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2 Summary

This thesis comprises three self-contained chapters, which are all related to either credit or market risk.

Chapter one discusses a new likelihood ratio test for evaluating Value-at-Risk (VaR) forecasts. We provide closed

form expressions for the tests as well as asymptotic theory. Not only do the generalized tests have power against k’th

order dependence by definition, but also included simulations indicate improved power performance over existing tests.

The chapter is forthcoming in the Journal of Forecasting.

Chapter two discusses how to best forecast VaR of a portfolio. In particular one faces a number of choices in how to

construct a model; univariate or multivariate models, interday or intraday based data and distributional alternatives.

We consider a portfolio of 44 major US stocks from the S&P 500 index and compare forecasts using both recently

developed backtests and the model confidence set approach. We also consider the square-root-of-time scaling rule for

a 10 day period as suggested in the Basel accords.

Chapter three discusses an observation driven, conditionally beta distributed model. The model includes both

explanatory variables and autoregressive dependence in the mean and precision parameters using the mean-precision

parametrization of the beta distribution suggested by Ferrari et al. (2004). Our model is a generalization of the

βARMA model proposed in Rocha et al. (2009). We also highlight some errors in their derivations of the score and

information, which has implications for the asymptotic theory. Included simulations suggest that standard asymptotics

for estimators and test statistics apply. In an empirical application to Moody’s monthly US 12-month issuer default

rates in the period 1972-2015, we revisit the results of Agosto et al. (2016) in examining the conditional independence

hypothesis of Lando et al. (2010).



3 Summary in Danish

Denne afhandling indeholder tre selvtændige kapitler som alle er relaterede til enten kredit eller markeds risiko.

Kapitel et diskuttere nye likelihood ratio tests til evaluering af Value-at-Risk (VaR) forecasts. Vi giver lukkede form

udtryk for testene samt asymptotisk teori. De nye tests har styrke mod k’te ordens afhængighed per definition, mens

inkluderede simulationer antyder forbedret styrke i forhold til eksisterende tests. Kapitlet bliver udgivet i Journal of

Forecasting.

Kapitel to diskutere hvordan man bedst kan forecaste VaR for en stor portefølje af aktier. Specifikt skal man træffe

valg angående hvordan en model for risiko skal opbygges: Univariat eller multivariat, interday eller intraday baseret

data og antagelser vedr. fordeling. I en empirisk applikation benytter vi en portefølge af 44 amerikanske aktier fra

S&P 500 indekset hvor vi sammenligner en række metoders forecasting ved brug af både nyligt udviklede backtests

samt model confidence set metoden. Vi diskutere også square-root-of-time skalerings reglen for en 10 dages periode

som foreslås i Basel reglerne.

Kapitel tre diskutere en observations drevet, betinget beta fordelt model. Modellen inkludere både forklarende

variable og autoregressiv afhængighed i middelværdien samt præcisions parametrene. Vores model er en generalisering

af βARMA modellen foreslået i Rocha et al. (2009). Vi viser nogle fejl i deres udledninger af scoren og informationen

som har implikationer for den asymptotiske teori. Inkluderede simulationer antyder at standard asymptotik gælder. I

en empirisk applikation på Moody’s amerikanske 12 måneders default rate i perioden 1972-2015 replikere vi resultaterne

fra Agosto et al. (2016) hvor vi undersøger hypotesen om betinget uafhængighed fremsat i Lando et al. (2010).
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Backtesting Value-at-Risk: A Generalized Markov Test∗†

Thor Pajhede‡

January 31, 2017

Abstract

Testing the validity of Value-at-Risk (VaR) forecasts, or backtesting, is an integral part of modern market

risk management and regulation. This is often done by applying independence and coverage tests developed

in Christoffersen (1998) to so-called hit-sequences derived from VaR forecasts and realized losses. However,

as pointed out in the literature, see Christoffersen and Pelletier (2004), these aforementioned tests suffer

from low rejection frequencies, or (empirical) power when applied to hit-sequences derived from simulations

matching empirical stylized characteristics of return data. One key observation of the studies is that higher

order dependence in the hit-sequences may cause the observed lower power performance. We propose to gen-

eralize the backtest framework for Value-at-Risk forecasts, by extending the original first order dependence

of Christoffersen (1998) to allow for a higher, or k’th, order dependence. We provide closed form expressions

for the tests as well as asymptotic theory. Not only do the generalized tests have power against k’th order

dependence by definition, but also included simulations indicate improved power performance when replicat-

ing the aforementioned studies. Further, included simulations show much improved size properties of one of

the suggested tests.

Keywords: Value-at-Risk, Backtesting, Markov Chain, Duration, quantile, likelihood ratio, maximum likeli-

hood.

JEL codes: C12, C15, C52, C32.

∗This chapter has been accepted for publication in Journal of Forecasting.
†The author acknowledges support from CREATES - Center for Research in Econometric Analysis of Time Series (DNRF78),

funded by the Danish National Research Foundation. We thank Peter Christoffersen, Anders Rahbek, Heino Bohn Nielsen, Lena

Hasselberg, Oliver Linton and an anonymous referee as well as the participants of the 2016 SOFIE conference for helpful comments.

The Matlab code used to implement the Backtests in this paper as well as several others is free to use, and will be made available

from econ.ku.dk/pajhede/miscellaneous.html.
‡Department of Economics, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark. CREATES,

University of Aarhus. E-mail: thor.nielsen@econ.ku.dk

1

http://www.econ.ku.dk/pajhede/miscellaneous.html


1 Introduction

Since its introduction in the 90s Value-at-Risk (VaR), as measured by the p’th quantile of a forecasted distribution

of losses, has become widely used when reporting aggregate market risk. This again has prompted a rich literature

on validation of VaR forecasts, so-called backtesting, as is often applied empirically by regulatory authorities,

academics and financial institutions. See Campbell (2007) for a review of the backtesting procedures and an

economic motivation for the backtesting criteria.

The leading reference on backtesting is Christoffersen (1998), wherein the evaluation of accurate VaR forecasts

was first formalized. Specifically it was shown that the occurrences of losses beyond a specified VaR level, termed

violations or hits, should occur independently and with a constant probability matching the p’th quantile. Based

on this, the widely applied conditional coverage and independence tests were proposed. However, as documented

in Christoffersen and Pelletier (2004) and Berkowitz et al. (2011) the tests have low empirical power in simulation

studies matching empirical stylized facts of returns data.

To address this we propose to derive tests in a more general setting than the original framework of Christof-

fersen (1998). Specifically, we propose tests within a general backtest framework extending the underlying

Markovian model of Christoffersen (1998) to allow for higher, or k’th, order dependence. Within the quite

general k’th order dependence model, we consider two structures, or specifications: one which we label as the

generalized Markov specification, and the other as the generalized Markov duration specification. Preceding

the details given in Section 2.2, the generalized Markov specification can be viewed as similar to the extension

of autoregressive models from order one to order k when testing for white noise, while the Markov duration

specification mimic duration modeling approaches to backtesting of Christoffersen and Pelletier (2004), Haas

(2006) and Pelletier and Wei (2015).

We provide asymptotic theory and closed form expressions for the implied tests for conditional coverage and

independence within these generalized specifications. Moreover, simulations illustrate that the new generalized

tests solve some of the leading issues with regards to low empirical power.

Note in this respect, that by definition the proposed tests will have power against higher order dependence,

and in particular so when compared to the tests derived in the Markovian framework. That the tests seem to

perform well in empirically stylized simulations is additional reason to prefer these.

The rest of the paper is organized as follows. Section 2 sets out the backtesting criteria i.e. Unconditional

Coverage, Independence, and Conditional Coverage. Subsection 2.1 reviews the popular classic Markov backtests

due to Christoffersen (1998) and Kupiec (1995). Subsection 2.2 introduces our new framework. We consider

two specifications from this framework, the generalized Markov and the Markov duration specifications. From

them we derive tests of unconditional coverage, independence and conditional coverage. Section 3 examines the

power and size properties of the various tests using a simulation framework. Section 4 concludes.
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2 Hit-sequence Based Backtesting

Let Rt denote the realization of a return of an asset or a portfolio of assets at time t. The ex ante VaR for

time t and coverage rate p, denoted as VaRt|t−1(p), conditional on all information, Ft−1, available at time

t− 1 (for example past returns and macroeconomic indicators) is defined as the p’th conditional quantile of the

distribution of Rt:

P (Rt < VaRt|t−1(p)|Ft−1) = p, t = 1, ..., T.

Typically the coverage rate used is 1% or 5%. Several parametric (for example GARCH models) and non-

parametric (for example Historical Simulation) methods are used to forecast VaRt|t−1(p), see McNeil et al.

(2005).

Backtesting is the procedure of comparing realized losses to the forecasted VaR. To implement backtesting

of a VaR forecast, we follow Christoffersen (1998) in defining the hit-sequence, {It}Tt=1, as follows:

Definition 1. The hit-sequence, {It}Tt=1, for a sequence of VaR forecast,
{
VaRt|t−1(p)

}T
t=1, is defined as,

It ..= 1
(
Rt < VaRt|t−1(p)

)
, t = 1, ...T (2.1)

Where 1(·) is the indicator function. Thus, the hit-sequence is by construction a binary time series indicating

whether a loss at time t greater than the VaR, termed a violation or a hit, was realized.

A VaR forecast is valid, in the sense of actually having forecasted the desired quantile, only if the associated

hit-sequence satisfies the following criteria due to Christoffersen (1998):

• The unconditional coverage criteria: The unconditional probability of a violation must be exactly

equal to the coverage rate p:

HUC : P (It = 1) = p

• The independence criteria: The conditional probability of a violation must be constant:

HInd : P (It = 1|Ft−1) = P (It = 1)

Combining these criteria we obtain the conditional coverage criteria:

• The conditional coverage criteria: The probability of a violation must be constant and equal to the

coverage rate:

HCC : P (It = 1|Ft−1) = P (It = 1) = p

It follows, see Christoffersen (1998), that the hit-sequence of a valid VaR forecast, is in fact a sequence of

i.i.d. Bernoulli distributed variables:
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It ∼
i.i.d.

Bernoulli(p), t = 1, ..., T. (2.2)

The classic Markov framework of Christoffersen (1998) models the hit-sequence of (2.2) as a first order

Markov chain. As detailed in the following subsection 2.1 this allows testing of both the unconditional coverage

and independence criteria using likelihood-ratio tests. Furthermore, these tests have closed form expressions,

standard asymptotics and are easy to implement. However, as previously mentioned in the introduction, the

tests have also been found to suffer from low power when dependence is not Markovian of order one.

In subsection 2.2, we extend the classic Markov framework to allow for higher, or k’th order, dependence.

We detail how our approach preserves all of the aforementioned advantages of the classic Markov testing, but

also have power against more general forms of dependence.

2.1 Classic Markov Testing

The first backtest by Kupiec (1995), models the hit-sequence as an i.i.d. Bernoulli sequence with an unknown

probability parameter π1 ∈]0, 1[, that is:

It ∼
i.i.d.

Bernoulli(π1), t = 1, ..., T (2.3)

The likelihood for the Bernoulli sequence (2.3) is given by LT (π1) = πT1
1 (1 − π1)T0 where T1 =

∑T
t=1 It,

T0 = T − T1 and the maximum likelihood (ML) estimate of π1 is given by π̂1 = T1/T .

From this a likelihood-ratio test of the restrictionHUC : π1 = p, corresponding to the criteria of unconditional

coverage, can be constructed in the usual way. It follows that the likelihood-ratio statistic, under the hypothesis

stated in the parenthesis, for unconditional coverage satisfies, as T →∞,

QUC(π1 = p) = −2log
(
pT1(1− p)T0

π̂T1
1 (1− π̂1)T0

)
d−→ χ2(1). (2.4)

This test is often termed the proportion of failures (PF) test. Because the model from which the test was

derived, see equation (2.3), does not allow for any dependence structure in the hit-sequence it is clear that the

test is unsuited to detect dependence in the hit-sequence.

The need to also test the independence criteria led Christoffersen (1998) to develop the Markov tests of

independence and conditional coverage. To do so it was proposed to model the conditional distribution of It

given It−1, It|It−1 as a first order Markov chain. We write this first order Markov chain as

It|It−1 ∼
i.i.d

Bernoulli(pt(θ)),

with transition probability,
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pt(θ) = It−1π11 + (1− It−1)π01, θ = (π11, π01)′ ∈]0, 1[2.

Here πij is the probability of observing i on day t − 1 being followed by observing j on day t for i, j = 0, 1.

Equivalently this may be expressed in terms of the transition probability matrix given by

Π =

 1− π01 π01

1− π11 π11

 . (2.5)

In terms of Π, independence is implied by the restriction HInd : π01 = π11 while the combined hypothesis of

conditional coverage can be tested by the additional restriction HCC : π01 = π11 = p.

The likelihood for the unrestricted Markov chain {It}Tt=1, with the first observation (I0) fixed, is given by

LT (π01, π11) = (1− π01)T00πT01
01 (1− π11)T10πT11

11 .

Here Tij indicates the number of observations of the hit-sequence where a j follows an i. Noting that T1 =

T11 + T10 and T0 = T01 + T00, the ML estimates are π̂01 = T01/T0, π̂11 = T11/T1. It follows that the likelihood-

ratio test statistic of independence, as T →∞, satisfies,

QInd(π01 = π11) = −2log
(

(1− π̂1)T00 π̂T01
1 (1− π̂1)T10 π̂T11

1

(1− π̂01)T00 π̂T01
01 (1− π̂11)T10 π̂T11

11

)
d−→ χ2(1).

Likewise, the likelihood-ratio test statistic for conditional coverage (the so-called joint test), satisfies,

QCC(π01 = π11 = p) = −2log
(

(1− p)T00pT01(1− p)T10pT11

(1− π̂01)T00 π̂T01
01 (1− π̂11)T10 π̂T11

11

)
d−→ χ2(2).

The tests of Christoffersen (1998) have standard asymptotics, closed form expressions and remain popular

in the applied literature. However, because they only model the hit-sequence as a first order Markov chain the

ability to detect higher order dependence may be limited. Furthermore, simulation studies have shown them to

have a low power in realistic settings. In the following subsection 2.2 we extend the model to allow for higher

order dependence, in order to remedy the shortcomings of the classical framework but still derive tests that are

easy to implement and interpret.
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2.2 Generalized Markov framework

As detailed in the first part of the section, we now extend the classic Markov framework to a k’th order Markov

chain. Specifically, let the Markov chain be given by,

It|Ft−1,k ∼
i.i.d

Bernoulli(pt(θ)), Ft−1,k = It−1, ..., It−k, t = 1, ..., T. (2.6)

The transition probabilities of (2.6) are given by,

pt(θ) = P (It = 1|Ft−1,k), t = 1, ..., T, (2.7)

With θ a 2k vector of the individual parameters, corresponding to the possible permutations of It−1, It−2, ..., It−k.

Equivalently, one could specify a k-tuple Ĩt = (It, ..., It−k+1)′ which would then follow a Markov chain

governed by a 2k × 2k transition matrix P . Since the rows of P must sum to 1 and each state is only accessible

from 2 other states, this implies that each row has two non-zero elements1, which restricts it to the 2k parameters

also found in θ.

The likelihood for this model conditioned on k observations prior to t = 1 fixed, is given by,

LT (θ) =
T∏
t=1

pt(θ)It(1− pt(θ))1−It ,

and the log-likelihood by, LT (θ) =
∑T
t=1 log(pt(θ))It + log(1− pt(θ))(1− It).

The principal motivation was to allow for dependence of order k > 1. However since the number of parameters

increase at the geometric rate of 2k, estimating the model becomes infeasible for larger values of k. In order

to have a feasible number of parameters we therefore impose parametric structures on the model of equation

(2.7). Examples of such structures or restrictions, inspired by the tests of Christoffersen (1998) Christoffersen

and Pelletier (2004) and Haas (2006), are presented in the following subsections 2.2.1 and 2.2.2. The criteria

of independence and conditional coverage impose further restrictions, which are used to create likelihood-ratio

tests. Specifically if the restriction pt(θ) = p holds for all t, then the Markov chain of equation (2.6) reduces to

the i.i.d. Bernoulli sequence of equation (2.2).

There is no clear choice of k. A too low value might not adequately allow for the modeling of higher order

dependence. While a too high k conditions on too many observations making the effective sample size small.

For k = 1 the tests suggested in the following subsections reduce to the tests of Christoffersen (1998) described

in section 2. A natural choice of k is to use 5, 10 or 20, corresponding to testing for a change in the probability

of a hit in the week, two weeks or 1 month following a hit.

As pointed out by an anonymous referee the proposed framework could also be used in a dynamic quantile

type regression estimated by ordinary least squares, see Engle and Manganelli (2004), by use of appropriate

indicator functions. In fact, the proofs of asymptotic distribution for the DQ test remain valid in such a case.
1Intuitively, if k = 1, one can recall that the two permutations of It−1 (either 1 or 0) meant that the classical tests of Christoffersen

(1998) are based on a Markov chain with 2 parameters in θ which are gathered into a 2× 2 transition matrix.
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However, in our framework we will make use of LR test statistics which are known to have good power properties

and for these models yield somewhat simpler test statistics which may be beneficial to some practitioners.

2.2.1 The Generalized Markov Test

In terms of the unrestricted model in (2.6), we first consider the restriction that the probability of a hit at time t,

pt(θ), is a function of only whether or not a hit has occurred in It−1, It−2, ..., It−k. This reduces the parameters

of the model to two, or equivalently,

pt(θ) = Jt−1pE + (1− Jt−1)pS , Jt−1 ..= 1
(

k∑
i=1

It−1 > 0
)
. (2.8)

The bivariate parameter vector θ = (pE , pS)′ belongs to the parameter space Θ =]0, 1[2. Intuitively, this corre-

sponds to an excited (pE) and a steady (pS) probability. Because the restricted model retains the interpretation

of two categories similar to the Markov tests of Christoffersen (1998), we will refer to it as the the generalized

Markov specification.

The likelihood is then given by,

LT (θ) = (1− pS)T00pT01
S (1− pE)T10pT11

E ,

where Tij are the counts; T11 ..=
∑T
t=1 ItJt−1, T01 ..=

∑T
t=1 It(1 − Jt−1), T10 ..=

∑T
t=1(1 − It)Jt−1, T00 ..=∑T

t=1(1− It)(1− Jt−1). That is, T11 (T10) is the number of hits (no hits) observed where one or more hits were

observed in the preceding k observations. T01(T00) is the number of hits (no hits) observed where there was not

observed a hit in the prior k observations.

This leads to the ML estimates (see Appendix A),

p̂S = T01

T01 + T00
and p̂E = T11

T11 + T10
.

It follows that we require T11 + T10 > 0 corresponding to at least 1 hit in the hit-sequence which must occur

before T , to calculate the test. This is the same requirement as for the tests of Christoffersen (1998).

To test the hypothesis of independence, we consider the restriction HInd : pE = pS ..= φ, that is, whether

there is a constant probability of a hit. The restricted parameter space, ΘH , is in this case given by,

ΘH = {θ| θ = Hφ, φ ∈]0, 1[} ,

where H = (1, 1)′, with ML estimate of φ given by (see Appendix A)

φ̂ = T01 + T11

T01 + T11 + T00 + T10
= T1

T
. (2.9)

Defining the unrestricted estimator, the estimator restricted under HInd and the estimator restricted under

7



HCC as

θ̂ ..= argmax
θ∈Θ

LT (θ) = (p̂S , p̂E)′ , θ̃ ..= argmax
θ∈ΘH

LT (θ) = Hφ̂ and θ0 = Hp.

As was the case for the classic Markov tests of the previous section, the likelihood ratio test statistic of indepen-

dence conveniently factorizes, see Appendix A, into tests for conditional coverage and unconditional coverage as

follows (with the hypothesis of each test in parenthesis)

QG−Ind(θ = Hφ) = −2log
(
LT (θ̃)
LT (θ̂)

)
= QG−CC(θ = Hp)−QG−UC(Hφ = Hp)

=
(
−2
[
LT (θ0)− LT (θ̂)

])
−
(
−2
[
LT (θ0)− LT (θ̃)

])
Note the simple relation, QG−CC(θ = Hp) = QG−Ind(θ = Hφ) + QG−UC(Hφ = Hp). This provides a simple

way of analyzing a rejection of CC. If a rejection of conditional coverage is found one can examine if it was due

to dependence, an incorrect coverage or both, using the QG−Ind(θ = Hφ) and QG−UC(Hφ = Hp) tests.

The test statistic of independence has the following expression

QG−Ind(θ = Hφ) = −2log
(
LT (θ̃)
LT (θ̂)

)

= −2{log(1− φ̂)(T00 + T10) + log(φ̂)(T01 + T11)

− log(1− p̂S)T00 − log(p̂S)T01 − log(1− p̂E)T10 − log(p̂E)T11}

(2.10)

The test statistic of conditional coverage has the following expression

QG−CC(θ = Hp) = −2log
(
LT (θ0)
LT (θ̂)

)

= −2{log(1− p)(T00 + T10) + log(p)(T01 + T11)

− log(1− p̂S)T00 − log(p̂S)T01 − log(1− p̂E)T10 − log(p̂E)T11}

(2.11)

The test statistic for unconditional coverage, QG−UC(Hφ = Hp) is by definition simply the proportion of

failures test of section 2, where the first k observations are dropped from the sample.

The distribution of the generalized Markov tests of for independence, conditional coverage and unconditional

coverage are asymptotically χ2(1), χ2(2) and χ2(1). That is, We have the following results:

Theorem 1. For T →∞, and under the null-hypothesis that {It} is an i.i.d. Bernoulli sequence with probability

parameter p,

QG−Ind(θ = Hφ) d−→ χ2(1),

QG−CC(θ = Hp) d−→ χ2(2),

QG−UC(Hφ = Hp) d−→ χ2(1).

For a proof see Appendix A.
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2.2.2 The Markov Duration Test

In terms of the unrestricted model in 2.6, we now consider the restriction that the probability of a hit at time t,

pt(θ), is a function of the number of observations since the last hit (the duration) in the preceding k lags, after

which the probability is a constant. This reduces the parameters of the model to k + 1, or equivalently,

pt(θ) = J(1)t−1pE1 + ...+ J(k)t−1pEk + (1−
k∑
i=1

J(i)t−1)pS , (2.12)

where

J(1)t−1 ..= 1 (It−1 = 1) , ..., J(k)t−1 ..= 1 (It−1 = 0, ..., It−k = 1) .

Specifically this implies pE1 = P (It = 1|It−1 = 1), pEk = P (It = 1|It−1 = 0, ..., It−k = 1) and pS = P (It =

1|It−1 = 0, ..., It−k = 0). Because the restricted model is similar to the underlying models of the duration based

backtests of Christoffersen and Pelletier (2004), Haas (2006) and Pelletier and Wei (2015) we will refer to this

as the Markov duration specification.

The parameter vector θ = (pE1, ..., pEk, pS)′ belongs to the parameter space Θ =]0, 1[k+1. The Markov

duration specification is less restrictive than that of the generalized Markov specification and contains it as

the special case pE1 = ... = pEk. Despite being less restrictive, the specification ensures that the number of

parameters in (2.6) only grows linearly with k.

The likelihood is given by,

LT (θ) = (1− pS)T00pT01
S

k∏
i=1

(1− pEi)T10(i)p
T11(i)
Ei ,

where T10(i) =
∑T
t=i+1(1−It)J(i)t−1 is the number of zeros observed after having observed a hit in It−i, but not

in any It−j where i > j. T11(i) is the number of ones observed after having observed a hit It−i lags previously,

but not in any It−j where i > j.

This leads to the ML estimates (see Appendix B),

p̂S = T01

T01 + T00
and p̂Ei = T11(i)

T11(i) + T10(i) , i = 1, ..., k,

It follows that we require T11(i) + T10(i) > 0, corresponding to at least 1 hit not in the last k observations,

to calculate the test. T01 and T00 are identical to those defined in the previous section.

To test the hypothesis of independence, consider the restriction HInd : pE1 = ... = pEk = pS ..= φ, that is,

whether there is a constant probability of a hit. The restricted parameter space is given by

ΘH = {θ| θ = Hφ, φ ∈]0, 1[} ,

Where H = (1, ..., 1)′ is a k × 1 vector and with ML estimate φ̂ unchanged.

Defining the unrestricted estimator, the estimator restricted under HInd and the estimator restricted under

HCC as
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θ̂ ..= argmax
θ∈Θ

LT (θ) = (p̂S , p̂E1, ..., p̂Ek)′ , θ̃ ..= argmax
θ∈ΘH

LT (θ) = Hφ̂ and θ0 = Hp.

The likelihood ratio test statistic factorizes as into tests of conditional coverage and unconditional coverage as

in the previous subsection (with the hypothesis of each test in parenthesis)

QD−Ind(θ = Hφ) = −2log
(
LT (θ̃)
LT (θ̂)

)
= QD−CC(θ = Hp)−QD−UC(Hφ = Hp)

=
(
−2
[
LT (θ0)− LT (θ̂)

])
−
(
−2
[
LT (θ0)− LT (θ̃)

])
,

We will refer to these tests as the Markov-Duration tests of independence, unconditional coverage and con-

ditional coverage. We again have the relation between the tests that QD−CC(θ = Hp) = QD−Ind(θ =

Hφ) +QD−UC(Hφ = Hp).

Intuitively, QD−Ind(θ = Hφ) tests whether the hazard function can be reduced to a constant and QD−CC(θ =

Hp) tests if that constant is exactly p. They can be viewed as duration tests, with the hazard rate being entirely

free of restrictions except a truncation to a constant beyond the k’th lag.

The test statistic of independence has the following expression

QD−Ind(θ = Hφ) = −2log
(
LT (θ̃)
LT (θ̂)

)
(2.13)

= −2
(
log(1− φ̂)(T00 + T10)× log(φ̂)(T01 + T11)− log(1− p̂S)T00 − log(p̂S)T01

−
k∑
i=1

log(1− p̂Ei)T10(i)−
k∑
i=1

log(p̂Ei)T11(i)
)
.

The test statistic of conditional coverage has the following expression

QD−CC(θ = Hp) = −2log
(
LT (θ0)
LT (θ̂)

)
= −2(log(1− p)(T00 + T10)× log(p)(T01 + T11)− log(1− p̂S)T00 − log(p̂S)T01

−
k∑
i=1

log(1− p̂Ei)T10(i)−
k∑
i=1

log(p̂Ei)T01(i)). (2.14)

Lastly, QD−UC(Hφ = Hp) is simply the proportion of failures test of section 2, where the first k observations

are dropped from the calculations (equivalent to the QG−UC(Hφ = Hp) test statistic).

The distribution of the Markov duration tests of for independence, conditional coverage and unconditional

coverage are asymptotically χ2 distributed. That is, we have the following results:

Theorem 2. For T →∞, and under the null-hypothesis that {It} is an i.i.d. Bernoulli sequence with probability

parameter p,

QD−Ind(θ = Hφ) d−→ χ2(k),

10



QD−CC(θ = Hp) d−→ χ2(k + 1),

QD−UC(Hφ = Hp) d−→ χ2(1).

For a proof see Appendix B.

In section 3.1 we demonstrate in a simulation study that using the asymptotic distributions of Theorems 1

and 2 to calculate p-values can cause a distortion of the size. Instead the Monte Carlo Method of Dufour (2006)

can be used to simulate the exact distribution under the null hypothesis and obtain valid p-values. It is the tests

using the Monte Carlo Method of Dufour (2006) which should be used in practice and it is what is used in our

empirical power simulations found in sections 3.2 and 3.3.

3 Simulation Study of Size and Power

In this section we conduct a simulation study to investigate the empirical size and power properties of the

generalized Markov and duration tests of conditional coverage developed in section 2.2. Further, we evaluate the

empirical rejection frequency (ERF) of the tests using a simulation setup not contained in the general model of

equation (2.6), generating the returns using a GARCH model and forecasting the VaR using historical simulation

(HS). This later simulation is commonly included in papers which develop VaR backtests and we refer to it as

scenario power.

We use k = 1, 5, and 10 lags for each of the conditional coverage tests, see equations (2.11) and (2.14) from

section 2.2, where we note that for k = 1, the generalized Markov and generalized duration tests both reduce

to the original joint test of Christoffersen (1998). We use sample sizes T = 500, 1, 000, 1, 500, 2, 500, 5, 000 and

N = 100, 000 replications for each sample size. For the size simulations we use p = 1%, 5% and 10%, where

the latter is included to illustrate the improved size properties for larger values of p. For the power simulations

we use only p = 1% and 5% reflecting empirically relevant cases. We use a significance level of 5% for all

simulations. In the empirical power and scenario power simulations in subsections 3.2 and 3.3 we use the Monte

Carlo testing technique of Dufour (2006) (see Appendix C) to obtain tests with a size of 5%. Tests which could

not be calculated are treated as not rejecting a well specified forecast since they indicate neither dependence

in, nor an excess number of, violations, the primary concern of backtesting. Typically the feasibility ratio of

backtests is very close to 1 when considering 500 or more observations even when using a low coverage rate,

Table 6 of Berkowitz et al. (2011) presents feasibility ratios for a variety of backtests.

To facilitate comparison with newer backtests we also include the discrete duration backtest for conditional

coverage of Haas (2006), the GMM j-tests of Candelon et al. (2011) with either 3 or 5 moment conditions, the

Ljung-Box test with 5 or 10 lags and lastly the DQ test of Engle and Manganelli (2004).
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3.1 Empirical Size

It is a well established fact of the backtest literature that the use of asymptotic distributions critical values can

create significant size distortions in existing tests, see Christoffersen and Pelletier (2004). To examine the size

distortion of the tests developed in this paper, and to examine when the asymptotic critical values can be used,

we simulate the hit-sequence, {It}Tt=1, under the null hypothesis of Conditional Coverage as an independent

Bernoulli sequence. Recalling equation (2.2), we simulate the hit-sequence, {It}Tt=1, using the data generating

process (DGP):

It ∼
i.i.d

Bernoulli(p), t = 1, ..., T

ERFs of the generalized Markov and generalized duration tests of conditional coverage, when using the

asymptotic distributions critical value are presented in Table 1. From the table it is clear that using the critical

values of the asymptotic distributions can cause size distortion, especially when testing a low p or when using a

small sample. In general most tests, with the exception of the LB and DQ tests, appear to be undersized when

using the low p = 1%. Though the generalized Markov test, of equation (2.11), is only slightly undersized for

k = 5 and T > 1, 000. When the higher p = 5% or 10%, is used, the size properties are generally much improved

for all tests. Especially so for k > 5. The generalized duration test, of equation (2.14), has somewhat varying

size properties. For the low p = 1% it is undersized while for p = 5% or 10% it is oversized, though not to high

degree when T = 5, 000 observations are used. Out of the tests considered, the generalized Markov test with

k = 10 lags used appears to have the best size properties.

Because of the size distortion the empirical power and scenario power simulations in subsections 3.2 and 3.3

use the Monte Carlo testing technique of Dufour (2006) (see Appendix C) to obtain tests with a size of 5%.
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T Markov Markov Markov Duration Duration Haas GMM GMM LB LB DQ DQ
-1 -5 -10 -5 -10 -3 -5 -5 -10 -5 -10

500 0.99 2.37 2.74 0.49 0.18 10.84 1.71 1.17 11.97 16.13 18.76 18.41
1000 2.68 3.11 3.86 0.81 0.23 8.83 3.85 3.56 10.45 13.85 10.65 12.43
1500 3.33 3.79 4.23 0.99 0.39 7.18 3.67 3.11 10.26 11.50 9.54 12.64
2500 2.80 4.04 4.85 1.17 0.62 6.33 4.21 3.37 9.19 11.05 11.74 9.90
5000 3.39 5.27 5.30 2.12 1.70 5.69 4.83 4.13 7.75 8.83 8.53 9.01

(a) p = 1%

T Markov Markov Markov Duration Duration Haas GMM GMM LB LB DQ DQ
-1 -5 -10 -5 -10 -3 -5 -5 -10 -5 -10

500 4.21 5.13 5.25 4.11 4.03 6.33 4.21 3.64 5.48 5.61 5.72 6.20
1000 6.02 5.12 5.01 6.32 7.06 6.14 4.96 4.29 5.05 5.08 4.96 5.08
1500 6.47 5.16 4.82 7.08 8.05 5.30 4.33 3.49 4.94 5.29 5.27 5.29
2500 5.64 4.92 4.80 6.29 6.62 5.03 4.78 4.15 5.08 5.19 5.10 5.71
5000 4.91 5.16 4.94 5.54 5.67 5.27 4.80 4.01 4.83 5.06 5.02 5.08

(b) p = 5%

T Markov Markov Markov Duration Duration Haas GMM GMM LB LB DQ DQ
-1 -5 -10 -5 -10 -3 -5 -5 -10 -5 -10

500 4.92 4.81 4.72 6.43 7.62 5.24 4.50 3.57 4.71 4.99 4.89 5.16
1000 5.61 5.19 5.17 5.55 6.85 5.18 4.96 4.05 4.91 4.92 4.99 4.93
1500 5.31 5.19 5.47 5.46 5.58 5.46 5.20 4.05 4.74 4.64 4.54 4.62
2500 5.04 5.24 5.10 5.19 5.44 5.22 5.08 3.92 5.12 5.15 4.88 5.10
5000 4.77 4.91 5.01 4.79 4.89 4.75 5.38 4.19 4.83 4.56 4.63 4.56

(c) p = 10%

Table 1: ERF when simulating under the null hypothesis of Conditional Coverage (the empirical size) and using
the asymptotic distributions 95% critical value. The hit-sequences were drawn as i.i.d. Bernoulli(p) sequences.
The results reported are based on 100, 000 replications for each test and sample size. The test Markov and
Duration tests refer to the generalized Markov and generalized Duration tests developed in this paper, the
Markov-1 test is also found in Christoffersen (1998) as the joint test. The Haas test is the test of Haas (2006),
the GMM test is the test of Candelon et al. (2011), the LB test is the Ljung-Box test and the DQ test is the
test of Engle and Manganelli (2004).
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3.2 Empirical power

To evaluate the power, the probability of rejecting θ ∈ Θ0 when θ /∈ Θ0, of the tests of conditional coverage we

specify two DGP’s using the generalized Markov specification and the generalized duration specification. Let

the Markov chain generating the hit-sequence, It, be given by

It|Ft−1,k ∼
i.i.d

Bernoulli(pt(θ)), Ft−1,k = It−1, ..., It−k, t = 1, ..., T. (3.1)

with transition probabilities of (3.1) given by one of two DGP’s: Equation (2.8) or Equation (2.12), which we

will refer to as specification 1 and 2. For specification 1 we set pS = 5% and pE = 10% with k = 5, this

corresponds to the hit-sequence of a VaR forecast of coverage rate 5% which is misspecified in such a way that

for k = 5 days following a hit the actual quantile modeled is the 10% quantile. We repeat these simulations

using k = 10. For specification 2 we set pS = 5%, PE1 = PE2 = 10%, PE3 = PE4 = 8% and PE5 = 6% for

k = 5. , this corresponds to the hit-sequence of a VaR forecast of coverage rate 5% which is misspecified in such

a way that for 5 days following a hit the actual quantile modeled is 10%, decreasing to 8% after 3 days, to 6%

after 4 days and the returns to 5% after k = 5 days. We repeat this simulation for k = 10 we set ps = 5%,

PE1 = PE2 = PE3 = 10%, PE4 = PE5 = PE6 = 9%, PE7 = PE8 = 8% and PE9 = PE10 = 7%. The resulting

empirical power2 of the backtests are presented in Table 2 for the four DGP’s shown. Several simulations not

shown were carried out with similar results. For all simulations we use the Monte Carlo testing technique of

Dufour (2006) rather than the critical values implied by the asymptotic distributions in evaluating the tests.

From Table 2 it can be seen that for less than 1, 000 observations and especially for the Markov-1 test, the

attained power can be quite limited. The DGP with the lowest order of dependence, k = 5, also results in tests

which has a lower empirical power compared to the DGP with k = 10 order dependence. Further, we see that

using the tests with the highest empirical power can greatly improve the empirical power compared to the joint

test of Christoffersen (1998). Not surprisingly the DQ test of Engle and Manganelli (2004) performs respectably,

but worse than the Markov tests using the correct number of lags.

2Strictly speaking, the term empirical power is only appropriate for those tests based on models which contain the DGP as a
special case, eg. for k = 5 the simulations indicate the empirical power of the Markov-5, Duration-5 and Duration-10 tests.
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3.3 Scenario Power Using GARCH Returns and Historical Simulation

The scenario power simulation consists of two elements, a model with parameters matching those found in

empirical studies for generating non-i.i.d. returns and a forecast method which does not produce a valid forecast.

Similar to Christoffersen and Pelletier (2004), Haas (2006), Berkowitz et al. (2011) and Candelon et al. (2011),

we thus simulate a series of returns from a GARCH model and estimate VaR using the popular HS method3.

Specifically, let the returns, Rt, be generated by a GARCH(1, 1)− t(d) with a skew and a conditional t distri-

bution as:

Rt = σtzt

√
d− 2
d

, (3.2)

where the conditional variance is given by,

σ2
t = ω + ασ2

t−1

(√
d− 2
d

zt−1 − θ

)2

+ βσ2
t−1. (3.3)

Here zt is an i.i.d. draw from a student t-distribution with d degrees of freedom. The parameter values are

similar to estimates of this GARCH model on daily S&P500 returns, see Christoffersen and Pelletier (2004).

Specifically, we set d = 8 degrees of freedom with parametrization of the coefficients as α = 0.1, θ = 0.5,

β = 0.85 and ω = 3.9683e−6. The value of ω was set to target an annual standard deviation of 0.20 and the

parametrization implies a daily volatility persistence of 0.975. We use a burn-in period of 5, 000 observations

for each simulation to remove traces from initialization of the process. For more details see Christoffersen and

Pelletier (2004) which presents figures of the generated returns, estimated VaR using HS and hazard functions

of the hit-sequence from a similar simulation experiment.

Forecasting VaRt|t−1(p) is done using HS, see equation (3.4). HS is known to be under-responsive to changes

in conditional risk as it assigns an equal probability weight to all past observations, ignoring the temporal

ordering. Furthermore, the method responds asymmetrically, increasing risk (as measured by VaR) following

large losses but not following large gains. HS generates a hit-sequence which violates conditional coverage, see

Pritsker (2006) for a discussion of the problems associated with HS.

The forecast is found by taking the empirical p percentile, of a rolling window of the TW latest returns. We

set TW to be either 250 or 500, both lengths are used so that we may evaluate the robustness of the results with

respect to changes in the data generating process.

VaRt|t−1(p) = percentile
(
{Rj}t−1

j=t−TW
, p
)
, t = 1, ..., T (3.4)

Because the forecast is slow to update to changes in volatility, this will generate clusters of violations. We then

use the returns and VaR forecasts to create the hit-sequence as specified in definition 2.1, that is to say {It}Tt=1

is

It ..= 1(Rt < VaRt|t−1(p)), t = 1, ...T
3Perignon and Smith (2010) find that 73% of banks that disclosed their VaR forecast method used HS.
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The resulting ERFs of the backtests are presented in figure 4.1. Note that we use the Monte Carlo testing

technique of Dufour (2006) rather than the critical values implied by the asymptotic distributions in evaluating

the tests.

Inspecting figure 4.1, it is clear that the duration and generalized Markov tests improve the ERF compared

with the original joint test. For example, when 1, 000 observations are available, using either the generalized

Markov test or generalized duration tests with k = 10 lags will roughly double the ERF for either coverage rate.

For the lower coverage rate, the Markov Duration test appears to perform slightly better than the generalized

Markov test. However for the higher coverage rate the duration test can perform much worse, indicating its

power is less robust (though still better than the original test). The results seem quite robust to the choice of

TW , although in general slightly better power was found when using TW = 500 for all tests. This last result is

as expected, since a longer window would be expected to increase the dependence in the hit-sequence. All the

tests displayed largely similar power when using 1, 000 or more observations, with the exception of the test due

to Christoffersen (1998). The tests due to Haas (2006) and Candelon et al. (2011) had somewhat varying power

when using less than 1, 000 observations but had good power properties when using 1, 000 or more.

4 Concluding Remarks

To summarize, we have introduced the generalized Markov framework for deriving Value-at-Risk backtests.

Using the generalized Markov framework we suggested two specifications within this framework, the generalized

Markov specification and the Markov Duration specification, inspired by the original backtests of Christoffersen

(1998) and of the duration based backtests due to Christoffersen and Pelletier (2004), Haas (2006) and Pelletier

and Wei (2015).

Based on these specifications we derived likelihood-ratio test statistics for the criteria of independence,

unconditional coverage and conditional coverage. We provided closed form expressions for the tests, as well as

asymptotic theory. Our tests have the advantage, compared to the original tests of Christoffersen (1998), that

they possess power against k’th order dependence. Furthermore, the tests of conditional coverage is equivalent

to the sum of the tests for independence and unconditional coverage. This allows one to evaluate rejection of

conditional coverage as being caused by either dependence, an incorrect coverage rate or both.

Using a simulation study we found evidence of improved size properties for the generalized Markov test com-

pared to the original Markov test of Christoffersen (1998), though worse size properties for the Markov duration

test. Simulations also indicated much improved empirical power while correcting for size distortions for the tests

of conditional coverage based on either the generalized Markov or Duration specification compared to the origi-

nal Markov test of Christoffersen (1998). Comparison to existing backtests showed that the generalized Markov

test and the Markov duration test performed excellent in terms of empirical power, further their performance
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was robust to changes in the DGP used in the power simulations, unlike some of the backtests considered in the

study.
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(a) p = 1% and TW = 500 (b) p = 1% and TW = 250

(c) p = 5% and TW = 500 (d) p = 5% and TW = 250

Figure 4.1: ERFs in percent for conditional coverage tests. The hit-sequences were simulated using a GARCH
DGP with V aRt|t−1(p) estimated by historical simulation, using a rolling window of length TW . The test Markov
and Duration tests refer to the generalized Markov and generalized Duration tests developed in this paper, the
Markov-1 test is also found in Christoffersen (1998) as the joint test. The Haas test is the test of Haas (2006),
the GMM test is the test of Candelon et al. (2011), the LB test is the Ljung-Box test and the DQ test is the
test of Engle and Manganelli (2004). The Monte Carlo testing technique of Dufour (2006) was used to ensure
a size of 5%. The sample sizes used are 500 (dark blue), 1,000 (blue), 1,500 (green), 2,500 (orange) and 5,000
(red) as indicated by the colors.
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A Derivation of the Generalized Markov Test Distributions

A.1 Asymptotic Distribution for the Conditional Coverage Test

This proof is based on the usual Taylor expansions and verifies the conditions in Lemma 1 of Jensen and Rahbek

(2004) for asymptotic inference, see also Theorem 7.7.3 of Lehmann (1999) or Billingsley (1962).

I. The score of the likelihood evaluated at the true value θ0 satisfies 1√
T
ST (θ0) d→ N(0,Σ) as T →∞

II. The observed information of the likelihood evaluated at the true value θ0 satisfies 1
T iT (θ0) p→ Σ as T →∞

III. sup
θ∈N(θ0)

1
T

∣∣∣ ∂3LT (θ)
∂θi∂θj∂θk

∣∣∣ ≤ CT
p→ C ≤ ∞ as T →∞ and where N(θ0) is a compact neighborhood around the

true value θ0 and θi, θj , θk = {pE , pS}.

Condition (I): Recalling that Jt−1 = 1
(∑k

i=1 It−1 > 0
)
, the log-likelihood conditional on first k observations

fixed is given by

LT (θ) =
T∑
t=1

Lt(θ) =
T∑
t=1

Itlog (Jt−1pE + (1− Jt−1)pS) + (1− It)log (1− (Jt−1pE + (1− Jt−1)pS))

Next, the score with respect to θ is given by,

ST (θ) =
T∑
t=1

st(θ) =
T∑
t=1

∂Lt(θ)
∂θ

=
T∑
t=1

 ItJt−1
Jt−1pE+(1−Jt−1)pS

− (1−It)Jt−1
1−(Jt−1pE+(1−Jt−1)pS)

It(1−Jt−1)
Jt−1pE+(1−Jt−1)pS

− (1−It)(1−Jt−1)
1−(Jt−1pE+(1−Jt−1)pS)

 =

 T11
pE
− T10

1−pE

T01
pS
− T00

1−pS


Here T11 ..=

∑T
t=1 ItJt−1, T01 ..=

∑T
t=1 It(1 − Jt−1), T10 ..=

∑T
t=1(1 − It)Jt−1, T00 ..=

∑T
t=1(1 − It)(1 − Jt−1).

Recalling the definition of θ̂ we have that

θ̂ =

 T11
T10+T11

T01
T00+T01

 =

 T11
T1

T01
T0

 ,
with T1 ..= T11 + T01, T0 ..= T10 + T00.

The distribution of ST (θ0), where θ0 is the true value of θ ∈ ΘH , can be found as

ST (θ0) =
T∑
t=1

st(θ0) =
T∑
t=1

1
p(1− p) (It − p)

 Jt−1

1− Jt−1

 .
Since st(θ0) is a vector of martingale difference sequences with respect to Ft−1, with conditional covariance

matrix

E(st(θ0)st(θ0)′) = E

 (It−p)2Jt−1
p2(1−p)2 0

0 (It−p)2(1−Jt−1)
p2(1−p)2

 =

 1−(1−p)k

p(1−p) 0

0 (1−p)k

p(1−p)

 =.. Σ
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and as st(θ0) is stationary with finite third order moments, it follows from the martingale difference central limit

theorem in Brown (1971) that as T →∞

1√
T
ST (θ0) d→ Σ1/2U

where U ..= wlim

Σ−1/2 1√
T

∑T
t=1

1
p(1−p) (It − p)

 Jt−1

1− Jt−1


 = N(0, I2) and where I2 is the identity matrix.

Condition (II): The observed information is given by

iT (θ) ..= −∂
2LT (θ)
∂θ∂θ′

=

 T11
p2

E

+ T10
(pE−1)2 0

0 T01
p2

S

+ T00
(pS−1)2

 .
It follows that as T →∞

1
T
iT (θ0) p→

 p(1−(1−p)k)
p2 + (1−p)(1−(1−p)k)

(p−1)2 0

0 p(1−p)k

p2 + (1−p)(1−p)k

(p−1)2


=

 1−(1−p)k

p(1−p) 0

0 (1−p)k

p(1−p)

 = Σ,

By using the law of large numbers for i.i.d. observations. Observe in particular that as T → ∞, 1
T T11 =

1
T

∑T
t=1 ItJt−1

p→ p
(
1− (1− p)k

)
, 1
T T10 = 1

T

∑T
t=1(1 − It)Jt−1

p→ (1− p)
(
1− (1− p)k

)
, 1
T T00 = 1

T

∑T
t=1(1 −

It)(1− Jt−1) p→ (1− p) (1− p)k and 1
T T01 = 1

T

∑T
t=1 It(1− Jt−1) p→ p(1− p)k.

Condition (III): Define 0 < pLE ≤ pE ≤ pUE < 1 and 0 < pLS ≤ pS ≤ pUS < 1 such that max(pLS , pLE) ≤ p ≤

min(pUS , pUE). We verify, using the above results, that since ∂2LT (θ)
∂pE∂pS

= 0 it follows that

1
T

∣∣∣∣∂3LT (θ)
∂3pE

∣∣∣∣ = 1
T

∣∣∣∣∣ 2T11(
pLE
)3 + 2T10(

pUE − 1
)3
∣∣∣∣∣ ≤ 1

T

(
2T11(
pLE
)3 + 2T10(

pUE − 1
)3
)

= CT
p→ c, for T →∞

1
T

∣∣∣∣∂3LT (θ)
∂3pS

∣∣∣∣ = 1
T

∣∣∣∣∣ 2T01(
pLS
)3 + 2T10(

pUS − 1
)3
∣∣∣∣∣ ≤ 1

T

(
2T01(
pLS
)3 + 2T10(

pUS − 1
)3
)

= CT
p→ c, for T →∞

Having verified the conditions we can derive the QG−CC test statistics asymptotic distribution for T →∞ as
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QG−CC = −2
(
LT (θ0)− LT (θ̂)

)
= (θ̂ − θ0)

′
i(θ0)(θ̂ − θ0) + op(1)

= 1√
T
ST (θ0)

′
(

1
T
i(θ0)

)−1 1√
T
ST (θ0) + op(1)

d→ U
′
Σ1/2Σ−1Σ1/2U = U

′
U ∼ χ2(2)

A.2 Asymptotic Distribution for the Unconditional Coverage Test

The asymptotic distribution of the QG−UC test is found in the same fashion using

∂L(θ)
∂p

= ∂L(θ)
∂θ

∂θ

∂p
= ST (θ)

′
H, −∂

2L(θ)
∂p∂p

= H
′
i(θ0)TH

where we recall that H = (1, 1)′and the definition of θ̃, it then follows that

θ̃ = T1

T0 + T1
.

Then as T →∞

QG−UC = −2
(
LT (θ0)− LT (θ̃)

)
= [ 1√

T
ST (θ)

′
H]
′
(

1
T
H
′
iT (θ0)H

)−1
[ 1√
T
ST (θ)

′
H] + op(1)

d−→ U
′
Σ1/2H(H

′
ΣH)−1HΣ1/2U

∼ χ2(1)

A.3 Asymptotic Distribution for the Independence Test

Using the projection I = Σ1/2H(H ′ΣH)−1H
′Σ1/2 + Σ−1/2H⊥(H ′⊥Σ−1H⊥)−1H

′

⊥Σ−1/2, where H⊥ designates

the orthogonal complement of H, we can now find the asymptotic distribution of QG−Ind as T →∞

QG−Ind = QG−CC −QG−UC
d→ U

′
U − U

′
Σ1/2H(H

′
ΣH)−1H

′
Σ1/2U

= U
′
(
I − Σ1/2H(H

′
ΣH)−1H

′
Σ1/2

)
U

= U
′
Σ−1/2H⊥(H

′

⊥Σ−1H⊥)−1H
′

⊥Σ−1/2U = A
′
A ∼ χ2(1),

where A ..= (H ′⊥Σ−1H⊥)−1/2H
′

⊥Σ−1/2U .
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B Derivation of the Markov Duration Test Distributions

B.1 Asymptotic Distribution for the Conditional Coverage Test

We proceed as in the proof for Theorem 1.

Condition (I): Recalling that J(k)t−1 = 1 (It−1 = 0, ..., It−k = 1), the log-likelihood conditional on first k

observations fixed is given by

LT (θ) =
T∑
t=1

Itlog

(
J(1)t−1pE1 + ...+ J(k)t−1pEk + (1−

k∑
i=1

J(i)t−1)pS

)

+(1− It)log
(

1−
(
J(1)t−1pE1 + ...+ J(k)t−1pEk + (1−

k∑
i=1

J(i)t−1)pS

))

Next, the score with respect to θ is given by,

ST (θ) =
T∑
t=1

st(θ) =
T∑
t=1

∂Lt(θ)
∂θ

=
T∑
t=1



ItJ(1)t−1
pE1

− (1−It)J(1)t−1
1−pE1

...

ItJ(k)t−1
pEk

− (1−It)J(k)t−1
1−pEk

It(1−
∑k

i=1
J(i)t−1)

pS
−

(1−It)(1−
∑k

i=1
J(i)t−1)

1−pS)


=



T11(1)
pE1

− T10(1)
1−pE1

...
T11(k)
pEk

− T10(k)
1−pEk

T11
pS
− T00

1−pS



Recalling the definition of θ̂ we have that θ̂ =
[

T11(1)
T11(1)+T10(1) ... T11(k)

T11(k)+T10(k)
T11

T11+T01

]′
.

Recalling that Jt−1 ..= 1
(∑k

i=1 It−1 > 0
)
, the distribution of ST (θ0), where θ0 is the true value of θ ∈ ΘH , can

be found as

ST (θ0) =
T∑
t=1

st(θ0) =
T∑
t=1

1
p(1− p) (It − p)



J(1)t−1
...

J(k)t−1

1− Jt−1


.

Since st(θ0) is a vector of martingale difference sequences with respect to Ft−1, with conditional covariance

matrix
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E(st(θ0)st(θ0)′) =



1
(1−p) 0 0 0

0
. . . 0 0

0 0 (1− p)k−2 0

0 0 0 (1−p)k−1

p


=.. Σ

and as st(θ0) is stationary with finite third order moments, it follows from the martingale difference central limit

theorem in Brown (1971) that as T →∞

1√
T
ST (θ0) d→ Σ1/2U

where U ..= wlim

(
Σ−1/2 1√

T

∑T
t=1

1
p(1−p) (It − p)

[
J(1)t−1 ... J(k)t−1 1− Jt−1

]′)
= N(0, Ik+1) and where

Ik+1 is the identity matrix.

Condition (II): The observed information is given by

iT (θ0) ..= −∂
2LT (θ)
∂θ∂θ′

=



T11(1)
p2

E1
+ T10(1)

(1−pE1)2 0 0 0

0
. . . 0 0

0 0 T11(k)
p2

Ek

+ T10(k)
(1−pEk)2 0

0 0 0 T01
p2

S

+ T00
(1−pS)2


It follows that as T →∞ 1

T iT (θ0) p→ Σ by the law of large numbers for i.i.d. observations, and that as T →∞,
1
T T11(k)→ (1− p)k−1p2 and 1

T T01(k)→ (1− p)kp.

Condition (III): Define 0 < pLEk ≤ pEk ≤ pUEk < 1 and 0 < pLS ≤ pS ≤ pUS < 1 such that max(pLS , pLE) ≤ p ≤

min(pUS , pUE). Since ∂2LT (θ)
∂pE∂pS

= 0 it follows that we only need the following

1
T

∣∣∣∣∂3LT (θ)
∂3pEk

∣∣∣∣ = 1
T

∣∣∣∣∣2T11(k)(
pLEk

)3 + 2T10(k)(
pUEk − 1

)3
∣∣∣∣∣ ≤ 1

T

(
2T11(k)(
pLEk

)3 + 2T10(k)(
pUEk − 1

)3
)

= CT
p→ c, for T →∞

1
T

∣∣∣∣∂3LT (θ)
∂3pS

∣∣∣∣ = 1
T

∣∣∣∣∣ 2T0,1(
pLS
)3 + 2T1,0(

pUS − 1
)3
∣∣∣∣∣ ≤ 1

T

(
2T0,1(
pLS
)3 + 2T1,0(

pUS − 1
)3
)

= CT
p→ c, for T →∞

Having verified the conditions we can derive the QD−CC test statistics asymptotic distribution for T →∞ as

QD−CC
d→ χ2(k + 1)

B.2 Asymptotic Distribution for the Unconditional Coverage Test

The asymptotic distribution of the QD−UC test is found in the same fashion using
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∂L(θ)
∂p

= ∂L(θ)
∂θ

∂θ

∂p
= ST (θ)

′
H, −∂

2L(θ)
∂p∂p

= H
′
i(θ0)TH

where we recall that H = (1, ..., 1)′and the definition of θ̃, it then follows that θ̃ = T1
T0+T1

.

Then as T →∞

QD−UC
d−→ χ2(1)

B.3 Asymptotic Distribution for the Independence Test

Using the projection I = Σ1/2H(H ′ΣH)−1H
′Σ1/2 + Σ−1/2H⊥(H ′⊥Σ−1H⊥)−1H

′

⊥Σ−1/2 we can now find the

asymptotic distribution of QD−Ind as T →∞

QD−Ind
d→ χ2(1),

C The Monte Carlo Testing Technique Dufour (2006)

In this section we outline the Monte Carlo testing technique of Dufour (2006) used in the empirical power

simulations of section C. The technique used is given by the following algorithm:

I. Generate M i.i.d. hit-sequences of length T , {It}Tt=1, under the null of conditional coverage, HCC , by

drawing from a Bernoulli sequence, as:

It ∼
i.i.d

Bernoulli(p), t = 1, ..., T

II. Calculate the test statistic, Si, for each of the generated hit-sequence, i = 1, ...,M and denote by S0 the

original test value. Throughout this paper we use M = 99, 999.

III. Draw Ui for i = 0, ...,M from the uniform U(0, 1) distribution. Calculate the p-values as p̂M (S0) =
MĜM (S0)+1

M+1 where ĜM (S0) = 1− 1
M

∑M
i=1 1 (Si ≤ S0) + 1

M

∑M
i=1 1 (Si = S0) 1 (Ui ≥ U0).
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D Power Tables

T Markov Markov Markov Duration Duration Haas GMM GMM LB LB DQ DQ
-1 -5 -10 -5 -10 -3 -5 -5 -10 -5 -10

500 28.63 46.71 34.77 39.00 32.21 30.953 27.46 27.183 34.89 27.87 49.88 44.42
1000 44.70 77.17 59.64 60.69 51.38 61.536 49.35 51.255 59.76 48.36 74.22 67.78
1500 53.51 91.78 77.19 77.77 68.93 80.998 69.59 73.567 72.91 63.24 86.48 81.68
2500 81.02 99.06 94.04 96.26 91.52 96.12 89.13 92.189 92.61 85.82 97.55 95.48
5000 98.1 100 99.87 99.98 99.91 99.93 99.64 99.8 99.83 99.32 99.99 99.95

(a) Specification 1: k = 5

T Markov Markov Markov Duration Duration Haas GMM GMM LB LB DQ DQ
-1 -5 -10 -5 -10 -3 -5 -5 -10 -5 -10

500 52.13 60.23 71.79 51.03 56.06 54.59 55.65 51.90 22.47 31.07 61.57 67.67
1000 76.42 87.44 95.4 75.29 79.59 88.02 86.31 85.25 37.44 50.41 85.36 89.01
1500 87.38 96.71 99.37 89.19 93.32 97.45 97.05 96.99 45.41 64.44 94.45 96.74
2500 98.67 99.84 99.99 99.08 99.66 99.9 99.84 99.88 67.49 87.28 99.62 99.75
5000 100 100 100 100 100 100 100 100 92.369 99.35 100 100

(b) Specification 1: k = 10

T Markov Markov Markov Duration Duration Haas GMM GMM LB LB DQ DQ
-1 -5 -10 -5 -10 -3 -5 -5 -10 -5 -10

500 24.48 36.67 26.85 31.65 25.67 25.42 21.30 21.13 30.59 24.52 42.70 37.62
1000 38.33 64.62 47.46 49.09 40.02 52.42 37.94 40.53 52.08 41.69 64.62 57.77
1500 45.60 82.92 64.70 66.07 56.14 72.74 56.73 61.73 65.26 55.11 78.54 71.98
2500 73.71 96.52 86.039 90.10 82.24 91.86 78.42 83.41 87.10 78.85 93.96 90.36
5000 96.02 99.92 99.00 99.78 99.35 99.78 97.86 98.98 99.16 97.83 99.82 99.61

(c) Specification 2: k = 5

T Markov Markov Markov Duration Duration Haas GMM GMM LB LB DQ DQ
-1 -5 -10 -5 -10 -3 -5 -5 -10 -5 -10

500 37.58 47.79 52.64 40.65 39.41 40.87 38.72 36.50 26.21 28.31 51.93 53.78
1000 59.63 77.08 82.32 62.31 59.26 75.24 68.67 68.87 43.52 45.40 75.91 76.36
1500 71.77 91.38 94.28 79.03 77.91 91.29 87.32 88.09 54.27 58.60 88.12 88.57
2500 93.11 99.08 99.64 96.49 96.26 99.27 98.19 98.52 77.16 81.48 98.06 98.07
5000 99.83 100 100 99.97 100 100 100 100 96.57 98.42 100 100

(d) Specification 2: k = 10

Table 2: Empirical power in percent for conditional coverage tests. The hit-sequences were simulated using a
k’th order Markov chain specified in equation (3.1) of section 3. The tests refer to the generalized Markov and
generalized Duration tests developed in this paper, the Markov-1 test is also found in Christoffersen (1998) as
the joint test. The Haas test is the test of Haas (2006), the GMM test (with 3 or 5 moments) is the test of
Candelon et al. (2011), the LB test is the Ljung-Box test (with 5 or 10 lags) and the DQ test is the test of Engle
and Manganelli (2004) (with 5 or 10 lags). The Monte Carlo testing technique of Dufour (2006) was used to
ensure a size of 5%
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E Scenario Power Tables

T Markov Markov Markov Duration Duration Haas GMM GMM LB LB DQ DQ
-1 -5 -10 -5 -10 -3 -5 -5 -10 -5 -10

500 26.13 36.72 41.28 41.76 43.75 24.29 35.10 40.92 34.78 40.98 41.34 46.33
1000 30.11 53.19 60.33 56.22 65.90 54.09 52.41 57.79 56.62 66.73 61.16 67.32
1500 38.54 65.71 72.49 69.92 78.50 72.27 65.38 70.66 71.25 79.06 71.23 79.68
2500 47.66 83.28 89.55 84.14 91.09 92.26 83.85 87.92 86.17 92.76 88.08 92.95
5000 76.65 97.34 99.14 96.97 98.87 99.59 98.03 99.05 98.01 99.45 98.10 99.41

(a) p = 1% and TW = 500

T Markov Markov Markov Duration Duration Haas GMM GMM LB LB DQ DQ
-1 -5 -10 -5 -10 -3 -5 -5 -10 -5 -10

500 25.05 38.65 45.87 49.40 51.64 23.20 31.58 39.90 35.04 39.47 44.57 51.29
1000 38.12 57.12 62.95 61.25 72.17 52.34 46.58 55.80 49.93 59.91 63.29 71.47
1500 53.45 72.06 76.77 77.06 83.63 72.16 61.02 70.89 63.52 72.13 77.86 83.64
2500 73.20 90.20 93.50 89.44 94.97 92.99 82.37 90.18 79.51 89.36 89.58 94.93
5000 95.06 99.20 99.80 98.93 99.55 99.81 98.57 99.63 96.63 99.05 99.24 99.78

(b) p = 1% and TW = 250

T Markov Markov Markov Duration Duration Haas GMM GMM LB LB DQ DQ
-1 -5 -10 -5 -10 -3 -5 -5 -10 -5 -10

500 44.21 63.56 69.46 57.12 56.65 68.34 75.86 74.27 60.86 66.12 59.91 61.10
1000 48.95 84.06 89.27 73.22 76.72 90.83 92.69 92.16 84.70 90.12 82.60 86.91
1500 52.94 93.93 96.96 86.75 89.03 97.46 98.33 98.09 94.50 97.04 93.02 95.57
2500 78.00 99.37 99.77 97.83 98.75 99.90 99.86 99.89 99.26 99.75 98.86 99.59
5000 96.68 100 100 99.99 100 100 100.00 100.00 100 100 100 100

(c) p = 5% and TW = 500

T Markov Markov Markov Duration Duration Haas GMM GMM LB LB DQ DQ
-1 -5 -10 -5 -10 -3 -5 -5 -10 -5 -10

500 33.43 55.98 62.24 50.54 52.42 61.68 69.44 67.58 60.31 66.34 59.08 63.78
1000 42.68 80.44 86.49 67.90 71.62 87.91 89.84 88.58 82.83 88.61 81.38 86.19
1500 48.56 92.49 95.89 83.62 86.84 96.93 97.61 97.15 93.30 96.26 92.13 94.96
2500 78.43 99.20 99.72 97.45 98.37 99.85 99.82 99.77 99.07 99.64 98.72 99.48
5000 97.61 100 100 99.99 99.99 100 100.00 100 100 100 100 100

(d) p = 5% and TW = 250

Table 3: ERFs in percent for conditional coverage tests. The hit-sequences were simulated using a GARCH DGP
with V aRt|t−1(p) estimated by historical simulation, using a rolling window of length TW . The test Markov
and Duration tests refer to the generalized Markov and generalized Duration tests developed in this paper, the
Markov-1 test is also found in Christoffersen (1998) as the joint test. The Haas test is the test of Haas (2006),
the GMM test (with 3 or 5 moments) is the test of Candelon et al. (2011), the LB test is the Ljung-Box test
(with 5 or 10 lags) and the DQ test is the test of Engle and Manganelli (2004) (with 5 or 10 lags). The Monte
Carlo testing technique of Dufour (2006) was used to ensure a size of 5%
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Abstract

When forecasting the Value-at-Risk (VaR) of a portfolio, one faces a number of choices in how to construct

a model; univariate or multivariate models, interday or intraday based data and distributional alternatives. We

examine the performance of 40 models from the combinations of these choices for forecasting the VaR at different

coverage levels of a realistically sized stock portfolio. Our data is a portfolio of 44 major US stocks from the S&P

500 index for which we compare the forecasting ability of the models - using both recently developed backtests

and the model confidence set approach. We generally find mixed results neither clearly favoring univariate nor

multivariate models. Likewise there is no clear advantage to either using intraday or interday based models. No

apparent advantage is found in using realized kernels compared to using realized variance sampled at 10 minutes

frequency. However, when combining univariate models with filtered historical simulation methods, we consistently

find good forecasting ability. Models with fixed parameters such as the EWMA model and multivariate variations,

both intraday and interday based, generally also have strong performance. We also consider the square-root-of-time

scaling rule for a 10 day period as suggested in the Basel Accords and find that it consistently performs poorly,

generally leading to VaR forecasts for which we reject the independence but not the unconditional coverage criteria.
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1 Introduction

Financial econometrics has developed a range of tools for modeling and forecasting market risk. Most prominent

among these tools is the (G)ARCH class of models first suggested in Engle (1982), which has since been expanded

on by many authors to allow for effects such as different conditional distributions, leverage effects or a multivariate

setting. More recently, the availability of intraday data, specifically using realized variance and realized covariance,

see Andersen et al. (2003), and models using these measures have been developed and currently compose a very active

area of research.

In this paper we examine the importance of choosing between univariate and multivariate models (portfolio aggre-

gation), intraday or interday data (data frequency) and conditional distributions when forecasting VaR for a portfolio

of several stocks at different coverage levels and different forecasting horizons. After considering all of these options

one must also consider what conditional distribution best fits the data, typical distributions used are the Gaussian, t

or empirical distributions.

How to best forecast risk has important implications for both practitioners and researchers. Using interday data

based models may be the most common approach as models using daily data has been extensively studied over the past

30 years. However, intraday data may provide a clearer signal of market volatility, resulting in more accurate forecasts,

see Andersen and Benzoni (2008), but is possibly affected by market microstructure effects and may be costly to obtain

and store. Similarly, modeling large portfolios by a multivariate model may lead to improvements as the dependencies

of the portfolio are taken into account. However, as the number of assets in a portfolio increases the estimated number

of parameters typically increases faster, the so-called curse of dimensionality. This could reduce the forecasting ability

of the model. It follows that the easiest models to use when forecasting a portfolios VaR would be univariate interday

based models, but it may well be the case that adopting models which are intraday based, multivariate or both is

required for an accurate forecast.

Previously, several papers have argued that the VaR of a portfolio is best forecasted using univariate rather than

multivariate models, see eg. Persand and Brooks (2003) and Berkowitz and O’Brien (2001), while McAleer and da Veiga

(2008) found rather mixed evidence. However, as noted in Santos et al. (2013), the results of these studies are based on

small portfolios of around 4 assets. Conversely, using several larger portfolios, they find evidence in favor of multivariate

models. However, the backtests used are known to have low power and to be size distorted, see Christoffersen (1998)

and Pajhede (2017). Kole et al. (2015) find that for longer forecasting periods multivariate models with daily frequency

performs the best. However, none of the papers so far mentioned consider any intraday based models.

Using univariate models, several papers find superior forecasts for stock indexes, currencies and single stocks when

using intraday data, see Koopman et al. (2005), Clements et al. (2006) and Shephard and Sheppard (2010). This again

suggests that the choice of data frequency may be important when forecasting VaR.

Boudt et al. (2014) suggest a model for forecasting large covariance matrices using high frequency data. In an

empirical application they published the first paper that compares multivariate interday and intraday type models for
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VaR prediction, they find that their model provides superior forecasts compared to interday type models. However, the

study is limited by using a single dataset, the size of the portfolio and not comparing to more sophisticated multivariate

models as in Santos et al. (2013) or Kole et al. (2015) and restricting themselves to Gaussian models, which has been

shown to perform worse in both univariate and multivariate models, see Luc Bauwens (2005) and Braione and Scholtes

(2014). A central issue is the topic of dealing with asynchronicity in data, with the existing methods imposing a large

loss of data for larger observations, see the discussion in section 4.

This paper contributes to the VaR literature for large portfolios by providing a comprehensive comparison of the

forecasts of VaR for a large portfolio from across the categories of univariate, multivariate, interday and intraday

models. We include several models from all categories and allow for Gaussian, Student-t or empirical distributions

for univariate models and Gaussian or empirical distributions for multivariate models. We examine multiple forecast

horizons and VaR coverage levels.

We compare the competing forecasts in two ways; Hit-sequence based backtests known to have good power prop-

erties, see Pajhede (2017), and the model confidence set (MCS) approach of Hansen et al. (2011).

The rest of the paper is organized as follows. Section 2 formalizes VaR and its calculation from a conditional

distribution. Section 3 introduces interday based models, specifically univariate and multivariate GARCH type models

as well as Conditional Autoregressive Value at Risk (CAViaR) models. Section 4 gives a brief discussion of realized

variance and then discuss several volatility models using high frequency data, both univariate and multivariate. Section

5 details the tools used for comparison, hit-sequence based backtests and the MCS approach. 6 contains the empirical

application. Section 7 concludes.

2 Value-at-Risk

Let yp,t = w′t−1rt denote the realization of a return of a portfolio of N assets at day t, where w′t−1 and rt are the N ×1

vectors of portfolio weights and asset returns respectively. The ex-ante VaR for time t and coverage rate α, VaRt|t−1(α),

conditional on all information, Ft−1, available at time t− 1 is the α’th conditional quantile of the distribution of rt:

P (yp,t < VaRt|t−1(α)|Ft−1) = α. (2.1)

Throughout the rest of the paper we will consider the 1% and 5% coverage rates, as is common in the literature. When

there is no ambiguity, we simplify the notation by writing VaRt|t−1.

We calculate the VaR of Equation (2.1) from a conditional distribution as

VaRt|t−1(α) = µp,t + σp,tF
−1(α), (2.2)

where µp,t = E (yp,t|Ft−1) and σp,t =
√
var (yp,t|Ft−1) are the means and standard deviations of the portfolio return,
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yp,t, while F−1(α) is the α quantile of the distribution of the standardized returns, ep,t = (yp,t − µp,t) /σp,t.

We set the expected return to a constant, µp, which we estimate by the average for the historical portfolio returns.

Since we are forecasting one day ahead, the expected return of the portfolio should be negligible. The standard

deviation, σp,t, is estimated directly when using a univariate model and as σ2
p,t = wtHtw

′
t when using a multivariate

model for the conditional covariance matrix, Ht = E
(

(yt − µp)2 |Ft−1

)
.

For the univariate models we calculate F−1(α) from the following distributions; Gaussian, t and using filtered

historical simulation (FHS), see Barone-Adesi and Giannopoulos (2001), based on the the empirical distribution of ep,t.

For the multivariate models, we use the multivariate Gaussian and FHS.

The only exception to this setup is the CAViaR model of Engle and Manganelli (2004), which directly models the

VaR quantile.

To reduce the number of models we only consider specifications using a single lag for all models, eg. the GARCH(P,Q)

model is implemented as the GARCH(1,1) model, this is also known to work well in practice, see Lunde and Hansen

(2005). For the FHS forecasts we assume a Gaussian distribution for the model to estimate the parameters and

standardize the returns.

3 Interday Based Models

In this section we describe the interday based univariate and multivariate models and estimation procedures which we

use to generate VaR forecasts.

3.1 Univariate Models

Our selection of GARCH type models includes a variety of models representing most of the major strains of the

literature. We include the GARCH model of Bollerslev (1986), the GJR-GARCH model of Glosten et al. (1993) which

accounts for leverage effects, the APARCH model of Ding et al. (1993) which also includes leverage effects as well

as the threshold ARCH class of Rabemananjara and Zakoian (1993), the RiskMetrics model and lastly the recent

tv-t-GAS of Creal et al. (2013) which may produce forecasts more robust to outliers. The only non-GARCH type of

models included is the CAViaR model of Engle and Manganelli (2004) of which we include 3 variations. Most models

were estimated using code modified from the Oxford MFE toolbox of Kevin Shephard1 or from the website of Simone

Manganelli2.

All the univariate GARCH type models can be written as
1https://www.kevinsheppard.com/MFE_Toolbox
2http://www.simonemanganelli.org/Simone/Research.html
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yp,t = µp + εt

εt = σp,tet

et ∼ F

,

where F is either N(0, 1) or tv. The GARCH specification is given by

σ2
p,t = ω + αε2t−1 + βσ2

p,t−1,

The GJR-GARCH specification is given by

σ2
p,t = ω + αε2t−1 + βσ2

p,t−1 + δ1 (εt−1 < 1) y2
p,t−1,

where 1(·) is the indicator function. The APARCH specification is given by

σ2
p,t = ω + α (|ep,t−1|+ δep,t−1)λ + βσ2

p,t−1.

Lastly, the exponentially weighted moving average model (EWMA1994) from risk-metrics model is given by

σ2
p,t = 0.94σ2

p,t−1 + 0.06ε2t−1.

Rather than specifying the entire distribution of returns, the CAViaR model is a model for only the desired quantile.

We use two specifications suggested in Engle and Manganelli (2004); the symmetric absolute value specification

VaRt|t−1 = α+ β1VaRt−1|t−2 + β2|εt−1|

and the asymmetric slope specification

VaRt|t−1 = α+ β1VaRt−1|t−2 + β2(εt−1)1 (εt−1 > 0) + β3(εt−1)1 (εt−1 < 0) .

Estimation is achieved by minimizing the tick loss function as in quantile regression3.

3.2 Multivariate Models

To model the conditional covariance matrix, Ht, we consider a number of multivariate GARCH type models. The

primary challenge when using multivariate models is the curse of dimensionality, that is, the number of parameters

growing rapidly for larger systems. For example, the VEC model of Bollerslev et al. (1988) parameters of order O(N4)
3In the empirical application we use code modified from the website of Simone Manganelli.
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and estimation is therefore not feasible for larger portfolios. In selecting models the first requirement is that they are

feasible for a portfolio size of 44 assets.

The first model considered is the variance targeting scalar BEKK model of Engle and Kroner (1995), given by

Ht = (1− a− b) Γ +Art−1r
′
t−1 +BHt−1. (3.1)

The use of variance targeting reduces the number of parameters in the scalar form to just the two a and b parameters,

which are easily estimated by maximum likelihood using either a Gaussian or a multivariate t distribution. The

unconditional variance, Γ, is estimated as the sample covariance Γ̂ = 1
T

∑T
t=1 rtr

′
t, see Pedersen and Rahbek (2014).

Our second multivariate model is the constant conditional correlations (CCC) model of Bollerslev (1990), in this

model the standard deviations, contained in Dt, are allowed to vary over time while the correlations, R, are kept

constant. That is, the covariance matrix, Ht, is modeled as

Ht = DtRDt, (3.2)

In estimating Dt we use the GJR-GARCH which has previously shown good performance for similar applications,

see Santos et al. (2013), we do not consider alternative univariate models to keep the number of considered models

manageable. This model is attractive because of its simplicity and ease of estimation even for larger portfolios. We

estimate the CCC model using the two step procedures of first estimating Dt using univariate models, and then

estimating R from the standardized residuals.

The variance targeting dynamic conditional correlations (DCC) model of Engle (2002) uses a similar decomposition

of Ht but, here the conditional correlation matrix, Rt, is now time varying. Rt is equivalent to the covariance matrix

of the standardized residuals, Rt = Vt−1(et), which is modeled as

Rt = diag (Qt)−1/2
Qtdiag (Qt)−1/2 (3.3)

where

Qt = (1− α− β)R+ αet−1e
′
t−1 + βQt−1.

with R = 1
T

∑T
t=1 ete

′
t.

The models covered so far have been general models, designed to model multiple time-series in general, however the

RiskMetrics group has also developed multivariate models, specifically intended to model the risk of portfolios. The

RiskMetrics 1994 (RM94) model is given as

Ht = (1− λ) rt−1r
′
t−1 + λHt−1, (3.4)
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with λ = 0.94 for daily data.

4 Intraday Based Models

Merton (1980) noted that in a geometric Brownian motion, using higher frequencies of data will allow one to estimate

volatility at arbitrary precision. In a real world setting this idea is subject to the discreteness of trading and other

market microstructure effect generating noise in the estimates when using frequencies below 5-20 minutes, see Hansen

and Lunde (2006).

The characteristics of this noise are dependent on the sampling frequency, but may be correlated with the price,

time-dependent and has changed over time. To benefit from sampling at higher frequencies while being robust to

noise, several methods for measuring realized variance (RV) have been estimated, we discuss these in subsection 4.1.

We use two different estimates in our empirical application, realized volatility at a low frequency and kernel at higher

frequencies.

When dealing with multivariate high frequency data one has to deal with the issue of synchronicity, while the daily

models could safely be dependent on each stock being traded every day, it is highly unlikely that all the stocks of a

portfolio are traded at exactly the same time throughout a day or the same number of times.

Apart from dealing with noise induced by market microstructure, one also has to be mindful of data cleaning which

is known to be one of the most critical aspects of using intraday data, see Barndorff-Nielsen et al. (2009).

4.1 Measuring Variation

4.1.1 Univariate

To measure the daily variation in a stocks price at a higher frequency, we now divide day t into n subintervals

t0 < t1 < ... < tn−1 < tn = t,

for which we observe the intradaily returns

rj,n = log(ptj )− log(ptj−1), j = 1, ..., n

with ptj the price at observation j on day t.

Since Andersen and Bollerslev (1998) used RV, also commonly referred to as realized volatility, to evaluate the fore-

casting ability of volatility models it has been apparent that RV, at least in principle, offers a measure of volatility which

is much less noisy than squared daily returns. We define the RV of day t as
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RVt ..=
n∑
i=1

r2
j,n

However, as noted as early as Merton (1980) RV is susceptible to noise, see Roll (1984) and Hansen and Lunde

(2006). Hence sampling at higher frequencies can make RV even noisier than simply using squared daily returns.

Hansen and Lunde (2006) suggest not to sample more frequently than the 5 − 10 minute frequency to reduce bias,

though this comes at a price of not using much of the data efficiently. In this paper we use a 10 minute frequency for

estimating RV.

However, this loss of data has motivated robust measures of realized volatility such as pre-averaging, subsampling

and realized kernels, see Barndorff-Nielsen et al. (2008). Realized kernel estimators are for day t is defined as

RKt =
H∑

h=−H
k

(
h

H

)
γh, γh =

h∑
j=|h|+1

rj,nrj−|h|,n,

where k(·) is a kernel function. We used a Parzen kernel with an optimally selected bandwidth (H), see Barndorff-

Nielsen et al. (2008).

4.1.2 Multivariate

When attempting to measure the volatility of several assets at high frequency one must deal with the issue of asyn-

chronicity. That is, stocks are generally traded at different times, making a return of the portfolio of stocks difficult to

measure. One solution to the issue of asynchronicity has been to consider refresh sampling the prices, see Barndorff-

Nielsen et al. (2008), which samples prices using the newest trades but only once all assets have changed price at least

once since the last sampling. That is, for t ∈ [0, 1] with 0 being the start of trading and 1 being the end, and the

portfolio consisting of N assets the first refresh-time is τN1 = max(t(1)
1 , ..., t

(N)
1 ) with t(i)1 indicating the first time asset

i is traded. Subsequent refresh-times occur as τNj+1 = max(t(i)m |t(i)m > τNj ,m = 1, ..., Ni ∧ i = 1, ..., N) where Ni is the

number of trades for asset i. Clearly this means that the available refreshed prices will be a decreasing as the number

of assets included increases, since the frequency of observed prices are determined by the least frequently traded asset4.

A secondary issue is the Epps effect, the tendency for microstructure noise to cause a bias in realized covariances (RC)

towards zero, see eg. Sheppard (2006).

We use the refresh sampled prices to calculate the (univariate) realized variance and realized kernel estimates at the

portfolio level for use in eg. GARCH-X models, see section 4. This is a very simple approach to using high frequency

data for portfolio risk forecasting. We are not aware of any other applications of this particular method.

Similar to how we use the realized variance for the univariate estimates we will for the multivariate estimates use

RC . RC is estimated by the outer product of returns,
4Specifically, for the full portfolio of 44 stocks in section 6, we have 1, 557 daily prices on average.
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Σ̂RCt =
n∑
j=1

rj,nr
′
j,n.

similar to how realized variance is calculated. RC should be sampled as frequently as possible when there is no errors in

the prices. However, to minimize the Epps effect while being mindful of the loss in observations we use prices sampled

at most at 20 minute intervals5.

In future work we plan to also employ the CholCov method of Boudt et al. (2014) to estimate the covariance matrix,

Σt, of the portfolio at time t by a Cholesky decomposition of the covariance matrix

Σ̂Cholcovt = HtGtH
′
t.

This ensures a positive semidefinite estimate while a sequential estimation of the elements of Ht and Gt using an

expanding number of asset returns, based on refreshed prices, uses as many observations as possible. The method is

attractive because it ensures both a positive semidefinite matrix and is efficient in its usage of observations available.

4.2 Univariate Models

The GARCH-X model is an extension of the GARCH model of section 3.1 with an added exogenous variable in the

form of a realized volatility measure (RM). Specifically the model is given by

σ2
p,t = ω + αy2

p,t−1 + βσ2
p,t−1 + γRMt−1.

This specification is identical to the expression for the variance in the HEAVY models of Noureldin et al. (2011)

when setting α = 0, but unlike the HEAVY models does not contain an expression for the realized measure which can

be useful for multiple step forecasts. For completeness we also implement the HEAVY model, that is, the GARCH-X

model with restriction α = 0.

The Heterogeneous Autoregressive model (HAR) of Corsi (2009) is an additive cascade model of realized volatility from

different frequencies (daily, weekly and monthly). This simple model can generate a number of features commonly seen

in return data such as long memory and fat tails. The model is given by

σ2
p,t = α+ βRMd

t−1 + γRMw
t−1 + κRMm

t−1,

where RMd
t−1, RMw

t−1 and RMm
t−1 are the daily, weekly and monthly realized measures. The weekly and monthly

realized volatility are estimated by using daily data for the past 5 and 30 days respectively but otherwise in a similar

manner to daily realized volatility.
5Sheppard (2006) finds bias when sampling more frequently than 18 minutes in data observed between 1993 and 2002, as our dataset is

more recent and the number of trades have increased rapidly over time we are confident that using a 20 minute sampling frequency avoids
most negative microstructure effects.
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4.3 Multivariate Models

Our first intraday multivariate model is a simple analog to the RM94 model of equation (3.4), but using either Σ̂RCt

rather than the outer product of returns to update the covariance matrix. The model, which we will refer to as the

RM94-RM model, is given as

Ht = (1− λ) Σ̂RCt−1 + λHt−1

We let λ = 0.25, weighting scheme has been changed compared to the RM94 model to reflect the increased precision

of using a realized measure. The weighting is somewhat arbitrary and is chosen largely to be intuitive. We are not

aware of other papers using this setup to forecast the covariance matrix of a portfolio.

The HEAVY model of Noureldin et al. (2011), is similar to the variance targeting scalar BEKK model of equation

(3.1), but with the difference that the estimated integrated covariance matrix is used rather than the outer product of

returns so that the model is given by

Ht = (1−A−B) Γ +AΣ̂RCt−1 +BHt−1. (4.1)

Bauwens et al. (2012) propose the realized consistent dynamic conditional correlation model (Re-cDCC), a DCC-like

structure for realized covariance matrices. Specifically Ht is factorized as

Ht = DtRtDt (4.2)

and Rt as

Rt = diag(Qt)−1/2Qtdiag(Qt)−1/2,

but where the correlation driving process, Qt, is defined as

Qt = (1− α− β)Q+ αP ∗t−1 + βQt−1,

where

P ∗t−1 = diag(Qt)1/2D−1
t Σ̂t−1tD

−1
t diag(Qt)1/2.

To reduce the number of estimated parameters we use correlation targeting by replacing Q with the mean of P ∗t−1. We

use ARFIMA(1,d,0) models for the volatilities in Dt, estimated on the individual series. We estimate using a Gaussian

likelihood.

The HEAVY and Re-cDCC models are also included in the VaR 1 day forecasting exercise found in Boudt et al.
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(2014), where both models are estimated using a Wishart composite likelihood, see Shephard et al. (2008), and use

the CholCov, see section 4.1, estimate for the realized measure.

5 Evaluating VaR Forecasts

In this section we describe two tools for comparing VaR forecasts, hit-sequence based backtests and the model confidence

set approach.

Hit-sequence based backtesting is useful for evaluating whether a forecast successfully forecasted the VaR, however

the early backtests commonly used in the literature are known to have low power, see Christoffersen (1998). We

therefore use the backtests developed in Pajhede (2017) which in simulations have been found to have excellent power

properties and are easy to interpret.

The model confidence set approach of Hansen et al. (2011) yields a set of models which contain the best model, in

terms of minimizing some loss function when forecasting, with a specified degree of certainty. This approach is useful

in comparing multiple competing models of different types.

5.1 Hit-Sequence Based Backtesting

Backtesting is the procedure of comparing realized losses to the forecasted VaR. To implement backtesting of a VaR

forecast, we use the hit-sequence

It ..= 1
(
Rt < VaRt|t−1(p)

)
, t = 1, ...T (5.1)

Where 1(·) is the indicator function. Thus, the hit-sequence is by construction a binary time series indicating whether

a loss at time t greater than the VaR, termed a violation or a hit, was realized.

A VaR forecast is valid, in the sense of actually having forecasted the desired quantile, only if the associated

hit-sequence satisfies the following criteria due to Christoffersen (1998):

• The unconditional coverage criteria: The unconditional probability of a violation must be exactly equal to the

coverage rate p:

HUC : P (It = 1) = p

• The independence criteria: The conditional probability of a violation must be constant:

HInd : P (It = 1|Ft−1) = P (It = 1)

Combining these criteria we obtain the conditional coverage criteria:

• The conditional coverage criteria: The probability of a violation must be constant and equal to the coverage rate:
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HCC : P (It = 1|Ft−1) = P (It = 1) = p

It follows, see Christoffersen (1998), that the hit-sequence of a valid VaR forecast, is in fact a sequence of i.i.d.

Bernoulli distributed variables:

It ∼
i.i.d.

Bernoulli(p), t = 1, ..., T. (5.2)

Pajhede (2017) generalizes the backtests of Kupiec (1995) and Christoffersen (1998) to test for unconditional

coverage, independence and conditional coverage in a k’th order Markov chain model. The so called generalized

Markov tests suggested in Pajhede (2017) have shown good power properties in simulation studies and are easy to

apply. We implement the backtests using the Backtest toolbox6.

p̂S = T01

T01 + T00
, p̂E = T11

T11 + T10
and φ̂ = T01 + T11

T01 + T11 + T00 + T10

Where Jt−1 ..= 1
(∑k

i=1 It−1 > 0
)

and the counts; T11 ..=
∑T
t=1 ItJt−1, T01 ..=

∑T
t=1 It(1 − Jt−1), T10 ..=

∑T
t=1(1 −

It)Jt−1, T00 ..=
∑T
t=1(1 − It)(1 − Jt−1). We note that p̂E can only be calculated if there is at least 1 hit in the

hit-sequence.

• The test statistic of independence has the following expression

QG−Ind = −2{log(1− φ̂)(T00 + T10) + log(φ̂)(T01 + T11)

− log(1− p̂S)T00 − log(p̂S)T01 − log(1− p̂E)T10 − log(p̂E)T11}
(5.3)

• The test statistic of unconditional coverage has the following expression

QG−UC = −2
{
log
(
pT1(1− p)T0

)
− log

(
φ̂T1(1− φ̂)T0

)}
d−→ χ2(1). (5.4)

• The test statistic of conditional coverage has the following expression

QG−CC = −2{log(1− p)(T00 + T10) + log(p)(T01 + T11)

− log(1− p̂S)T00 − log(p̂S)T01 − log(1− p̂E)T10 − log(p̂E)T11}

= QUC +QG−Ind

(5.5)

The last expression highlights that a rejection of conditional coverage can easily be examined as to whether it was

due to a rejection of UC, IND or both. We note that simulations in Pajhede (2017) suggest that k = 10 may be an

appropriate choice of lags and therefore we use this for all tests.

We have that for T → ∞, and under the null-hypothesis that {It} is an i.i.d. Bernoulli sequence with probability

parameter p, that

QG−Indχ
2(1), QG−UC

d−→ χ2(1) and QG−CC
d−→ χ2(2).

6See Pajhede (2015) for details
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However, as for all hit-sequence based backtests size distortion can be severe even for quite large samples, see

Pajhede (2017), and so the Monte Carlo testing technique of Dufour (2006) is used to correct the p-values.

5.2 Model Confidence Set

The MCS approach of Hansen et al. (2011) can be used to select a set of models which - with arbitrary precision -

contain the model with the best forecast. Specifically, the “best” model is defined as the one minimizing the mean

loss using the tick loss function Lt =
(
VaRt|t−1(p)− Yt

)
(It − α) with sampling of a block bootstrap. The bootstrap is

used to estimate a distribution of the mean loses and eliminate the models using t-statistics.

We select a 90% confidence set, that is, the best model in terms of minimizing the loss will with at least 90%

certainty belong to the model confidence set. All calculations were done using the Oxford MFE toolbox of Kevin

Shephard7 with a block length of 2 and 10, 000 replications.

6 Empirical Application

In this section we perform an empirical application by using the models detailed in the previous sections to forecast

the 1 day VaR, these forecasts are then compared by the methods covered in section 5. The test results are presented

in an aggregate manner, showing which types of model have the strongest performance rather than singling out one

model as superior. For the full results, see appendix A, B and C.

In the last subsection 6.4 we also consider the results of multi-period forecasting, specifically the 10 day VaR.

6.1 Data

Data was obtained from the TAQ database and consist of trading data for 44 of the largest stocks in the S&P5008 as

measured by market capitalization on the date of 01/01/2012. The data spans the period 03/01/2011 to 31/12/2015

with a total of 1258 observations. In the empirical application we use a rolling window of 500 observations for estimation,

updated daily, with 1 day ahead forecasts for a total of 758 forecasts to be used for evaluating the accuracy of the

forecasts. The results of Pajhede (2017) suggest that this is sufficient for good power properties of the VaR backtests.

The data was generously supplied by Asger Lunde and has been cleaned using the step-by-step cleaning procedure

described in Barndorff-Nielsen et al. (2009). RV and RK where estimated using code modified from the Oxford MFE

toolbox of Kevin Shephard9

7https://www.kevinsheppard.com/MFE_Toolbox
8The tickers are: AAPL, ABT, AIG, AMZN, AXP, BAC, BMY, C, CAT, COP, CSCO, CVS, CVX, DIS, GE, GOOG, GS, HD, IBM,

INTC, JNJ, JPM, KO, MCD, MMM, MO, MRK, MSFT, ORCL, OXY, PEP, PFE, PG, PM, QCOM, SLB, T, UNH, UPS, USB, UTX, V,
VZ, WFC.

9https://www.kevinsheppard.com/MFE_Toolbox
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6.2 Backtest Results

The backtest results are presented in tables 1, 2 and 3. To extract the main results of the data we organize the results

by their rejection at a 5% significance level, using the conditional coverage backtest presented in section 5.1. We also

sort the results by different categories such as univariate/multivariate, conditional distribution, realized measure used

and model specification. In the following, we will refer to forecasts for which the conditional coverage test rejects the

null of conditional coverage at a 5% significance level as a rejected forecast.

For the 1% VaR we see from table 1 that multivariate and univariate models have similar performance, with 4 out

of 12 and 7 out of 28 being rejected respectively. Regarding the univariate models, we see that all 7 rejections are

from the interday based models and none from using intraday, which also entails no apparent difference in using either

RV or RK for forecasting the 1% VaR. For the multivariate models, based on intraday data, there is 1 rejection out

of 5 forecasts and 3 rejections out of 7 using interday data. In terms of the conditionally specified distribution, of the

9 forecasts generated from a univariate model using FHS only 1 forecast is rejected. However, 4 out of 5 forecasts

using multivariate models and the FHS method are rejected, suggesting FHS may be more appropriate in a univariate

setting. 1 of the 2 CAViaR model based forecasts is rejected. The forecasts based on the simple EWMA1994, RM94

and RM94-RM models are not rejected.

For the 5% VaR we see from table 2 that there is a slight edge to the forecasts generated using multivariate models

with 5 rejections out of 12 compared to the 16 rejections out of 28 from the univariate models. The intraday and

interday based models now suggest a worse performance using intraday based models compared to interday based

models with 10 rejections out of 16 forecasts and 6 rejections out of 12 forecasts respectively - With equal performance

of forecasts based on models using RV and RK. There appears to be similar performance of intraday and interday

based forecasts when using a multivariate model, with 3 out of 7 rejections for interday based forecasts and 2 out of 5

for intraday based forecasts. In terms of conditional distribution, we see that no forecast out of the 9 generated using

a univariate model and FHS is rejected. However, for the multivariate models we again see quite poor performance

using FHS in conjunction with a multivariate model with 4 rejected forecasts out of 5. The forecasts based on the

simple EWMA1994, RM94 and RM94-RM models are not rejected.

For the 10% VaR we see from table 3 that there is a slight edge to the forecasts generated using univariate models

with 11 rejections out of 28 compared to the 6 rejections out of 12 for the multivariate models. For the univariate models,

we see that there is a slight advantage to using intraday models with 6 rejections out of 16 forecasts, compared to 5

rejected forecasts out of 12 for interday based forecasts. Again, RV and RK generate similar forecasts. Similar results

are found for multivariate models with 2 rejections out of 5 for the intraday based forecasts and 4 out rejections of 7 for

the interday based forecasts. In terms of the conditionally specified distribution, we again see that no univariate model

using FHS generate a rejected forecast. Compared to the repeated poor performance when combining multivariate

models with FHS, with 4 rejections out of 5 forecasts. The forecasts using CAViaR models are not rejected. The

forecasts based on the simple EWMA1994, RM94 and RM94-RM models are not rejected.
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6.3 Model Confidence Set Results

The MCS results are presented in detail in Appendix B. The results largely agree with the results using the backtests

of the previous section.

For the 1% VaR only models using intraday data is included in the MCS, of these, 4 out of 7 are univariate and 3

multivariate. 3 out of 4 forecasts included are based on models using FHS.

For the 5% VaR, the MCS now contains 25 out of the 40 models. We note that all the models of the previous

MCS for the 1% VaR is included in the MCS for the 5% VaR. The larger set can be interpreted either as that the

data is not very informative about which model is best, or we could say that that all forecasts are close to optimal

and are therefore indistinguishable leading to a larger set of models in the MCS. The MCS contains 17 forecasts based

on univariate models and 8 based on multivariate - we note that as there is also 28 univariate forecasts compared to

the 12 multivariate, this suggests similar performance of the two classes. However, of the 25 included models 20 use

intraday data, which suggest the best model may lie in that category.

For the 10% VaR, the MCS now contains 27 out of the 40 models. We note that all the models of the previous

MCS’s is included in the MCS for the 10% VaR. The only addition is the two forecasts based on CAViaR models.
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6.4 Multi-period Forecasts

While 1 day VaR is perhaps the most commonly examined measure of risk in the academic literature, due to the ease

of 1 period forecasts in most models, the required industry standard is a 10 day 1% VaR, see on Banking Supervision

(1996). The regulatory framework set out by the 1996 Basel accords, see on Banking Supervision (1996) section B4.c,

directly advocates forecasting a lower period and then scaling it using the well known square-root-of-time rule. In this

section we examine the performance, using the backtests previously described, the 5% and 1% VaR forecasts of 10 days

using the square-root-of-time rule.

Suppose we have the 1 day VaR, forecast as defined in equation (2.2), that is

VaRt|t−1(α) = µp + σp,tF
−1(α). (6.1)

The square-root-of-time rule for forecasting an additional x periods is then implemented simply by calculating σp,t+x =

σp,t
√
x, and using that as the volatility in equation (2.2)10. This approach has been somewhat criticized in the academic

literature, see eg. Diebold et al. (1997) and Wang et al. (2011), because the implicit assumption of constant variance

and no autocorrelations in the innovations are unlikely to be true and leads to an overestimation of risk. Kole et al.

(2015) finds that while scaling performs adequate, and better than using direct forecasts, ie. using a model for biweekly

data is worse than scaling a daily models forecast, the best performance is not-surprisingly found by using an iterated

forecasting scheme, see Marcellino et al. (2005), where the forecast is iterated one step until the desired period is

reached. Although this may be difficult in practice for some models.

We present the results of the backtests and model confidence set in appendix C. The results are quite clear in that

every single forecast is either rejected or has so few violations that no test could be calculated to evaluate the forecast -

which should also be considered a rejection. However, on closer inspection one can see that for all VaR coverage levels

several forecasts actually pass the UC criteria. That is, scaling by the square-root-of-time can produce acceptable

forecasts in terms of unconditional coverage, but will fail the IND criteria. We find no particular evidence that using

the square-root-of-time rule should lead one to overestimate the levels of risk as argued in eg. Diebold et al. (1997).

7 Conclusion

The purpose of this paper has been to draw broad generalizations about what works best when forecasting VaR for

large portfolios. In this respect we have noted certain consistencies in our results in the many models examined and at

different VaR coverage levels: the choice of a univariate or a multivariate model seem to not be particularly important,

both types of model can generate good forecasts and neither is consistently better than the other. Using intraday

data appears to produce superior forecasts, especially in univariate models. There appears to be no difference in the

accuracy of forecasts produced using realized variance based on a 10 minute sampling frequency compared to using a
10When the forecasting method does not depend on a volatility estimate we instead scale the VaR directly using the square root of time.
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realized kernel. In terms of conditional distributions, filtered historical simulation in conjunction with univariate models

work excellent, producing consistently good forecasts. However, for multivariate models filtered historical simulation

performs poorly compared to using a Gaussian distribution. We also find that simple fixed parameter models, the

EWMA, RM94 and the RM94-RM, all have excellent forecasting performance across different VaR levels. Likewise the

two CAViaR models have good performance, with only a single rejection at the 1% VaR level.

Lastly, we find that using the square-root-of-time rule is consistently rejected by backtests, especially due to the

independence criteria. That is, using the square-root-of-time rule one will produce forecasts which may not account

for changing levels of risk. However, the unconditional coverage criteria is only rejected for about half of the examined

models and we find no particular evidence that using the rule should lead one to overestimate levels of risk.
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Model Coverage PCT UC IND CC
APARCHFHS 0.53 0.15 0.71 0.10
APARCH 0.40 0.04 0.82 0.04
APARCHt 0.13 0.00 0.93 0.01
BEKKFHS 0.13 0.00 0.93 0.01
BEKK 1.06 0.94 0.86 0.95

CAViaR-Symmetric 0.26 0.01 0.82 0.03
CAViaR-Asymmetric 0.79 0.52 0.02 0.09

CCCFHS 0.13 0.00 1.00 0.00
CCC 0.79 0.53 0.46 0.46

DCCFHS 0.13 0.00 1.00 0.00
DCC 0.79 0.57 0.47 0.47

EWMA1994 0.79 0.52 0.47 0.45
GARCHFHS 1.06 0.87 0.24 0.57

GARCHXFHSRK 0.79 0.51 0.47 0.46
GARCHXFHSRV 0.66 0.36 0.54 0.48
GARCHXRK 0.79 0.56 0.48 0.46
GARCHXRV 0.40 0.04 0.73 0.14
GARCHXtRK 0.53 0.20 0.66 0.27
GARCHXtRV 0.40 0.06 0.75 0.11

GARCH 0.66 0.37 0.62 0.26
GARCHt 0.26 0.01 0.84 0.03

GJRGARCHFHS 1.19 0.68 0.00 0.00
GJRGARCH 0.53 0.16 0.05 0.02
GJRGARCHt 0.13 0.00 0.93 0.01
HARFHSRK 0.66 0.30 0.62 0.26
HARFHSRV 0.66 0.31 0.51 0.52
HARRK 0.79 0.51 0.47 0.46
HARRV 0.53 0.16 0.73 0.11
HARtRK 0.66 0.28 0.62 0.26
HARtRV 0.40 0.05 0.74 0.12

HEAVYRCFHS 2.64 0.00 0.01 0.00
HEAVYRC 1.06 0.91 0.19 0.40

HEAVYUnivariateRKFHS 0.79 0.54 0.47 0.47
HEAVYUnivariateRK 0.79 0.56 0.47 0.46

HEAVYUnivariateRVFHS 0.53 0.16 0.63 0.31
HEAVYUnivariateRV 0.53 0.18 0.66 0.29

RM94RCFHS 1.58 0.12 0.94 0.31
RM94RC 1.06 0.95 0.89 0.97
RM94 0.79 0.54 0.47 0.45

ReDCCRC 0.53 0.15 0.67 0.26

Table 4: Backtest results for the 1 day 1% VaR. UC , IND and CC indicates the p-values for generalized Markov
backtests of their respective hypotheses as defined in section 5.1 and using k = 10 lags. A blank value indicates that
the test could not be calculated because there was no hits, which should be interpreted as a rejection of UC. RK and
RV refer to models using realized kernels and realized volatility respectively. FHS and t refers to models using filtered
historical simulation and the t distribution for forecasting, models without FHS or t use the Gaussian distribution.
See sections 3 and 4 for further details.
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Model Coverage PCT UC IND CC
APARCHFHS 4.49 0.53 0.07 0.13
APARCH 2.77 0.00 0.14 0.00
APARCHt 1.58 0.00 0.20 0.00
BEKKFHS 1.85 0.00 0.99 0.00
BEKK 3.96 0.17 0.11 0.10

CAViaR-Symmetric 3.69 0.09 0.84 0.13
CAViaR-Asymmetric 5.94 0.27 0.05 0.08

CCCFHS 1.06 0.00 0.31 0.00
CCC 3.43 0.03 0.53 0.07

DCCFHS 1.06 0.00 0.31 0.00
DCC 3.43 0.03 0.52 0.07

EWMA1994 4.35 0.38 0.81 0.53
GARCHFHS 4.49 0.55 0.86 0.65

GARCHXFHSRK 5.28 0.70 0.09 0.24
GARCHXFHSRV 5.01 0.95 0.90 0.99
GARCHXRK 3.03 0.01 0.33 0.01
GARCHXRV 2.64 0.00 0.14 0.00
GARCHXtRK 3.43 0.04 0.22 0.04
GARCHXtRV 2.90 0.00 0.21 0.01

GARCH 2.64 0.00 0.88 0.00
GARCHt 1.58 0.00 0.06 0.00

GJRGARCHFHS 5.01 0.95 0.23 0.47
GJRGARCH 3.56 0.06 0.23 0.05
GJRGARCHt 2.11 0.00 0.02 0.00
HARFHSRK 5.28 0.68 0.27 0.51
HARFHSRV 5.28 0.69 0.86 0.95
HARRK 2.90 0.01 0.17 0.00
HARRV 2.77 0.00 0.26 0.00
HARtRK 3.43 0.03 0.22 0.05
HARtRV 3.03 0.01 0.35 0.02

HEAVYRCFHS 4.62 0.66 0.00 0.01
HEAVYRC 3.83 0.13 0.06 0.04

HEAVYUnivariateRKFHS 5.28 0.73 0.19 0.40
HEAVYUnivariateRK 2.90 0.01 0.48 0.01

HEAVYUnivariateRVFHS 5.01 0.94 0.75 0.94
HEAVYUnivariateRV 2.64 0.00 0.14 0.00

RM94RCFHS 3.96 0.18 0.44 0.25
RM94RC 5.01 0.94 0.91 0.99
RM94 4.35 0.41 0.81 0.53

ReDCCRC 2.90 0.00 0.60 0.01

Table 5: Backtest results for the 1 day 5% VaR. The second clumn, Coverage PCT, indicate the mean of the hit-
sequences in percent. UC , IND and CC indicates the p-values for generalized Markov backtests of their respective
hypotheses as defined in section 5.1 and using k = 10 lags. A blank value indicates that the test could not be calculated
because there was no hits, which should be interpreted as a rejection of UC. RK and RV refer to models using realized
kernels and realized volatility respectively. FHS and t refers to models using filtered historical simulation and the t
distribution for forecasting, models without FHS or t use the Gaussian distribution. See sections 3 and 4 for further
details.
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Model Coverage PCT UC IND CC
APARCHFHS 10.03 0.97 0.27 0.56
APARCH 7.52 0.01 0.85 0.04
APARCHt 6.60 0.00 0.95 0.00
BEKKFHS 3.83 0.00 0.24 0.00
BEKK 6.86 0.00 0.00 0.00

CAViaR-Symmetric 9.50 0.64 0.81 0.81
CAViaR-Asymmetric 11.48 0.19 0.94 0.48

CCCFHS 3.96 0.00 0.78 0.00
CCC 7.92 0.05 0.40 0.08

DCCFHS 3.96 0.00 0.79 0.00
DCC 7.92 0.05 0.40 0.08

EWMA1994 8.18 0.08 0.56 0.15
GARCHFHS 9.37 0.56 0.26 0.41

GARCHXFHSRK 9.89 0.93 0.78 0.94
GARCHXFHSRV 9.76 0.84 0.78 0.94
GARCHXRK 6.99 0.00 0.38 0.01
GARCHXRV 6.99 0.00 0.77 0.01
GARCHXtRK 8.05 0.06 0.91 0.14
GARCHXtRV 8.05 0.06 0.79 0.17

GARCH 7.78 0.04 0.30 0.05
GARCHt 5.28 0.00 0.88 0.00

GJRGARCHFHS 10.69 0.52 0.82 0.91
GJRGARCH 7.78 0.03 0.78 0.07
GJRGARCHt 5.67 0.00 0.29 0.00
HARFHSRK 10.16 0.89 0.67 0.91
HARFHSRV 10.16 0.86 0.87 0.98
HARRK 7.12 0.00 0.64 0.02
HARRV 6.86 0.00 0.66 0.01
HARtRK 7.92 0.05 1.00 0.11
HARtRV 7.92 0.06 0.89 0.14

HEAVYRCFHS 8.44 0.15 0.01 0.01
HEAVYRC 7.12 0.00 0.00 0.00

HEAVYUnivariateRKFHS 9.89 0.92 0.74 0.92
HEAVYUnivariateRK 7.12 0.01 0.49 0.02

HEAVYUnivariateRVFHS 9.89 0.92 0.73 0.93
HEAVYUnivariateRV 6.99 0.00 0.78 0.01

RM94RCFHS 8.05 0.07 0.73 0.10
RM94RC 9.37 0.55 0.77 0.68
RM94 8.18 0.09 0.56 0.15

ReDCCRC 8.44 0.14 0.73 0.27

Table 6: Backtest results for the 1 day 10% VaR. The second clumn, Coverage PCT, indicate the mean of the hit-
sequences in percent. UC , IND and CC indicates the p-values for generalized Markov backtests of their respective
hypotheses as defined in section 5.1 and using k = 10 lags. A blank value indicates that the test could not be calculated
because there was no hits, which should be interpreted as a rejection of UC. RK and RV refer to models using realized
kernels and realized volatility respectively. FHS and t refers to models using filtered historical simulation and the t
distribution for forecasting, models without FHS or t use the Gaussian distribution. See sections 3 and 4 for further
details.
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Model 1% 5% 10%
APARCHFHS No No No
APARCH No No No
APARCHt No No No
BEKKFHS No No No
BEKK No No No

CAViaR-Symmetric No No Yes
CAViaR-Asymmetric No No Yes

CCCFHS No No No
CCC No No No

DCCFHS No No No
DCC No No No

EWMA1994 No Yes Yes
GARCHFHS No Yes Yes

GARCHXFHSRK No Yes Yes
GARCHXFHSRV Yes Yes Yes
GARCHXRK No Yes Yes
GARCHXRV No Yes Yes
GARCHXtRK No Yes Yes
GARCHXtRV No Yes Yes

GARCH No Yes Yes
GARCHt No No No

GJRGARCHFHS No Yes Yes
GJRGARCH No Yes Yes
GJRGARCHt No No No
HARFHSRK No Yes Yes
HARFHSRV Yes Yes Yes
HARRK Yes Yes Yes
HARRV Yes Yes Yes
HARtRK No Yes Yes
HARtRV No Yes Yes

HEAVYRCFHS No No No
HEAVYRC No No No

HEAVYUnivariateRKFHS No Yes Yes
HEAVYUnivariateRK No Yes Yes

HEAVYUnivariateRVFHS No Yes Yes
HEAVYUnivariateRV No Yes Yes

RM94RCFHS Yes Yes Yes
RM94RC Yes Yes Yes
RM94 No Yes Yes

ReDCCRC Yes Yes Yes

Table 7: Model confidence results for the 1 day 1%, 5% and 10% VaR. We use 90% confidence sets. All calculations
were done using the Oxford MFE toolbox with a block length of 2 and 10, 000 replications.
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Model Coverage PCT UC IND CC
APARCHFHS 0.67 0.31 0.00 0.00
APARCH 0.53 0.18 0.00 0.00
APARCHt 0.13 0.00 0.93 0.01
BEKKFHS 0.00 0.00
BEKK 0.27 0.02 0.01 0.00

CAViaR-Symmetric 0.00 0.00
CAViaR-Asymmetric 0.67 0.31 0.00 0.00

CCCFHS 0.00 0.00
CCC 0.13 0.00 0.92 0.01

DCCFHS 0.00 0.00
DCC 0.13 0.00 0.93 0.01

EWMA1994 0.53 0.16 0.00 0.00
GARCHFHS 0.40 0.08 0.00 0.00

GARCHXFHSRK 0.00 0.00
GARCHXFHSRV 0.00 0.00
GARCHXRK 0.00 0.00
GARCHXRV 0.00 0.00
GARCHXtRK 0.00 0.00
GARCHXtRV 0.00 0.00

GARCH 0.13 0.00 0.92 0.01
GARCHt 0.00 0.00

GJRGARCHFHS 0.93 0.99 0.00 0.00
GJRGARCH 0.53 0.20 0.00 0.00
GJRGARCHt 0.27 0.03 0.01 0.00
HARFHSRK 0.00 0.00
HARFHSRV 0.00 0.00
HARRK 0.00 0.00
HARRV 0.00 0.00
HARtRK 0.00 0.00
HARtRV 0.00 0.00

HEAVYRCFHS 0.00 0.00
HEAVYRC 0.27 0.02 0.00 0.00

HEAVYUnivariateRKFHS 0.00 0.00
HEAVYUnivariateRK 0.00 0.00

HEAVYUnivariateRVFHS 0.00 0.00
HEAVYUnivariateRV 0.00 0.00

RM94RCFHS 1.74 0.08 0.00 0.00
RM94RC 1.47 0.26 0.00 0.00
RM94 0.53 0.17 0.00 0.00

ReDCCRC 0.00 0.00

Table 8: Backtest results for the 10 day 1% VaR. The second clumn, Coverage PCT, indicate the mean of the hit-
sequences in percent. UC , IND and CC indicates the p-values for generalized Markov backtests of their respective
hypotheses as defined in section 5.1 and using k = 10 lags. A blank value indicates that the test could not be calculated
because there was no hits, which should be interpreted as a rejection of UC. RK and RV refer to models using realized
kernels and realized volatility respectively. FHS and t refers to models using filtered historical simulation and the t
distribution for forecasting, models without FHS or t use the Gaussian distribution. See sections 3 and 4 for further
details.
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Model Coverage PCT UC IND CC
APARCHFHS 4.94 0.94 0.00 0.00
APARCH 3.47 0.04 0.00 0.00
APARCHt 2.54 0.00 0.00 0.00
BEKKFHS 0.93 0.00 0.00 0.00
BEKK 3.07 0.01 0.00 0.00

CAViaR-Symmetric 3.07 0.01 0.00 0.00
CAViaR-Asymmetric 6.28 0.13 0.00 0.00

CCCFHS 0.67 0.00 0.16 0.00
CCC 4.14 0.26 0.00 0.00

DCCFHS 0.66 0.00 0.15 0.00
DCC 3.96 0.16 0.00 0.00

EWMA1994 3.34 0.03 0.00 0.00
GARCHFHS 5.07 0.92 0.00 0.00

GARCHXFHSRK 4.94 0.97 0.00 0.00
GARCHXFHSRV 4.94 0.96 0.00 0.00
GARCHXRK 3.20 0.02 0.00 0.00
GARCHXRV 2.94 0.01 0.00 0.00
GARCHXtRK 3.74 0.12 0.00 0.00
GARCHXtRV 3.34 0.02 0.00 0.00

GARCH 3.07 0.01 0.00 0.00
GARCHt 1.20 0.00 0.00 0.00

GJRGARCHFHS 5.07 0.89 0.00 0.00
GJRGARCH 3.60 0.07 0.00 0.00
GJRGARCHt 2.00 0.00 0.00 0.00
HARFHSRK 4.81 0.81 0.00 0.00
HARFHSRV 4.54 0.54 0.00 0.00
HARRK 2.94 0.00 0.00 0.00
HARRV 3.07 0.01 0.00 0.00
HARtRK 3.60 0.07 0.00 0.00
HARtRV 3.47 0.04 0.00 0.00

HEAVYRCFHS 0.00 0.00
HEAVYRC 3.07 0.01 0.00 0.00

HEAVYUnivariateRKFHS 4.94 0.98 0.00 0.00
HEAVYUnivariateRK 3.34 0.03 0.00 0.00

HEAVYUnivariateRVFHS 4.81 0.83 0.00 0.00
HEAVYUnivariateRV 2.94 0.01 0.00 0.00

RM94RCFHS 4.27 0.36 0.00 0.00
RM94RC 4.94 0.99 0.00 0.00
RM94 3.20 0.02 0.00 0.00

ReDCCRC 2.54 0.00 0.00 0.00

Table 9: Backtest results for the 10 day 5% VaR. The second clumn, Coverage PCT, indicate the mean of the hit-
sequences in percent. UC , IND and CC indicates the p-values for generalized Markov backtests of their respective
hypotheses as defined in section 5.1 and using k = 10 lags. A blank value indicates that the test could not be calculated
because there was no hits, which should be interpreted as a rejection of UC. RK and RV refer to models using realized
kernels and realized volatility respectively. FHS and t refers to models using filtered historical simulation and the t
distribution for forecasting, models without FHS or t use the Gaussian distribution. See sections 3 and 4 for further
details.
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Model Coverage PCT UC IND CC
APARCHFHS 11.21 0.29 0.00 0.00
APARCH 7.88 0.05 0.00 0.00
APARCHt 6.14 0.00 0.00 0.00
BEKKFHS 4.01 0.00 0.00 0.00
BEKK 7.48 0.02 0.00 0.00

CAViaR-Symmetric 8.68 0.21 0.00 0.00
CAViaR-Asymmetric 10.55 0.59 0.00 0.00

CCCFHS 4.81 0.00 0.00 0.00
CCC 8.54 0.18 0.00 0.00

DCCFHS 4.75 0.00 0.00 0.00
DCC 8.44 0.14 0.00 0.00

EWMA1994 8.14 0.08 0.00 0.00
GARCHFHS 10.28 0.78 0.00 0.00

GARCHXFHSRK 11.62 0.15 0.00 0.00
GARCHXFHSRV 10.81 0.43 0.00 0.00
GARCHXRK 8.01 0.06 0.00 0.00
GARCHXRV 8.14 0.09 0.00 0.00
GARCHXtRK 9.61 0.76 0.00 0.00
GARCHXtRV 9.75 0.85 0.00 0.00

GARCH 7.61 0.02 0.00 0.00
GARCHt 5.87 0.00 0.00 0.00

GJRGARCHFHS 11.21 0.28 0.00 0.00
GJRGARCH 8.14 0.08 0.00 0.00
GJRGARCHt 6.28 0.00 0.00 0.00
HARFHSRK 11.08 0.35 0.00 0.00
HARFHSRV 11.08 0.34 0.00 0.00
HARRK 8.41 0.13 0.00 0.00
HARRV 8.01 0.06 0.00 0.00
HARtRK 10.01 0.97 0.00 0.00
HARtRV 10.01 0.99 0.00 0.00

HEAVYRCFHS 0.00 0.00
HEAVYRC 7.61 0.02 0.00 0.00

HEAVYUnivariateRKFHS 11.62 0.15 0.00 0.00
HEAVYUnivariateRK 8.28 0.11 0.00 0.00

HEAVYUnivariateRVFHS 11.21 0.29 0.00 0.00
HEAVYUnivariateRV 8.01 0.07 0.00 0.00

RM94RCFHS 9.21 0.48 0.00 0.00
RM94RC 12.55 0.03 0.00 0.00
RM94 8.14 0.08 0.00 0.00

ReDCCRC 8.28 0.11 0.00 0.00

Table 10: Backtest results for the 10 day 10% VaR. The second clumn, Coverage PCT, indicate the mean of the
hit-sequences in percent. UC , IND and CC indicates the p-values for generalized Markov backtests of their respective
hypotheses as defined in section 5.1 and using k = 10 lags. A blank value indicates that the test could not be calculated
because there was no hits, which should be interpreted as a rejection of UC. RK and RV refer to models using realized
kernels and realized volatility respectively. FHS and t refers to models using filtered historical simulation and the t
distribution for forecasting, models without FHS or t use the Gaussian distribution. See sections 3 and 4 for further
details.
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Abstract

We consider an observation driven, conditionally beta distributed model for variables restricted to the

unit interval. The model includes both explanatory variables and autoregressive dependence in the mean

and precision parameters using the mean-precision parametrization of the beta distribution suggested by

Ferrari and Cribari-Neto (2004). Our model is a generalization of the βARMA model proposed in Rocha

and Cribari-Neto (2009), which we generalize to allow for covariates and an ARCH type structure in the

precision parameter. We also highlight some errors in their derivations of the score and information which

has implications for the asymptotic theory. Included simulations suggest that standard asymptotics for

estimators and test statistics apply. In an empirical application to Moody’s monthly US 12-month issuer

default rates in the period 1972 − 2015, we revisit the results of Agosto et al. (2016) in examining the

conditional independence hypothesis of Lando and Nielsen (2010). Empirically we find that; (1) the current

default rate influences the default rate of the following periods even when conditioning on explanatory

variables. (2) The 12 month lag is highly significant in explaining the monthly default rate. (3) There is

evidence for volatility clustering in the default rate data.
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1 Introduction

Since the recent financial crisis there has been a strong interest in improving our understanding of corporate

defaults. A focus of this interest is whether the clustering in defaults commonly observed, is mainly caused by

defaults increasing the probability of default in other firms (the contagion hypothesis), or whether these clusters

are due to common risk factors, specifically business cycle and financial, affecting all companies (the conditional

independence or systematic risk hypothesis). This question has already been explored by several authors; see,

for example, Das et al. (2006), Lando and Nielsen (2010), and Agosto et al. (2016). For investors and regulatory

authorities the systemic components of credit portfolios are of interest to ensure financial stability of either

a portfolios return or the economy as a whole. While from an academic standpoint it is interesting because

assuming conditional independence can be useful to assume in derivations, see Lando and Nielsen (2010).

We propose a conditionally beta distributed time series model (CBTS), which is a generalization of the

βARMA model of Rocha and Cribari-Neto (2009). The CBTS allows for covariates and autoregressive depen-

dence in both the mean and precision parameters using the parametrization of the beta distribution suggested

by Ferrari and Cribari-Neto (2004). The use of a conditional beta distribution for the default rate allows one to

examine the impact on both the location and scale of the distribution, whereas the Poison distribution has only

one parameter to match both the mean and the variance, the beta distribution has two.

However, similar to the GARCH-X type of models, see Han and Kristensen (2014), as shown in section 3

inference is quite involved. Section 4 presents a simulation study which suggests that the maximum likelihood

estimator is asymptotically Gaussian and that likelihood ratio tests are asymptotically χ2 distributed under the

null.

We apply our model to Moody’s monthly US 12-month issuer default rates in the period 1973− 2015. The

specification for the mean and precision include macroeconomic and financial variables, intended to capture the

common or correlated risk factors faced by the companies. We find that while explanatory variables do explain

some of the time variation in the default rate, dependence remains in the mean and the precision parameters,

possibly implying contagion effects. Further, we find evidence of volatility clustering in the default rate, which

we believe to be a phenomenon not previously observed in default rates. We also find that the 12 month lag is

highly significant in explaining default rates which appears to be a new result when modeling aggregate defaults

and might indicate previously unknown seasonality. We also find that realized volatility which was found to

be highly significant in explaining corporate defaults by Agosto et al. (2016) is not significant for the mean if

dummies are included for October of 1987, September 2008 and October 2008, but might be for the precision

parameter.

Previously, Sean et al. (1999) applied a Poisson model to default counts as a way to forecast the default rate,

since the number of companies that can default is known 12 months in advance. Similarly, Agosto et al. (2016)

examine the contagion hypothesis by modeling default counts.
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However, using the default rate rather rather than the default count can avoid certain drawbacks of count

models. Specifically, as the numbers of companies monitored that are capable of defaulting, known as the expo-

sure for Poison models, see Cameron and Trivedi (2013), is not constant, this may create spurious dependence

in the default counts. Regardless of whether the default of a company increases the probability of additional de-

faults, i.e. potentially presenting misleading evidence in favor of the contagion hypothesis. Instead, By dividing

the number of defaults with the number of firms, i.e. using the default rate, this is handled in a straightforward

way - but restricts the variable to be modeled to the unit interval.

A possible solution therefore is to apply a regression after having log-transformed the default rates as done

in, for example, Giesecke et al. (2010). However, transformed values of proportions and rates often exhibit

problematic characteristics, see Ferrari and Cribari-Neto (2004). Further, the interest lies in the default rate,

not a logarithmic transformation of it - therefore it seems logical to model the default rate directly.

The paper is organized as follows. Section 2 introduces the CBTS model. Section 3 considers some derivations

in the model, we highlight certain difficulties related to inference in both our model and the model of Rocha and

Cribari-Neto (2009). Section 4 conducts a simulation study to evaluate the finite sample accuracy of the derived

asymptotics for the maximum likelihood (ML) estimator as well as the empirical size for the likelihood ratio

(LR) tests when using its asymptotic distribution. Section 5 is an empirical application of the model to Moody’s

monthly US 12-month issuer default rates in the period 1973 − 2015, we consider the impact of covariates and

discuss contagion effects. Section 6 concludes.

2 The Conditionally Beta Time Series (CBTS) Model

The beta distribution is a continuous distribution on the unit interval governed by two shape parameters and

is widely used to model variables restricted to the unit interval, e.g. rates and proportions. The probability

density function (PDF) of the beta distribution is given by

f(y) = Γ(p+ q)
Γ(p)Γ(q)y

p−1(1− y)q−1, 0 ≤ y ≤ 1,

where p > 0, q > 0 and Γ(·) is the gamma function. The shape of the PDF is highly flexible, allowing for a U, bell

or J (with right or left tail) shaped curve as well as nesting the uniform distribution, see Ferrari and Cribari-Neto

(2004) for figures of possible shapes. The mean and variance for a beta distributed random variable, y, is given

by

E(y) = p

p+ q
and V ar(y) = pq

(p+ q)2(p+ q + 1)

Following Ferrari and Cribari-Neto (2004) the distribution is reparametrized by setting p = µφ and q = (1−µ)φ

such that

E(y) = µ and V ar(y) = µ(1− µ)
1 + φ

(2.1)
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where µ = p/(p+ q) and φ = p+ q; here 0 < µ < 1 and φ > 0 where φ can be regarded as a precision parameter

since a larger φ forces a smaller V ar(y) for a fixed µ. We denote this as the Beta(µ, φ) distribution with density

given by

f(y) = Γ(φ)
Γ(µφ)Γ((1− µ)φ)y

µφ−1(1− y)(1−µ)φ−1, 0 ≤ y ≤ 1.

Let y = (y1, ..., yT )′, be a time series whose distribution we model as a function of its own past, yt−m, m ≥

1, and in terms of some additional covariates xt = (x1t, ..., xkt)′ ∈ Rr. We now model yt as a conditional

beta distribution with time-varying conditional mean, µt, and conditional precision, φt, which are measurable

functions of past yt and known covariates. Specifically, let the model be given by,

yt|Ft−1 ∼
i.i.d

Beta(µt, φt), Ft−1 = σ(yt−m, xt−m+1 : m ≥ 1) (2.2)

where the conditional density, f(yt|yt−m, xt−m+1 : m ≥ 1), is given by

f(yt|yt−m, xt−m+1 : m ≥ 1) = Γ(φt)
Γ(µtφt)Γ((1− µt)φt)

yµtφt−1
t (1− yt)(1−µt)φt−1, 0 < y < 1

It is assumed that the time-varying conditional mean is related to the linear predictor, through a twice

differentiable strictly monotonic link function g1 : (0, 1) 7→ R, e.g. the logit function g1(x) = log( x
1−x ). That

is, we follow the βARMA model of Rocha and Cribari-Neto (2009) in defining g1(µt) as a function of a set of

regressors, xt, and an ARMA component, τt, such that the general expression for the mean is

g1(µt) = η1t = x′tβ1 + τt

= α1 + x′tβ1 +
∑
i≤Q1

δi
(
g1(yt−i)− x′t−iβ1

)
+
∑
j≤P1

γj (yt−j − µt−j) (2.3)

where β1 = (β1,1, ..., β1,k1), for notational convenience we also define δ = (δ1, ..., δq1) and γ = (γ1, ..., γp1) which

are the vectors of moving average and autoregressive parameters respectively. Q1 and P1 are the sets largest lag

of AR and MA included.

From Equation (2.1) it follows that the conditional variance is naturally time-varying as it is a function of

the time varying µt. To allow for a more flexible variance, we follow Smithsom and Verkuilen (2006) and let

the time varying conditional precision be related to a set of regressors in a linear predictor, η2t, through a twice

differentiable strictly monotonic link function g2 : R+ 7→ R, e.g. the log function g2(x) = log(x). Further,

to allow for dependence in the precision we also include lagged standardized squared errors. We will refer to

the last term as the ARCH component of the model due to the inspiration owed to the ARCH model of Engle

(1982).
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g2(φt) = η2t = α2 + z′tβ2 +
∑
j≤P2

κjε
2
t−j , εt−j = (yt−j − µt−j)√

µt−j(1−µt−j)
1+φt−j

, (2.4)

where β2 = (β2,1, ..., β2,k2), for notational convenience we also define κ = (κ1, ..., κp2) which is the vector of the

ARCH parameters. P2 is the largest ARCH lag. As a natural generalization one could consider also including

lagged values of φt or η2t, resulting in a GARCH like structure in the precision. However this would significantly

complicate asymptotic inference.

Employing a dependence structure when specifying φt is new to the beta regression literature and is cho-

sen for its ease of implementation and interpretation. To motivate this particular specification note that

E(yt−j |Ft−j−1) = µt−j and that V ar(yt−j |Ft−j−1) = µt−j(1−µt−j)
1+φt−j

, we therefore have that E(ε2t−j |Ft−j−1) =

V ar(εt−j |Ft−j−1) = 1. With larger values of ε2t−j indicating an uncharacteristically large deviation of yt−j from

µt−j . We can interpret a negative κj as indicating volatility clustering. Since ε2t−j is Ft−j−1 measurable it is

straightforward to calculate the likelihood.

We refer to the model given by equations (2.3) and (2.4) as the conditional beta time series model or simply as

a CBTS(p1, q1, p2) model. The model has a decreasing variance for a mean near the extremes (0 and 1), but allows

for greater flexibility than a fixed precision model could. The parameter vector is θ = (α1, β1, γ, δ, α2, β2, κ) ∈

Θ = R1+k1+p1+q1+1+k2+p2 .

3 Asymptotic Theory in the CBTS Model

Standard arguments for likelihood estimators are based on the verification of the limiting behavior of the like-

lihood function through the usual Taylor expansions of the log-likelihood and hence the first, second and third

derivatives of the log-likelihood, see eg. Jensen and Rahbek (2004) for standard regularity conditions. Given

such regularity conditions, the estimators are consistent, asymptotically Gaussian and moreover testing can be

based on χ2 inference via likelihood ratio statistics. We discuss here briefly the inherent difficulties in establish-

ing these, see also Han and Kristensen (2014) where the conceptually similar GARHC-X model is considered

for the GARCH −X(1, 1) case. We expect that the likelihood estimators are indeed asymptotically Gaussian

under mild conditions, but were not able to establish formally the regularity conditions in terms of conditions

on the true parameters θ0 of the model. Consequently, we supplement our considerations below with a detailed

simulation study of the asymptotic distributions of the likelihood estimators, θ̂T in the next section.

First consider the score and its variance. These may be used directly to facilitate numerical optimization of

the likelihood. However, the non-linearity of the model leads to complex expressions which renders it difficult

to derive closed form expressions or formally state the regularity conditions for the model as mentioned.

The conditional beta-type log-likelihood function conditional on m = max(P1, P2, Q1) observations fixed is

given by
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LT (θ) ..=
T∑

t=m+1
lt(θ)

where, simplifying the notation of lt(θ) as lt, we have

lt = log(Γ(φt))− log(Γ(µtφt))− log(Γ((1− µt)φt)) + log(yt)(µtφt − 1) + log(1− yt)((1− µt)φt − 1).

The score is given by,

ST (θ) ..=
T∑
t=1

st(θ) =
T∑
t=1

∂lt
∂θ

We then have the total derivative with respect to θ as

∂Lt
∂θ

= ∂Lt
∂µt

∂µt
∂η1t

∂η1t

∂θ
+ ∂Lt
∂φt

∂φt
∂η2t

∂η2t

∂θ
(3.1)

∂Lt

∂µt
and ∂Lt

∂φt
are standard, see Ferrari and Cribari-Neto (2004), and where ∂η1t

∂θ =
(
∂η1t

∂α1
, ...
)′

and ∂η2t

∂θ =(
∂η2t

∂α1
, ...
)′

are non-standard and supplied in Appendix B.

Taking the conditional expectation of the score contributions and using that µt, φt, ∂η1t

∂θ , ∂η2t

∂θ , ∂µt

∂η1t
and ∂φt

∂η2t

are Ft−1 measurable it holds that

E (st(θ) |Ft−1 ) = E

(
∂Lt
∂θ
|Ft−1

)
= E

(
∂Lt
∂µt

∂µt
∂η1t

∂η1t

∂θ
+ ∂Lt
∂φt

∂φt
∂η2t

∂η2t

∂θ
|Ft−1

)
= E

(
∂Lt
∂µt
|Ft−1

)
∂µt
∂η1t

∂η1t

∂θ
+ E

(
∂Lt
∂φt
|Ft−1

)
∂φt
∂η2t

∂η2t

∂θ
.

From Lemma 2 in the Appendix it follows that E
(
∂Lt

∂µt

∣∣∣
θ=θ0

|Ft−1

)
= 0 and E

(
∂Lt

∂φt

∣∣∣
θ=θ0

|Ft−1

)
= 0 so that

E
(
st(θ)|θ=θ0

|Ft−1
)

= 0. That is, the score contribution is a martingale difference sequence with respect to Ft−1

when evaluated in the true parameter values. Thus provided stationarity and ergodicity of {yt} as well as finite

higher order moments, standard arguments would imply asymptotic normality of the score provided contraction

conditions apply to the recursions of ∂η1t

∂θ and ∂η2t

∂θ . While we expect this to hold we were unable to derive

explicit conditions. To illustrate the difficulty in conducting inference consider the simple CBTS(1,1,1) model.

To calculate the score contribution we need the two vectors ∂η1t

∂θ and ∂η2t

∂θ . Using the notational convention that∏0
j=1 = 1, we can find the following expression for ∂η1t

∂α1
, the first element of ∂η1t

∂θ , as the alternating series
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∂η1t

∂α1
= 1− γ ∂µt−1

∂α1

= 1− γ
(
∂µt−1

∂η1t−1

∂η1t−1

∂α1

)
= ...

=
t∑
i=0

(−1)i
γi i∏

j=1
(1− µt−j)µt−j

 ,
where we have used that ∂µt−1

∂α1
= ∂µt−1

∂η1t−1

∂η1t−1
∂α1

.

This result differs from the score for the βARMA model of Rocha and Cribari-Neto (2009) and invalidates

the asymptotic theory derived for estimators, diagnostic and test statistics suggested in that paper1. Similar

derivations for the other parameters and higher order derivatives are typically much more complex, and for more

general models even ∂η1t

∂α1
becomes difficult to derive in any sort of closed form.

4 Simulation Study

In the previous section it was shown that deriving formal asymptotic theory is quite difficult. In this section we

perform a simulation study to evaluate the asymptotics for the ML estimator as well as the empirical size for

the LR tests when assuming usual inference, that is, χ2 asymptotics for LR tests, are valid. We use sample sizes

T = 50, 100, 200, 500 and 1, 000 with N = 1, 000 Monte Carlo replications for each sample size.

In the following two subsections we consider the following two data generating processes (DGP) for the

covariate, let xt be generated from an AR(1) model given by

xt = κ+ ψxt−1 + εt, εt ∼
i.i.d.

N(0, σ2) (4.1)

We use σ2 = 0.05 and with AR parameter ψ = 0.5 or ψ = 0.95. The two DGPs are respectively somewhat

persistent or highly persistent, as commonly seen in macroeconomic and financial time series. The intercept, κ,

is set such that E(xt) = κ
1−ψ = 1.

We let yt be generated by the CBTS model of equation (2.2) with mean and precision specifications given by

g1(µt) = α1 + x′tβ1 + γ(yt−1 − µt−1) + δ
(
g(yt−i)− x′t−iβ1

)
(4.2)

g2(φt) = α2 + x′tβ2 + κε2t−1, εt−1 = (yt−1 − µt−1)√
µt−1(1−µt−1)

1+φt−1

< z (4.3)

where g1(·) is the logit function and g2(·) is the exponential function. We use the parameter values α1 = −2,

β1 = 0.5, γ = 0.5, δ = 0.5, α2 = 8, β2 = 0.5 and κ = −0.5. The parameters are chosen such that the simulated
1As a result, the authors of the original paper are now preparing a corrigendum to their original paper. The mistake of that

particular paper is a result of neglecting the recursive elements of the score, this result then permeates throughout the paper.
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yt has a level around 3%, with some dependence, influence from the covariate and volatility clustering. The level

is similar to that of the default rate for speculative issuers examined in section 5. In the very rare case that yt

gets so close to 0 that its value is set to 0 by the computer, we drop the simulated path and simulate a new one.

The log-likelihood is maximized numerically, with initial values for α1 and β1 based on OLS estimates as

suggested in Ferrari and Cribari-Neto (2004) but including xt−1 and yt−1 as regressors to account for some

dependence. We also initialize by matching α1 and α2 to the first two moments of the data. When calculating

test statistics we also initialize in the unrestricted MLE but add the restrictions of the test statistic. Maximization

is carried out using the interior-point method available in Matlab 2015B with the analytical scores derived in

section 32.

4.1 Finite Sample Performance of ML Estimator Asymptotics

In this subsection we perform a simulation study to illustrate the finite sample properties of the MLE when

simulating the model given by equations (4.2)-(4.3). Figure 4.1 (A)-(D) report histogram and kernel density

estimates for sample sizes T = 200, 500 and 1000 of the estimators along with the asymptotic distributions

probability density function when simulating the covariate using equation 4.1 with ψ = 0.5.

From Figure 4.1 it appears that the kernel estimates are reasonably close to the fitted normal distribution.

Results were unchanged when using ψ = 0.95. Close examination of the simulation data revealed that the

normal approximation was actually worsened by a few outliers (less than 0.5% of the data), with the remaining

99.5% of the data appearing to follow a Gaussian distribution3 quite closely.

4.2 Finite Sample Performance of LR Test Asymptotics

In the following subsection we perform a simulation study to illustrate the empirical size and power of the LR

tests when using the asymptotic distribution derived in the previous section.

4.2.1 Empirical Size

We consider the hypotheses H0 : θi = 0 for i = 3, ..., 7 with θi the i′th element of θ. Becayse this is a single

restriction, the LR test is expected to be asymptotically χ2(1) if usual asymptotics apply and we therefore

examine if this is the case for the simulations. The results of the simulations are presented in Table 1 for sample

sizes T = 50, 100, 200, 500 and 1, 000 with N = 1, 000 replications for each sample size. For each sample size

we report the empirical rejection frequency using the 90%, 95% and 99% critical value of the χ2(1) distribution

as well as the P-value of the Kolmogorov-Smirnov test for the hypothesis that the test statistics are χ2(1)

distributed.
2Simulations not shown indicate using numerical derivatives does not significantly affect the results.
3These outliers do no appear to be due to a failure of the maximization procedure which was reinitialized in several different

areas of the parameter space and using several different optimization methods.
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The results suggest that χ2(1) can be used as a good approximation for the distribution of the LR test for most of

the parameters when 200 or more observations are used in conjunction with a significance level of 90− 95%, the

exceptions being tests on δ and κ parameters. The critical values 90−95% of the asymptotic distribution produce

a size close to the intended level for tests on all parameters, except δ, when using 500 or more observations. The

dependence of the explanatory variable, as measured by the AR parameter ψ, does not appear to influence the

empirical size of the test statistics. The 99% critical values are generally slightly oversized.
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(a) α1 = −2 (b) β1 = 0.5 (c) γ = 0.5

(d) δ = 0.5 (e) α2 = 8 (f) β2 = 0.5

(g) κ = −0.5

Figure 4.1: Kernel density estimates of the simulated distributions of the estimated parameters for the CBTS
model described in section 4. The covariate, xt was simulated using the model of equation (4.1) with the AR
parameter set to 0.5 and an unconditional mean of 1. We display kernel density estimates for sample sizes
T = 200 (blue), 500 (green) and 1000 (red) with N = 1, 000 Monte Carlo replications. The vertical black line
indicates the true parameter value and the thin black curves are the PDF of normal distributions with mean
and variance fitted to the data.
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H0 : γ = 0 H0 : δ = 0 H0 : κ = 0
T / CV 90% 95% 99% KS 90% 95% 99% KS 90% 95% 99% KS

50 26.8 19.5 10.6 0 52.9 44.3 29.8 0 48.1 41.5 29.9 0
100 14.2 7.8 2.6 0 34.4 25.8 14.4 0 19.7 13.2 5.8 0
200 10.6 5.7 1.7 0.67 23.6 15.7 6.4 0 14.1 8.1 2.3 0
500 10.1 4.5 1.0 0.34 16.8 9.9 4.3 0 11.6 6.1 1.9 0.04
1,000 11.6 6.1 1.5 0.14 16.4 10.9 3.6 0 10.2 5.6 1.1 0.13

H0 : β1 = 0 H0 : β2 = 0
T / CV 90% 95% 99% KS 90% 95% 99% KS

50 23.3 16.8 8.4 0 21.9 15.6 7.0 0
100 13.8 8.4 1.8 0 14.6 8.3 1.7 0
200 11.6 6.2 2 0.06 11.2 6.5 1.9 0.43
500 10.0 4.7 1.0 0.53 10.7 6.2 1.5 0.1
1,000 10.4 5.3 1.1 0.93 9.9 4.3 1.1 0.83

(a) Results using ψ = 0.5

H0 : γ = 0 H0 : δ = 0 H0 : κ = 0
T / CV 90% 95% 99% KS 90% 95% 99% KS 90% 95% 99% KS

50 26.2 19.8 10.5 0 53.8 44.7 29.7 0 52.4 46.6 34.6 0
100 14.3 8.2 2.9 0 32.0 24.1 12.6 0 20.6 13.1 5.9 0
200 11.6 6.4 1.3 0.49 25.8 17.5 7.7 0 13.0 7.0 2.3 0
500 10.8 4.6 0.9 0.20 17.4 10.6 4.1 0 12.6 6.4 1.7 0
1,000 10.9 6.1 1.4 0.43 15.9 9.3 3.1 0 11.3 6.3 2.4 0.11

H0 : β1 = 0 H0 : β2 = 0
T / CV 90% 95% 99% KS 90% 95% 99% KS

50 25.3 18.0 8.6 0 22.3 15.5 7.1 0
100 14.8 8.1 1.9 0 13.4 8.5 2.5 0
200 11.8 6.6 2.2 0.5 14.4 8.1 2.1 0.02
500 12.5 5.7 0.7 0.26 11.0 6.4 1.6 0.62
1,000 11.5 6.0 1.5 0.85 11.9 7.1 2.2 0.68

(b) Results using ψ = 0.95

Table 1: Empirical rejection frequency (ERF) in percent for the LR test for either of the hypothesis listed in
each table using the 90%, 95% or 99% critical values (CV) of the χ2(1) distribution. Also shown is the P-value
of the Kolmogorov-Smirnov test for the hypothesis that the data is χ2(1) distributed. The covariate, xt was
simulated using the model of equation (4.1) with the AR parameter set to 0.5 and an unconditional mean of 1.
We display ERF’s for sample sizes (T) 50, 100, 200, 500 and 1, 000 with N = 1, 000 Monte Carlo replications.
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5 Empirical Application to US Default Rates 1973− 2015

In this section we examine Moody’s monthly US 12-month issuer default rates4 in the period from January 1973

until September 2015 (T = 514). The data is available for both the non-speculative grade issuers and speculative

grade issuers. We first examine the default rate for the non-speculative issuers before turning to the default rate

of the speculative grade issuers in subsection 5.2.

Primarily, we wish to examine if the ARMA component, τt, is included in the mean when correcting for

other variables indicating evidence in favor of the contagion hypothesis, if no such component is significant it

indicates evidence in favor of the conditional independence hypothesis.

The secondary goal is to examine which variables are important for explaining the mean and precision parameters

for the default rate, whether these are the same when considering non-speculative and speculative issuers and

how stable the parameters have been over time.

Lastly, we wish to compare our findings to those of a number of papers; Agosto et al. (2016) who use monthly

US default counts in the 1982-2011 period, and Simons and Rolwes (2009) who use quarterly default rates from

the Netherlands from 1983-2006.

The non-speculative and speculative default rates are shown in Figure 5.2. From the plots it can be seen that

there is a large degree of persistence in the default rates, but also that they vary over time. The non-speculative

default rate is as low as 0.09% from December 1979 until March1980 and as high as 7.73% in November of 2009.

Similarly, the speculative default rate varies from a minimum of 0, 43% from January 1980 until Marts 1980 to a

high of 14.71% in November 2009. From the figure it is also discernible that large increases in the default rates

have been associated with recessions in the past, as indicated by the shaded time periods.

The choice of covariates in explaining the default rate largely follows that of Lando and Nielsen (2010) and

Agosto et al. (2016). We include the following financial and macroeconomic variables in our study: Baa Moody’s

rated 10-year Treasury spread (SP)5, 6 month change in Industrial Production Index (IP)6, the Chicago Fed

National Activity Index (NA) 7 released by the Federal Reserve Bank of Chicago. We use NA rather than the

Leading Index, released by federal reserve bank of St. Louis, as NA has been published for the entirety of our

sample period. We also include the recession indicator released by the National Bureau of Economic Research

(RI)8 and monthly realized volatility (RV) of the S&P 500 index, calculated using daily returns obtained from

Bloomberg.

Motivated by Simons and Rolwes (2009) where it was found that quarterly default rates in the Netherlands are

influenced by oil prices and interest rates, we include the 12 month changes in percent for oil prices (WTI) and

corporate bond yields (CBY). Both variables represent an expenditure for most companies therefore a change
4The default rate is available from Moody’s webpage from the Monthly Default Report in the Research & Ratings section.
5research.stlouisfed.org/fred2/series/BAA10YM
6research.stlouisfed.org/fred2/series/INDPRO
7chicagofed.org/research/data/cfnai/current-data
8research.stlouisfed.org/fred2/series/USREC
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could affect the companies ability to repay their loans. We measure the oil price by the West Texas Intermediate9

and use Moody’s Seasoned Baa Corporate Bond yield10 for the interest rate.

Further, we also include the 12 month return on the S&P500 index11 (SP12), because in the structural framework

of credit risk, see Merton (1973), an increase in the underlying asset i.e. the companies value, should lead to a

decrease in default probability12.

Lastly, since it has been argued that leverage cycles may be important in determining defaults, see eg. Geanako-

plos (2009), Geanakoplos and Fostel (2008) and Brave and Butters (2012), we also include the Chicago Fed

National Financial Conditions Leverage Sub-index13 (FCL). FCL is a weighted average of 33 indicators of debt

and equity measures in the US financial system, see Brave and Butters (2012) for details. The index is con-

structed to have an average of zero and a standard deviation of one with positive (negative) values indicate

tighter (looser) than average conditions in money markets, debt and equity markets. As the Index is released

on a weekly basis, we average over the weeks to get a monthly value.

It should be noted that some care should be taken when interpreting the estimates of the model. Firstly, no

variable exists in a vacuum, for example the Recession Indicator is sure to be negatively correlated with National

Activity, making ceteris paribus interpretation of either meaningless. Secondly, while we have attempted to use

reasonable measures for oil and interests rate changes, it could be the case that companies have hedged their risk

at some time period but are still exposed to changes in oil and interests over a different time period. Similarly,

if many oil companies finance their operations through bonds it may be that a falling oil price, which one might

expect would lead to fewer defaults as companies have less costs in their production actually has the opposite

effect when dropping below the production costs of some producers causing them to default. In their November

2015 announcement Moody’s write “We note that over a third of corporate defaults have been from commodity

sectors so far this year, with the majority from oil and gas", which might be expected following the oil glut

and subsequent price drops in 2014-2016, similar to the oil glut of the 1980’s. Lastly one should be mindful of

reverse causality, for example one might expect an increased leverage to signal an increase in defaults. However,

it may well be that lenders are only willing to lend at an increased leverage when there are few defaults which

then builds up until default rates rise, this could then actually cause a negative correlation between leverage

and defaults.

Figure 5.2 displays the covariates, including a shading indicating a recession as defined in the RI variable.

There do not appear to be any trends in the variables, but a degree of persistence is found in all of them. Fitting

an AR(1) model to each series we find autoregressive parameters ranging from 0.97 for IP to 0.45 for RV. Large
9WTI can be found at research.stlouisfed.org/fred2/series/MCOILWTICO but is only available from 1986, prior to this we use

the spot oil price of West Texas Intermediate, available at https://research.stlouisfed.org/fred2/series/OILPRICE. The two oil prices
are very highly correlated.

10https://research.stlouisfed.org/fred2/series/BAA
11Obtained from Bloomberg.
12As the company should be able to roll their debt using the increased value of the company, therefore a general increase in stocks

value would be expected to decrease default rates.
13research.stlouisfed.org/fred2/series/NFCILEVERAGE
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outliers in October of 1987, September 2008 and October 2008 dominates the RV variable, this is due to the

crash of 1987 and the financial crisis. We may wish to include dummy variables for these observations. Further,

FC shows a tendency to increase in most recessions despite being designed to be uncorrelated with economic

conditions. Lastly, there is correlation between the covariates, none less than 0.24 in absolute value and the

following with correlations greater than 0.5 in absolute value; RI and NA (−0.67), IP and RI (−0.54), IP and

SP (−0.60), SP and NA (−0.52), RI and FC (0.60).
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(a) Non-Speculative Issuers (b) Speculative Issuers

Figure 5.1: Plot of default rates for non-speculative and speculative graded issuers, with shading indicating a
recession as defined by the recession indicator released by the National Bureau of Economic Research (RI).

(a) FCL (b) IP (c) NA (d) RV

(e) SP (f) SP12 (g) WTI (h) CBY

Figure 5.2: Plot of covariates with shading indicating a recession as defined by the recession indicator released
by the National Bureau of Economic Research (RI). The variables are: The Chicago Fed National Financial
Conditions Leverage Sub-index (FCL), change in Industrial Production Index (IP), Chicago Fed National Activ-
ity Index (NA), realized volatility (RV), Baa Moody’s rated 10-year Treasury spread (SP), 12 month return on
the S&P500 index (SP12), 6 month changes in percent for oil prices (WTI) and corporate bond yields (CBY).
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5.1 Full-sample Analysis

In this subsection we conduct an analysis for the full sample. Figure 5.3 sub-figure (a) shows the Akaike

information criterion (AIC) for CBTS(1,1,1) through CBTS(18,18,18). From the plot it appears that little gain

is obtained by including lags 4 − 11, but including lag 12 improves the model. Based on the AIC, and since

optimizing the log-likelihood is both time consuming and difficult for larger models, we use the following model

as the starting point for our analysis

g1(µt) = α1 + x′tβ1 +
∑

j∈{1,2,3,12}

γj(yt−j − µt−j) +
∑

i∈{1,2,3,12}

δi
(
g1(yt−i)− x′t−iβ1

)
, (5.1)

g2(φt) = α2 + z′tβ2 +
∑

j∈{1,2,3,12}

κjε
2
t−j (5.2)

Where xt and zt both contain all the covariates described in 5. We will refer to the model of equations (5.1)

and (5.2) as the full model. Table 2 shows the estimation results for the full model. We have slightly changed

the notation of the AR, MA and ARCH lags to highlight that parameters between 3 and 12 are set to 0.

We then iteratively reduce the full model by removing the least significant variables, excepting the intercepts,

using LR tests and re-estimating the model until a significance level of 10% is reached for all remaining variables.

After this procedure we have a model which we will refer to as the reduced model, parameter estimates are

presented in Table 3 for the reduced model.

The fit of the reduced model is evaluated in Figure 5.3 sub-figures (b)-(f) by examining the weighted residuals

suggested by Espinheira et al. (2008) which in a well specified beta regression model are approximately N(0, 1)

distributed. From the sub-figures it appears that the reduced model has a good fit to the data.

Examining the estimated model we see that even when including all the covariates many lags are significant.

We find that there is evidence of volatility clustering, but this is mainly due to the 2 and 3 month ARCH

term with the 1 month ARCH term actually having a positive estimate. The model appears to have several

insignificant variables with only RV being significant for the mean specification. For the precision specification

RV and WTI are significant. The 12 month lag is highly significant for both the mean and the precision

specifications. The 3 month AR and MA terms are both highly significant and negative. The fitted distribution

is at all points bell shaped rather than J-shaped14.

As expected, a large number of variables was removed from both the mean and precision. For the mean only

RV and the WTI are significant. The parameter values suggest that increased volatility in the financial markets

could cause an increase in the default rate while a drop in oil prices will tend to cause a decrease.

For the precision we see that NA and RV will actually decrease the conditional variance of the default rate

whereas an increase in IP will increase the conditional variance of the default rate.
14This can not be seen directly from the parameter estimates but for all points in time the requirement was checked manually.
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No dependence terms for the mean where removed at the 10% significance level, although the second MA

term is close with a P-value of 9.3%. Again we see a large negative dependence in the default rate to the past

years default rate, i.e. lag 12 is negative and highly significant for both AR and MA parameters. The ARCH

component seem to indicate a volatility clustering effect as indicated by the negative parameter values for the 2,

3 and 12 month lags, with the puzzling existence of a positive parameter for the 1 lag ARCH parameter. This

last parameter however is dwarfed by the other lags and is only significant at the 8.9% level.

It was noted earlier that there were some large outliers in RV at October of 1987, September 2008 and

October 2008. Corresponding to the crash of 1987 and the onset of the recent financial crisis. In Table D we

present the estimation obtained by including dummies for the RV outliers in the full model, as it was done

previously we reduce until a 10% significance level is reached, the results are presented in Table 7.

From Table 7 we see that there are only two explanatory variables in the models mean specification, FCL

and WTI. That is, the RV variable is replaced by the FCL variable. In Agosto et al. (2016) when examining

parameter stability it can similarly be seen that RV is only significant around 2008. We speculate that the link

between financial market volatility and corporate defaults is mostly present in cases of extreme volatility and

that the evidence for a general link is limited.

5.2 Analysis of Speculative Grade Default Rate

We redo the empirical application but use the default rate for companies designated as speculative (a credit

rating of Ba1 or worse). Our procedure is similar as the one used for the non-speculative grade in initially

estimating the larger model which is then iteratively reduced, the parameter estimates of the full and reduced

models are presented in Appendix C.

Similar to the non-speculative default rate model we see that RV is highly significant for the mean, however

FCL is now also significant. However, for the precision parameters far more parameters are now significant;

IP, SP, NA, RV, SP12 and CBY. We note that IP has a different sign on its estimate than what was found

for the non-speculative default rate, but the remaining significant parameters have the same sign. In the MA

component we now see more negative signs, but also a smaller 12 month lag. As for the non-speculative default

rate we find highly significant 12 month effects. The ARCH terms are only significant at the 3 month lag where

there is an indication of volatility clustering.
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Parameters for mean Parameters for precision
Parameter Estimate LR test P-value Parameter Estimate LR test P-value

α1 -0.07168 13.70347 0.0021*** α2 9.47078 1860.73064 0.00000 ***
IP 0.00020 0.00185 0.96567 IP -0.05878 2.57947 0.10826
RI 0.00328 0.05519 0.81427 RI -0.04070 0.06553 0.79796
SP -0.01013 0.95591 0.32822 SP -0.05443 0.18758 0.66494
NA 0.00576 1.74532 0.18647 NA 0.24416 5.22490 0.02227*
FCL -0.02043 1.43759 0.23053 FCL -0.05744 0.43869 0.50775
RV 0.00017 8.16847 0.00426** RV 0.00989 7.26361 0.00704**
SP12 0.02404 0.20830 0.64810 SP12 0.41791 0.20830 0.64810
CBY 0.01305 1.44000 0.23014 CBY 0.13528 1.44000 0.23014
WTI -0.19491 4.32757 0.03750 WTI -0.30037 4.32757 0.03750*

MA-1 3.32602 3.27553 0.07032 ARCH-1 0.09784 5.59168 0.01805*
MA-2 3.15727 3.27682 0.07027 ARCH-2 -0.06810 6.64973 0.00992**
MA-3 4.22991 4.4957 0.03400* ARCH-3 -0.16588 7.80750 0.00520**
MA-12 -20.16512 60.44146 0.00000 *** ARCH-12 -0.12907 22.94570 0.00000 ***
AR-1 1.03316 204.57602 0.00000 ***
AR-2 0.10618 2.42971 0.11906
AR-3 -0.10185 2.9844 0.08412
AR-12 -0.05521 27.39353 0.00000 ***

Table 2: Parameter estimates for the full model for the non-speculative grade default rate, likelihood ratio tests
and P-values.
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Parameters for mean Parameters for precision
Parameter Estimate LR test P-value Parameter Estimate LR test P-value

α1 -0.07278 15.35459 0.00009*** α2 9.50469 3718.50885 0.00000 ***
RV 0.00016 8.60110 0.00336** IP -0.06415 4.91345 0.02665*
WTI -0.18559 4.35506 0.03690* NA 0.33692 17.26600 0.00000 ***

RV 0.00687 7.82486 0.00515**

MA-1 4.22262 3.67163 0.05535 ARCH-1 0.05570 2.88428 0.08945
MA-2 4.28348 2.82136 0.09302 ARCH-2 -0.08647 8.92701 0.00281**
MA-3 3.92035 5.04191 0.02474* ARCH-3 -0.18166 21.53402 0.00000 ***
MA-12 -19.18987 56.16531 0.00000 *** ARCH-12 -0.14500 26.92891 0.00000 ***
AR-1 1.01104 208.73117 0.00000 ***
AR-2 0.11293 3.88781 0.04864*
AR-3 -0.08925 3.74313 0.05302
AR-12 -0.05252 37.82379 0.00000 ***

Table 3: Reduced parameter estimates for the reduced model for the non-speculative grade default rate, likelihood
ratio tests and P-values.
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(a) AIC (b) Residuals

(c) ACF of residuals (d) ACF of squared residuals

(e) Histogram, boxplot of residuals and N(0,1) PDF (f) QQ-plot of residuals

Figure 5.3: Sub-figure (a) displays the AIC for CBTS(1,1,1) through CBTS(18,18,18). Sub-figures (b)-(f) display
plots evaulating the weighted residuals suggested by Espinheira et al. (2008) for the reduced model.
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6 Concluding Remarks

We have proposed an extension to the Beta-ARMA model of Rocha and Cribari-Neto (2009) which allows

for dependence and explanatory variables in both the mean and the precision parameters. We have discussed

some issues related to inference and note that there exists an error in the results of Rocha and Cribari-Neto

(2009). Simulations presented suggest that standard inference applies for realistic sample sizes for at least some

parameter values.

We suggest that working with default counts may be biased towards the contagion hypothesis and that

working with default rates using our model solves this problem. We apply our model to Moody’s monthly US

12-month speculative and non-speculative issuer default rates in the period from December 1972 until September

2015, including several explanatory variables in both the mean and precision parameters. From residuals our

model appears to be well specified. After removing insignificant variables we find evidence in favor of an ARMA

component to the mean, thus presenting evidence in favor of the contagion hypothesis.

Our results suggest there may exist volatility clustering in the default rates and that the 12 month lag is

significant for both the mean and precision parameters, as it enters with a negative parameters. This suggest

that a large number of defaults might decrease the default rate 1 year later but that it also increases the variance

of the default rate 1 year later. Both appear to be novel results in the literature.

We initially confirm the observation of Agosto et al. (2016) that RV is significant in explaining corporate

defaults, but this becomes insignificant when including dummies for September and October 2008, thus suggests

a relationship only exists in the most extreme of cases and not even always then since a dummy for September

of 1987 was not found to be significant
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A Moments of Beta Distributed Variables

Given x ∼ Beta(µ, φ), we have the following results for moments of log transformations, see eg. Ferrari and

Cribari-Neto (2004).

E(log(x)) = ψ(µφ)− ψ(φ),

E(log(1− x)) = ψ((1− µ)φ)− ψ(φ),

E(log(X)2) = [ψ(µφ)− ψ(φ)]2 + ψ(µφ)− ψ′(φ),

E(log(1−X)2) = [ψ((1− µ)φ)− ψ(φ)]2 + ψ′((1− µ)φ)− ψ′(φ),

E(log(X) log(1−X)) = [ψ(µφ)− ψ(φ)] [ψ((1− µ)φ)− ψ(φ)]− ψ′(φ),

var

(
log
(

x

1− x

))
= ψ′(µφ) + ψ′((1− µ)φ).
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B Useful Lemmas for the Score and Information

Using the expressions for moments of a beta distributed variable supplied in Appendix A and with ψ(.) denoting

the digamma function the following lemma 1 can be shown

Lemma 1. Define the following; y∗t ..= log( yt

1−yt
), y∗∗t ..= log(1 − yt), y∗∗∗t ..= log(yt)log(1 − yt) and y∗∗∗∗t

..=

log(1− yt)2 = (y∗∗t )2. We then have their conditional expectations, and the conditional variance of y∗t , as

µ∗t
..= E (y∗t |Ft−1 ) = ψ(µtφt)− ψ((1− µt)φt)

µ∗∗t
..= E (y∗∗t |Ft−1 ) = ψ((1− µt)φt)− ψ(φt)

µ∗∗∗t
..= E (y∗∗∗t |Ft−1 ) = [ψ(µtφt)− ψ(φt)] [ψ((1− µt)φt)− ψ(φt)]− ψ′(φt)

µ∗∗∗∗t
..= E (y∗∗∗∗t |Ft−1 ) = [ψ((1− µt)φt)− ψ(φt)]2 + ψ′((1− µt)φt)− ψ′(φt)

σ2∗
t

..= E
(

[(y∗t − µ∗t )]
2 |Ft−1

)
= ψ′(µtφt)− ψ′((1− µt)φt)

σ∗∗2t =..= E
(

(y∗∗t − µ∗∗t )2
)

= ψ′ ((1− µt)φt)− ψ′ (φt)

The partial derivatives of Lt(θ) with respect to µt, φt and their second and product moments are supplied

in the following Lemma

Lemma 2. With y∗t , y∗∗t , µ∗t and µ∗∗t as defined in Lemma 1 we have

∂Lt(θ)
∂µt

= −φtψ(µtφt) + φtψ ((1− µt)φt) + φtlog(yt)− φtlog(1− yt)

= φt

(
log
(

yt
1− yt

)
− ψ (µtφt) + ψ ((1− µt)φt)

)
= φt (y∗t − µ∗t )

and

∂Lt
∂φt

= ψ(φt)− µtψ (µtφt)− (1− µt)ψ ((1− µt)φt) + µt log(yt) + (1− µt) + log(1− yt)

= µt

(
log
(

yt
1− yt

)
− ψ (µtφt) + ψ ((1− µt)φt)

)
+ ψ(φt)− ψ((1− µt)φt) + log(1− yt)

= µt (y∗t − µ∗t ) + y∗∗t − µ∗∗t

Using that µ∗∗∗t − µ∗∗∗∗t − µ∗tµ∗∗t = ψ′((1− µt)φt) it follows that

E

([
∂Lt
∂µt

]2
|Ft−1

)
= E [φ (y∗t − µ∗t ) |Ft−1 ]2

= φ2
tσ
∗2
t
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and

E

([
∂Lt
∂φt

]2
|Ft−1

)
= E

(
[µt (y∗t − µ∗t ) + (y∗∗t − µ∗∗t )]2 |Ft−1

)
= E

(
µ2
t (y∗t − µ∗t )

2 + (y∗∗t − µ∗∗t )2 + 2µt (y∗t − µ∗t ) (y∗∗t − µ∗∗t ) |Ft−1

)
= µ2

tσ
∗2
t + σ∗∗2t + 2µtE [(y∗t − µ∗t ) (y∗∗t − µ∗∗t ) |Ft−1 ]

= µ2
tσ
∗2
t + σ∗∗2t + 2µt(−ψ′((1− µt)φt))

and

E

(
∂Lt
∂µt

∂Lt
∂φt
|Ft−1

)
= E (φt (y∗t − µ∗t ) [µt (y∗t − µ∗t ) + (y∗∗t − µ∗∗t )] |Ft−1 )

= φtµtσ
∗2
t + φt (ψ′(φt)− ψ′((1− µt)φt))

The partial derivatives of µt and φt are given in the following Lemma 3

Lemma 3. Using the logit and log link-functions for g1 and g2 we have
∂µt
∂η1t

= 1
g′1(µt)

= µt(1− µt) = µt − µ2
t

∂φt
∂η2t

= 1
g′2(φt)

= φt.

Using the results of Lemmas 2 and 3, we find the following expression for the expectation of the variance of

the score

E

([
∂Lt
∂θ

]2
|Ft−1

)
= E

([
∂Lt
∂µt

∂µt
∂η1t

∂η1t

∂θ
+ ∂Lt
∂φt

∂φt
∂η2t

∂η2t

∂θ

]2
|Ft−1

)

= E

([
∂Lt
∂µt

∂µt
∂η1t

∂η1t

∂θ

]2
|Ft−1

)
+ E

([
∂Lt
∂φt

∂φt
∂η2t

∂η2t

∂θ

]2
|Ft−1

)

+ 2E
(
∂Lt
∂µt

∂µt
∂η1t

∂η1t

∂θ

∂Lt
∂φt

∂φt
∂η2t

∂η2t

∂θ
|Ft−1

)
= E

([
∂Lt
∂µt

]2
|Ft−1

)(
∂µt
∂η1t

∂η1t

∂θ

)2
+ E

([
∂Lt
∂φt

]2
|Ft−1

)(
∂φt
∂η2t

∂η2t

∂θ

)2

+ E

(
∂Lt
∂µt

∂Lt
∂φt
|Ft−1

)
2 ∂µt
∂η1t

∂η1t

∂θ

∂φt
∂η2t

∂η2t

∂θ

= φ2
t (ψ′(µtφt) + ψ′((1− µt)φt))

(
µt − µ2

t

)2
(
∂η1t

∂θ

)2

+
[
µ2
tσ

2∗
t + ψ′((1− µ)φt)− ψ′(φt) + 2µtψ′((1− µt)φt)

]
φ2
t

(
∂η2t

∂θ

)2
(B.1)

+ φt
[
µtσ

2∗
t − ψ′((1− µt)φt)

]
2
(
µt − µ2

t

) ∂η1t

∂θ
φt
∂η2t

∂θ
(B.2)

87



Parameters for mean Parameters for precision
Parameter Estimate LR test P-value Parameter Estimate LR test P-value

α1 -0.00130 0.03581 0.84992 α2 7.00872 315.08911 0.00000***
IP -0.01029 1.11074 0.29192 IP 0.07335 9.25022 0.00235**
RI -0.01242 0.35386 0.55194 RI 0.38818 2.11923 0.14546
SP 0.01255 1.13511 0.28669 SP 0.30635 39.55042 0.00000***
NA -0.00567 2.35080 0.12522 NA 0.26151 5.35775 0.02063*
FCL -0.4859 4.59063 0.03215* FCL -0.04463 0.83535 0.36073
RV 0.00013 13.31484 0.00026*** RV 0.01470 10.40583 0.00126**
SP12 0.00719 0.15860 0.69045 SP12 1.09474 6.32007 0.01194*
CBY 0.02293 0.94508 0.33097 CBY 0.14764 6.27895 0.01222*
WTI 0.00000 0.00002 0.99639 WTI -0.05449 0.10919 0.74107

MA-1 -1.69665 3.49131 0.06169 ARCH-1 0.03973 2.28595 0.13055
MA-2 -1.51656 4.47343 0.03443* ARCH-2 -0.03387 1.57222 0.20988
MA-3 -0.93493 2.07778 0.14946 ARCH-3 -0.13774 30.92964 0.00000***
MA-12 -12.28802 53.68793 0.00000*** ARCH-12 -0.07559 3.26573 0.07074
AR-1 1.14039 193.75087 0.00000***
AR-2 -0.00829 6.00053 0.01430*
AR-3 -0.10148 1.71556 0.14946
AR-12 -0.03209 27.43364 0.00000***

Table 4: Parameter estimates for the full model for the speculative default rate, likelihood ratio tests and
P-values.

C Tables of Estimates Speculative
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Parameters for mean Parameters for precision
Parameter Estimate LR test P-value Parameter Estimate LR test P-value

α1 -0.06387 12.76857 0.00035*** α2 7.33560 1664.05496 0.00000 ***
FCL -0.03913 10.24851 0.00137** SP 0.30966 6.55506 0.01046*
RV 0.00014 14.14489 0.00017*** NA 0.31951 27.30663 0.00000 ***

RV 0.01013 12.92601 0.00032***
CBY 0.11099 4.29210 0.03829*

MA-1 2.07273 6.41911 0.01129* ARCH-1 0.06801 4.49505 0.03399*
MA-2 2.53084 7.13915 0.00754** ARCH-2 -0.08994 8.23242 0.00411**
MA-12 -8.96960 75.45613 0.00000 *** ARCH-3 -0.18084 51.64435 0.00000 ***
AR-1 1.03528 937.09653 0.00000 ***
AR-12 -0.05484 38.84132 0.00000 ***

Table 5: Reduced parameter estimates for the reduced model for the speculative grade default rate, likelihood
ratio tests and P-values.
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Parameters for mean Parameters for precision
Parameter Estimate LR test P-value Parameter Estimate LR test P-value

α1 -0.07600 9.93414 0.00162 ** α2 10.05947 461.47984 0.00000 ***
IP -0.00766 2.63333 0.10464 IP -0.14189 15.03152 0.00011 ***
RI -0.00902 0.59649 0.43992 RI -0.20372 0.65714 0.41757
SP 0.01523 0.86813 0.43992 SP -0.32817 7.49649 0.00618 **
NA 0.00038 0.04733 0.82778 NA 0.34872 21.74455 0.00000 ***
FCL -0.05144 5.53702 0.01862 * FCL -0.18620 7.67287 0.00561 **
RV -0.00019 116.25579 0.00000 *** RV 0.02363 18.41214 0.00002 ***
SP12 0.00707 0.10453 0.74646 SP12 -0.24438 0.20083 0.65405
CBY -0.01423 0.00884 0.92511 CBY 0.00000 0.00007 0.99348
WTI -0.02291 2.04122 0.15309 WTI 0.41058 3.39631 0.06534

30-Sep-1987 0.01385 0.00215 0.96304 30-Sep-1987 -18.08655 6.38315 0.01152 *
30-sep-2008 0.17699 18.30465 0.00002 *** 30-sep-2008 -0.00000 0.00001 0.99807
31-Oct-2008 0.10234 110.47038 0.00000 *** 31-Oct-2008 3.78217 3.77848 0.05192

MA-1 12.29137 23.72818 0.00000 *** ARCH-1 0.05030 2.56128 0.10951
MA-2 7.16837 3.67438 0.05525 ARCH-2 -0.10525 20.25920 0.00001 ***
MA-3 6.62618 32.45402 0.00000 *** ARCH-3 -0.14736 19.39046 0.00001 ***
MA-12 -14.66305 56.95383 0.00000 *** ARCH-12 -0.14350 41.81648 0.00000 ***
AR-1 0.93980 246.68468 0.00000 ***
AR-2 0.21309 73.72456 0.00000 ***
AR-3 -0.10855 17.64756 0.00000 ***
AR-12 -0.06311 30.01065 0.00000 ***

Table 6: Parameter estimates for the full model for the non-speculative grade default rate, likelihood ratio tests
and P-values.

D Tables of Estimates With Dummies
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Parameters for mean Parameters for precision
Parameter Estimate LR test P-value Parameter Estimate LR test P-value

α1 -0.05767 14.76943 0.00012*** α2 8.95324 4676.07860 0.00000 ***
FCL -0.05662 12.33340 0.00044*** FCL -0.21444 6.15989 0.01307*
WTI -0.22164 5.22036 0.02232* RV 0.01212 14.53732 0.00014***

SP12 0.69690 5.59366 0.01803*
CBY 0.10123 3.73678 0.05323

30-Sep-1987 0.12218 12.95025 0.00032*** 31-Oct-2008 6.35810 5.98634 0.01442*
30-sep-2008 0.10397 14.15309 0.00017***
31-Oct-2008 0.07022 10.36111 0.00129**

MA-12 -23.58777 81.07336 0.00000 *** ARCH-1 0.11752 8.81574 0.00299**
AR-1 1.07085 394.15715 0.00000 *** ARCH-2 -0.05076 7.38878 0.00656**
AR-2 0.13811 9.82311 0.00172** ARCH-3 -0.08194 6.90678 0.00859**
AR-3 -0.17830 16.78098 0.00000 *** ARCH-12 -0.08887 15.75281 0.0007***
AR-12 -0.04540 38.07460 0.00000 ***

Table 7: Parameter estimates for the reduced model for the non-speculative grade default rate, likelihood ratio
tests and P-values.
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