number of differences between the optimal number

of searches and the observed number of searches.

Figure 3: Deviations from the optimal number of searches by treatments

sample (p < 0.01) and for each environment separately (p < 0.01). Thus, SeqSD does not only lead

to lower search costs in theory, but it also induces behavior in the lab which is more in line with

the predictions than DirSD. One possible explanation for this result is that the optimal search is

more straightforward for participants under SeqSD than under DirSD.

Next, we turn to the search behavior in the Cutoff treatment. On average, when the cost is

low, the search under Cutoff is not significantly different from DirSD in the two-tier environment

(p = 0.32), but is significantly lower than under DirSD in the one-tier environment (p < 0.01).

When the cost is high, the search under Cutoff is significantly lower than under DirSD (p < 0.01 for

both one- and two-tier environments), and under SeqSD for the one-tier environment (p < 0.01),

but not for the two-tier environment (p = 0.16). Thus, the participants rely on cutoffs more

in high-cost environments than in low-cost environments. As we do not form point predictions

for the optimal search under Cutoff, we use regressions to analyze the empirical patterns of the

subjects’ reaction to cutoffs. Specifically, we investigate the simple strategy identified in Prediction

2 that subjects are less likely to search the universities with cutoffs higher than their own score

compared to universities with cutoffs below their own score. Table 4 presents the marginal effects

of the probit model for information acquisition about a university, depending on the cutoff of this

university.

Model (1) of Table 4 presents the results for all environments of the Cutoff treatment. The

coefficient of “Higher cutoff, dummy” is negative and statistically significant. Thus, on average,
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Cutoff all Two tiers Two tiers One tier One tier Cutoff all Two tiers One tier

& low cost & high cost & low cost & high cost

(1) (2) (3) (4) (5) (6) (7) (8)

Cost of search -0.11*** -0.11*** -0.12*** -0.13***

(0.01) (0.01) (0.01) (0.01)

Dummy for two tiers -0.16*** -0.14***

(0.01) (0.01)

Higher cutoff, dummy -0.08*** -0.02 -0.11*** -0.05* -0.13***

(0.02) (0.03) (0.03) (0.03) (0.03)

Higher cutoff, difference -0.009*** -0.013*** -0.004***

(0.001) (0.001) (0.001)

Lower cutoff, difference -0.004*** -0.009*** -0.0005

(0.0003) (0.0004) (0.0007)

Observations 6768 1728 1584 1728 1728 6768 3456 3456

Note: Marginal effects of probit regressions regarding information acquisition about a university in Cutoff. “Higher

cutoff, dummy” is a dummy that is equal to one if the cutoff score of the university minus the score of the student

is greater than zero. “Higher cutoff, difference” is equal to the cutoff score of the university minus the score of the

student if the difference is positive and zero otherwise. “Lower cutoff, difference” is equal to the score of the student

minus the cutoff score of the university if the difference is positive and zero otherwise. Standard errors are clustered

at the level of matching groups. * p < 0.1, ** p < 0.05, ***, p < 0.01.

Table 4: Probability of information acquisition about a university depending on the cutoff

participants are less likely to search among the universities with cutoff scores higher than their

score. This suggests that participants believe that these universities are less likely to be within

their budget set. We consider the each environment separately, and find that the effect is strongest

in the environments with high information costs (see models (3) and (5)). In contrast, in low-cost

environments, the effect is either not significant or only marginally significant (see models (2) and

(4)). Model (6) considers the absolute difference between a cutoff and a student’s score for all

environments. Again, the higher the cutoff is relative to the student’s score, the less likely the

student is to acquire information about this university. However, students are also less likely to

acquire information about universities with cutoffs below their scores. The magnitude of the effect

is smaller, but still significant. Models (7) and (8) study two- and one-tier environments separately.

The effect of lower cutoffs remains significant in the two-tier environments. This can be explained

by students in ranks 1 to 6 not searching tier-B universities. In the one-tier environments, the

lower cutoff scores do not decrease the probability of search significantly, which is rational given

the independence of the preferences.

We summarize our findings regarding individual search strategies in the following result.

Result 2 (Search strategies):

• In low-cost environments, the average number of searches in SeqSD is not statistically dif-
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ferent from the predicted optimal strategy, while there is significant under-search in DirSD.

In high-cost environments, there is over-search in DirSD and SeqSD, with larger deviations

from the optimal strategy in DirSD.

• The average absolute deviation from the optimal search strategy is lower in SeqSD than in

DirSD.

• Students are less likely to search universities with cutoffs higher than their score compared to

universities with cutoffs below their score, especially in the high-cost environments.

4.2.2 Submission strategies

In this section, we analyze the subjects’ strategies for ranking and choosing universities. When

a participant has learned her preferences completely, the optimal submission strategy is to list

all universities in the order of her true preferences in DirSD and Cutoff, and to select the most

preferred university from the available ones according to her true preferences in SeqSD. Note that

a student’s submitted list in DirSD and Cutoff is relevant only up to her guaranteed university.

For example, a rank 4 participant is guaranteed a seat at the university of her second preference,

since each university has two seats. Similarly, a rank 7 participant is guaranteed a seat at the

university of her fourth preference. If a student does not have full knowledge of her preferences,

Proposition 2 presents the optimal submission strategies for the case of one tier and Proposition

5 in Appendix A.5 presents the optimal strategies for the case of two tiers. Depending on the

treatment, the optimal submission strategy leads to the following behavior:

• In DirSD, under the optimal submission strategy, universities are ranked in decreasing order

of expected values. By Proposition 1, this implies listing the higher-ranked searched univer-

sities above all unsearched ones, followed by the lower-ranked searched universities.25 The

unsearched universities can be ordered in any way. If a student does not search any univer-

sity, any list is optimal (respecting tiers). When counting optimal submission strategies, we

only consider a student’s submitted list up to her guaranteed university.

• In SeqSD, the optimal submission strategy implies choosing the highest-ranked university

among those searched from the set of available universities. If a student does not search any

available university, any choice is optimal (respecting tiers).

• In Cutoff, the optimal submission strategy is the same as in DirSD. Note, however, that the

cutoffs might lead to multiple optimal strategies. For instance, if a student believes, based

25In our experimental setting, if the number of searched universities is even, the higher-ranked half of the searched
universities should be listed above the unsearched universities, followed by the lower-ranked half of the searched
universities. If the number of searched universities is odd, the optimal submission strategy is the same, but the
middle-ranked searched university is treated like an unsearched university.
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on the cutoff, that a university is out of her budget set, she is indifferent with respect to

how to rank this university. Thus, some unsearched universities can be placed anywhere in

the submitted rank-order list. As a benchmark, we compare the strategies in Cutoff to the

optimal strategies in DirSD, thereby potentially underestimating the proportion of optimal

strategies in Cutoff. The reason is that we neglect the fact that universities not in the budget

set can be placed anywhere in the rank-order list.

Table 5 presents the proportion of optimal submission strategies conditional on the subjects’ search

behavior. The highest rate of optimal submission strategies is observed in SeqSD with differences

being significant in all environments relative to DirSD and Cutoff. In SeqSD, we observe almost

universally optimal submission strategies. This might be because it is rather simple to derive

the optimal submission strategy under SeqSD. It does not require the ability to compare the

expected utilities of all the searched and the unsearched universities. In DirSD and Cutoff, the

overall proportions of optimal submission strategies are 80.4% and 75.7%, respectively, with the

difference being significant for the pooled sample but not in any of the environments separately.

In DirSD and Cutoff, the deviation from the optimal submission strategies might be driven either

by the participants’ attempt to manipulate the rank-order lists submitted to the mechanism or by

the complexity of comparing the expected utilities of the searched to the unsearched universities.

We find that when subjects have full knowledge of their preferences, the rate of manipulation

in the submitted lists is only 5.7% in DirSD and 7.6% in Cutoff. This suggests that the main

source of deviations from optimal strategies is the difficulty to compare the expected utilities

of universities when information about one’s preferences is incomplete. This contributes to the

higher-than-predicted difference in welfare between SeqSD and DirSD.

Result 3 (Submission strategies): In all environments, the proportion of optimal submis-

sion strategies is significantly higher in SeqSD than in DirSD and Cutoff.

Summing up the section on individual strategies, we observe that the welfare benefits of SeqSD

relative to DirSD are driven both by smaller deviations from the optimal search strategies and by

a higher proportion of optimal submission strategies in SeqSD. As for the Cutoff treatment, its

improvement in welfare over DirSD is driven solely by saving on search costs. Thus, in markets

where search costs are high relative to differences in the payoffs from assignments, the provision

of historical cutoffs can improve welfare.

5 Discussion and conclusions

In this paper, we explore how students search university programs, how wasteful information

acquisition can be reduced, and how student welfare can be improved in a market where students

are ranked by universities based on exam scores. Theoretically, a sequential serial dictatorship

mechanism leads to less wasteful information acquisition and higher student welfare than a direct

31



Treatment p-value for test of equality

DirSD SeqSD Cutoff DirSD=SeqSD DirSD=Cutoff SeqSD=Cutoff

(1) (2) (3) (4) (5) (6)

Two tiers & low cost 78.8% 97.9% 74.0% 0.00 0.22 0.00

Optimal Two tiers & high cost 79.2% 98.5% 72.3% 0.00 0.08 0.00

strategies One tier & low cost 85.4% 99.3% 78.1% 0.00 0.07 0.00

given One tier & high cost 78.1% 98.6% 78.1% 0.00 1.00 0.00

search All 80.4% 98.6% 75.7% 0.00 0.03 0.00

Notes: For the tests in columns 4-6, we use the p-values for the coefficient of the treatment dummy in the probit
regression of the optimal submission strategy. Standard errors are clustered at the level of matching groups, and
the sample is restricted to the treatments that are of interest for the test. The proportions of optimal submission
strategies in Cutoff are italicized as the prediction ignores that multiple optimal strategies can exist.

Table 5: Proportions of optimal submission strategies by treatments and environments

serial dictatorship mechanism. However, we find that the theory underestimates these benefits, as

in the experiments participants make superior decisions both when searching and when choosing

among universities under sequential serial dictatorship compared to under direct serial dictatorship.

We also find that the provision of cutoffs can increase student welfare, especially when information

costs are high, although the effects of cutoffs are not as strong as the effects of using a sequential

mechanism. With cutoffs, we observe that participants follow a simple strategy and avoid searching

universities with cutoffs higher than their scores, especially when the costs are high. This simple

strategy results in higher welfare with cutoff provision than under direct serial dictatorship without

cutoff provision in high-cost environments.

Admittedly, the uniform and tiered prior structures adopted in this paper do not describe all

school and college admissions markets in practice. We have chosen this simple environment in

order to keep our theoretical analysis tractable and to be able to derive predictions for the optimal

search strategies in the direct mechanism. With a more complex prior structure, a student in the

direct mechanism needs to consider the search strategies of higher-ranked students when forming

beliefs about her own budget set. However, this is not necessary in the sequential mechanism

where the budget set is known with any priors. Therefore, a more complex prior structure should

only strengthen our results favoring the sequential mechanism.

Our results support switching to a sequential mechanism to improve student welfare in markets

where information acquisition about preferences is costly. The practical applicability of sequential

mechanisms may be limited, especially if students take a considerable amount of time to acquire

information, which can make the matching process substantially longer. This is an important

concern. However, sequential mechanisms have become more widespread recently, enabled by the

digitization of assignment procedures and the possibility to coordinate repeatedly through mobile

apps. While in practice it is unlikely that students will move one by one, sequential decisions by
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groups of students, depending on their scores, are realistic.26 Sequential decisions based on groups

preserve the benefits of sequential mechanisms from the perspective of information acquisition, as

lower-ranked groups of students do not have to acquire information about universities that are

filled by higher-ranked students. Finally, if it is not possible to implement a sequential mechanism,

the policy of providing historical cutoffs also improves welfare. While this policy has already been

implemented in some countries, our study provides empirical support for this practice, especially

in markets when information acquisition costs are high.
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Appendix

A Proofs and additional theoretical analysis

In the subsequent analysis, we omit the subscript i when referring to any student.

A.1 Proof of Proposition 1

The proof of Proposition 1, as well as several subsequent results, will use the following lemma.

Suppose that λ1 (x) and λ2 (x) are two probability mass functions (PMFs) of distributions over

the same discrete domain Ψ , and that and Λ1 (x) and Λ2 (x) are their corresponding cumulative

distribution functions (CDFs). Let η (x) be the difference between these two PMFs, that is, η (x) ≡

λ1 (x)− λ2 (x).

Lemma 1. If there exists a threshold x̂ ∈ Ψ such that η (x) ≤ 0 for x ≤ x̂ and η (x) > 0 otherwise,

then Λ1 first-order stochastically dominates Λ2, that is, Λ1 (x) ≤ Λ2 (x) , ∀x .

Proof. Denote the smallest and largest values in Ψ as x and x̄, respectively. Denote x+ as the

smallest element in Ψ that is greater than x (for x < x̄). Given the definition of x̂, we know that

when x ≤ x̂,

Λ1 (x)− Λ2 (x) =
x∑

x′=x

η (x′) ≤ 0.

When x > x̂,

Λ1 (x)− Λ2 (x) =
x∑

x′=x

η (x′)

=
x̂∑

x′=x

η (x′) +
x∑

x′=x̂+

η (x′)

≤

x̂∑

x′=x

η (x′) +
x∑

x′=x̂+

η (x′) +
x̄∑

x′=x+

η (x′)

=
x̄∑

x′=x

η (x′)

= 0.

The last step is due to the definition of η (x). Therefore, we have Λ1 (x) ≤ Λ2 (x) , ∀x. The

inequality holds strictly for some x as long as the two distributions are not identical. Hence, Λ1

first-order stochastically dominates Λ2.

Now we start to prove Proposition 1.
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Proof. We write the expected utility for those unsearched universities in C \ CS as

V (0) =
m∑

j=1

f 0 (j, α) uj

and the updated expected utility for the university relatively ranked γth in CS (γ = 1, . . . , α+ 1)

as

V γ (α) =
m∑

j=1

fγ (j, α) uj,

in which

f 0 (j, α) =
1

m

and

fγ (j, α) =

(

j − 1

γ − 1

)(

m− j

α− γ + 1

)

(

m

α + 1

)

are the PMFs of the distributions over the set of cardinal utilities {u1, ..., um}; let F 0 (j, α) and

F γ (j, α) be the corresponding CDFs.

(1) We first show that V 1 (α) > V (0) for any α = 1, 2, . . . ,m−1. Let g1,0 (j, α) be the difference

between the two PMFs f 1 (j, α) and f 0 (j, α), that is,

g1,0 (j, α) ≡ f 1 (j, α)− f 0 (j, α) =

(

m− j

α

)

(

m

α + 1

) −
1

m
.

We can see from the above definition that (i) given α and m, g1,0 (j, α) is decreasing in j;27 (ii)

g1,0 (m,α) = − 1
m

< 0; and (iii) g1,0 (1, α) = α+1
m

> 0. Therefore, there exists an integer ĵ such that

g1,0 (j, α) ≤ 0 when ĵ ≤ j ≤ m, and g1,0 (j, α) > 0 when 1 ≤ j ≤ ĵ′ − 1. Because u1 > u2 > . . . >

um, uĵ is equivalent to the threshold x̂ in Lemma 1. According to Lemma 1, F 1 (j, α) first-order

stochastically dominates F 0 (j, α), that is, V 1 (α) > V (0) for any α = 1, 2, . . . ,m− 1.

Next, we show V α+1 (α) < V (0) for any α = 1, 2, . . . ,m− 1. Let g0,α+1 (j, α) be the difference

27f1 (j, α) equals zero when j > m− α and is strictly decreasing in j when j ≤ m− α.
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between the two PMFs f 0 (j, α) and fα+1 (j, α), that is,

g0,α+1 (j, α) ≡ f 0 (j, α)− fα+1 (j, α) =
1

m
−

(

j − 1

α

)

(

m

α + 1

) .

We know from the above definition that (i) given α and m, g0,α+1 (j, α) is decreasing in j;28 (ii)

g0,α+1 (m,α) = − α
m

< 0; and (iii) g0,α+1 (1, α) = 1
m

> 0. Therefore, there exists an integer ĵ′ such

that g0,α+1 (j, α) ≤ 0 when ĵ′ ≤ j ≤ m, and g0,α+1 (j, α) > 0 when 1 ≤ j ≤ ĵ′−1. Again, according

to Lemma 1, F 0 (j, α) first-order stochastically dominates F α+1 (j, α), that is, V α+1 (α) < V (0)

for any α = 1, 2, . . . ,m− 1.

(2) We first show that V γ (α) > V γ+1 (α) for any γ = 1, 2, . . . , α + 1 and α = 1, 2, . . . ,m − 1.

Let gγ,γ+1 (j, α) be the difference between the two PMFs fγ (j, α) and fγ+1 (j, α), that is,

gγ,γ+1 (j, α) ≡ fγ (j, α)− fγ+1 (j, α)

=

(

j − 1

γ − 1

)(

m− j

α− γ + 1

)

(

m

α + 1

) −

(

j − 1

γ

)(

m− j

α− γ

)

(

m

α + 1

)

Because fγ (j, α) = fγ+1 (j, α) = 0 when j > m−α+γ or j < γ, we re-define fγ (j, α), fγ+1 (j, α),

and gγ,γ+1 (j, α) to be the PMFs over the set {uγ, ..., um−α+γ}. For γ < j < m−α+γ, fγ (j, α) > 0,

fγ+1 (j, α) > 0, and

gγ,γ+1 (j, α) ∝ (m+ 1) γ − (α + 1) j.

Because gγ,γ+1 (γ, α) = fγ (γ, α)− 0 > 0 and gγ,γ+1 (m− α + γ, α) = 0− fγ+1 (m− α + γ, α) < 0,

we know gγ,γ+1 (γ, α) ≤ 0 if (m+1)γ
α+1

≤ j ≤ m − α + γ and gγ,γ+1 (γ, α) > 0 if γ ≤ j < (m+1)γ
α+1

.

According to Lemma 1, F γ (j, α) first-order stochastically dominates F γ+1 (j, α), that is, V γ (α) >

V γ+1 (α) for any α = 1, 2, . . . ,m− 1.29

Now we have shown that given any α = 1, 2, . . . ,m− 1, V 1 (α) > V (0), V α+1 (α) < V (0), and

V γ (α) > V γ+1 (α) , ∀γ = 1, 2, . . . , α + 1. Therefore, by the mean value theorem, there exists a

threshold γ̂ (α) at which (i) V γ (α) > V (0) for all γ ≤ γ̂ (α), and (ii) V γ (α) ≤ V (0) otherwise.
28fα+1 (j, α) equals zero when j < α+ 1 and is strictly increasing in j when j ≥ α+ 1.
29Since (m+1)γ

α+1 is not necessarily an integer, the threshold in Lemma 1 can be considered as u[
(m+1)γ

α+1 ], where
[
(m+1)γ
α+1

]

is the ceiling of (m+1)γ
α+1 , i.e., the smallest integer greater than (m+1)γ

α+1 .
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A.2 Information acquisition under DirSD

In this section, we discuss the role of information and students’ information acquisition strategy

under DirSD.

Proposition 3. Under DirSD, the marginal benefit of additional information is non-negative and

can be non-monotonic.

The proof of Proposition 3 will use the following two lemmas.

Lemma 2. For any α = 2, . . . ,m− 1 and γ = 1, 2, . . . , α + 1, V γ (α) > V γ (α− 1).

Proof. Suppose a student has completed (α− 1) steps of searching and is considering the benefit

of step α, α = 2, . . . ,m − 1. When this additional step of search is conducted, the change in

expected value is given by

V γ (α)− V γ (α− 1) =
m∑

j=1

fγ (j, α) uj −

m∑

j=1

fγ (j, α− 1) uj

=

m−α+γ−1
∑

j=γ

(

j − 1

γ − 1

)(

m− j

α− γ + 1

)

(

m

α + 1

) uj −

m−α+γ
∑

j=γ

(

j − 1

γ − 1

)(

m− j

α− γ

)

(

m

α

) uj.

Let h (j) be the difference between the two PMFs fγ (j, α) and fγ (j, α− 1), that is,

h (j) ≡ fγ (j, α)− fγ (j, α− 1)

=

(

j − 1

γ − 1

)(

m− j

α− γ + 1

)

(

m

α + 1

) −

(

j − 1

γ − 1

)(

m− j

α− γ

)

(

m

α

) .

When j = m− α + γ, h (m− α + γ) = 0−







m− α + γ − 1

γ − 1













m

α







< 0. When j ≤ m− α + γ − 1,

h (j) ∝ (m+ 1) γ − (α + 1) j.

We can see that h (j) ≤ 0 if (m+1)γ
α+1

≤ j ≤ m − α + γ and h (j) > 0 if γ ≤ j < (m+1)γ
α+1

.

According to Lemma 1, F γ (j, α) first-order stochastically dominates distribution F γ (j, α− 1).

Hence, V γ (α) > V γ (α− 1) for any α = 2, . . . ,m− 1 and γ = 1, 2, . . . , α + 1.
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Lemma 3. For any α = 2, . . . ,m− 1 and γ = 1, 2, . . . , α, V γ (α− 1) > V γ+1 (α).

Proof. The proof of this lemma is similar to the proof of Lemma 3. Given α = 2, . . . ,m − 1 and

γ = 1, 2, . . . , α,

V γ (α− 1)− V γ+1 (α) =
m∑

j=1

fγ (j, α− 1) uj −

m∑

j=1

fγ+1 (j, α) uj

=

m−α+γ
∑

j=γ

(

j − 1

γ − 1

)(

m− j

α− γ

)

(

m

α

) uj −

m−α+γ
∑

j=γ+1

(

j − 1

γ

)(

m− j

α− γ

)

(

m

α + 1

) uj.

Let h′ (j) be the difference between the two PMFs fγ (j, α− 1) and fγ+1 (j, α), that is,

h′ (j) ≡ fγ (j, α− 1)− fγ+1 (j, α)

=

(

j − 1

γ − 1

)(

m− j

α− γ

)

(

m

α

) −

(

j − 1

γ

)(

m− j

α− γ

)

(

m

α + 1

) .

When j = γ, h′ (γ) =







m− γ

α− γ













m

α







− 0 > 0. When j ≥ γ + 1,

h′ (j) ∝ (m+ 1) γ − (α + 1) j.

Therefore, h′ (j) ≤ 0 if (m+1)γ
α+1

≤ j ≤ m − α + γ and h′ (j) > 0 if γ ≤ j < (m+1)γ
α+1

. According

to Lemma 1, F γ (j, α− 1) first-order stochastically dominates F γ+1 (j, α). Thus, V γ (α− 1) >

V γ+1 (α) for any α = 2, . . . ,m− 1 and γ = 1, 2, . . . , α.

Now we move to prove Proposition 3: under DirSD, the marginal benefit of additional infor-

mation (1) is non-negative, and (2) can be non-monotonic.

Proof. (1) Let
{

Pi

(

B̃
)}

B̃⊆C
be the probability distribution of student i’s budget set, that is,

Pi

(

B̃
)

= Pr
[

Bi = B̃
]

, B̃ ⊆ C. With Assumption 1 and uniform priors, each student knows that

the rank-order list submitted by any other student is equally likely to be any ranking in Ω. Thus,

from the perspective of student i, she always has an equal chance at every university, and this

chance is given by
{

Pi

(

B̃
)}

B̃⊆C
. This makes the “name” of a university irrelevant to the student.
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Let {pi (β)}β=1,2,...,m be the probability distribution of the number of universities in student i’s

budget set, that is, pi (β) = Pr [|Bi| = β], β = 1, 2, . . . ,m.30 We thus have Pi

(

B̃
)

= Pi

(

B̃′
)

=

pi(β)/







m

β






for all

∣
∣
∣B̃
∣
∣
∣ =

∣
∣
∣B̃′
∣
∣
∣ = β. That is, only the number of universities in a student’s budget

set, but not its specific composition, is consequential to her decision-making under DirSD. For

instance, consider a market with three universities C = {c1, c2, c3}, each of which has two seats.

The budget set of the student ranked third in the exam depends on the submitted rank-order lists

of the two students ranked before her. If, for example, they both place university c3 on the top of

their lists, which occurs with probability 1
3
× 1

3
= 1

9
, then the budget set of the student ranked third

contains only c1 and c2. The same probability 1
9

should be assigned to all possible two-university

compositions of her budget set: {c1, c2}, {c1, c3} , and {c2, c3}.

Suppose a student submits a list ≻̂ under DirSD. Then given {p (β)}β=1,2,...,m, the probability

that she is accepted by the θth ranked university in ≻̂ is given by

Qθ =
m−θ+1∑

β=1

(

m− θ

β − 1

)

(

m

β

) p (β) .

If a student is assigned to her θth choice, her budget set B has to include her θth choice and

exclude the (θ − 1) universities listed above it. With probability p (β), B includes β universities.

One of them has to be her θth choice and the remaining (β − 1) ones cannot be her top θ choices,

which means

(

m− θ

β − 1

)

out of the

(

m

β

)

possible compositions can occur. Thus, Qθ sums up,

for all possible values of β, the probability that the student is accepted by her θth choice. We

can see that for any probability distribution over one’s budget set, DirSD ensures that Qθ ≥ Qθ′

if θ < θ′, that is, a student is more likely to be admitted by a university if it is higher ranked

in her submitted list. This, again, proves the optimality of the truth-telling strategy stated in

Proposition 2.

A student who stops searching at step α and chooses the optimal strategy of truth-telling

under DirSD, according to Propositions 1 and 2, would rank the unsearched universities below the

γ̂ (α)th-ranked searched university, but above the (γ̂ (α) + 1)th-ranked searched university, and

would rank the searched universities according to the discovered relative preferences. Hence, her

expected utility is given by

uDirSD (α) =

γ̂(α)
∑

θ=1

QθV θ (α) +

γ̂(α)+m−α−1
∑

θ=γ̂(α)+1

QθV (0) +
m∑

θ=γ̂(α)+m−α

QθV θ−m+α+1 (α)− αk,

30A student has at least one university in her budget set because we assume the total number of seats exceeds
the total number of students. This assumption simplifies, but is not crucial for our analysis.
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in which αk is the total cost of information. For any α = 2, . . . ,m − 1, the benefit of conducting

an additional search step under DirSD is given by A(α)− A(α− 1), where

A(α) ≡

γ̂(α)
∑

θ=1

QθV θ (α) +

γ̂(α)+m−α−1
∑

θ=γ̂(α)+1

QθV (0) +
m∑

θ=γ̂(α)+m−α

QθV θ−m+α+1 (α) ,

and thus

A(α− 1) =

γ̂(α−1)
∑

θ=1

QθV θ (α− 1) +

γ̂(α−1)+m−α
∑

θ=γ̂(α−1)+1

QθV (0) +
m∑

θ=γ̂(α−1)+m−α+1

QθV θ−m+α (α− 1) .

Recall that γ̂ (α) is the threshold at which V γ (α) > V (0) for all γ ≤ γ̂ (α) and V γ (α) ≤ V (0)

otherwise. From Lemma 2, we know that V γ (α) > V γ (α− 1), ∀γ, therefore we have γ̂ (α− 1) ≤

γ̂ (α).

First, when γ̂ (α− 1) = γ̂ (α),

A(α)− A(α− 1)

=

γ̂(α)
∑

θ=1

Qθ



V θ (α)− V θ (α− 1)
︸ ︷︷ ︸

>0



+

γ̂(α)+m−α−1
∑

θ=γ̂(α)+1

Qθ



V (0)− V (0)
︸ ︷︷ ︸

=0





+Qγ̂(α)+m−α



V γ̂(α)+1 (α)− V (0)
︸ ︷︷ ︸

≤0



+
m∑

θ=γ̂(α)+m−α+1

Qθ



V θ−m+α+1 (α)− V θ−m+α (α− 1)
︸ ︷︷ ︸

<0



 .

In the above equation,
[
V θ (α)− V θ (α− 1)

]
is positive according to Lemma 2, the second term is

zero,
[
V γ̂(α)+1 (α)− V (0)

]
is non-positive according to the definition of γ̂ (α), and [V θ−m+α+1 (α)−

V θ−m+α (α− 1)] is negative according to Lemma 3. Since for any α the total expected value of all

universities is a constant equal to
∑m

j=1 u
j, we have

γ̂(α)
∑

θ=1

[
V θ (α)− V θ (α− 1)

]

=−







[
V γ̂(α)+1 (α)− V (0)

]
+

m∑

θ=γ̂(α)+m−α+1

[
V θ−m+α+1 (α)− V θ−m+α (α− 1)

]






.
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Because Qθ weakly increases as θ decreases, the positive term outweighs the negative, that is,

γ̂(α)
∑

θ=1

Qθ
[
V θ (α)− V θ (α− 1)

]

≥−






Qγ̂(α)+m−α

[
V γ̂(α)+1 (α)− V (0)

]
+

m∑

θ=γ̂(α)+m−α+1

Qθ
[
V θ−m+α+1 (α)− V θ−m+α (α− 1)

]






.

Therefore, we can conclude that A(α) ≥ A(α− 1) for any α = 2, . . . ,m− 1.

Next, when γ̂ (α− 1) < γ̂ (α),

A(α)− A(α− 1)

=

γ̂(α−1)
∑

θ=1

Qθ



V θ (α)− V θ (α− 1)
︸ ︷︷ ︸

>0



+

γ̂(α)
∑

θ=γ̂(α−1)+1

Qθ



V θ (α)− V (0)
︸ ︷︷ ︸

>0



+

γ̂(α−1)+m−α
∑

θ=γ̂(α)+1

Qθ



V (0)− V (0)
︸ ︷︷ ︸

=0





+

γ̂(α)+m−α−1
∑

θ=γ̂(α−1)+m−α+1

Qθ



V (0)− V θ−m+α (α− 1)
︸ ︷︷ ︸

≥0



+
m∑

θ=γ̂(α)+m−α

Qθ



V θ−m+α+1 (α)− V θ−m+α (α− 1)
︸ ︷︷ ︸

<0



 .

In the above equation,
[
V θ (α)− V θ (α− 1)

]
is positive according to Lemma 2,

[
V θ (α)− V (0)

]

is positive according to the definition of γ̂ (α), the third term is zero,
[
V (0)− V θ−m+α (α− 1)

]

is non-negative according to the definition of γ̂ (α− 1), and
[
V θ−m+α+1 (α)− V θ−m+α (α− 1)

]
is

negative according to Lemma 3. Similar to the previous case, since the positive difference equals

the absolute value of the negative difference but has more weight, we can again conclude that

A(α) ≥ A(α− 1) for any α = 2, . . . ,m− 1.

Lastly, when α = 1, we know from Proposition 1 that V 1 (1) > V (0) and V 2 (1) < V (0). Thus,

A(1) = Q1V 1 (1) +
m−1∑

θ=2

QθV (0) +QmV 2 (1)

≥ Q1V (0) +
m−1∑

θ=2

QθV (0) +QmV (0)

= V (0) ≡ A(0)

Again, the inequality is due to the fact that V 1 (1)− V (0) = − [V 2 (1)− V (0)] and Q1 ≥ Qm.

Therefore, we can conclude that A (α) ≥ A (α′) for any α > α′. That is, the marginal benefit

of additional information is non-negative under DirSD.

(2) Under DirSD, the benefit of information is rescaled by the probabilities Qθ’s. Therefore,

depending on the probability distribution of a student’s budget set, the marginal benefit of ad-

ditional information is not necessarily decreasing. Consider our experimental market with one
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tier. There are six universities, and each has two seats. The cardinal utilities of every student are

determined by the experimental payments {u1, u2, u3, u4, u5, u6} = {40, 34, 28, 22, 16, 10}.

For the student ranked first in the exam, {p (1) , p (2) , p (3) , p (4) , p (5) , p (6)} = {0, 0, 0, 0, 0, 1}

and the marginal benefit of each additional step of searching is A(1)−A(0) = 7, A(2)−A(1) = 3.5,

A(3)− A(2) = 2.1, A(4)− A(3) = 1.4, A(5)− A(4) = 1, which is decreasing.

However, for the student ranked tenth in the exam, {p (1) , p (2) , p (3) , p (4) , p (5) , p (6)} ≈

{0, 0.57, 0.43, 0, 0, 0} and the marginal benefit of each additional step of searching is approximately

A(1)−A(0) ≈ 2.84, A(2)−A(1) ≈ 1.42, A(3)−A(2) ≈ 1.87, A(4)−A(3) ≈ 1.25, A(5)−A(4) ≈ 1.14,

which is clearly non-monotonic.

This implies that under DirSD, the optimal information acquisition strategy is not necessar-

ily unique in the general setting. However, we ensure the uniqueness for every student in each

treatment of our experimental design.

A.3 Information acquisition under SeqSD

In this section, we discuss the role of information and students’ information acquisition strategy

under SeqSD.

Proposition 4. Under SeqSD,

(1) the marginal benefit of an additional step of searching among available universities is non-

negative and decreasing;

(2) the optimal stopping point αSeqSD in a student’s search process is characterized as (i)

αSeqSD = 0 if V 1 (1)−V (0) < k; (ii) αSeqSD = 1 if V 1 (1)−V (0) > k and V 1 (2)−V 1 (1) ≤ k; and

(iii) αSeqSD solves
[
V 1
(
αSeqSD

)
− V 1

(
αSeqSD − 1

)]
> k and

[
V 1
(
αSeqSD + 1

)
− V 1

(
αSeqSD

)]
≤ k

otherwise.

Proof. (1) First, we show that the marginal benefit of an additional step of searching is non-

negative.

Under SeqSD, each student, when being considered, is asked to select from all universities that

still have vacant seats, that is, from all universities in her budget set B. Obviously, a student

would not search outside her budget set because the information about unavailable universities

cannot affect her selection. When searching within B, a student who stops at step α and chooses

the optimal strategy of truth-telling under SeqSD, according to Propositions 1, would choose the

university with the highest expected utility. Hence, her expected utility at this point is given by

V 1 (α)− αk, in which αk is the total cost of information.

Suppose that when a student is considered by SeqSD, there is only one university left available,

that is, her budget set includes only one university (|B| = 1). Thus, she obviously has no incentive

to invest in any information and the marginal benefit of additional information is constantly zero.

Suppose a student is asked by SeqSD to choose from multiple universities (|B| > 1). According

to Proposition 2, it is an optimal strategy for her to choose the university with the highest expected
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utility. Then the marginal benefit of conducting the first step of searching is V 1 (1) − V (0) and

the marginal benefit of conducting an additional subsequent search step is given by V 1 (α) −

V 1 (α− 1), α = {2, . . . , |B| − 1}. According to Lemma 2, we know that V 1 (α) > V 1 (α− 1) for

any α = 2, . . . ,m− 1, and we have already shown that V 1 (1) > V (0) in Proposition 1. Therefore,

V 1 (α) > V 1 (α′) for any α > α′ when |B| > 1.

Combining the cases of |B| = 1 and |B| > 1, we can conclude the marginal benefit of additional

information is non-negative under SeqSD.

Next, we consider the change in marginal benefit during a student’s search process under SeqSD.

We only consider a student with |B| > 2 because one with |B| ≤ 2 would not conduct multiple

steps of search. The difference in marginal benefits between an increase from (α− 1) to α and an

increase from α to (α + 1), α = 2, . . . , |B| − 2 is given by

[
V 1 (α)− V 1 (α− 1)

]
−
[
V 1 (α + 1)− V 1 (α)

]

=2V 1 (α)− V 1 (α + 1)− V 1 (α− 1)

=2
m−α∑

j=1

f 1 (j, α) uj −

m−α−1∑

j=1

f 1 (j, α + 1) uj −

m−α+1∑

j=1

f 1 (j, α− 1) uj.

Define χ (j) as the corresponding difference in PMFs:

χ (j) ≡ 2f 1 (j, α)− f 1 (j, α + 1)− f 1 (j, α− 1) .

= 2

(

m− j

α

)

(

m

α + 1

) −

(

m− j

α + 1

)

(

m

α + 2

) −

(

m− j

α− 1

)

(

m

α

) .

We can calculate that χ (m− α + 1) = − 1






m

α







< 0, χ (m− α) = 2 1






m

α + 1







− α






m

α







, and

thus

χ (m− α + 1) + χ (m− α) =
2

(

m

α + 1

) −
α + 1
(

m

α

)

∝ α + 2−m

≤ 0.

Therefore, the difference in CDFs is non-positive when j ≥ m− α. For 1 ≤ j ≤ m− α− 1,

χ (j) ∝ (j − 1) [2 (m+ 1)− (α + 2) j] .
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We can see that χ (j) < 0 if 2(m+1)
α+2

< j ≤ m−α− 1 and χ (j) ≥ 0 if 1 ≤ j ≤ 2(m+1)
α+2

. According to

Lemma 1, the difference in CDFs are non-positive at any j, which indicates first-order stochastic

dominance. Hence, we conclude that [V 1 (α)− V 1 (α− 1)] > [V 1 (α + 1)− V 1 (α)] for any α =

2, . . . , |B| − 2.

When α = 1, the difference in marginal benefits between an increase from (α− 1) to α and an

increase from α to (α + 1) is given by

[
V 1 (1)− V (0)

]
−
[
V 1 (2)− V 1 (1)

]

=2
m−1∑

j=1

f 1 (j, 1) uj −

m−2∑

j=1

f 1 (j, 2) uj −
1

m

m∑

j=1

uj

Define χ1 (j) as the corresponding difference in PMFs:

χ1 (j) ≡ 2f 1 (j, 1)− f 1 (j, 2)−
1

m

= 2
m− j
(

m

2

) −

(

m− j

2

)

(

m

3

) −
1

m

When j ≤ m− 2,

χ1 (j) =
(j − 1) (2 (m+ 1)− 3j)

m (m− 1) (m− 2)
.

Therefore, χ1 (j) < 0 when 2(m+1)
3

< j ≤ m− 2, and χ1 (j) ≥ 0 when 1 ≤ j ≤ 2(m+1)
3

. We can also

calculate that χ1 (m) = − 1
m

< 0 and χ1 (m− 1) = 4
m(m−1)

− 1
m

. When m > 4, χ1 (m− 1) ≤ 0 and

thus χ1 (j) ≤ 0 for 2(m+1)
3

< j ≤ m and χ1 (j) ≥ 0 for 1 ≤ j ≤ 2(m+1)
3

. According to Lemma 1,

the difference in CDFs is non-positive at any j, which indicates first-order stochastic dominance

and thus [V 1 (1)− V (0)] > [V 1 (2)− V 1 (1)]. When m = 3, we know V (0) = 1
3
(u1 + u2 + u3),

V 1 (1) = 2
3
u1 + 1

3
u2, V 1 (2) = u1, and thus [V 1 (1)− V (0)] > [V 1 (2)− V 1 (1)] as u1 > u2 > u3.

When m = 4, we know V (0) = 1
4
(u1 + u2 + u3 + u4), V 1 (1) = 1

2
u1+ 1

3
u2+ 1

6
u3, V 1 (2) = 3

4
u1+ 1

4
u2,

and thus [V 1 (1)− V (0)] > [V 1 (2)− V 1 (1)] as u1 > u2 > u3 > u4. Therefore, [V 1 (1)− V (0)] >

[V 1 (2)− V 1 (1)] holds for any m > 2.

To sum up, we can conclude that the marginal benefit of information acquisition within one’s

budget set decreases under SeqSD.

(2) Since the marginal benefit of an additional step of searching within B decreases and the

marginal cost is constantly k, it is optimal for a student to adopt another step of searching as long

as the marginal benefit exceeds the marginal cost, and stop searching otherwise. Specifically, the

optimal stopping point αSeqSD in the search process is characterized as

(i) αSeqSD = 0 if V 1 (1)− V (0) < k;
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(ii) αSeqSD = 1 if V 1 (1)− V (0) > k and V 1 (2)− V 1 (1) ≤ k; and

(iii) αSeqSD solves
[
V 1
(
αSeqSD

)
− V 1

(
αSeqSD − 1

)]
> k and

[
V 1
(
αSeqSD + 1

)
− V 1

(
αSeqSD

)]
≤

k otherwise.

Due to the discreteness of the problem, under some parameters a student may be indifferent

between two optimal stopping points if the marginal benefit of the last step of searching equals

k; here we assume the student chooses the smaller one. Otherwise the optimal stopping point is

unique.

A.4 Proof of Theorem 1

Proof. First, we derive a student’s optimization problems under DirSD and SeqSD.

From the analysis in Appendix A.2, we know that a student who stops searching at step α and

chooses the optimal strategy of truth-telling under DirSD has the following expected utility

uDirSD (α) =

γ̂(α)
∑

θ=1

QθV θ (α) +

γ̂(α)+m−α−1
∑

θ=γ̂(α)+1

QθV (0) +
m∑

θ=γ̂(α)+m−α

QθV θ−m+α+1 (α)− αk,

while her expected utility without any information acquisition is uDirSD (0) = V (0) . Thus, a

student’s optimization problem under DirSD is given by

UDirSD = max
α={0,1,...,m−1}

uDirSD (α) .

Recall from Appendix A.2 that given the probability distribution of the number of universities

in a student’s budget set, {p (β)}β=1,2,...,m, the probability that she is accepted by the θth ranked

university in ≻̂ is given by

Qθ =
m−θ+1∑

β=1

(

m− θ

β − 1

)

(

m

β

) p (β) .

To simplify the notation, we define

λθ ≡

(

m− θ

β − 1

)

(

m

β

)

and thus Qθ =
∑m−θ+1

β=1 λθp (β) .

Under SeqSD, each student, when being considered, is asked to choose a university from all

universities that still have vacant seats, that is, from all universities in her budget set B. Although

students can start searching before being considered by SeqSD and observing the realization of
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B, it is clearly a suboptimal strategy as any search outside the budget set is wasteful. Therefore,

we focus on information acquisition within B when the student is considered by SeqSD. From the

analysis in Appendix A.2, we know that a student who stops searching at step α and chooses the

optimal strategy of truth-telling under SeqSD has the expected utility (V 1 (α)− αk). Thus, the

student’s optimization problem after observing her budget set is given by

max
α={0,1,...,β−1}

(
V 1 (α)− αk

)
,

where β is the number of universities in B. With Assumption 1, before observing the realization

B, the student’s ex-ante belief about her budget set is given by {p (β)}β=1,2,...,m. When a student’s

budget set contains β universities, define her maximized expected utility as

uSeqSD (β) ≡ max
α={0,1,...,β−1}

(
V 1 (α)− αk

)
.

Thus, the student’s expected utility under SeqSD is

USeqSD =
m∑

β=1

p (β) uSeqSD (β) .

Next, we compare DirSD and SeqSD in terms of student welfare. We can derive that

UDirSD

= max
α={0,1,...,m−1}

uDirSD (α)

= max
α={0,1,...,m−1}

γ̂(α)
∑

θ=1

QθV θ (α) +

γ̂(α)+m−α−1
∑

θ=γ̂(α)+1

QθV (0) +
m∑

θ=γ̂(α)+m−α

QθV θ−m+α+1 (α)− αk

= max
α={0,1,...,m−1}

γ̂(α)
∑

θ=1

[
m−θ+1∑

β=1

λθp (β)

]

V θ (α) +

γ̂(α)+m−α−1
∑

θ=γ̂(α)+1

[
m−θ+1∑

β=1

λθp (β)

]

V (0)

+
m∑

θ=γ̂(α)+m−α

[
m−θ+1∑

β=1

λθp (β)

]

V θ−m+α+1 (α)− αk

= max
α={0,1,...,m−1}

m∑

β=1

p (β)





γ̂(α)
∑

θ=1

λθV θ (α) +

γ̂(α)+m−α−1
∑

θ=γ̂(α)+1

λθV (0) +
m∑

θ=γ̂(α)+m−α

λθV θ−m+α+1 (α)



− αk

≤
m∑

β=1

p (β) max
α={0,1,...,m−1}





γ̂(α)
∑

θ=1

λθV θ (α) +

γ̂(α)+m−α−1
∑

θ=γ̂(α)+1

λθV (0) +
m∑

θ=γ̂(α)+m−α

λθV θ−m+α+1 (α)− αk



 ,

in which we first exchange the order of the double sums and then use Jensen’s inequality in the
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last step.31

Define

Z(α) ≡

γ̂(α)
∑

θ=1

λθV θ (α) +

γ̂(α)+m−α−1
∑

θ=γ̂(α)+1

λθV (0) +
m∑

θ=γ̂(α)+m−α

λθV θ−m+α+1 (α) ,

and thus the optimization problem under DirSD can be written as

max
α={0,1,...,m−1}

[Z(α)− αk] .

If the above problem has a unique solution, denote it as αDirSD. Otherwise, let αDirSD be the

lowest optimal level of searching under DirSD.

For a given β, if αDirSD ≤ β − 1,

max
α={0,1,...,m−1}

[Z(α)− αk] = max
α={0,1,...,β−1}

[Z(α)− αk] (1)

≤ max
α={0,1,...,β−1}

[
V 1 (α)− αk

]
(2)

=uSeqSD (β) . (3)

In the above derivation, (1) is due to αDirSD ≤ β − 1, (2) uses the facts that V 1 (α) > V (0) and

V 1 (α) > V γ (α), ∀γ > 1, ∀α, which we have shown in Proposition 1, and (3) uses the definition

of uSeqSD (β).

If αDirSD > β − 1,

max
α={0,1,...,m−1}

[Z(α)− αk] =Z
(
αDirSD

)
− αDirSDk (4)

≤Z(m− 1)− αDirSDk (5)

=
m∑

θ=1

λθuθ − αDirSDk (6)

=V 1 (β − 1)− αDirSDk (7)

<V 1 (β − 1)− (β − 1)k (8)

≤ max
α={0,1,...,β−1}

(
V 1 (α)− αk

)
(9)

=uSeqSD (β) . (10)

In the above derivation, (5) uses the fact that Z (α) > Z (α′) for any α > α′. We can prove this

using the proof of A (α) ≥ A (α′) for any α > α′ in Proposition 3. The function Z (·) is only

different from A (·) in that the probability is given by λθ instead of Qθ. Because the proof of

31Note that λθ = 0 for θ > m− β + 1.
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A (α) ≥ A (α′) only requires the probability to be weakly decreasing in θ, which is the case for

λθ, we can conclude that Z (α) > Z (α′) for any α > α′, and thus Z
(
αDirSD

)
≤ Z(m− 1) as

αDirSD ≤ m− 1. As for the rest of the derivation, (6) and (7) show that Z(m− 1) = V 1 (β − 1),

(8) is due to αDirSD > β − 1, and (10) uses the definition of uSeqSD (β).

Now we have shown that maxα={0,1,...,m−1} [Z(α)− αk] ≤ uSeqSD (β) given any β. Therefore,

UDirSD ≤

m∑

β=1

p (β) max
α={0,1,...,m−1}

[Z(α)− αk]

≤

m∑

β=1

p (β) uSeqSD (β)

= USeqSD.

Hence, we can conclude that a student with any probability distribution for her budget set is

weakly better off under the sequential serial dictatorship mechanism than under the direct serial

dictatorship mechanism.

A.5 Tiered priors

In this appendix, we consider the following prior structure. Universities belong to different “tiers,”

ranked from better to worse. All students have the same between-tier preference: they all prefer

any university in a better tier to any university in a worse tier. However, students may have

different within-tier preferences: each student’s preference over universities in the same tier follows

a uniform distribution, that is, it is equally likely to be any linear order over these universities.

Formally, let {Tt}t=1,2,...,τ be a partition of the set of universities C. For any c ∈ Tt, c′ ∈ Tt′ ,

and i ∈ I, we have c ≻i c′ if t < t′. That is, all students prefer any university in T1 to any

university in T2, prefer any university in T2 to any university in T3, and so on. This between-tier

preference is common knowledge to the entire market. Via costly information acquisition, a student

can learn more about the realization of her own within-tier preferences, but not the realization

of other students’ within-tier preferences. That is, the information acquired by each student is

her private information. Unlike the uniform priors introduced in Section 2.3, this prior structure

allows for both a common and a private factor in students’ preferences. For example, in many

real-life university admission markets, there is usually a common consensus or a clear definition as

to which universities belong to the top tier, to the second tier, and so on. But students’ tastes over

universities in the same tier may vary depending on the location, family culture, personal taste,

etc.

Each student can acquire further information about her own within-tier preferences for zero,

one, or multiple tiers. The search in each tier follows the same technology as described in Section

2.3. A student starts by choosing any two universities from this tier and learns their relative
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ordering. In each of the subsequent steps, she chooses one more university from the same tier to

learn the relative ordering of all the universities she has chosen. Students can stop at any step

in the process. With a cost of (|Tt| − 1) k, the student can fully discover her preferences over

universities in Tt. With a total cost of
∑τ

t=1 (|Tt| − 1) k, the student can obtain full knowledge of

her own preferences.

A.5.1 Preference submission

The optimality of truth-telling strategies under DirSD or SeqSD does not depend on the prior struc-

ture. Therefore, Proposition 2 still holds with tiered priors. With aligned between-tier preferences,

we can further characterize the truth-telling strategies under the two mechanisms.

Proposition 5. In a market with tiered priors, a student who adopts the truth-telling strategies,

regardless of her knowledge about her within-tier preferences, would always:

(i) rank any university in a better tier above any university in a worse tier in her submitted

rank-order list under DirSD, and

(ii) choose a university in the best tier among those available to her under SeqSD.

We use qTt
to denote the total capacity of all universities in Tt, that is, qTt

=
∑

j qj for all

j such that cj ∈ Tt. From the strategies characterized above, we know that in equilibria with

truth-telling strategies under both mechanisms, students with the exam rank r ≤ qT1
are admitted

to universities in T1, students with qT1
≤ r ≤ qT1

+ qT2
are admitted to universities in T2, and so

on. In general, students with
∑t−1

t̃=1 qTt̃
≤ r ≤

∑t

t̃=1 qTt̃
are admitted to universities in Tt.

A.5.2 Information acquisition and welfare comparison

Proposition 5 implies that we can also categorize students by tiers: we say those with
∑t−1

t̃=1 qTt̃
≤

r ≤
∑t

t̃=1 qTt̃
are “tier-t students” since they would be admitted to a tier-t university under DirSD

and SeqSD as long as all students adopt truth-telling strategies. For a tier-t student, universities

in a better tier Tt′(t′ < t) are definitely not in her budget set. On the other hand, although

universities in a worse tier Tt′(t′ > t) are certainly available to the student, she can always secure

a seat at a tier-t university by adopting the truth-telling strategy. This means a tier-t student

only needs to consider universities in Tt when choosing strategies; universities in other tiers are

essentially irrelevant for her decision-making. Therefore, for any given t = 1, 2, . . . , τ , we can

consider all the tier-t universities and tier-t students as an independent market, and this market is

identical to the market with uniform priors. We summarize the conclusion regarding information

acquisition in the following proposition.

Proposition 6. In a market with tiered priors,

(i) a tier-t student only searches among tier-t universities if she chooses to acquire information;

and
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(ii) her search strategy among tier-t universities is the same as that in a uniform-prior market

with only tier-t universities.

Because with tiered priors each tier can be treated as a separate market, we can apply Theorem

1 and Corollary 1 and conclude the following.

Theorem 2. In the case of tiered priors, a student is always weakly better off under SeqSD than

under DirSD.

Corollary 2. In the case of tiered priors, a student is always weakly better off under SeqSD than

under DirSD, even when students are provided with noisy information about their budget sets (for

instance historical cutoffs) under DirSD.

Therefore, the advantage of SeqSD in student welfare persists in environments with tiered

priors.

B Additional experimental results

B.1 Details on individual search strategies

We consider each environment separately, since optimal search strategies differ greatly depending

on search costs and whether the preferences are tiered.32 Figure 4 presents the average cost of

information acquisition by treatments when the cost is low at $0.5.

The left panel of Figure 4 presents optimal and actual search strategies for the two-tier environment.

In DirSD under low information costs, the optimal search strategy for all subjects (except for

subjects ranked sixth and 12th) is to invest $1 to obtain full certainty about their own preferences

in the respective tier. Note that subjects with score ranks 1-5 should only consider the universities

in tier A while subjects with score ranks 7-11 should only consider universities in tier B. On

average, we observe that subjects search too little, except for rank 7 subjects who, on average,

over-search by investing in information about universities in both tiers. The excessive search

by rank 7 subjects may be driven by optimism that some of the subjects ranked 1 to 6 will be

assigned to a tier B university, due to suboptimal preference submission.33 In Cutoff, the behavior

is similar to DirSD (p-value for the test of difference is 0.32). Thus, the cutoff provision does

not have a significant effect on search strategies in the two-tier markets with low costs. On the

one hand, the cutoffs are informative due to the full uncertainty resolution in the equilibrium of

DirSD. On the other hand, the benefit of relying on cutoff information is relatively small, as the

total cost of optimal information acquisition is just $1. Thus, subjects might not risk saving $1

32As explained in Section 3.5, we do not derive point predictions for optimal search strategies in the Cutoff
treatment.

33In total, a rank 7 participant had the potential choice between universities in the top tier due to suboptimal
strategies of higher-ranked participants in only 1 out of 48 rounds of DirSD.
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Figure 4: Average costs of information acquisition with low costs by treatments

by relying on cutoff information. As for subjects with ranks 6 and 12, they should not invest in

information at all, as they both get the only free seat of the corresponding tier in equilibrium.

However, we observe a high degree of over-search by these subjects. 34 As for SeqSD, the actual

search behavior of subjects is, on average, remarkably in line with the theoretical predictions. The

actual search costs are significantly lower than in DirSD and Cutoff (the p-value for the test of

difference is <0.01 for both comparisons). Thus, the optimal search strategy in SeqSD is more

straightforward for subjects than in DirSD. This is not surprising, as the optimal strategy consists

of full investment in resolving uncertainty about one’s available universities, and the only deviation

could be under-search or searching before the allocation procedure started–that is, before one learns

which universities are available to her.

The right panel of Figure 4 presents the predictions and actual search strategies for the one-tier

environment with low costs. In DirSD, the optimal search strategy for all subjects (except rank

12 subjects) is to invest $2.5 to obtain full certainty about their preferences. We observe that

rank 1 to 11 subjects search too little, which is even more pronounced for subjects with ranks 6

to 11 than for subjects with ranks 1 to 5. Note that the relative benefit of search decreases with

the rank, thus it can be partially driven by the risk aversion of subjects. Another possibility is

that subjects perceive the preferences as correlated, and thus overestimate the chances that the

most-preferred universities will be assigned to the higher-ranked subjects. In Cutoff, the actual

search costs are significantly lower than in DirSD for ranks 1 to 10 (p-value for the test of difference

is <0.01 for these ranks, and for all ranks). Again, cutoffs are informative due to full uncertainty

34Note that in our experimental setup all students had to submit the full rank-order list of universities in DirSD
and Cutoff, or had to choose one university in SeqSD, thus making it impossible to remain unassigned. Therefore,
not searching is an optimal strategy for rank 12 students.
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Figure 5: Average costs of information acquisition with high costs by treatments

resolution in the equilibrium of DirSD. In the two-tier environment, the potential benefit of relying

on cutoffs for subjects is only $1. In the one-tier environment, the optimal information cost is $2.5

and the potential benefit of cutoffs from the perspective of saving search costs is higher. As for

rank 12 subjects, they should not invest in information at all, but they invest on average $1.08 in

DirSD and $0.98 in Cutoff. This violates the optimal strategy of not searching. As for SeqSD, the

actual search behavior of subjects is remarkably in line with the theoretical predictions on average.

The most substantial deviation is under-search of the subjects ranked 1 to 5. Again, the optimal

strategy in SeqSD consists of obtaining full certainty about the ranking of all available universities,

and the only deviation could be under-search or search before the allocation procedure started.

When the optimal strategy requires an investment of $2.5, and thus five steps of search, subjects

often stop after four steps of search, thus underestimating the probability of the last university

being preferred to the other five universities. This under-search in SeqSD is similar to the under-

search of rank 1 to 3 subjects in DirSD. Overall, the actual search costs in SeqSD are significantly

lower than in DirSD, but not significantly different from Cutoff (p-value for the test of difference

is <0.01 and equal to 0.79 respectively).

Figure 3 presents the average cost of information acquisition by treatments when the cost is

high at $2.3. The left panel of Figure 5 presents predictions and actual search strategies for the

two-tier environment. First, in DirSD the optimal search strategy for rank 1 to 4 and 7 to 10

subjects is to invest $2.3 in resolving uncertainty about the relative ranking of any two universities

in the respective tier. Thus, in the high-cost treatments subjects never obtain full certainty about

theuniversity rankings. Students ranked 5, 6, 11, and 12 should not invest in search at all. Unlike

in treatments with low costs, we observe significant over-search in DirSD for all ranks. This
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finding is in line with previous experimental findings on information acquisition (see Chen and

He, 2018 for school choice, Bhattacharya et al., 2017 for voting, and Gretschko and Rajko, 2015

for auctions). In Cutoff, the actual search costs are lower than in DirSD (p-value<0.01) with the

highest difference for the lower-ranked students. Unlike the two-tier low-cost environment when

the potential benefit of relying on cutoffs saves subjects only up to $1, in the two-tier high-cost

environment the optimal information cost is $2.3. Thus, the potential benefit of cutoffs for saving

information costs is much higher. Subjects rely on the cutoffs following the higher potential saving

of information costs, but ignore the fact that in the high-cost environments, the cutoffs are less

informative than in the low-cost environments. This is because, in the equilibrium of high-cost

environments, many subjects participate in the mechanism without learning their preferences, and

thus cutoffs carry much less information about the actual preferences of the previous cohort than

in low-cost environments. In SeqSD with high costs, unlike in SeqSD with low costs where the

actual search behavior of subjects is mostly in line with theoretical predictions, we observe a high

degree of over-search for students ranked 1 to 3 and 7 to 9. The over-search for ranks 1 to 3 is

even higher than in DirSD. As for ranks 5, 6, 11, and 12, the behavior is more in line with the

theory than in the other treatments. Overall, in the two-tier high-cost environment, there is no

significant difference in the average actual search costs between SeqSD and DirSD (p=0.12), and

between SeqSD and Cutoff (p=0.16).

Finally, the right panel of Figure 5 presents predicted and actual search strategies for the one-

tier high-cost environment. In DirSD, the optimal search strategy for rank 1 to 4 subjects is to

invest $4.6 in resolving the uncertainty about the ranking of any three universities. Similar to the

two-tier environment with high costs, students ranked 1 to 4 over-search relative to the optimal

strategy. Ranks 5 to 7 have an optimal strategy of investing $6.9 to resolve uncertainty about

the ranking of four out of six universities. Note that this is the only case where the lower-ranked

subjects search more in theory than the higher-ranked subjects. This pattern, however, finds no

support in the data, as the students ranked 5 to 7 search less than students ranked 1 to 4. As for

ranks 8 to 12, they all invest on average around $4 in information acquisition, despite an optimum

of $2.3 for ranks 9 and 10 and an optimum of $0 for ranks 11 and 12. In Cutoff, the actual search

costs are lower than in DirSD (p<0.01), with larger differences for the higher-ranked students.

Just as in the two-tier environment with high costs, subjects rely on the cutoffs leading to lower

information costs than in DirSD. Yet again, they ignore the fact that in the high-cost environments,

the cutoffs are less informative about the preferences of the previous cohort than in the low-cost

environments, as many submissions of the previous cohort are made without resolving preference

uncertainty. Note, however, that in both high-cost environments, in DirSD subjects over-invest

in information relative to the optimal strategy. Thus, the cutoffs are more informative than in

equilibrium. As for SeqSD, we observe a high degree of over-search for students ranked 1 to 6. As

for ranks 7 to 12, the behavior is more in line with the theory than in the other treatments. Overall,

in the one-tier high-cost environment, the average actual search costs in SeqSD are significantly
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higher than in Cutoff (p<0.01), and not significantly different from DirSD (p=0.52).

B.2 Order effects

Total Total Number Number Optimal Optimal

payoff payoff of searches of searches strategy strategy

Order -0.00 -0.00 0.06 0.06 0.00 0.00

(0.41) (0.29) (0.10) (0.07) (0.06) (0.02)

SeqSD 2.05*** -0.38*** 0.26***

(0.36) (0.07) (0.02)

Cutoff 0.90** -0.47*** -0.14***

(0.43) (0.10) (0.02)

Tiers -3.17*** -1.19*** 0.09***

(0.49) (0.12) (0.03)

Cost of search -2.34*** -0.44*** -0.03***

(0.12) (0.03) (0.01)

Period 0.07 0.04 0.01

(0.10) (0.03) (0.01)

Observations 3384 3384 3384 3384 3384 3384

R 0.00 0.09 0.00 0.22 0.00 0.16

Note: Results of OLS regressions with clustering of standard errors on the level of matching groups. Order is a
dummy variable equal to 0 when Low cost preceded High cost, and equal to 1 when High cost preceded Low cost.
SeqSD is a dummy for treatment SeqSD, Cutoff is a dummy for treatment Cutoff. Tier is equal to 1 in One-tier
environments and equal to 2 in Two-tier environments. * p < 0.1, ** p < 0.05, ***, p < 0.01.

Table 6: Order effects
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