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Introduction and summary

This thesis studies the behavior of states and the way they make some of their

most important decisions, including the decision to acquire nuclear weapons or

go to war. While these topics are not commonly dealt with in a Ph.D. thesis in

economics, the methodology employed to analyzed them is. We use formal models

and game theory to describe and analyze the behavior of states. This allows us to

achieve a higher level of precision than is possible through verbal reasoning. The

thesis consists of three self-contained parts all united under the common theme of

arms races and war.

In the first part of the thesis, titled The Spiral Model and the Shadow of the

Future, we study a repeated game with asymmetric information where two states

decide whether to acquire a nuclear weapon or not in each period of the game.

Players wish to avoid an arms race but are afraid that their adversary is an aggres-

sive type that secretly tries to acquire nuclear weapons. Baliga & Sjöström (2004,

2012) show how the fear of being left behind in the arms race drives peaceful states

into an arms race through an escalating cycle of pessimistic expectation. Using

Baliga & Sjöström’s (2004, 2012) static model of incomplete information as a sta-

ge game in a repeated game, we show that the destabilizing effect of the fear of

being left behind is countered by a fear of setting off an arms race. If the adversary

is a peaceful type with no intention of arming, acquiring a nuclear weapon could

provoke an arms race that neither of the states wants. Thus, the fear of setting

off an arms race represents a stabilizing force that discourages states from arming.

We show that there is a perfect Bayesian equilibrium and provide the conditions

for peaceful cooperation. In the equilibrium, players use a conditional trigger stra-

tegy similar to the grim-trigger strategy in the repeated prisoners’ dilemma. Our

dynamic arms race model is a merge of Baliga & Sjöström’s (2004, 2012) static

model and the repeated prisoners’ dilemma. It has interesting applications and

provides some surprising results. First of all, our model provides an explanation

for the remarkable absence of widespread nuclear proliferation in the post-war pe-

riod. Secondly, through comparative statics, we show that increasing the share of

pacifist states makes peaceful cooperation less likely.
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The second part of the thesis, titled Military Alliances and the Power Curse,

studies the strategic interaction between a weak state and its stronger ally and the

way that they respond to a threat to their security. Both states prefer a coordinated

response to the threat, but mutual mistrust makes it difficult for the weaker state

to rely on the stronger ally for protection. Therefore, the weaker state may decide

to engage the threat unilaterally. Even though the stronger state prefers to delay

any action, it may decide to engage the threat preemptively in order to forestall the

adverse effects of an uncoordinated attack. We use a simple dynamic model with

asymmetric information to represent these strategic dilemmas. Solving the model

for perfect Bayesian equilibria, we show when a coordinated response is possible

and when the weaker ally manages to force the stronger ally to take military action.

Thus, our model provides a theoretical mechanism for the power curse. The power

curse is a stylized fact in international relations according to which great powers

tend to get involved in military operations against their will and therefore can seem

powerless. Among other things, this model can be used to describe the strategic

contradictions between the U.S. and Israel over Iran’s nuclear program.

The third part of the thesis, titled Does Better Information Make War Less

Likely?, has been written together with Thomas Jensen. It examines whether im-

proved information lowers the probability of war. Researchers (Fearon, 1995) have

long argued that asymmetric information is among the fundamental explanations

for war. The inability of states to accurately assess whether their adversary will

give in to a given demand may lead to war if the demand is too high. Under com-

plete information, states’ assessments of their adversaries are fully accurate and

states therefore do not make unreasonable demands. Thus, complete information

makes it possible to achieve a peacefully settled outcome. Given that asymmetric

information leads to war and complete information eliminates war one may presu-

me that reducing asymmetric information will decrease the probability of war. We

show that this presumption is wrong. We employ a 3 type ultimatum bargaining

model where state B’s willingness to go to war is unknown to state A and where

state A receives a noisy signal about state B’s type. We show that improving the

quality of the signal does not make war less likely. Though complete information
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implies peace, better information does not necessarily decrease the probability of

war. Sometimes, better information can make war more likely.
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Resume p̊a Dansk

Denne afhandling handler om staters adfærd og hvordan de træffer nogen af deres

allervigtigste beslutninger som at anskaffe sig kernev̊aben eller g̊a i krig. Selvom

disse temaer ikke er noget man typisk beskæftiger sig med i en Ph.d. afhandlinger

i økonomi, er de analyseredskaber der anvendes i afhandlingen velkendte af øko-

nomer. Vi anvender formelle matematiske modeller og spilteori til at beskrive og

analysere staters adfærd med. Disse metoder gør det muligt at opn̊a en højere grad

af præcision end det er muligt at opn̊a gennem verbale ræsonnementer.

Afhandlingens første del, der bærer titlen The Spiral Model and the Shadow

of the Future, indeholder et gentaget spil med asymmetrisk information, hvor to

stater skal beslutte, hvorvidt de skal anskaffe sig kernev̊aben i hvert af spillets pe-

rioder eller ej. Spillerne ønsker at undg̊a et v̊abenkapløb, men frygter samtidigt at

deres modstander er en aggressive type, der i hemmelighed forsøger at anskaffe sig

kernev̊aben. Baliga & Sjöström (2004, 2012) viser at frygten for at kommer bag-

ud i v̊abenkapløbet kan føre til, at fredelige stater ender med at opruste gennem

en eskalerede cyklus af pessimistiske forventninger. Vi bruger Baliga & Sjöströms

(2004, 2012) statiske model med asymmetrisk information som grundspil i et gen-

taget spil og viser at den destabiliserende effekt af frygten for at kommer bagud

modvirkes af frygten for at sætte et v̊abenkapløb i gang. Hvis modstanderen er

fredelig og ikke har noget ønske om at opruste, kan anskaffelse af kernev̊aben

fremprovokere et v̊abenkapløb, som ingen af parterne ønsker sig. Denne frygt for

at sætte et v̊abenkapløb i gang udgør en stabiliserende faktor, der bidrager til at

afholde stater fra at opruste. Vi viser, at der findes en perfekt Bayesiansk ligevægt

og udleder betingelserne for at samarbejde mellem staterne er mulig. I ligevæg-

ten bruger spillerne en betinget aftrækker strategi, som ligner aftrækker strategien

fra et gentaget fangernes dilemma. Modellen har interessante anvendelser og giver

os samtidigt nogle overraskende resultater. For det første giver modellen os en

forklaring p̊a det bemærkelsesværdige fraværd af spredning af kernev̊aben i efter-

krigstiden. For det andet viser vi vha. komparativ statik, at en stigning i andelen

af pacifistiske stater gør sandsynligheden for et v̊abenkapløb større.

Afhandlingens anden del, der bærer titlen Military Alliances and the Power
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Curse, handler om de strategiske interaktioner mellem en svag stat og dens stærke

allierede og om, hvordan staterne reagerer p̊a en trussel mod deres fælles sikker-

hed. Staterne foretrækker, at truslen imødeg̊as med et koordineret svar, men dette

vanskeliggøres af gensidig mistillid, som gør den svage stat modvillig mod at lægge

ansvaret for sin egen sikkerhed i hænderne p̊a den stærke stat. Det skaber risiko

for, at den svage stat vælger at imødeg̊a truslen p̊a egen h̊and. Til trods for at

den stærke stat foretrækker at imødeg̊a truslen p̊a et senere tidspunkt, kan det

blive nødvendigt for den at handle hurtigt og i utide for at komme den svage stat

i forkøbet og derved undg̊a de negative følger af et ukoordineret svar. Vi bruger

en simpel dynamisk model med asymmetrisk information til at repræsentere dette

strategiske dilemma med. Vi løser modellen for perfekte Bayesianske ligevægte og

viser hvorn̊ar et koordineret svar er muligt og hvorn̊ar den svage stat kan tvinge

sin stærke allierede til at gennemfører en utidig militær aktion. Vores model giver

s̊aledes en teoretisk funderet forklaring p̊a magtens forbandelse. Magtens forban-

delse er den stiliserede kendsgerning (stylized fact) i internationale relationer, at

stormagter ofte bliver inddraget i militære konflikter mod deres vilje og derved

kommer til at fremst̊a magtesløse. Denne model kan bl.a. bruges til at beskrive de

strategiske modsætninger mellem USA og Israel i forbindelse med krisen om Irans

atomprogram.

Afhandlingens tredje del med titlen Does Better Information Make War Less

Likely? er skrevet sammen Thomas Jensen og undersøger om bedre information

mindsker sandsynligheden for krig. Asymmetrisk information er længe blevet anset

for at udgøre en grundlæggende forklaringer p̊a krig (Fearon, 1995). Staters van-

skelighed ved at foretage præcise vurderinger af modstanderens kampvilje kan føre

til krig, hvis der stilles for høje krav til modstanderen. Under fuldstændig infor-

mation er staters vurdering af deres modstanderes kampvilje altid korrekt, hvilket

forhindre staterne i at fremsætte urimelige krav. Dette gør det lettere at n̊a til

enighed gennem forhandlinger. Eftersom asymmetrisk information kan føre krig,

mens fuldstændig information omvendt umuliggør krig, virker det rimeligt at an-

tage at sandsynligheden for krig mindskes, n̊ar graden af asymmetrisk information

aftager. Denne formodning viser sig dog at være forkert. Vi anvender et 3 typers
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ultimatumspil, hvor stat A giver et tilbud til stat B, som stat B kan acceptere

eller afsl̊a. Stat B’s kampvilje er ukendt, men stat A modtager et støjfyldt signal

om stat B’s kampvilje. Vi viser at sandsynligheden for krig ikke bliver mindre af

at signalets kvalitet forbedres. Til trods for at fuldstændig information medfører

fred, vil bedre information ikke nødvendigvis gøre krig mindre sandsynligt. I visse

tilfælde kan bedre information gøre krig mere sandsynligt.

8



Acknowledgments

This Ph.D. thesis was written as part of the Ph.D. program at the Department of

Economics, University of Copenhagen, 2013-2016.

I would like to express my gratitude to a number of people for their support

and help during the time when I wrote this thesis. First and foremost, I would like

to thank my supervisor Thomas Jensen for his persistent support and willingness

to read earlier drafts. I am also grateful to Alexander Sebald, Edward Webb, Peter

Norman Sørensen, Ole Jann and the participants of the 2015 APSA conference for

their comments and suggestions.

During my Ph.D. studies, I had the opportunity to benefit from the inspiring

research environment of Columbia University and Kellogg School of Management

during a trip to the U.S. I owe a debt of gratitude to the Denmark-America Foun-

dation, Augustinus Fonden, Knud Højgaards Fond for their financial support. The

trip was a valuable experience and I met a lot of interesting people and resear-

chers, including Tomas Sjöström and Massimo Morelli, who hosted me. I am also

grateful to Christian Schultz for helping with organizing the trip and for creating

a pleasant atmosphere for research at the Department of Economics.

Finally, I would like to thank my wife and two, often-neglected boys Viktor

and Leon for their patience during my long days at the office.

Allan Anders Balsgaard

Copenhagen, 29 February 2016

9





The Spiral Model and the Shadow of the Future

Allan Anders Balsgaard∗

February 2016

Abstract

We analyze a dynamic arms race model where states decide whether to

acquire arms or cooperate in each period. States prefer to cooperate when

the adversary cooperates but fear that the adversary is an aggressive type

who prefers to arm. Uncertainty about intentions gives rise to a fear of

being left behind in the arms race. Baliga and Sjöström (2004, 2012) show

that this fear can lead to an arms race through a negative spiral of mutually

reinforcing, pessimistic expectations. We show how the destabilizing effect of

the fear of being left behind is countered by a fear of setting off an arms race.

Our model provides a competing explanation for the remarkable absence of

widespread nuclear proliferation during the post-war period and offers a

warning against adopting excessively pacifistic foreign policy doctrines.

∗Email: allanbalsgaard@gmail.com

˙.
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Introduction

In a nuclear arms race, three strategic considerations are of great importance when

states decide whether to acquire a nuclear weapon:

1. The fear of being left behind or the preemptive motive. If the adversary is

an aggressive type, who attempts to gain an advantage by acquiring nuclear

weapons unilaterally, abstaining from nuclear weapons could be dangerous.

Being without nuclear weapons in a nuclear world may lead to worse bar-

gaining outcomes due to lack of deterrence.

2. The predatory motive. Building nuclear weapons provides aggressive states

with an opportunity to gain a temporary (or permanent) advantage over

other states through enhanced coercive capabilities.

3. The fear of setting off an arms race. The adversary may not have any plans

to acquire a nuclear weapon. Thus, building a nuclear weapon may be coun-

terproductive and inadvertently provoke a nuclear arms race if acquisition of

a weapon is reciprocated by the adversary.

The first and second strategic considerations are part of the underlying structure in

the spiral model (Schelling, 1960; Jervis, 1976, 1978). They are also key elements in

Baliga and Sjöström’s (2004, 2012) formalization of the spiral model. From now on

we will refer to Baliga and Sjöström’s model (2004, 2012) as SARM (Static Arms

Race Model). Using a static model with asymmetric information, they show how

the fear of facing an aggressive adversary can spur an arms race among peaceful

states through an escalating cycle of pessimistic expectations.

The third strategic consideration is a key element in repeated games where

the threat of future punishment is used to sustain cooperation. States decide to

cooperate rather than acquire a nuclear weapon in order to avoid a nuclear arms

race which would make them both worse off. In repeated games, the Folk Theorems

ensure that players do not defect (Friedman 1971; Axelrod, 1984).

The spiral model and repeated games of cooperation represent two distinct

ways of modeling an arms race and each approach captures some relevant features
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hereof. However, to our knowledge, no one has merged these approaches into a

single framework. We propose a unified framework, which combines the SARM

with a repeated game by having the SARM be the stage game in a repeated game.

The SARM is a coordination game, in which states only wish to arm if the ad-

versary arms. The wish of both players to stay out of an arms race if the adversary

stays out would seem to make it easy for them to reach a peaceful equilibrium.

However, uncertainty about the intentions of the adversary makes it difficult to

obtain peace. If there is a small probability that the adversary is an aggressive

type that prefers to arm unilaterally, then the fear of facing an aggressive type

may lead to an arms race through a negative spiral of mutually reinforcing, pes-

simistic expectations. Thus, the first and second strategic considerations together

are destabilizing and may lead to an arms race between peaceful states.

Repeating the game forces players to take the future into account when they

make the decision of whether or not to arm. In this way, a stabilizing element is

added, which provides a counterweight to the destabilizing effect of the preemptive

and predatory motive.

The first and second strategic considerations alone imply a rather pessimistic

view of international relations, in which the fear of being left behind plays a major

role and peaceful states are forced to arm. The third strategic consideration, in

contrast, implies a much more optimistic view of international relations, in which

even aggressive states are willing to cooperate. Thus, when the fear of setting off

an arms race is added to the theoretical framework, a higher degree of stability is

achieved. Despite the potential gains from arming unilaterally, states abstain from

building nuclear weapons fearing that such actions may provoke the adversary to

do the same.

Combining the three strategic considerations in a single theoretical framework

creates a framework with a high degree of explanatory power. A theoretical frame-

work that only relies on the first and second strategic considerations predicts a

rather high level of instability and occurrences of arms races whereas the histori-

cal record of nuclear proliferation shows the opposite. After World War II, only a

limited number of countries acquired nuclear weapons. Far fewer than previously
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predicted. By including the fear of setting of an arms race, states become more

cautious and less willing to acquire nuclear weapons. Thus, our unified framework

provides a competing explanation for the absence of nuclear weapons in the post

war period.

Our unified approach yields some interesting insights that are not revealed

through partial analysis. In contrast to the SARM, we show that increasing the

proportion of pacifist states (dominant strategy doves) decreases the likelihood

of cooperation. In the SARM where only the first and second considerations are

taken into account, increasing the share of pacifist states leads to more coopera-

tion. When the share of states that abstain from nuclear weapons increases, the

level of mutual distrust decreases and so does decreases the likelihood of an arms

race. However, when the fear of setting off an arms race is included in the theo-

retical framework, increasing the share of pacifist states makes it more attractive

for aggressive states to acquire nuclear weapons. When the likelihood of facing a

pacifist state increases, aggressive actions are less likely to trigger punishment. Ag-

gressive actions are more likely to pay off and nuclear proliferation gets more likely.

In other words, increasing the share of pacifist states decreases the fear of setting

off an arms race and therefore leads to more nuclear proliferation. Therefore, our

model warns of adopting foreign policy doctrines that exclude the possibility of

acquiring nuclear weapons regardless of the choices made by other states.

The following section contains a review of related literature. Next, the SARM

is presented. Subsequently, we present our dynamic model, identify an equilibrium

and use comparative statics to show how pacifism can make an arms race more

likely. Finally, we discuss the empirical implications of our model and its ability

to explain the empirical record of proliferation of nuclear weapons.

Literature

Our model is related to at least two different strands of literature. Firstly, as

discussed above, our model is related to the literature on repeated games where

cooperation is sustained through the possibility of punishment in later stages of the
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game. Analysis of these types of games is due to Friedman (1971), Axelrod (1984),

Downs, Rocke and Siverson (1986) and others. Using Folk theorems, cooperation

can be maintained through the prospect of setting off an arms race. The topic is

developed by Calvert (1995) and Fearon (1998). Like these models, our model is

also an infinitely repeated game. The major difference is that in our model, there

is two-sided asymmetric information, which adds more realism but also provides

additional computational challenges.

Secondly, our model is a spiral model in which mutual fears play a central role.

Uncertainty about the intentions of the adversary is a central feature of these

models. Originally due to Schelling (1960) and Jervis (1976, 1978), the spiral

models describe how the fear of an attack induces states to take defensive actions,

which may be misperceived by the adversary as offensive actions. The adversary

responds in kind, hence creating a negative spiral of armed escalation that may

lead to war. Thus, mutual fear of becoming a victim of aggression may lead to

an inefficient outcome such as an arms race or war. The global games literature

by Carlsson and van Damme (1993) and Morris and Shin (2003) constitutes yet

another theoretical contribution to our understanding of spiral models. Morris and

Shin (2003) show how the multiplicity of equilibria in a coordination game can be

eliminated through a common signal. States are uncertain about the intentions

of their adversary, but are able to coordinate on a single equilibrium because of a

common signal. Using independent types, Baliga and Sjöström (2004, 2012) show

how even a small risk of encountering an aggressive adversary can cause an arms

race through an escalating cycle of mutually pessimistic expectations.

Our model draws on both of these literatures as we use the SARM as a stage

game in an infinitely repeated game.

Our model also shares common traits with Chassang and Padro i Miquel (2010)

and Kydd (1997). Chassang and Padro i Miquel (2010) use an infinitely repeated

global game where states accumulate arms and decide whether or not to attack.

They demonstrate that parity of military power is destabilizing. Fear of being

targeted by a first strike inadvertently leads to war through a negative spiral of

pessimistic expectations. On the other hand, when there is disparity in military
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power, none of the states can get a decisive advantage through a first strike. There-

fore, a destabilizing spiral of fear does not take place.

Kydd (1997) builds a simple three period spiral model in which states decide

whether to arm and to attack. Whether the adversary arms or not signals what

type he is - a security seeker or greedy (i.e. a potential attacker) - and therefore

influences the decision of whether to attack or not. Our model is more general

in that we allow for a continuum of types. However, the strategic environment in

our model is simpler than in both Chassang and Padro i Miquel (2010) and Kydd

(1997). In our model, states only decide whether or not to arm.

A series of recent models deals more specifically with nuclear proliferation. In

these models, an established nuclear power tries to prevent a potential proliferant

from acquiring nuclear weapons. Debs and Monteiro (2014) show that the cost of

preventive war and the potential change in the balance of power are decisive factors

for determining whether nuclear proliferation takes place. If the cost of preventive

war is sufficiently low and the effect on the balance of power is sufficiently large,

then the proliferant is deterred from building nuclear weapons. Furthermore, un-

certainty about the nature of a nuclear program sometimes leads to preventive

wars against states who do not intend to acquire nuclear weapons.

Bas and Coe (2015) adds additional realism to this framework by assuming that

the acquisition process is subject to stochastic shocks. Thus, elements of chance

in the progress of the nuclear program become crucial for explaining whether

proliferation takes place. Spaniel (2015) explains how established nuclear powers

use bargaining to buy off potential proliferants.

Whereas these models are well suited for explaining the relationship between

the US and a potential proliferant (e.g. Iran), they are ill-suited for describing an

arms race between peer competitors. In our model, there is complete symmetry

between the states. Neither of the states has an inherent advantage or possesses a

nuclear weapon from the onset. Our model is better at explaining nuclear prolif-

eration as a phenomenon related to peer competition, than as one related to the

subordination of a weaker state by a hegemon. Thus, our model is better suited

for explaining the relationship between Iran and Saudi Arabia or the US and the
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Soviet Union in the immediate aftermath of WWII.

Arms Race Models

Our model is an infinitely repeated game where the stage game is identical to the

SARM. In each period, players simultaneously decide whether to build a nuclear

weapon (B) or not (N). There is uncertainty about the adversary’s type.

In the SARM, an arms race is less likely when the share of pacifistic states

increases. In the dynamic arms race model where the game is repeated infinitely

many times, the opposite holds, i.e. we show that pacifist states are detrimental

for cooperation.

The Static Arms Race Model

Figure 1 illustrates the stage game.

State 2

B N

State 1
B −c1,−c2 µ− c1,−d
N −d, µ− c2 0, 0

Figure 1: Stage game

c1 is the cost of building nuclear weapons for state 1. µ is the advantage of

acquiring nuclear weapons while the adversary remains unarmed. d is the disad-

vantage of being left behind in the arms race.

If both players choose N , an arms races is avoided and both players receive the

normalized payoff 0. If player 1 chooses B and player 2 chooses N , player 1 arms

unilaterally, pays the cost of arming −c1 and receives the gain µ. Player 2 suffers

the loss of being left behind −d. If both players choose B, there is an arms race

and players suffer (−c1,−c2) and neither of them gains any advantage.
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ci is a stochastic variable with distribution function F (ci) where supp (F ) =

[0, 1], F (0) = 0, F ′(c) > 0 for i ∈ [0, 1] and F (1) = 1. ci is private information

and only known to player i where i ∈ {1, 2}.

Assumption 1. 0 < µ < d < 1

According to assumption 1, the disadvantage of being left behind d is larger than

the gain of getting ahead in the arms race µ. Thus, state 1 does not gain what

state 2 loses if state 2 is left behind in the arms race1. Everything - except the

true values of c1 and c2 - is common knowledge. We can categorize players in 3

different ways:

ci ∈ [0, µ]: Dominant strategy hawks (aggressive players). These players prefer

mutual cooperation (N,N) over an arms race (B,B), but would like to acquire

nuclear weapons unilaterally if they can get away with it. When both types are in

this interval, the payoff-structure of the game is identical to that of the prisoners’

dilemma.

ci ∈]µ, d]: Coordinating types. These players also prefer the cooperative outcome

(N,N), but unlike the aggressive players, they have no gain of defecting from the

cooperative outcome unilaterally. Only if the adversary is certain to defect does

it pay for this type of player to choose B.

ci ∈]d, 1]: Dominant strategy doves (pacifist players). These players choose N

regardless of the adversary’s strategy.

Coordinating types that are close to µ are almost dominant strategy hawks. For

these types the gain of cooperation is only marginally better than arming unilat-

erally. Therefore, these types only choose N if they are certain that the adversary

1Note that the support of the distribution function F is limited to the unit-interval in this

version of the model. In Baliga and Sjöström (2004, 2012) a more general interval [c, c] is used.

Moreover, we limit ourselves to the case where µ < d whereas Baliga and Sjöström (2004, 2012)

also consider d < µ. When µ < d, strategies are strategic complements, meaning that player 1

is more likely to choose B, the more likely player 2 is to choose B. In contrast, when µ < d

strategies are strategic substitutes and player 1 is less likely to choose B, the more likely player 2

is to choose B.
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also chooses N . Similarly, coordinating types that are very close to d are almost

dominant strategy doves. For these types, the fear of being left behind is only

marginally worse than an arms race (B,B). Therefore, these types only choose B

if they are certain that the adversary also chooses B.

In the equilibrium, players use a cutoff strategy, which consists of a cutoff point

c∗ such that B is chosen if and only if ci ≤ c∗.

Proposition 1 (Existence and uniqueness). There is a Bayesian Nash equi-

librium with cutoff point c∗ ∈ (µ, d). The equilibrium is unique if F ′(c) < 1
d−µ for

all c ∈ (µ, d).

Proof. Suppose that player 2 chooses B with probability p2. Player 1’s expected

utility from choosing B is −p2c1 + (1 − p2)(µ − c1). If player 1 chooses N , his

expected utility is −p2d. Player 1’s net gain from choosing B is

−c1 + µ+ (d− µ)p2

Player 1 chooses B if the net gain is positive and N if the net gain is negative.

Player 1 is indifferent between B and N if the net gain is zero. However, for

convenience, we assume that B is chosen when the net gain equals zero.

The monotonicity of the net gain in p2 implies that all BNE must be in cutoff

strategies. Notice that players’ strategies are functions [0, 1]→ {B,N}. But since

players only use cutoff strategies, each strategy that players use can be identified

through its cutoff point. If player 2’s cutoff point is c̃2, player 2’s probability of

choosing B is p2 = F (c̃2) and player 1’s best response is to use the cutoff point

c̃1 = Γ(c̃2) where

Γ(c) = µ+ (d− µ)F (c)

Γ(c) is the best response function for cutoff strategies. Since dominant strategy

hawks always choose B and dominant strategy doves always choose N , the cutoff

point c∗ ∈ [µ, d] ( [0, 1] by assumption 1. Thus, B and N are chosen with a

strictly positive probability in any BNE.

The continuity of Γ(c), Γ(µ) = µ+ (d−µ)F (µ) > µ and Γ(d) = dF (d) +µ(1−
F (d)) < d ensure that a fixed-point c∗ ∈ (µ, d) exists. Using symmetry, we infer

that there is a BNE where both players use the cutoff point c∗.
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Next, we prove uniqueness. The derivative of Γ(c) is Γ′(c) = (d−µ)F ′(c). Now

we see that F ′(c) < 1
d−µ implies Γ′(c) = (d− µ)F ′(c) < 1. Moreover, µ < d (from

Assumption 1) implies that Γ′(c) = (d − µ)F ′(c) > 0. Therefore, 0 < Γ′(c) < 1,

which is a well-known condition for uniqueness. Hence, c∗ is the unique cutoff

point. �

Note that the assumption F ′(c) < 1
d−µ ensures that the probability is not too

concentrated in certain regions of the interval c ∈ (µ, d). If this condition is not

satisfied, the best response function will become too steep in certain regions, which

may lead to multiple cutoff points. The increasing best response functions of both

players and the cutoff point have been illustrated in figure 2.

c1

c2

µ d

µ

d

1

1

c∗

Γ(c1)

Γ(c2)

0

Figure 2: Best response functions and fixed point when types are uniformly dis-

tributed, i.e. F (x) = 1.

To demonstrate how the fear of being left behind can compel coordinating types

to arm through a negative spiral of pessimistic expectations, suppose that player 1

uses a cutoff strategy with cutoff point c̃11 = µ such that only dominant strategy

hawks arm. Thus, the probability that player 1 arms is F (c̃11) = F (µ). Since c̃11 is

below the cutoff point c∗, player 2’s best response is to use a higher cutoff point, i.e.
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c̃22 = Γ(c̃11) > c̃11. Next, if player 2 arms with probability F (c̃22), the fear of setting

off an arms race is the dominant concern again. Thus, player 1’s best response is

to use a higher cutoff point, i.e. c̃31 = Γ(c̃22) > c̃22. Hence, the equilibrium can be

reached through iterated deletion of dominated strategies. During this cascade,

coordinating types who are almost dominant strategy hawks choose to arm, which

in turn causes ”almost-almost dominant strategy hawks” to arm, etc. Continuing

this way, the cutoff points eventually converge up towards c∗.

Comparative Statics

In the following we derive some comparative statics results that are not included

in Baliga and Sjöström (2012). We do this first and foremost in order to obtain

a reference point for results derived later in the section on the dynamic arms race

model. The first result shows that dominant strategy hawks are destabilizing and

the second that dominant strategy doves are stabilizing.

Destabilizing Hawks

Increasing the share of dominant strategy hawks makes cooperation less likely.

The share of dominant strategy hawks is µ. Thus, increasing µ makes cooperation

less likely.

Proposition 2. Increasing the proportion of dominant strategy hawks leads to

lower levels of cooperation if F ′(c) < 1
d−µ for all c ∈ (µ, d).

∂c∗

∂µ
> 0

Proof. Using implicit differentiation, we find the partial derivative of Γ(c) with

respect to µ.
∂c∗

∂µ
= 1− F (c∗) + (d− µ)F ′(c∗)

∂c∗

∂µ

Rearranging,
∂c∗

∂µ
=

1− F (c∗)

1− (d− µ)F ′(c∗)
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The numerator is strictly positive since c∗ ∈ (µ, d), F (1) = 1 and F ′(c) > 0 for

all c ∈ [0, 1]. Moreover, assumption F ′(c) < 1
d−µ implies that the denominator is

strictly positive. Hence, ∂c∗
∂µ

> 0. �

When µ is increased, the share of dominant strategy hawks goes up at the expense

of the share of coordinating types (d − µ). Therefore, the probability of encoun-

tering an aggressive player increases, which makes it more risky for coordinating

types to cooperate. Fear of being left behind increases and the level cooperation

therefore decreases (c∗ increases).

Stabilizing Doves

Increasing the share of dominant strategy doves makes cooperation more likely.

The share of dominant strategy doves is 1 − d. Thus, the share of dominant

strategy doves is large if d is low.

Proposition 3. Increasing the proportion of dominant strategy doves leads to less

conflict if F ′(c) < 1
d−µ for all c ∈ (µ, d).

∂c∗

∂d
> 0

Proof. Using implicit differentiation, we find the partial derivative of Γ(c) with

respect to µ.
∂c∗

∂d
= F (c∗) + (d− µ)F ′(c∗)

∂c∗

∂d

Rearranging and using assumption 1,

∂c∗

∂d
=

F (c∗)

1− (d− µ)F ′(c∗)

The numerator is strictly positive since c∗ ∈ (µ, d), F (0) = 0 and F ′(c) > 0 for

all c ∈ [0, 1]. Moreover, assumption F ′(c) < 1
d−µ implies that the denominator is

strictly positive. Hence, ∂c∗
∂d

> 0. �

Increasing the share of dominant strategy doves at the expense of coordinating

types leads to more cooperation, i.e. a lower d leads to fewer types choosing B.
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Increasing the share of pacifist players that abstain from arming – regardless of

the action taken by the adversary – inhibits the spiral of fear by reducing the

proportion of players that potentially could arm. As more players shift towards

the pacifistic category, cooperation increases. Note that this result is only true in

the static arms race model. In the repeated game, which we consider in the next

section, the result is reversed.

Uniform distribution

Here we consider the SARM in the special case where c1 and c2 are uniformly

distributed on [0, 1]. Analyzing the SARM for the uniform distribution is a useful

precursor to studying the dynamic model where the issue of tractability restricts

us from using a general distribution function on [0, 1]. The uniform distribution is

F (c) = c and the best response function is

Γ(c) = µ+ (d− µ)c

The fixed-point c∗ where Γ(c∗) = c∗ becomes

c∗ =
µ

1− (d− µ)

It follows straightforwardly that ∂c∗
∂µ

= 1−d
(1−(d−µ))2 > 0 and ∂c∗

∂d
= µ

(1−(d−µ))2 > 0.

A Dynamic Arms Race Model

In the infinitely repeated game, players decide between B and N in each period in

the same way as in SARM. Hence, the fear of being left behind still guides players’

behavior. The major difference from the static model is that players are now forced

to take the future impact of their decisions into account in each period. Hence,

aggressive players need to consider the possibility that defection may lead to a

breakdown of cooperation. Notice that unlike the repeated prisoner’s dilemma,

our model incorporates uncertainty. Therefore, a player will not be punished for

opportunistic behavior if the adversary turns out to be a dominant strategy dove.

Payoffs are discounted in each period t with a discount factor δ.
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Assumption 2. 1
2
< δ < 1

Types are uniformly distributed on the unit-interval, F (c) = c for all c ∈ [0, 1].

Everything – except the true value of c1 and c2 – is common knowledge.

In the following, we argue that there is a perfect Bayesian equilibrium in which

players use a conditional trigger strategy. Players cooperate as long as the ad-

versary cooperates. If either of the players defects by choosing B in any of the

periods, a punishment phase is initiated in which both players choose B for the

remainder of the game if they are not dominant strategy doves.

In the equilibrium, players use cutoff strategies with a cutoff point c∗ in period 1

so that player 1 chooses B if c1 ≤ c∗ and N otherwise. As we show below,

assumption 2 ensures that c∗ < µ. Hence, only dominant strategy hawks choose

B in period 1.

We say that (B,B) is chosen if both players choose B. Similarly, we say that

(N,N) is chosen if both players choose N . Finally, we say that (B,N) is chosen

if player 1 chooses B and player 2 chooses N . A perfect Bayesian equilibrium

consists of a strategy profile and a belief system where the strategy profile is

sequentially rational and the belief system is consistent. Also, the restriction

of the strategy profile and belief system in every continuation game must be a

Bayesian Nash equilibrium. Hence, we need to define the beliefs and strategies

in a large number of continuation games. This makes the proof a particularly

comprehensive undertaking due to the large number of continuation games. The

parts of the proof that are related to these continuation games have therefore been

moved to the appendix.
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Proposition 4 (Conditional trigger strategy).

There is a PBE where the following strategies are used2:

Period 1: Players use cutoff strategies with the cutoff point

c∗ =
1− (1− δ)(d− µ)−

√
(1− (1− δ)(d− µ))2 − 4δ(1− δd)µ

2δ

and c∗ ∈ (0, µ).

Periods t > 1:

(i) If (N,N) was chosen in all previous periods 1, . . . , t − 1, players also

choose N in all subsequent periods t, t+ 1, . . ..

(ii) If anything else was chosen in any of the previous periods 1, . . . , t− 1,

player 1 chooses B in all subsequent periods t, t + 1, . . . if c1 ≤ d and

N if c1 > d. Player 2 uses the same strategy.

Proof. In the following, we show that c∗ is the optimal cutoff point for both players

in period 1 given that the conditional trigger strategies are used in the subsequent

periods. In the appendix, we show that the conditional trigger strategy is the

optimal strategy in the continuation games in period t > 1.

Period 1 Players use a cutoff strategy with a cutoff point c∗. c∗ is the type that

is indifferent between choosing B and N in period 1. We consider the strategic

trade-off of player 1 with a type ci < µ. Since c∗ ∈ [0, µ], it is only relevant

to consider the strategic dilemma of a dominant strategy hawk. In equilibrium,

coordinating types always cooperate and their trade-off is therefore irrelevant to

consider. Later, we verify that c∗ < µ.

Suppose that player 2 uses a cutoff strategy with cutoff point c∗2 < µ. Player 1’s

expected payoff from choosing B in period 1 is

c∗2

( ∞∑

t=0

δt(−c1)
)

+
(
d− c∗2

)
(
µ+

∞∑

t=0

δt(−c1)
)

+
(
1− d

)
( ∞∑

t=0

δt(µ− c1)
)

(1)

2Strictly speaking, only the equilibrium strategies are defined here. More about this in the

proof.
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where the probability that player 2 chooses B is P (c2 < c∗2) = F (c∗2) = c∗2. We

interpret the expression:

- The 1. part is player 1’s payoff if player 2 also chooses B in period 1. Nobody

cooperates in period 1 and B is chosen by both players in all subsequent periods.

- The 2. part is player 1’s payoff if player 2 chooses N in period 1 and player 2 is

not a dominant strategy dove. Cooperation also fails and B is chosen by both

players in all subsequent periods. d− c∗2 is the probability that c2 ∈ [c∗2, d].

- The 3. part is player 1’s payoff if player 2 chooses N in period 1 and player 2

is a dominant strategy dove. In this case, cooperation also fails and B is chosen

by player 1, but player 2 is unwilling to retaliate and (B,N) is therefore chosen

in all subsequent periods. 1 − d is the probability that player 1 is a dominant

strategy dove.

Player 1’s expected payoff from choosing N in period 1 is

c∗2

(
− d+

∞∑

t=1

δt(−c1)
)

+ (1− c∗2)
( ∞∑

t=0

δt · 0
)

(2)

- The 1. part is player 1’s payoff if player 2 chooses B in period 1. Player 1

receives the payoff −d in period 1 for being left behind. In the rest of the game

t > 1, cooperation fails and B is chosen by both players.

- The 2. part represents the cooperative outcome. Both players choose N in

period 1 and in the remaining periods t > 1 as well.

Subtracting (2) from (1) and rearranging, player 1’s net gain from choosing B is

1

1− δµ
(
1− δd

)
+ (d− µ)c∗2 −

1

1− δ
(
1− δc∗2

)
c1

where the formula
∑∞

t=0 δ
t = 1

1−δ has been used.

If the net gain is positive, choosing B is optimal for player 1. If the net gain is

negative, choosing N is the optimal strategy for player 1. If the net gain is zero,

player 1 is indifferent between choosing B and N . However, for convenience we

assume that player 1 chooses B.
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Observe that the net gain is decreasing in c1 due to Assumption 2. Hence, it is

the best response for player 1 to use a cutoff strategy when player 2 uses a cutoff

strategy. Setting the net gain equal to zero, we find the optimal cutoff point c̃1 for

player 1. Thus, if player 2’s cutoff point is c̃2, player 1’s best response is to use a

cutoff strategy with cutoff point c̃1 = Γ(c̃2) where

Γ(c) =
µ
(
1− δd

)
+ (1− δ)(d− µ)c

1− δc
Γ(c) is the best response function for cutoff strategies in period 1.

Now we show that c∗ ∈ (0, µ). First, note that Γ(0) = µ(1−δd) > 0. Moreover,

Γ(µ) < µ is implied by 1
2
< δ (Assumption 2). Finally, since the best response

function is continuous, a fixed point c∗ ∈ (0, µ) exists. Due to symmetry, there is

a PBE where c∗ is used as a cutoff point by both players. Hence, we know that

there is at least one cutoff point in the interval (0, µ).

Next, we derive the closed-form expression of c∗. Setting Γ(c) = c and rear-

ranging, we derive the fixed points.

δc2 − (1− (1− δ)(d− µ)) c+ (1− δd)µ = 0

Solving this 2. order equation, we find two fixed points.

c∗ =
1− (1− δ)(d− µ)−

√
(1− (1− δ)(d− µ))2 − 4δ(1− δd)µ

2δ

č =
1− (1− δ)(d− µ) +

√
(1− (1− δ)(d− µ))2 − 4δ(1− δd)µ

2δ

The largest of the fixed points č is above µ (See Lemma 2 in the appendix for a

proof) and therefore outside of the interval of interest (0, µ). Hence, we conclude

that c∗ ∈ (0, µ). �

Observe that Γ(c) is strictly increasing in c.

∂Γ(c)

∂c
=

(1 + δ) (d− µ)

1− δ c +
(µ (1− dδ) + (1 + δ) (d− µ) c) δ

(1− δ c)2
> 0

Reducing,

(1− δ c) (dδ (1− δµ) + d− µ) > 0
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0 < c∗ < µ < d < 1 and 1
2
< δ < 1 due to Assumption 1 and 2 and therefore

1− δc > 0, dδ (1− δµ) > 0 and d− µ > 0. Hence, Γ(c) is strictly increasing.

The increasing best response functions and the cutoff point have been illus-

trated in figure 3.

c1

c2

µ(1− δ) µ d

µ(1− δ)

µ

d

1

1

c∗

Γ(c1)

Γ(c2)

0

Figure 3: Best response functions and fixed point

We now demonstrate how convergence towards equilibrium takes place. Sup-

pose that player 1 uses a cutoff strategy with cutoff point c̃11 = µ , i.e. all dominant

strategy hawks arm. Thus, the probability that player 1 decides to arm is c̃11 = µ.

For this probability, the fear of setting off an arms race dominates the first and sec-

ond strategic considerations. Therefore, player 2’s best response is to use a lower

cutoff point, i.e. c̃22 = Γ(c̃11) < c̃11 (higher level of cooperation). Next, if player 2

arms with probability c̃22, the fear of setting off an arms race again dominates.

Thus, player 1’s best response is to use a lower cutoff point, i.e. c̃31 = Γ(c̃22) < c̃22.

Hence, the equilibrium can be reached through iterated deletion of dominated

strategies. During this cascade, dominant strategy hawks who are almost coor-

dinating types choose to cooperate, which in turn causes ”almost-almost coordi-

nating types” to cooperate, etc. Continuing this way, the cutoff points eventually

converge down towards c∗.
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In period 1, a dominant strategy hawk makes the following strategic calculation:

If I build a nuclear weapon now, I may get a temporary nuclear monopoly,

which could be permanent if my adversary is sufficiently pacifistic.

Moreover, my adversary may be building a nuclear weapon himself

and I do not want to be left behind in the event of an arms race with-

out a weapon myself. On the other hand, my adversary may not have

any plans to build a nuclear bomb and if I build one, he could be forced

to respond in kind, thus provoking a nuclear arms race.

In the above we see how the third strategic consideration acts as a counter-

weight to the destabilizing effect of the first and second strategic considerations.

The fear of being left behind and the prospect of getting ahead are counted by

the fear of setting off an arms race. Which of the strategic considerations are

strongest? Proposition 4 provides an answer. For the share [0, c∗], the first and

second strategic considerations dominate the third and consequently this share of

the dominant strategy hawks decides to arm. For the remaining share (c∗, 1], the

fear of setting off an arms race is the dominant strategic consideration, and this

share therefore does not arm.

Three different outcomes are possible in the long run. Figure 4 illustrates these

outcomes in the different periods of the game. c∗ and d are key determinants of

the outcome. Only if both types are above c∗, is peaceful cooperation possible. If

player 1 chooses B in period 1 and player 2 chooses N , then player 2 retaliates in

period 2 and onwards by also choosing B if he is not a dominant strategy dove.

Notice that c∗ > µ in the SARM, whereas c∗ < µ in the dynamic model. In

our model, the fear of setting off an arms race leads to higher levels of cooperation

(i.e. a lower c∗). In the SARM, dominant strategy hawks always arm and some of

the coordinating types also arm out of fear of being left behind. Thus, when the

shadow of the future is taken into account, coordinating types never arm and even

some dominant strategy hawks choose to cooperate.

The lower bound on δ (δ > 1
2

by Assumption 2) ensures that players care

sufficiently much about the future so that c∗ < µ. Dominant strategy doves never

engage in the punishment phase by arming if the adversary arms. Only dominant
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Period 1

c2 ∈ [0, c∗] c2 ∈ (c∗, d] c2 ∈ (d, 1]

c1 ∈ [0, c∗] (B,B) (B,N) (B,N)

c1 ∈ (c∗, d] (N,B) (N,N) (N,N)

c1 ∈ (d, 1] (N,B) (N,N) (N,N)

Period t > 1

c2 ∈ [0, c∗] c2 ∈ (c∗, d] c2 ∈ (d, 1]

c1 ∈ [0, c∗] (B,B) (B,B) (B,N)

c1 ∈ (c∗, d] (B,B) (N,N) (N,N)

c1 ∈ (d, 1] (N,B) (N,N) (N,N)

Figure 4: Short-term and long-term outcomes

strategy hawks would want to arm against an unarmed adversary. Now imagine

that δ falls below 1
2

such that c∗ > µ. If player 1 is a coordinating type (c1 ∈
(µ, c∗)) and chooses B in period 1 and player 2 is a dominant strategy dove that

always chooses N , then player 1 will not be willing to act in accordance with the

conditional trigger strategy and choose B for all subsequent periods. Remember

that coordinating types only prefer to arm if the adversary arms. Hence, the

equilibrium described in Proposition 4 can only be a PBE if δ > 1
2
.

Interestingly, we observe that asymmetric information improves the likelihood

of peaceful cooperation for certain types c1 and c2. If player 1 is a dominant

strategy dove d ∈ (d, 1] and player 2 is a dominant strategy hawk c2 ∈ (c∗, µ],

players cooperate, i.e. (N,N) is chosen in each period. Player 2 does not realize

that player 1 is unwilling to engage in punishment. Therefore, peaceful cooperation

ensues. Under complete information however if player 2 realized that player 1 was

merely a dominant strategy dove, he would not fear that acquiring nuclear weapons

would provoke an arms race and he would therefore arm unilaterally. Thus, when

types are in this interval, asymmetric information facilitates mutual cooperation.
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The Shadow of the Future

In our dynamic arms race model, the shadow of the future induces a high level

of cooperation. In the following, we show that the level of cooperation increases

when the shadow of the future is increased. The magnitude of the shadow of the

future is defined as δ. A higher δ means that players discount the payoff from

future events at a lower rate. Consequently, players are more concerned about the

future and thus more likely to cooperate. The stabilizing effect of increasing the

shadow of the future is formally shown in Proposition 5.

Proposition 5. Increasing the shadow of the future leads to higher levels of co-

operation. In particular,
∂c∗

∂δ
< 0

When states are highly concerned about the prospect of a future nuclear arms

race, they are less likely to be tempted by the possible gains of getting ahead and

less likely to let their fear of being left behind drive them into an arms race.

Destabilizing Hawks

Increasing the share of dominant strategy hawks leads to lower levels of coopera-

tion. Thus, dominant strategy hawks are destabilizing regardless of whether we are

looking at the SARM or our dynamic model. µ represents the share of dominant

strategy hawks. A higher µ leads to more instability.

Proposition 6. Increasing the proportion of dominant strategy hawks makes co-

operation less likely. In particular,

∂c∗

∂µ
> 0

Increasing µ means there is a higher risk of facing an aggressive player. Therefore,

it will be less attractive for the coordinating types to stay out of the arms race.

When the fear of being left behind increases, cooperation becomes unattractive

for a larger share of types. Hence, c∗ increases.
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Destabilizing Doves

The effect of increasing the share of dominant strategy doves on the level of coop-

eration is not immediately clear. On the one hand, increasing the proportion of

doves generates more stability by reducing the fear of being left behind in the arms

race. Dominant strategy doves never arm and therefore the preemptive motive is

less significant. On the other hand, a larger share of dominant strategy doves in-

creases the predatory motive of dominant strategy hawks since dominant strategy

hawks are more likely to get away with unilaterally acquiring nuclear weapons.

If the risk of provoking an arms race is sufficiently low, there is less stimulus to

cooperate for the predatory types. Thus, from the unset, it is unclear whether

dominant strategy doves are stabilizing or destabilizing.

Proposition 7 shows that the destabilizing effect dominates and therefore a

larger share of dominant strategy doves leads to a lower level of cooperation.

Proposition 7. Increasing the proportion of dominant strategy doves makes co-

operation less likely. In particular,

∂c∗

∂d
< 0

Empirics and Policy Implications

The strategic dilemma depicted by our dynamic model provides an explanation

for the remarkable absence of nuclear proliferation in the post-war period. In the

1960’s, it was predicted that there would be 15-25 nuclear powers at the end of

the 1970’s. Nuclear weapons were seen as the ultimate means of defending one’s

national interests and since no states wanted to be left behind in a nuclear arms

race, predictions in the immediate aftermath of World War II were that nuclear

proliferation would be very widespread3.

These pessimistic predictions are consistent with the pessimism implied by the

SARM where only the first and second strategic considerations are included. In the

3See Potter and Mukhatzhanova (2010) for a lengthy discussion of this.
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SARM, even peaceful states can be drawn into an arms race due to an escalating

cycle of pessimistic expectations.

Despite the predictions made earlier, the extent of nuclear proliferation turned

out to be rather limited. In 2015, there were only 9 nuclear powers – far fewer

than what had previously been envisioned.

Numerous international relations theories have attempted to provide an ex-

planation for this phenomenon. Neoliberalists have pointed to the Nuclear Non-

Proliferation Treaty (NPT) of 1968 and similar international institutions as having

played an important role in preventing unrestricted nuclear proliferation (Keohane,

1984). Liberalists have stressed the importance of domestic politics (Solingen,

2010) and constructivists – the psychology of the leader (Hymans, 2006).

However, according to our model, these higher order explanations are not neces-

sary in order to account for the phenomenon. The absence of nuclear proliferation

can be attributed to the simple fact that states are concerned about the future

and do not wish to set off an arms race. If the risk of triggering an arms race is

sufficiently high, most states – even predatory ones – prefer to cooperate.

Thus, our model provides a plausible explanation behind the surprising absence

of nuclear proliferation in the post-war period.

On pacifistic military doctrines As we have seen in the previous section, our

dynamic arms race model reveals some surprising results about the role of pacifistic

states and the likelihood of peaceful cooperation. On the one hand, the presence

of pacifistic states alleviates fears of being left behind, thus making an arms race

less likely. On the other hand, pacifistic states induce predatory states to arm

unilaterally, thus making an arms race more likely. From the unset, it is not clear

which of these strategic considerations is dominant.

Proposition 7 shows that pacifistic states are destabilizing. Their refusal to

respond in kind to the actions of aggressive states undermines the fear of setting

off an arms race and thus the incentive to cooperate.

That pacifistic states are destabilizing should not however be interpreted as

an encouragement to pursue an aggressive foreign policy. Rather, it suggests that
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any foreign policy doctrine of foregoing nuclear weapons should not be absolute

and unconditional. In foreign policy doctrines, states should emphasize that their

decision to abstain from developing nuclear weapons is conditional and can be

reversed if others states start to acquire nuclear weapons.

Also this should not be taken as evidence for avoiding friendly relationships

with potential adversaries. On the contrary, confidence building measures that

alleviate suspicion and fear among states should be encouraged. Remember that a

lower share of dominant strategy hawks or the belief hereof is stabilizing. However,

blind pacifism and strategies of foregoing nuclear weapons regardless of threat

perception should be avoided.

Conclusion

We develop an arms race model using a repeated game where states simultane-

ously decide whether to build nuclear weapons or to abstain in each period. When

determining the optimal level of cooperation, states take into account three strate-

gic considerations. The fear of being left behind and the opportunity to get ahead

make states more likely to acquire nuclear weapons. However, the fear of setting

off an arms race makes states less likely to acquire nuclear weapons. The desta-

bilizing effect of the first and the second strategic considerations are countered

by the stabilizing effect of the third. In equilibrium, the level of cooperation is

determined as a balance between these three strategic considerations.

The contribution of this paper is threefold:

(i) We merge the static arms race model by Baliga and Sjöström (2004, 2012)

with a game of repeated interaction creating a unified theoretical framework,

in which all three strategic considerations are included.

(ii) Our spiral model reverses some of the results in existing arms races models.

In particular, we show that increasing the share of pacifistic states makes

cooperation less likely.
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(iii) Our model provides an explanation for the remarkable absence of nuclear

proliferation in the post-war period.
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Appendix

Proof (for period t > 1 in Proposition 4). There are four possible outcomes in pe-

riod 1: (B,B), (N,B), (B,N) and (N,N). These outcomes give rise to four

different continuation games. We analyze each of the four continuation games con-

secutively and show that a conditional trigger strategy, in which player 1 punishes

defection from the cooperation (N,N) by choosing B in all subsequent periods if

and only if c1 ≤ d, is an equilibrium strategy. In a perfect Bayesian equilibrium,

the restriction of strategy and belief-system in every continuation game must be a

Bayesian Nash equilibrium.

(B,B): We consider the continuation games in period t > 1 where B was chosen

by both players in period 1. We can identify two different types of continuation

games belonging to this category. The first category is the continuation games

in period t > 1 where (B,B) was chosen in all previous periods 1, . . . , t − 1, i.e.

the continuation game on the equilibrium path. The second category is the rest,

i.e. all the continuation games off the equilibrium path, in which (B,B) was not

chosen in at least one of the previous periods 2, . . . , t − 1. We define the beliefs

and strategies of both categories of continuation games. Then, we show that these

beliefs and strategies must be part of an equilibrium.

Strategies: Players choose (B,B) in period t, t + 1, . . . in both types of con-

tinuation games, i.e. regardless of whether players are on the equilibrium path or

not.

Beliefs: In the first category of continuation games located on the equilibrium

path, Bayes’ rule apply. Since (B,B) was chosen in period 1, players infer that

types are below c∗. Thus, in period 2, beliefs become the uniform distribution

G(c) = c
c∗ restricted to the interval [0, c∗]. Since B is chosen by all remaining

types along the equilibrium path, beliefs are unchanged for the remaining of the

game. Hence, the updated beliefs are the uniform distribution G(c) = c
c∗ restricted

to the interval [0, c∗] for all periods t > 1.

In the second category of continuation games located off the equilibrium path

where N was chosen by either or both of the players in any of the periods 2, . . . , t−
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1, beliefs remain unchanged due to the Pessimistic Bias Assumption, i.e. beliefs

follow the uniform distribution G(c) = c
c∗ restricted to the interval [0, c∗] in period

t. In effect, this implies that only the actions in period 1 matter for the beliefs

in the remaining of the game. The beliefs formed in period 2 remain unchanged

throughout the game regardless of the actions taken by players in period 2 and

onwards.

Payoff and equilibrium: In the first category of continuation games, we show

that choosing B in period t, t + 1, . . . is the best response for player 1 given that

player 2 chooses B in period t, t+1, . . . and given that player 2 will choose B in all

periods in any subsequent, off equilibrium continuation game. If player 1 chooses

B in period t, t + 1, . . ., he receives the following payoff: −c1 +
∑∞

s=1 δ
s(−c1). If

instead player 1 deviates and chooses B in period t and N in period t+1, t+2, . . .,

he receives following payoff: −d +
∑∞

s=1 δ
s(−c1). This is clearly lower since c1 <

c∗ < µ < d. Hence, deviating yields a lower payoff. Hence, choosing B in period

t, t + 1, . . . is the best response for player 1 when player 2 chooses B in period

t, t+ 1, . . ..

In the second category of continuation games, beliefs are the same and an

analogous argument applies. Thus, choosing B in period t, t+ 1, . . . is the best the

response for player 1 when player 2 is choosing B in period t, t + 1, . . . and will

choose B in all periods in any subsequent, off equilibrium continuation game.

Pessimistic Bias Assumption In the off-equilibrium information

sets, if player 2’s actions are consistent with both c2 ≤ c∗ and c2 > c∗,

then player 1 believes that c2 ≤ c∗.

The Pessimistic Bias Assumption states that player 1 is always negatively bi-

ased towards believing that player 2 is of a low type if player 2’s behavior is

consistent with the actions of both a low type and a high type. Only in the

off-equilibrium information sets does this assumption become relevant. The Pes-

simistic Bias Assumption imposes a high degree of simplicity on the off-equilibrium

beliefs, which makes the analysis a lot easier4.

4Notice that other assumptions that impose a more even balance between positive and nega-
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Notice that the Pessimistic Bias Assumption has been applied to the beliefs of

the players above. If player 1 chose B in periods 1, . . . , t−1, then player 2’s beliefs

remain unchanged if player 1 suddenly chooses N in period t, i.e. beliefs remain

G(c) = c
c∗ restricted to the interval [0, c∗] in period t + 1. In contrast, assume

that player 1 had chosen N in periods 1, . . . , t − 1, then player 2’s beliefs would

change from the uniform distribution H(c) = c−c∗
1−c∗ restricted to the interval [c∗, 1]

to G(c) = c
c∗ restricted to the interval [0, c∗] in period t + 1 if player 1 chooses B

in period t.

(B,N): We consider the continuation games in period t > 1 in which (B,N) was

chosen in period 1. This continuation game gives rise to different continuation

games. The first category is the continuation games on the equilibrium path in

period t > 1, in which (B,B) was chosen in all periods 2, . . . , t − 1 if c2 ≤ d and

(B,N) was chosen in all periods 2, . . . , t− 1 if c2 > d.

The second category is the rest, i.e. all the continuation games off the equilib-

rium path in period t > 1, in which either (B,N), (N,B) or (N,N) was chosen at

least once during the periods 2, . . . , t− 1 if c2 ≤ d.

First we define the beliefs and strategies of the continuation games. Then, we

show that these beliefs and strategies are part of an equilibrium.

Strategies: After (B,N) was chosen in period 1, a punishment phase is trig-

gered, in which player 2 chooses B in all subsequent periods t+1, t+2, . . . if c2 ≤ d

and N in all subsequent periods t + 1, t + 2, . . . if c2 > d. Player 1 continues to

choose B in all subsequent periods regardless of player 2’s choice. These strategies

are used in continuation games of both first and second category.

Player 1’s beliefs in continuation game of first category: Since (B,N) was cho-

sen in period 1, player 1 infers that player 2’s type must be above c∗. Using Bayes’

rule, player 1’s updated beliefs in period 2 are the uniform distribution H(c) = c−c∗
1−c∗

restricted to the interval [c∗, 1]. In the first category of the continuation games

on the equilibrium path, player 1’s beliefs in period 3 and onwards depend on the

tive bias when inconclusive evidence of types arise are possible. Assumptions giving more favor to

the positive bias would also be able to support the equilibrium strategies on the equilibrium path.

However, using these more sophisticated assumptions would complicate the analysis unduly.

38



actions taken by player 2 in period 2.

- If player 2 chooses B in period 2, player 1 infers that c∗ < c2 ≤ d and therefore

player 1’s updated beliefs in period 3 are the uniform distribution Hl(c) = c−c∗
d−c∗

restricted to the interval (c∗, d]. Since all of player 2’s types continue to choose B,

no further updating takes place and player 1’s beliefs are the uniform distribution

Hl(c) restricted to (c∗, d] for all periods t > 2.

- If player 2 chooses N in period 2, player 1 infers that c2 > d and thus player 1’s

updated beliefs in period 3 are the uniform distribution Hh(c) = c−d
1−d restricted

to the interval (d, 1]. Since all of player 2’s types continue to choose N , player 1’s

beliefs remain the uniform distribution Hh(c) restricted to (d, 1] for all periods

t > 2.

Player 2’s beliefs in continuation game of first category: Since (B,N) was

chosen in period 1, player 2 infers that player 1’s type must be below c∗. Thus,

player 2’s updated beliefs in period 2 are the uniform distribution G(c) = c
c∗

restricted to the interval [0, c∗]. Since all of player 1’s remaining types choose B

for the rest of the game, no further updating takes place and player 2’s beliefs are

the uniform distribution G(c) restricted to [0, c∗] for all periods t > 1. Note, that

if for some reason player 1 defects from this strategy by choosing N instead of

B, player 2’s beliefs are assumed to be identical to the beliefs on the equilibrium

path, i.e. beliefs are the uniform distribution G(c) restricted to [0, c∗].

In the second category of the continuation games, if either of the players chooses

N in any of the periods 3, . . . , t − 1 after choosing B in period 2, beliefs are

unchanged according to the Pessimistic Bias Assumption, i.e. player 1’s beliefs

remain the uniform distribution Hl(c) restricted to (c∗, d] and player 2’s beliefs –

the uniform distribution G(c) = c
c∗ restricted to the interval [0, c∗]. In contrast,

if player 2 chooses B in any of the periods 3, . . . , t − 1 while choosing N in all

the previous periods, player 1’s beliefs immediately change to Hl(c) restricted to

(c∗, d].

Payoff and equilibrium in a continuation game of the first category:
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Player 1: Given that player 2 chooses B in all periods t > 1 if c2 ≤ d and N

in all periods t > 1 if c2 > d, we show that choosing B in all periods t > 1 is the

optimal strategy for player 1. player 1’s payoff from choosing B is

H(d)

( ∞∑

s=0

δs(−c1)
)

+ (1−H(d))

( ∞∑

s=0

δs(µ− c1)
)

The first part of the expression is the player 1’s payoff if player 2 is a type c2 ∈ (c∗, d]

that always chooses B. The second part of the expression is player 1’s payoff if

player 2 is a dominant strategy dove c2 ∈ (d, 1] that always chooses N .

If player 1 deviates and chooses N in period t and B in period t+ 1, t+ 2, . . .

the payoff is

H(d)

(
−d+

∞∑

s=1

δs(−c1)
)

+ (1−H(d))

( ∞∑

s=1

δs(µ− c1)
)

In this expression, we have substituted −c1 with −d and µ− c1 with zero. Since,

c1 < c∗ < µ < d the payoff from choosing B is strictly lower than from choosing N .

Note that the payoff assumes that players return to their equilibrium strategies if

a deviation is ever made. Remember that the strategies in the continuation games

of the second category are identical to the strategies chosen in continuation games

of the first category.

Player 2: Given that player 1 chooses B in all periods t > 1, we need to

show that choosing B in all periods t > 1 is the optimal strategy for player 2 if

c2 ≤ d. Choosing B in all periods t > 1 yields the payoff
∑∞

s=0 δ
s(−c2) for player 2.

Choosing N in one or several periods irrevocably lowers the payoff since c2 < d,

e.g. if player 2 deviates in period t by choosing N the payoff is −d+
∑∞

s=1 δ
s(−c2)

which is clearly lower than
∑∞

s=0 δ
s(−c2). If c2 > d, player 2 is a dominant strategy

dove and choosing N is therefore optimal by default. Note, player 2’s beliefs are

unchanged off the equilibrium path, choosing B in all periods t, t+ 1, . . . is a best

response for player 2 regardless of whether we are on the equilibrium path or not.

Payoff and equilibrium in a continuation game of the second category: In the

continuation games of the second category where a deviation from the equilibrium

strategies has been made in period 2, . . . , t − 1 beliefs remain unchanged except
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that player 1’s beliefs change from the uniform distribution Hh(c) = c−d
1−d restricted

to the interval (d, 1] to the uniform distribution Hl(c) = c−c∗
d−c∗ restricted to the

interval (c∗, d] if (B,B) was chosen in any of the periods 2, . . . , t− 1 when c2 > d.

Therefore, the arguments above also remain unchanged. Player 1 chooses B in

all subsequent periods t, t + 1, . . .. Player 2 chooses B in all subsequent periods

t, t + 1, . . . if c2 ≤ d and N in all subsequent periods t, t + 1, . . . if c2 > d. Note

that player 1 chooses B in all subsequent periods t, t+1, . . . regardless of player 2’s

strategy. Thus, if (B,B) was chosen in any period 2, . . . , t − 1 when c2 > d and

player 1’s beliefs subsequently changed, player 1 still prefers to choose B in all

subsequent periods t, t+ 1, . . ..

(N,N): We consider the continuation games in period t > 1, in which N was cho-

sen by both players in period 1. We can identify two different types of continuation

games belonging to this category.

The first category is the continuation games in period t > 1 where (N,N)

was chosen in all previous periods 1, . . . , t − 1, i.e. the continuation game on the

equilibrium path.

The second category is the continuation games off the equilibrium path, in

which (B,N) was chosen in a period r where r < t and (N,N) was chosen in all

previous periods 1, . . . , r − 1.

We define the strategies and beliefs of both categories of continuation games

and show that these strategies and beliefs are a part the conditional trigger equi-

librium.

Notice that there are other continuation games which belong to neither the

first or the second category, e.g. the continuation game where (B,B) was chosen

in one of the previous periods 2, ..., t − 1. Fortunately, we do not need to define

strategies and beliefs in this type of continuation game since neither of players can

decide to reach this continuation game on their own. If player 1 decides to defect,

he will compare the payoff in a continuation game of the first category with the

payoff in a continuation game of the second category. The expected payoff from a

continuation game where (N,N) was chosen will not figure in this calculation.
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Strategies: In the first category of continuation games where (N,N) was chosen

in all previous periods 1, . . . , t − 1, players also choose (N,N) in all subsequent

periods t, t + 1, . . .. In the second category of continuation games where (B,N)

was chosen in some period r where 1 < r < t, a punishment phase follows in which

player 2 chooses B in all subsequent periods r+ 1, r+ 2, . . . if c2 ≤ d and N in all

subsequent periods r + 1, r + 2, . . . if c2 > d. Given player 2’s strategy, player 1

also chooses B in all subsequent periods r + 1, r + 2, . . ..

Beliefs: The first category of continuation games is located on the equilibrium

path and Bayes’ rule can therefore be used to update beliefs. Since (N,N) was

chosen in period 1, players infer that their adversary is above c∗. Hence, the

updated beliefs in period 2 are the uniform distribution H(c) = c−c∗
1−c∗ restricted to

the interval [c∗, 1]. Since N is chosen by all remaining types along the equilibrium

path, beliefs are unchanged for the remaining of the game. Hence, the updated

beliefs are the uniform distribution H(c) = c−c∗
1−c∗ restricted to the interval [c∗, 1] for

all periods t > 1.

In the second category of continuation games, (B,N) was chosen in some period

r where 1 < r < t. If player 1 chooses N in period r, player 2’s beliefs are assumed

to be the uniform distribution G(c) = c
c∗ restricted to the interval [0, c∗] in period

r+1. Due to the Pessimistic Bias Assumption, player 2’s beliefs remain unchanged

throughout the game regardless of the actions taken by player 1 in the subsequent

periods, i.e. player 2’s beliefs are the uniform distribution G(c) = c
c∗ restricted to

the interval [0, c∗] in periods r+ 1, r+ 2, . . . Thus, player 2’s beliefs are identical to

the beliefs in a situation where B was chosen by player 1 from the very beginning.

Player 1’s beliefs remain unchanged in period r+1, i.e. the uniform distribution

H(c) = c−c∗
1−c∗ restricted to the interval [c∗, 1]. Subsequently, if player 2 chooses B in

period r+1, player 1’s beliefs are changed to the uniform distribution Hl(c) = c−c∗
d−c∗

restricted to the interval (c∗, d] and remain so throughout the game. Alternatively,

if player 2 chooses N in period t + 1, player 1’s beliefs change to the uniform

distribution Hh(c) = c−d
1−d restricted to the interval (d, 1] and remain this way

throughout the game unless player 2 suddenly chooses B, in which case player 1’s

beliefs change to the uniform distribution Hl(c) = c−c∗
d−c∗ restricted to the interval
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(c∗, d] according to the Pessimistic Bias Assumption.

Payoff and equilibrium: In the first category of continuation games, we show

that choosing N in period t, t + 1, . . . is the best response for player 1 given that

player 2 chooses N in all subsequent periods t, t + 1, . . . and given that player 2

will start a punishment phase if player 1 defects.

We immediately see that choosing N in all subsequent periods t, t + 1, . . . is

strictly preferred by both dominant strategy doves and coordinating types. These

types have neither a short-term nor a long-term benefit of choosing B regardless

of the strategies chosen by the adversary given that (N,N) was chosen in previous

periods 1, . . . , t−1. Thus, in the following we only consider the incentive to defect

for player 1 if he is a dominant strategy hawk c1 ∈ (c∗, µ].

We show that it is optimal for player 1 to use a cutoff strategy with a cutoff

point ĉ with c̃ < c∗. c̃ < c∗ implies that all of player 1’s remaining types in the

interval (c∗, µ] choose N . Hence, N must be player 1’s best response.

Player 1’s payoff from choosing N in periods t+ 1, t+ 2, . . . is

∞∑

s=0

δs · 0 (3)

If player 1 defects by choosing B in any of the periods t > 1, players enter a

second category continuation game, in which player 1 chooses B in all subsequent

periods t+1, t+2, . . . and player 2 chooses B in all subsequent periods t+1, t+2, . . .

if c2 ≤ d and chooses N in all subsequent periods t+ 1, t+ 2, . . . if c2 > d.

Thus, player 1’s expected payoff from defecting by choosing B in periods t +

1, t+ 2, . . . is

H(d)

(
µ+

∞∑

s=0

δs(−c1)
)

+ (1−H(d))

( ∞∑

s=0

δs(µ− c1)
)

(4)

The first part of the expression is player 1’s payoff if player 2 is a type c2 ∈ (c∗, d]

that always chooses B. The second part of the expression is player 1’s payoff if

player 2 is a dominant strategy dove c2 ∈ (d, 1] that always chooses N .

Subtracting (3) from (4), simplifying and using
∑∞

s=0 δ
s = 1

1−δ , player 1 receives
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the following net gain from defecting:

(1− d)µ

(1− δ) (1− c∗) −
1

1− δ c1

If the net gain is positive, choosing B is optimal for player 1. If the net gain is

negative, choosing N is the optimal strategy for player 1. If the net gain is zero,

player 1 is indifferent between choosing B and N . However, for convenience we

assume that player 1 chooses B in this case. The net gain from defecting is clearly

decreasing in player 1’s type c1. This proves that the best response for player 1 is

to use a cutoff strategy. We find the cutoff point c̃ by setting the net gain from

defecting equal to zero and simplifying. Thus,

c̃ =
(1− d)µ

1− c∗
c̃ is the point at which player 1 is indifferent between choosing N in all subsequent

periods t+ 1, t+ 2, . . . and choosing B in all subsequent periods t+ 1, t+ 2, . . .. In

Lemma 1 we show that c̃ ≤ c∗. This implies that all of player 1’s remaining types

in the interval (c∗, µ] choose N .

In the second category of continuation games, (B,N) was chosen in one of

the previous periods r where r < t, i.e. player 1 deviated by choosing B in

period r. Again, we only consider this deviation for a dominant strategy hawk

c1 ∈ (c∗, µ] since only dominant strategy hawks would ever consider to deviate

from the cooperative outcome. The coordinating types and the dominant strategy

doves have neither short-term nor long-term benefits of defecting regardless of the

actions subsequently taken by player 2.

We show that choosing B in period t, t+1, . . . is an optimal strategy for player 1

given that player 2 chooses B in period t, t + 1, . . . whenever c2 ≤ d and N in

period t, t+1, . . . if c2 ≤ d. Player 1’s payoff in period t from choosing B in period

t, t+ 1, . . . is

H(d)

( ∞∑

s=0

δs(−c1)
)

+ (1−H(d))

( ∞∑

s=0

δs(µ− c1)
)

(5)

The first part of the expression is the player 1’s payoff if player 2 is a type c2 ∈ (c∗, d]

that always chooses B. The second part of the expression is player 1’s payoff if

player 2 is a dominant strategy dove c2 ∈ (d, 1] that always chooses N .
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Player 1’s payoff in period t from deviating by choosing N in period t and B

in periods t+ 1, t+ 2, ... is

H(d)

(
−d+

∞∑

s=1

δs(−c1)
)

+ (1−H(d))

( ∞∑

s=1

δs(µ− c1)
)

(6)

Clearly, (5) is larger than (6) since c1 ≤ µ < d. Hence, choosing B in period

t, t+ 1, . . . is an optimal strategy for player 1.

Next, we show that choosing B in all subsequent periods t, t+1, . . . is an optimal

strategy for player 2 if c2 ≤ d given that player 1 chooses B in all subsequent

periods t, t+1, . . .. If player 1 chooses B in period r, player 2’s belief in periods r+

1, t+2, . . . becomes G(c) = c
c∗ restricted to the interval [0, c∗] using the Pessimistic

Bias Assumption. Player 2’s payoff in period t from choosing B in period t, t+1, . . .

is
∑∞

s=0 δ
s(−c2). Player 2’s payoff in period t from choosing N in period t and

B in period t + 1, t + 2, . . . is −d +
∑∞

s=1 δ
s(−c2). Hence, choosing B in period

t, t+ 1, . . . is an optimal strategy for player 2 whenever c2 ≤ d. �

Lemma 1.

c̃ ≤ c∗

Proof.

c̃ =
(1− d)µ

1− c∗
Since 1− c∗ < 0, we have

c∗(1− c∗) ≤ (1− d)µ

Inserting

c∗ =
1− (1− δ)(d− µ)−

√
(1− (1− δ)(d− µ))2 − 4δ(1− δd)µ

2δ

we get

1− (1− δ)(d− µ)−
√

(1− (1− δ)(d− µ))2 − 4δ(1− δd)µ

2δ
·

(
1− 1− (1− δ)(d− µ)−

√
(1− (1− δ)(d− µ))2 − 4δ(1− δd)µ

2δ

)
≤ (1− d)µ
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Collecting the square root and reducing,

(1 + µ− d)
√

(1− (1− δ)(d− µ))2 − 4δ(1− δd)µ

≥ −d2δ + 2 dδ µ− δ µ2 + d2 + dδ − 2 dµ− 3 δ µ+ µ2 − 2 d+ 2µ+ 1

Assumption 1 implies that the left hand side is clearly positive. If the right hand

side is negative, the expression is clearly true. If the right hand side is positive we

can apply the function f(x) = x2 which is increasing on [0,∞) on both sides.

(1 + µ− d)2
(
(1− (1− δ)(d− µ))2 − 4δ(1− δd)µ

)

≥
(
−d2δ + 2 dδ µ− δ µ2 + d2 + dδ − 2 dµ− 3 δ µ+ µ2 − 2 d+ 2µ+ 1

)2

Reducing,

4µ δ2 (1− δ)2 (1− d) (d− µ) (2 + µ− d) ≥ 0

Using Assumptions 1 and 2, we see that this expression is clearly positive. Thus,

c̃ ≤ c∗. �

Lemma 2.

µ <
1− (1− δ)(d− µ) +

√
(1− (1− δ)(d− µ))2 − 4δ(1− δd)µ

2δ

Proof. Isolating the square root,

−dδ + 3 δ µ+ d− µ− 1 <
√

(1− (1− δ)(d− µ))2 − 4δ(1− δd)µ

If the left hand side is negative, the expression is true because the right hand side

is always positive. If the left hand side is positive, we can apply f(x) = x2 which

is increasing on [0,∞) on both sides.

(−dδ + 3 δ µ+ d− µ− 1)2 < (1− (1− δ)(d− µ))2 − 4δ(1− δd)µ

Reducing,

4 δ µ (2 δ − 1) (d− µ) > 0

Assumptions 1 and 2 ensure that all the terms are positive. Thus, the expression

is true. �
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Proof (of proposition 5). Differentiating c∗ with respect to δ,

∂c∗

∂δ
=

1

2δ


d− µ− (1− (1− δ) (d− µ)) (d− µ)− 2 (−dδ + 1)µ+ 2 δ dµ√

(1− (1− δ) (d− µ))2 − 4 δ (−dδ + 1)µ




−
1− (1− δ) (d− µ)−

√
(1− (1− δ) (d− µ))2 − 4 δ (−dδ + 1)µ

2δ2
< 0

Rearranging,

− δ ((1− (1− δ) (d− µ)) (d− µ)− 2 (−dδ + 1)µ+ 2 δ dµ)√
(1− (1− δ) (d− µ))2 − 4 δ (−dδ + 1)µ

<− dδ + δ µ+ 1− (1− δ) (d− µ)−
√

(1− (1− δ) (d− µ))2 − 4 δ (−dδ + 1)µ

Multiplying with
√

(1− (1− δ) (d− µ))2 − 4 δ (−dδ + 1)µ on both sides and re-

arranging,

− (δ − 1)µ2 − ((−2 δ + 2) d+ 3 δ − 2)µ− (d− 1) ((δ − 1) d+ 1)

< (−d+ µ+ 1)

√
(d+ µ)2 δ2 + (−2µ2 + (4 d− 6)µ− 2 d2 + 2 d) δ + (d− µ− 1)2

If the left hand side is negative, the expression is clearly true since the right hand

side is always positive. If the left hand side is positive, we can apply f(x) = x2 on

both sides of the inequality.

(
− (δ − 1)µ2 − ((−2 δ + 2) d+ 3 δ − 2)µ− (d− 1) ((δ − 1) d+ 1)

)2

< (−d+ µ+ 1)2
(
(d+ µ)2 δ2 +

(
−2µ2 + (4 d− 6)µ− 2 d2 + 2 d

)
δ + (d− µ− 1)2

)

Reducing,

4 δ2µ (1− d) (d− µ) (2− (d− µ)) > 0

Due to Assumptions 1 and 2, the expression is clearly true. �
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Proof (of proposition 6). Differentiating c∗ with respect to µ,

∂c∗

∂µ
=

1

2δ


1− δ − (1− δ) (1− (1− δ)(d− µ))− 2δ(1− δd)√

(1− (1− δ)(d− µ))2 + 4δ(1− δd)µ


 > 0

Rearranging,

z ≡ (1− δ) (1− (1− δ) (d− µ))− 2 δ (1− dδ)

< (1− δ)
√

(1− (1− δ) (d− µ))2 + 4 δ (dδ − 1)µ

The right hand side is always positive due to Assumption 2. Therefore, the ex-

pression will be true if we can prove that z < 0. Rearranging z < 0,

0 > (d+ µ) δ2 + (2 d− 2µ− 3) δ − d+ µ+ 1

The right hand side is a 2. order polynomial. Solving for δ, we get

δ1 =
−2 d+ 2µ+ 3−

√
8 d2 − 8 dµ− 16 d+ 8µ+ 9

2(d+ µ)

δ2 =
−2 d+ 2µ+ 3 +

√
8 d2 − 8 dµ− 16 d+ 8µ+ 9

2(d+ µ)

Since 0 < µ+d by assumption 1, the coefficient of δ2 in the polynomial is positive.

Therefore, z < 0 must be true for 1
2
< δ < 1 if δ1 <

1
2

and 1 < δ2. First, we show

that δ1 <
1
2
.

−2 d+ 2µ+ 3−
√

8 d2 − 8 dµ− 16 d+ 8µ+ 9

2(d+ µ)
<

1

2

Isolating the square root,

√
8 d2 − 8 dµ− 16 d+ 8µ+ 9 < −d+ 3µ+ 3

Since the left hand side is clearly positive, we can apply the function f(x) = x2

which is increasing on [0,∞) on both sides.

0 < (−d+ 3µ+ 3)2 − 8 d2 + 8 dµ+ 16 d− 8µ− 9
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Reducing, we get

0 < (d+ µ) (10− 7 d+ 9µ)

which is clearly true due to assumption 1.

Next, we show that 1 < δ2.

1 <
−2 d+ 2µ+ 3 +

√
8 d2 − 8 dµ− 16 d+ 8µ+ 9

2(d+ µ)

Rearranging,

4 d− 3 <
√

8 d2 − 8 dµ− 16 d+ 8µ+ 9

If the left hand side is negative, the expression is clear true. The left hand side

is positive if 3
4
< d. In this case, we can apply the function f(x) = x2 which is

increasing on [0,∞) on both sides.

0 < 8 d2 − 8 dµ− 16 d+ 8µ+ 9− (4 d− 3)2

Reducing,

0 < 8 (1− d) (d+ µ)

This is clearly true for all 0 < d < 1 and hence also when 3
4
< d. Therefore, z < 0

is true. Thus, ∂c∗
∂µ

> 0. �

Proof (of proposition 7). The derivative of c∗ with respect to N must be strictly

negative, i.e.

∂c∗

∂d
=

1

2δ


−(1− δ) +

(1− δ) (1− (1− δ)(d− µ))− 2δ2µ√
(1− (1− δ)(d− µ))2 − 4δ(1− δd)µ


 < 0

Rearranging,

z ≡ (1−δ) (1− (1− δ)(d− µ))−2δ2µ < (1−δ)
√

(1− (1− δ)(d− µ))2 − 4δ(1− δd)µ
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If z < 0, the expression is trivially satisfied since the right hand side is always

positive. If z ≥ 0, we can apply the function f(x) = x2 which is increasing on

[0,∞) on both sides.

(
(1− δ) (1− (1− δ)(d− µ))− 2δ2µ

)2
< (1−δ)2

(
(1− (1− δ)(d− µ))2 − 4δ(1− δd)µ

)

Reducing,

0 < 4 δ µ (2 δ − 1) (1− δ µ− δ)

Using 0 < µ < d and 1
2
< δ < 1 from Assumption 1 and 2, the expression reduces

to

0 < 1− δ µ− δ

Isolating δ,

δ <
1

1 + µ

Thus, we need to show that δ < 1
1+µ

whenever z ≥ 0. In other words, δ < 1
1+µ

does not need to hold when z < 0. Rearranging z ≥ 0, we get

0 < − (µ+ d) δ2 + (2 d− 2µ− 1) δ + 1 + µ− d

The right hand side is a 2. order polynomial with two roots. The coefficient

− (µ+ d) is negative and the polynomial is therefore concave. Thus, δ must be

between the two roots:

2 d− 2µ− 1−
√
−8 dµ+ 8µ2 + 8µ+ 1

2 (d+ µ)
< δ <

2 d− 2µ− 1 +
√
−8 dµ+ 8µ2 + 8µ+ 1

2 (d+ µ)

Hence, we must show that

2 d− 2µ− 1 +
√
−8 dµ+ 8µ2 + 8µ+ 1

2 (d+ µ)
<

1

1 + µ

Rearranging,

(1 + µ)
√
−8 dµ+ 8µ2 + 8µ+ 1 < −2 dµ+ 2µ2 + 5µ+ 1

The left hand side is positive and we can apply f(x) = x2 which is increasing on

[0,∞) on both sides.

(1 + µ)2
(
−8 dµ+ 8µ2 + 8µ+ 1

)
<
(
−2 dµ+ 2µ2 + 5µ+ 1

)2
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Reducing,

0 < 4µ (d+ µ)
(
dµ− µ2 + 1− µ

)

Dividing out 4µ (d+ µ) and rearranging,

0 < µ(d− µ) + 1− µ

0 < µ < d < 1 due to Assumption 1 and the expression is therefore true. Thus,
∂c∗
∂d

< 0. �
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Abstract

This paper studies the strategic contradictions between allied states us-

ing a simple dynamic model with incomplete information. We consider a

weak state and its stronger ally faced with a common threat to their secu-

rity. A coordinated response to the threat is preferred by both states, but

mistrust makes it difficult for the weaker state to rely on the stronger ally

for protection. Therefore, the weaker state may be compelled to take action

unilaterally. To forestall the adverse effects of an uncoordinated response,

the stronger state may prefer to preempt. Hence, our model describes how

a weaker ally can force a strong power to take undue military action. It

also provides a theoretical mechanism for the power curse in international

relations.
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Introduction

In international relations, the phrases ’conflict of interests’ and ’strategic con-

tradictions’ are mostly used to describe the relationship between a state and its

adversary. These phrases, however, can with equal justification be used to char-

acterize the relationship between states allied with one another.

As the proverb ’the enemy of my enemy is my friend’ suggests, alliances between

states can exist whenever there is an overlap of interests. A military alliance needs

not reflect deep friendship and may exist despite considerable contradictions of

interest. History provides numerous examples of such alliances. A well-known and

compelling example was the alliance between the U.S. and Islamic fighters during

the Soviet War in Afghanistan (1979-89). The U.S. provided extensive logistic and

military support for the Islamic insurrection in Afghanistan to inflict losses on the

Soviet military. The alliance lasted a whole decade – despite the fact that the U.S.

and Islamic fighters had widely different goals.

Even among close allies there may be serious conflict of interests as the relation-

ship between NATO members illustrates. Despite having fought on the same side

in the War in Afghanistan (2001-14), newspapers were rife with stories of disputes

between NATO members over who bears the heaviest burden in Afghanistan in

terms of deployment of military personnel1. In particular, the U.S. was discontent

with the passive role played by the Germans.

The dispute between Israel and the U.S. over Iran’s nuclear program is another

example of a serious conflict of interests between close allies. Prior to the Iran

nuclear deal framework (2015), Israel pressured the U.S. to launch a military strike

on Iran’s nuclear facilities in order to prevent it from acquiring nuclear weapons.

The U.S. on the other hand, was rather reluctant to embark on yet another military

adventure in the Middle East. Israel was uncertain whether American promises to

carry out a military strike if negotiations failed were credible. The dispute created

a serious strain in the alliance, with Israel threatening to attack unilaterally.

1Blair, David, ”Germany failing to fight Taliban, U.S. Claims”, The Telegraph, Feb. 1., 2008;

Gebauer, Matthias, ”NATO Dispute over Afghanistan Forces: It’s All Smiles in Vilnius, but only

for the Photo Op”, Der Spiegel, Feb. 8, 2008
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Conflicts of interests among allies is a widespread phenomenon and numerous

other examples could be given to illustrate this. Previous studies of the strate-

gic contradictions between allies have mainly been concerned with conflicts over

burden-sharing and the tendency to free-ride (Sandler & Hartlay, 2001). The War

in Afghanistan (2001-14) is a recent example of this. Others have shown how the

conflict over burden-sharing can be mitigated through competition among the al-

lies (Niou & Zeigel, 2015). However, to our knowledge, no one has studied how

mutual mistrust between the allied states can hamper the ability of these states

to coordinate a response to a common threat and how this mistrust can lead to a

premature attack.

In this model, there are two allied states – a weak and a strong – facing a

common threat to their security. Both states prefer that the stronger state engages

the threat, but asymmetry in military capabilities means that they have different

timetables. The stronger state prefers to delay direct military engagement for

as long as possible to allow for negotiations to take place and possibly succeed.

The weaker state can only counter the threat in the short run and therefore has

to rely on the stronger state for security in the long run. The stronger state is

unable to commit to engaging the threat in the future. This inability to commit

to military action gives rise to a strategic dilemma, in which the weak state must

decide whether to engage the threat unilaterally or rely on the stronger state to

take action later. The stronger state is faced with a dilemma too, in which it must

either engage the threat immediately or wait until a later period, hoping that the

weaker state does not act on its own. These strategic dilemmas are described using

a simple dynamic model with asymmetric information. We derive the conditions

for cooperation between the allied states.

Our theoretical framework provides an explanation for the power curse. The

power curse is an interesting stylized fact in international relations according to

which strong states easily become burdened by their own military superiority. It

is the tendency of a great power to get unduly embroiled in military operations,

which drain it for resources and over-stretches its military (Kennedy, 1987). It is

the paradox that great powers can seem powerless in certain respects. A weaker
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ally can impose its will on the great power by threatening to take matters into

its own hands. Therefore, a strong military can be a curse rather than a blessing,

as a strong military compels the strong power to get involved militarily against

its will (Gallarotti, 2011; Nye, 2003). Hence, our model provides a theoretical

underpinning for the power curse.

The paper proceeds as follows: In the following section, we review some related

literature. Then, we present the model and derive a pure strategy perfect Bayesian

equilibrium, which specifies when cooperation is possible. A number of case studies

in support of the model are then provided. The last section summarizes our

findings and concludes.

Related Literature

One strand international relations literature has been focusing on arms races. Mod-

els of repeated interactions – such as the repeated prisoner’s dilemma (Axelrod,

1984) – belong to this category. These models have yielded some important in-

sights about the sustainability of peace and cooperation2. Incorporating private

information and allowing for negotiations, Baliga and Sjöström (2004) examined

the conditions under which an arms race driven by a spiral of fear can be avoided.

In other models, additional realism has been added by allowing states to both arm

and go to war with one another (Kydd, 1997; Sartori and Meirowitz, 2008; Jackson

and Morelli, 2009).

Another strand of international relations literature (Fearon, 1995; Powell, 2006)

deals with rationalist explanations of war: Why do states resort to costly fighting,

when resources could be divided through peaceful bargaining, which would make

both sides better off? Two explanations are suggested: Asymmetric information

and lack of commitment. Others argue that agency problems are an important

explanation for wars (Jackson and Morelli, 2007). Agency problems arise when

the preferences of a country’s leader differ from the preferences of the population.

A common feature of the above theories is their focus on two or more military

2This paper is inspired by my master thesis Nuclear Brinkmanship and Preventive War, 2012,

in which I analyzed a related, but simpler model.
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opponents and their efforts to attack, coerce and out-arm one another. The focus

of our model, on the other hand, is the conflict of interests between allied states

and their failure to coordinate on a response to a common enemy. This focus

allows us to provide a theoretical mechanism for the power curse.

Our paper also contributes to the literature on nuclear proliferation in interna-

tional relations theory. Rather than exploring the causes of nuclear proliferation

or what can be done to prevent it (Sagan, 1997), our paper examines how other

states react to it and the circumstances under which states are likely to resort to

preventive war to counter a threat.

Model

Two allied states – state S (the stronger state) and state W (the weaker state)

wish to coordinate their attack on a common adversary. We use a simple dynamic

model with two-sided asymmetric information to represent the strategic dilemmas

of the states. Before the game starts, nature determines the types of state S

and state W . S is a hawk (denoted an S-hawk) with probability hS and a dove

(denoted an S-dove) with probability 1 − hS where 0 < hS < 1. W is a hawk

(denoted a W - hawk) with probability hW and a dove (denoted a W -dove) with

probability 1− hW , where 0 < hW < 1. Types are private information.

In period 1 of the game, S can either attack or wait. If S attacks, the game

ends, S receives the payoff A1
SH if he is a hawk and A1

SD if he is a dove. W receives

the payoff A1
WH if he is a hawk and A1

WD if he is a dove. If S waits, W observes

S’s choice and decides whether to attack or wait. If W attacks, the game ends, W

receives the payoff BWH if he is a hawk and BWD if he is a dove. S receives the

payoff BSH if he is a hawk and BSD if he is a dove. If W waits, the game proceeds

to period 2, in which only S is capable of attacking. In period 2, S observes W ’s

choice and decides whether or not to attack. If S attacks, S receives the payoff

A2
SH if he is a hawk and A2

SD if he is a dove. W receives the payoff A2
WH if he is a

hawk and A2
WD if he is a dove. If S does not attack there is peace and S receives

the payoff PSH if he is a hawk and PSD if he is a dove. W receives the payoff PWH
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if he is a hawk and PWD if he is a dove.

W ranks the different outcomes in the following way:

PWH < BWH < A1
WH < A2

WH (1)

BWD < PWD < A1
WD < A2

WD (2)

Both of W ’s types agree that an attack by S in period 2 is better than an attack by

S in period 1 since the common adversary may decide to acquiesce to the demands

of S and W through negotiations as time passes. Both of W ’s types also agree that

an attack by S in period 1 is better than an attack by W . W is not as powerful

militarily as S and an attack by W is more likely to fail. However, they disagree

whether an attack by W is better than no attack at all. W -hawks prefer an attack

by W over no attack at all and W -doves prefer no attack at all over an attack by

W .

S ranks the different outcomes in the following way:

PSH < A1
SH , BSH < A1

SH < A2
SH (3)

BSD < A1
SD < A2

SD < PSD (4)

Both of S’s types agree that an attack by S in period 2 is better than an attack by

S in period 1 since the passing of time may get the adversary to acquiesce through

peaceful negotiations. Both of S’s types also agree that an attack by S in period 1

is better than an attack by W since S fears that an unilateral attack by W may

fail and lead to unwanted consequences. However, they disagree on whether an

attack by S is better than no attack at all. S-hawks prefer an attack by S over no

attack at all and S-doves prefer no attack at all over an attack by S.

Analysis

We let p denote the probability with which S attacks in period 2 and q the prob-

ability with which W attacks in period 1. Hence, p = 1 means that S is certain

to attack in period 2. b is W ’s belief of S’s type where b is the probability that S

is a hawk and 0 ≤ b ≤ 1
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Types are private information. Everything else is common knowledge. Figure 1

provides an illustration of the game.
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Figure 1: Game Tree

We determine q̂H – the probability that W attacks unilaterally, which makes

an S-hawk indifferent between attacking in period 1 and waiting.

q̂HBSH + (1− q̂H)A2
SH = A1

SH (5)

The left hand side is S’s expected payoff from waiting if W attacks with probability

q̂H . The right hand side is S’s payoff from attacking in period 1. Isolating q̂H ,

q̂H =
A2

SH − A1
SH

A2
SH −BSH

(6)

61



Observe that 0 < q̂H < 1 since A2
SH−A1

SH < A2
SH−BSH due to S’s preferences (3).

If q < q̂H , S waits in period 1, whereas S attacks if q > q̂H . If q = q̂H , S is

indifferent between attacking and waiting, but for simplicity we assume that S

attacks. Thus, S attacks if and only if q ≥ q̂H .

We determine q̂D – the probability that W attacks, which makes an S-dove

indifferent between attacking in period 1 and waiting.

q̂DBSD + (1− q̂D)PSD = A1
SD (7)

Isolating q̂D,

q̂D =
PSD − A1

SD

PSD −BSD

(8)

Observe that 0 < q̂D < 1 since PSD−A1
SD < PSD−BSD due to S’s preferences (4).

If q < q̂D, S waits in period 1, whereas S attacks if q > q̂D. If q = q̂D, S is

indifferent between attacking and waiting, but for simplicity we assume that S

attacks. Thus, S attacks if and only if q ≥ q̂D.

We can distinguish between two cases depending on the relative size of q̂H and

q̂D. If q̂H < q̂D, S-hawks are more likely to attack in period 1 than S-doves are

given that W attacks unilaterally with a given probability. In this sense, S-hawks

are more eager to attack than S-doves are – not only in period 2 – but also in

period 1. On the other hand, if q̂D < q̂H , S-doves are more eager to attack in

period 1 given than S-hawks are. Given a probability that W attacks unilaterally,

S-doves are more likely to attack than S-hawks are. This case seems less intuitive

than the previous. Whereas only S-hawks prefer to attack in period 2, S-hawks

are less likely to attack in period 1 than are S-doves. Hence, depending on the

ranking of q̂H and q̂D, S-doves may behave more aggressively in period 1 than

S-hawks.

We determine p̂H – the probability that S attacks in period 2, which makes a

W -hawk indifferent between attacking unilaterally and waiting.

p̂HA
2
WH + (1− p̂H)PWH = BWH (9)

Isolating p̂H ,

p̂H =
BWH − PWH

A2
WH − PWH

(10)
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Observe that 0 < p̂H < 1 since BWH − PWH < A2
WH − PWH due to W ’s pref-

erences (1). If p < p̂H , W attacks preemptively in period 1, whereas W waits

if p > p̂H . If p = p̂H , W is indifferent between attacking and waiting, but for

simplicity we assume that W attacks. Thus, W attacks if and only if p ≤ p̂H .

Equilibrium

We solve for perfect Bayesian equilibria since the model is dynamic with asym-

metric information. A strategy profile and a set of beliefs are a perfect Bayesian

equilibrium if strategies are sequentially rational given beliefs and beliefs are up-

dated using Bayes’ rule. In the following, we explore different combinations of pure

strategies in order to determine which of them are perfect Bayesian equilibria. As

we will see, the prior beliefs hS and hW are crucial for S and W ’s decision to attack

in period 1.

We let {(a, a), (a, w)} be a short-hand notation for a set of strategies in which S

attacks in period 1 and W only attacks if he is a hawk. Thus, the first vector (a, a)

in the set denotes the strategies chosen by an S-hawk and an S-dove in period 1,

respectively. And the second vector (a, w) in the set denotes the strategies chosen

by a W -hawk and a W -dove in period 1, respectively. To keep things simple, S’s

strategy in period 2 is not included in the notation since the strategy is exclusively

determined by S’s type. Also note that there is no strategic trade-off for a W -dove

since a W -dove never wants to attack unilaterally.
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Proposition 1. The following gives a characterization of the pure strategy perfect

Bayesian equilibria of the game given the prior beliefs hS and hW . The first scheme

is for q̂H < q̂D and the second for q̂D < q̂H .

q̂H < q̂D 0 < hS ≤ p̂H p̂H < hS < 1

q̂D ≤ hW ≤ 1 {(a, a), (a, w)} {(a, a), (a, w)}, {(w,w), (w,w)}
q̂H ≤ hW < q̂D {(a, w), (a, w)} {(a, w), (a, w)}, {(w,w), (w,w)}
0 ≤ hW < q̂H {(w,w), (a, w)} {(w,w), (w,w)}

q̂D < q̂H 0 < hS ≤ p̂H p̂H < hS < 1

q̂H ≤ hW ≤ 1 {(a, a), (a, w)} {(a, a), (a, w)}, {(w,w), (w,w)}
q̂D ≤ hW < q̂H {(w,w), (w,w)}
0 ≤ hW < q̂D {(w,w), (a, w)} {(w,w), (w,w)}

Proof. Solving the game backwards, we first describe the behavior in period 2.

Subsequently, we describe the behavior in period 1.

Period 2

In period 2, S decides whether or not to attack. By (3), we know that attacking is

a dominant strategy for S-hawks. And by (4) we know that S-doves prefer not to

attack. Hence, the probability that S attacks in period 2 is the probability that S

is a hawk.

Period 1

In the following, we analyze the different types of strategies and determine the

parameter values in the (hS, hW )-space for which a given strategy is valid. For

each strategy, we show that S’s strategy is a best response to W ’s strategy and

vice versa for each set of prior beliefs.

{(a, a), (a, w)} :
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S: Since only W -hawks attack, the probability that W attacks is hW . Therefore,

both types of S only attack if q̂D ≤ hW and q̂H < hW .

W : If both types of S attack in period 1, the game never reaches the information

set where W decides whether to attack or wait. Consequently, when b ≤ p̂H , it is

optimal for a W -hawk to attack in period 1. Hence, attacking is only optimal for

a W -hawk if he is sufficiently convinced that S is not going to attack in period 2.

Thus, {(a, a), (a, w)} is part of a perfect Bayesian equilibrium whenever q̂D ≤ hW ,

q̂H < hW and b ≤ p̂H .

{(a, w), (a, w)} :

We show that S’s strategy is a best response given W ’s strategy and that W ’s

strategy is a best response given S’s strategy. Notice that for this particular type

of strategy, it is crucial whether q̂H < q̂D or q̂D < q̂H .

- q̂H < q̂D, S: Only W -hawks attack. Thus, the probability that W attacks is

equal to the probability that W is a hawk, hW . Therefore, S-hawks attack and

S-doves wait if and only if q̂H ≤ hW < q̂D.

- q̂H < q̂D, W : Since only S-hawks attack in period 1, W is certain that S is a

dove if S waited, i.e. b = 0. Therefore, W is certain that S will not attack in

period 2. Consequently, W -hawks attack in period 1.

Thus, {(a, w), (a, w)} is part of a perfect Bayesian equilibrium whenever q̂H ≤
hW < q̂D. Notice that {(a, w), (a, w)} cannot be an equilibrium strategy if q̂D <

q̂H . Since S-hawks attack and S-doves wait in period 1, we must have that

q̂H < hW and hW < q̂D at the same time. This is clearly in contradiction with

q̂D < q̂H . Hence, {(a, w), (a, w)} cannot be part of a perfect Bayesian equilibrium.

{(w, a), (a, w)} : This strategy set cannot be part of a perfect Bayesian equilib-

rium. Since only S-doves attack in period 1, W is sure that S is a hawk if S

waited, i.e. b = 1. Therefore, W waits since S is certain to attack in period 2.

Hence, {(w, a), (a, w)} cannot be part of an equilibrium.
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{(w,w), (a, w)} : Again, we show that S’s strategy is a best response given W ’s

strategy and that W ’s strategy is a best response given S’s strategy.

S: Given that W -hawks attack, S is only willing to wait if the share of W -hawks

is sufficiently low, i.e. if hW < q̂H and hW < q̂D.

W : Neither of S’s type attacks in period 1. Using Bayes’ rule, W ’s belief in

period 1 is b = hS. Hence, W -hawks attack preemptively in period 1 only if the

share of S-hawks is low enough hS ≤ p̂H .

Thus, {(w,w), (a, w)} is part of a perfect Bayesian equilibrium whenever hS ≤ p̂H ,

hW < q̂H and hW < q̂D.

{(w,w), (w,w)} : Again, we show that S’s strategy is a best response given W ’s

strategy and that W ’s strategy is a best response given S’s strategy.

S: Given that W never attacks in period 1, S prefers to wait regardless of W ’s

type, i.e. regardless how large hW is.

W : S waits in period 1. Using Bayes’ rule, W ’s belief in period 1 thus becomes b =

hS. Hence, W -hawks only wait in period 1 if the share of S-hawks is sufficiently

high, i.e. hS > p̂H .

Thus, {(w,w), (w,w)} is part of a perfect Bayesian equilibrium whenever hS > p̂H .

{(a, a), (w,w)} : This strategy set cannot be part of a perfect Bayesian equilib-

rium since attacking in period 1 can never be optimal for S if W is certain to wait.

Anticipating that W is going to wait, S instead prefers to wait.

{(a, w), (w,w)} : This strategy set also cannot be a part of a perfect Bayesian

equilibrium since attacking in period 1 can never be optimal for an S-hawk if W

is certain to wait.
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{(w, a), (w,w)} : This strategy set also cannot be a part of a perfect Bayesian

equilibrium since attacking in period 1 can never be optimal for an S-dove if W is

certain to wait. �

Our analysis shows how the likelihood of a preemptive attack by W is affected

by the share of S-hawks. If hS is low, S is unlikely be a hawk and thus unlikely

to attack in period 2. Therefore, W -hawks are unwilling to rely on S and attack

unilaterally. If W -hawks are sufficiently common, the fear of an attack by W

forces S to preempt in period 1. Hence, if hS is low and hW is high, S attacks

in period 1. This corresponds to the equilibrium, in which {(a, a), (a, w)} is an

equilibrium strategy. In this equilibrium, there is an attack in period 1 despite

that neither of the states wants it. Both states prefer that S attacks in period 2

rather than in period 1, but this Pareto-improvement is not possible. S prefers

to delay an attack until period 2, but the risk of an attack by W forces state S

to attack preemptively in period 1. Thus, mutual suspicion leads to an inefficient

outcome with a premature attack.

If hW is also low and W -hawks therefore are less common, S is willing to wait

despite the risk that W attacks unilaterally. In this equilibrium, the outcome is

not predetermined. Sometimes W preempts in period 1 and sometimes the game

proceeds to period 2 where S attacks if he is a hawk and does not attack if he is

a dove. This corresponds to the equilibrium strategy {(w,w), (a, w)}.
Now let us increase hS so that S is very likely to be a hawk. When hS is high,

W is more confident that S will attack in period 2. This confidence in S makes

W willing to wait in period 1 rather than attack unilaterally. Anticipating W ’s

decision to wait, S also decides to wait in period 1 rather than to attack. Hence, if

hawks are sufficiently common among S, there is no preemptive attack in period 1,

both states wait and S attacks in period 2 if he is a hawk and does not attack if

he is a dove. This corresponds to the equilibrium, in which {(w,w), (w,w)} is an

equilibrium strategy. Notice that the share of W -hawks is not important for the

feasibility of this outcome. Since W prefers to wait regardless of type, the share

of W -hawks does not affect S’s decision to attack or wait.

The equilibrium strategy, in which {(a, a), (a, w)} is chosen, provides an illus-
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tration of the power curse, because in this equilibrium the weaker state forces the

stronger state to attack prematurely. The weaker state fears to leave the responsi-

bility for attacking the common enemy to the stronger state since the stronger state

may turn out to be a dove that does not attack. If the mistrust to the stronger

state is sufficiently strong, the weaker state decides to attack unilaterally instead

of waiting for the stronger state to do the job in a later period. Anticipating the

weaker state’s preemption, the stronger state is forced to attack preemptively in

order to prevent the weaker state from initiating an attack that might fail or lead

to an undesired result. Therefore, we speak of the power curse. The weaker state

forces the stronger state to engage in military endeavors that it had preferred to

avoid altogether. Hence, possessing a powerful military can force a powerful state

to undertake undue military engagements.

Case Studies

In the following, case studies from recent history are presented to demonstrate the

ability of our model to account for real world events. The first example concerns the

dispute between the U.S. and Israel over the timing of a preventive military strike

on Iran’s nuclear program. The subsequent examples deal with the relationship

between the U.S. and its allies during the Cold War.

Destroying Iran’s nuclear program

The Iran nuclear deal framework that was signed by Iran and the U.S. in spring

2015 ended a long crisis over Iran’s nuclear program. Before the Iran nuclear deal

framework, there were considerable tensions between U.S. and Israel. These close

allies found it hard to coordinate their actions and make a proper response to

Iran’s attempt to acquire nuclear weapons.

In November 2011, the IAEA (International Atomic Energy Agency) released

a report stating that Iran had been conducting experiments aimed at acquiring a

nuclear weapons capability3. Since this revelation, Iran’s nuclear program became

3Implementation of the NPT Safeguards Agreement and relevant provisions of Security Coun-
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an important topic in the international community. The U.S., Israel and the EU

imposed harsh sanctions on Iran in order to thwart an Iranian bomb. Israel was

especially fierce in its rhetoric. At the AIPAC conference in 2012, the Israeli

Premier, Netanyahu, gave a speech in which he compared Iran’s nuclear program

to Holocaust and called for military action (March 5, 2012). Later in an interview,

he said:

If you don’t make the decision and don’t succeed in preventing this [an

Iranian nuke], to whom will you explain this – to the historians? To

the generations before you, and the generations that won’t come after

you?4

By comparing the threat of an Iranian nuclear weapon to the systematic exter-

mination of Jewish population during WWII by Nazi Germany, Netanyahu had

put himself in a situation from which there was no retreat5. From that point on,

to refrain from military action would have made him appear weak and severely

undermined his credibility.

It was unclear whether Iran was prepared to back down and whether Ne-

tanyahu’s statement did have any effect. On the one hand, the Iranian regime

appeared relatively undeterred. They condemned Israel’s threats and threatened

retaliation if attacked6. The nuclear program represented a considerable invest-

ment for them and they were very unwilling to back down. A nuclear weapons

capability would provide the Iranian regime with enormous strategic advantages.

Nuclear weapons would allow the regime to project power throughout the region

and, furthermore, be a guarantee against foreign intervention and attempts of

regime change.

cil resolutions in the Islamic Republic of Iran, IAEA, November 18, 2011
4Lis, ”Netanyahu: Strike on Iran’s nuclear facilities possible within months”, Haaretz, March

9, 2012
5Aluf Benn,”By conjuring the Holocaust, Netanyahu brought Israel closer to war with Iran”,

Haaretz, March 6, 2012
6Ravid, ”Iran: Israel ’a barking dog’ that will not dare attack Islamic Republic over nuclear

program”, Haaretz, March 17, 2012.
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While cooperation and coordination with the U.S. was preferred, Israel wished

for an airstrike to be carried out as soon possible due to the limits of Israel’s

military capabilities. Iran was engaged in an effort to disperse and fortify its

nuclear facilities and the Israeli’s ability to cause significant damage on the Iranian

nuclear program was therefore gradually being diminished. The U.S. on the other

hand was untouched by such limitations and therefore preferred to delay an attack

for as long as possible, hoping that negotiations would succeed to halt the program.

Both Israel and the U.S. preferred that an attack was launched by the U.S. A U.S.

attack would be more likely to destroy the program. An Israeli attack would only

have caused a moderate setback in the nuclear program. Furthermore, an Israeli

attack on Iran would have been perceived as yet another aggression by Jews on

Islam and therefore could have rejuvenated anti-Israeli sentiments among muslims

throughout the Middle East. Moreover, an Israeli attack would almost certainly

have resulted in Iranian retaliation against American forces in the Persian Gulf

and beyond. If Israel had acted on its own, the U.S. would have been drawn into

the conflict anyway. Hence, both countries preferred that an attack against the

Iranian nuclear program was to be carried out by the U.S.

However, delegating all responsibility for destroying the Iranian nuclear pro-

gram to the U.S. was problematic due to high levels of mutual distrust. Israel was

uncertain whether it could rely on the Obama administration for protection. In

Israel, Obama – a Nobel Peace Prize laureate .- was perceived to be a weak and

unable contemplate the use of military power. This put Israel in a tough dilemma:

Launch an attack itself or rely on Obama’s promise to carry out an attack later?

The Obama-administration was faced with a dilemma too: Attack now or wait and

hope that the Israelis do not lose their nerve and launch an attack independently?

The crisis over Iran’s nuclear program is compelling example of how a smaller

ally tried to used the threat of attacking unilaterally to force the stronger ally to

launch a military strike.

As it turned out, the U.S. decided to wait and negotiate instead of attacking. As

a consequence hereof Israel came very close to launching an attack independently
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in autumn 20127.

Operation Nickel Grass

In the 1973 Arab-Israeli war, Egypt and Syria forces launched a surprise attack

on Israel while Israel was celebrating Yom Kippur, the holiest day in Judaism.

During the first week of the fighting, Israel suffered heavy casualties and failed to

repel the attackers. Fearing that the invading Egyptian and Syrian forces would

overrun their country, the government deployed its nuclear arsenal as a weapon

of last resort. These preparations were detected by the U.S. which responded

by commencing an airlift to replace Israel’s material losses. This became known

as Operation Nickel Grass. In this way, the risk that Israel would use nuclear

weapons forced the Americans to get involved, despite that the U.S. – fearing an

Arab oil boycott – preferred to remain on the sideline (Cohen, 1999). Had Israel

really been on the verge of total defeat, the U.S. probably would have intervened,

but mutual mistrust meant that Israel was unwilling to put its destiny in the

hands of the U.S. Hence, Israel’s threat to escalate the conflict forced the U.S.

to become deeply involved at a very early point in the conflict. Note that the

opposite happened in the crisis over the Iranian nuclear program where the U.S.

did not become involved. Instead, the U.S. eventually managed to diffuse the

threat through negotiations. Whether Israel would have been forced to consider

the use of nuclear weapons without American support is an open question. But

by supporting Israel directly, the U.S. ran a high risk of drawing the Soviet Union

into the conflict and provoking an oil boycott by the Arab world.

South Korean Nuclear Program

After the end of the Korean War in 1953, which divided Korea in two, the U.S.

kept a large number of American soldiers in South Korea in order to deter North

Korea from attempting to invade South Korea. However, the American defeat

in Vietnam in 1975 led the U.S. to scale down its military presence in East and

7George Friedman, ”Israel: The case against attacking Iran”, Geopolitical Weekly, August 25,

2015, Stratfor.
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Southeast Asia – including the Korean peninsula. In 1971, the withdrawal of

26.000 U.S. soldiers from South Korea made Seoul uncertain whether the U.S.

would come to the rescue of South Korea if North Korea invaded again. South

Korea responded to the withdrawal of American troops by attempting to acquire

a plutonium reprocessing plant, which could have been used for building nuclear

weapons. The uncertainty about the American commitment to defend South Korea

led to South Korea’s attempt to acquire its own nuclear weapons capability. In

this way, South Korea attempted to force the U.S. to keep its military presence

in South Korea. However, the U.S. managed to evade South Korea’s pressure.

The pressure exerted by the U.S. on the French company to cancel the delivery of

the plutonium reprocessing plant eventually convinced the leadership in Seoul to

abandon the nuclear program (O’Neil, 2013).

Conclusion

This paper studies the strategic contradictions between allied states, faced with

a threat to their security. The states are distinguished by the level of military

strength. The stronger ally can afford to delay engagement of the threat to allow

for negotiations to take place, whereas the weaker ally is much less patient because

it cannot cope effectively with the threat in the long run. Both states prefer that

the stronger state engages the threat and the weaker state is therefore forced to rely

on the stronger state if the threat is not engaged immediately and the crisis draws

out. If the level of mistrust between the states is sufficiently high, a strategic

dilemma of commitment is created. Whereas the stronger state fears that the

weaker state will attempt to engage the threat unilaterally and prematurely, the

weaker state fears that if it relies on the stronger state for protection, engagement

of the threat may never take place.

We formalize this strategic dilemma using a simple dynamic model with asym-

metric information. Solving the model for perfect Bayesian equilibria, we identify

the conditions under which the allied states fail to make a coordinated response to

the threat. Our model describes how a weaker, mistrustful ally is able to impose

its strategic goals on its stronger ally. The prospect of a unilateral attack by the
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weaker state compels the stronger ally to engaged the threat prematurely or in

an unwarranted degree. Hence, our model provides theoretical underpinning for

the power curse. In international relations, being a great power often can be a

curse rather than a blessing. With great power comes great responsibility. And a

large responsibility can compel states to become excessively involved in military

conflicts.
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Abstract

We explore how the probability of war due to asymmetric information

depends on the quality of information that states receive or collect about

their opponents. In a version of the standard ultimatum bargaining model

with private information we show that it is possible for the probability of

war to increase when the incompletely informed state receives more precise

(less noisy) information. Thus, better information does not necessarily make

war less likely.
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Introduction

Asymmetric information is one of the fundamental rationalist explanations of why

states end up in costly war (Fearon, 1995). If two states bargain over the division

of a contested resource and state A is uncertain about which outcomes state B

is willing to accept, then A is facing a trade-off between getting as good a deal

as possible and minimizing the risk of war. Therefore, A’s optimal bargaining

strategy may well lead to a positive probability of war. Without uncertainty about

the opponent, a bargaining agreement that both states prefer to war can always

be reached.1

In this paper we explore how the probability of war due to asymmetric infor-

mation depends on the quality of information that states collect or receive about

their opponents. Information about other states’military capabilities and the

beliefs and intentions of their leaders will generally be noisy, but improved intel-

ligence capabilities and international institutions can reduce the noise and thus

make states better informed. We ask the question if less noisy information will

always make war less likely.

We know that the probability of war is zero in the limit where states are

completely informed. Thus, immediate intuition suggests that the probability of

war will simply decrease (at least weakly) as states become better informed. The

main message of this paper is that this intuition is not always correct. Reducing the

level of noise in a state’s information about its opponent will sometimes increase

the probability of war.

The basis for our analysis is a simple version of the standard ultimatum bar-

gaining model with private information about the costs of war (Fearon, 1995).

Two states, A and B, bargain over a contested resource. A proposes a split of

this resource, B can either accept this proposal or go to war. A is incompletely

informed about B’s cost of war, which can be low, medium, or high. We extend

this model by letting A receive a noisy signal about B’s cost. The quality of the

signal is parametrized such that we can continuously move from the case of pure

noise all the way to a fully informative signal, which is of course equivalent to

1Assuming that no other causes of war, such as commitment problems or indivisibility of the
contested resource, are present.
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complete information.

Within this model, we consider how the ex ante probability of war changes with

signal quality. Our results identify several different situations where the probability

of war can increase when A’s signal become more precise (less noisy). In particular,

suppose the probability of war is as high as it can be in the model when A’s signal

is pure noise. Thus, as we increase the signal quality, the probability of war must

fall from the highest possible level to zero in the complete information limit. Even

in this case the probability of war will not always be weakly decreasing in signal

quality, i.e., increased signal quality will sometimes lead to a higher probability of

war.

The main reason behind our findings is that when a state’s information about

its opponent is less noisy then it is more confident that the received information

is correct. For example, if A’s intelligence indicates that B has a high cost of war

then A will believe more in this information the better its intelligence capabilities

are. This is the case even when the intelligence happens to be wrong, which is less

likely with better intelligence capabilities, but still possible. In other words, with

less noisy information A is less likely to have “wrong” beliefs, but when beliefs

are wrong then they are more so. This can cause A to make offers that make war

more likely. It is important to note that A is a fully rational Bayesian updater.

Its confidence in the received information is completely justified and our results

do not in any way depend on irrational overconfidence or other behavioral biases.

A few other papers have studied theoretically how the probability of war varies

with states’uncertainty about their opponents. As in the present paper, Reed

(2003) uses a simple ultimatum bargaining model with private information2 to

explore how the bargaining outcome and the probability of war depends on the

level of uncertainty for the incompletely informed state. A main result is that more

precise information always leads to a lower probability of war. This seems to be

in stark contrast with our findings. The reason is that Reed compares situations

where the uncertainty of the incompletely informed state are given by distributions

that differ in variance but has identical mean values. Thus, the results are better

2The challenger (state A) is incomplete informed about the probability of winning the war (p)
rather than the cost of war for the defender (state B) as in our model. However, this difference
in assumptions between Reed’s model and ours is not what drives the difference in results.
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suited for comparing different crises with varying levels of uncertainty (which is also

the main purpose) rather than exploring how more precise information in a given

crisis will affect the probability of war. The latter requires an explicitly defined

information structure and that updating after all possible signals is considered,

which makes the assumption of a fixed mean very restrictive.

Wittman (2009) presents a result similar to Reed’s in a case with two-sided

incomplete information and a double auction setup for the bargaining protocol.

Schub (2015) uses a setup similar to Reed’s as the starting point for studying the

contrast between the consequences of lower uncertainty when it is due to perceptual

errors as opposed to rational information processing. A main theoretical finding is

that lower uncertainty due to rational updating always leads to a lower probability

of war (as in Reed, 2003), while war may become more likely when uncertainty

decreases because of perceptual errors.3

Finally, Kurazaki (2015) studies a model of signaling and misperception in

crises and shows that the probability of war will in some cases increase with the

(exogenous) probability that a signal is perceived correctly. Despite the fact that

states are fully rational in our model, this result is related to our findings because

the possibility of misperception in Kurazaki’s model plays a somewhat similar role

to that of noisy signals in our model. Still, the results are not directly comparable

because the models are distinct in several ways, for example there is no endogenous

signaling stage in our model and Kurazaki considers only binary choices for each

state at each stage of the game.

The Model

Consider first a simple version of the standard ultimatum bargaining model with

private information about the costs of war (Fearon, 1995). Two states, A and B,

bargain over a continuously divisible resource of value 1. A proposes a split of this

resource, x ∈ [0, 1] for itself and 1− x for B. B can either accept this proposal or

go to war. The winner of the war gets all of the resource. A wins with probability

3Further, if the probability of war decreases with lower uncertainty due to perceptual errors
then it will do so at a lower rate than if the reduction in uncertainty is due to rational updating.
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p ∈ (0, 1) and B wins with the residual probability 1− p.
War is costly. A’s cost of war is cA > 0. B’s cost of war can be low (cLB > 0),

medium (cMB > cLB), or high (c
H
B > cMB ). B knows its own cost when it decides

whether to accept A’s proposal or go to war. When making its proposal, A knows

only that the probabilities of the three possible costs for B are qL, qM , qH > 0 with

qL + qM + qH = 1.

Each state is risk neutral, so its final utility is equal to its share of the resource

if the proposal is accepted and to its probability of winning minus its cost of war

if not. We assume that B will accept the proposal if indifferent. All aspects of the

game except B’s realized cost of war is common knowledge.

Solving this model is straightforward. To avoid corner solutions, assume that

cHB < 1− p. Suppose B is type t ∈ {L,M,H}, which means that its cost of war is
ctB. Then it will accept A’s offer precisely if 1−x ≥ 1−p− ctB, which is equivalent
to

x ≤ p+ ctB.

If a type t accepts A’s proposal then all higher types will also accept. It is easy to

see that only three proposals are relevant for A. Either it will propose xL = p+ cLB

(which all types will accept), xM = p+cMB (which the typesM and H will accept),

or xH = p + cHB (which only type H will accept). A’s expected final utility from

each of these proposals are

uA(xL) = p+ cLB, (1)

uA(xM) = (qH + qM)(p+ cMB ) + qL(p− cA), and (2)

uA(xH) = qH(p+ cHB ) + (qL + qM)(p− cA). (3)

A will make the proposal that maximizes its expected final utility. In case of

equality we assume that A will choose the optimal proposal that leads to the

lowest probability of war, i.e., the lowest optimal x.

As is well known, this model highlights the trade-off for A between reaching a

better bargaining deal and risking costly war. If, among the relevant proposals,

A offers less for B, then it will be better off if B accepts but run a higher risk of

ending in war. The equilibrium probability of war will be positive if xL is not an
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optimal proposal for A, i.e., if uA(xL) < max{uA(xM), uA(xH)}. For example, this
is the case if cA and cLB are suffi ciently close to zero.

4

Introducing an Informative Signal

As explained in the introduction, the main purpose of this paper is to explore

how the probability of war depends on the quality of states’ information about

their opponents. Therefore we now extend the simple model presented above

by letting A receive an informative but noisy signal about B’s type. We will

parametrize the quality of the signal, such that we can continuously vary it from

being not informative at all (pure noise) to fully informative. Thus we can track

the probability of war as we start in a situation where A has only its ex ante

information given by the probabilities qL, qM , qH and then gradually approach the

complete information benchmark where war is not possible.

To keep matters simple, we will restrict attention to a situation where the ex

ante belief of A is that all types of B are equally likely. That is, qL = qM = qH = 1
3
.

Before making its proposal, A receives a signal s ∈ {l,m, h} that is correlated with
B’s type. The distribution of s conditional on t is given by

Pr(l|L) = Pr(m|M) = Pr(h|H) = θ and

Pr(m|L) = Pr(h|L) = Pr(l|M) = Pr(h|M) = Pr(l|H) = Pr(m|H) =
1− θ

2
,

where θ ∈ [1
3
, 1] measures the quality of the signal. Thus, the signal indicates

the correct type of B with probability θ and each of the wrong types of B with

probability 1
2
(1− θ).

4If cLB → 0 then uA(xL)→ p and if cA → 0 then uA(xM )→ p+ (qH + qM )c
M
B and uA(xH)→

p + qHc
H
B . Thus, for cA, c

L
B suffi ciently close to zero, both uA(xM ) and uA(xH) will be higher

than uA(xL).
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By Bayes rule5 the after-signal beliefs of A are given by

Pr(L|l) = Pr(M |m) = Pr(H|h) = θ and

Pr(M |l) = Pr(H|l) = Pr(L|m) = Pr(H|m) = Pr(L|h) = Pr(M |h) =
1− θ

2
.

So unless θ = 1
3
, in which case the signal is completely uninformative, A will always

come to believe strictly more in the type indicated by the signal. If θ = 1 A will

know B’s type with certainty.

The model is almost as easy to solve as the basic model without a signal.6 For

B the situation is exactly the same, so a type t will accept A’s proposal x if and

only if x ≤ xt = p+ctB. A can condition its proposal on its received signal. For each

s ∈ {l,m, h} A’s problem has the same structure as in the basic model, we just

have to replace the ex ante probabilities qL, qM , qH with the updated probabilities

Pr(L|s),Pr(M |s),Pr(H|s). For example, if A receives the signal l then it will

compare the expected final utilities (1)-(3) with qL = θ and qM = qH = 1
2
(1 − θ)

and choose the xt providing the highest utility.

We will write A’s optimal proposal as

x∗(s, θ)

to indicate that it depends on the received signal and signal quality. Note that,

since the signal is not informative at all for θ = 1
3
, the optimal proposal will not

depend on the received signal in this case:

x∗(l,
1

3
) = x∗(m,

1

3
) = x∗(h,

1

3
).

When θ = 1, A knows B’s type with certainty and will therefore offer just enough

5Because qL = qM = qH =
1
3 we get, for all s ∈ {l,m, h} and t ∈ {L,M,H},

Pr(t|s) = qt Pr(s|t)
qL Pr(s|L) + qM Pr(s|M) + qH Pr(s|H)

= Pr(s|t).

6Formally, our solution concept is Perfect Bayesian Equilibrium. However, there is no signaling
aspect in this game because A moves first and has no private information so it can simply be
solved by backwards induction.
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for this type to accept:

x∗(l, 1) = xL, x∗(m, 1) = xM , x∗(h, 1) = xH .

For all θ < 1 war will happen with some positive probability unless A proposes xL

after receiving any of the three signals.

In the appendix we provide the general solution to the model by specifying

A’s optimal proposal x∗(s, θ) for all s ∈ {l,m, h} and θ ∈ [1
3
, 1]. We split the

presentation into three cases depending on whether A’s proposal for θ = 1
3
is xL,

xM , or xH (and specify the restrictions on the parameters cA, cLB, c
M
B , and cHB

for each of these cases). Suppose, for example, that we are in the first of these

cases and that A has received the signal h. Then we can plot uA(xL), uA(xM),

and uA(xM) (with qL = qM = 1
2
(1 − θ) and qH = θ) as functions of θ to find A’s

optimal proposal for any value of θ. Figure 1 displays an example where, as we

increase θ, A first changes its proposal from xL to xM (at θ = θ′1) and then to x
H

(at θ = θ′′1).

Figure 1: An example of uA(xL), uA(xM), and uA(xM) as functions of θ in a

situation where A chooses xL for θ = 1
3
and has received the signal h
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The Probability of War

We know that war is possible only when A is incompletely informed about B’s cost

of war. Here we ask the question if war is always less likely when A’s information

is more precise. In other words, is the ex ante probability of war in the model

always (weakly) decreasing in θ?

To be able to write out the ex ante probability of war, first define the function

War(s, t, θ):

War(s, t, θ) =

{
1 if x∗(s, θ) > xt

0 if x∗(s, θ) ≤ xt

}
.

So War(s, t, θ) is equal to one if there will be war when A receives the signal s, B

is of type t, and the quality of the signal is θ. Otherwise War(s, t, θ) is equal to

zero. With this definition, the ex ante probability of war as a function of θ can be

written

ProbWar(θ) =
∑

s=l,m,h
t=L,M,H

qt Pr(s|t)War(s, t, θ)

=
1

3

∑
s=l,m,h
t=L,M,H

Pr(s|t)War(s, t, θ).

Note that there will never be war when B is a type H because it is never optimal

for A to make a proposal x above xH . That is, War(s,H, θ) = 0 for all s, θ. Thus,

all terms with t = H are redundant in the sum above.

With our first result we demonstrate that the probability of war is not always

weakly decreasing in the quality of A’s signal. So it is indeed possible that better

information leads to a higher probability of war.

Proposition 1 Suppose A makes the proposal xL for θ = 1
3
. Then ProbWar(θ) is

not weakly decreasing in θ.

Proof. When A proposes xL all B-types will accept. Thus we have ProbWar(1
3
) =

0. When θ = 1 it is strictly optimal for A to make the proposal that just satisfies

the B-type it is facing. Since the utilities (1)-(3) are continuous in qL, qM , qH , A
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will make the same proposal when θ is suffi ciently close to 1. That is,

x∗(l, θ) = xL, x∗(m, θ) = xM , x∗(h, θ) = xH for θ close to 1.

Thus, if θ is close to one then there will be war if (s, t) = (m,L), (h, L), or (h,M).

These combinations of signal and type are possible as long as θ < 1, so we conclude

that ProbWar(θ) > 0 for θ close to but below one.7 Since ProbWar(1
3
) = 0, this

immediately implies that ProbWar(θ) is not weakly decreasing. �

Figure 2 displays an example of ProbWar(θ) in the case where A proposes xL

for θ = 1
3
. The jumps happen when A’s proposal after one or more of the signals

changes. x∗(m, θ) and x∗(h, θ) change from xL to xM at θ = θ′1 and x
∗(h, θ) changes

from xM to xH at θ = θ′′1.

Figure 2: An example of ProbWar(θ) in the case where A proposes xL for θ = 1
3

While Proposition 1 provides a negative answer to our general question of

whether the ex ante probability of war is always weakly decreasing as we move

towards the complete information benchmark, the fact that it depends on starting

7More precisely, for such θ the ex ante probability of war is

1

3
(Pr(m|L) + Pr(h|L) + Pr(h|M)) = 1

2
(1− θ).
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in a situation where the probability of war is zero makes it of limited appeal. After

all, the question is primarily interesting because war can happen with asymmetric

information while it cannot in the complete information benchmark. So we are

more interested in situations where we start (at θ = 1
3
) with a positive probability

of war.

Proposition 2 shows that it is also possible for the probability of war to increase

with θ when ProbWar(1
3
) > 0.

Proposition 2 Suppose A makes the proposal xM for θ = 1
3
. Then, generically,8

ProbWar(θ) is not weakly decreasing in θ.

The full proof can be found in the appendix. The main argument is similar

to the one used in the proof of Proposition 1 and is easily explained. As θ gets

close enough to one, A will propose xH after receiving the signal h. At the θ < 1

where x∗(h, θ) changes from xM to xH , War(h,M, θ) will jump from zero to one

because a B-type M will accept xM but not xH . Thus, unless x∗(l, θ) or x∗(m, θ)

changes to a lower value at the same θ, ProbWar(θ) will make an upward jump.

Figure 3 displays one possibility for ProbWar(θ) in the case where A proposes xM

for θ = 1
3
. x∗(l, θ) changes from xM to xL at θ = θ′2 and x

∗(h, θ) changes from xM

to xH at θ = θ′′2.

8This means that the conclusion holds for almost all relevant parameter specifications, i.e.,
that the set of parameter specifications such that it does not hold has Lebesgue measure zero.
See the proof for details.
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Figure 3: An example of ProbWar(θ) in the case where A proposes xM for θ = 1
3

Our main and final result shows that even if we start (at θ = 1
3
) in a situation

where the probability of war is as high as it can possibly be in the model, then it

can still be the case that the probability of war is not a weakly decreasing function

of θ. If A makes the proposal xH when θ = 1
3
then the B-types L and M will go

to war and thus the ex ante probability of war is 2
3
. Since it is never optimal for A

to make a lower proposal than xH , this is the highest possible probability of war

in the model. In this case an increase in ProbWar(θ) does not simply follow from

the fact that x∗(s, θ) = x∗(s, 1) for θ suffi ciently close to one. The adjustment

to the complete information proposals will not necessarily lead to an increase in

the probability of war when we start at xH . For example, if the only changes

in proposals as we increase θ are that x∗(l, θ) changes from xH to xL and that

x∗(m, θ) changes from xH to xM then it is easy to see that ProbWar(θ) is weakly

decreasing.

So how is it possible for the probability of war to increase with θ if A proposes

xH for θ = 1
3
? Suppose A has received the signal m and consider its proposal as θ

increases. It is possible that x∗(m, θ) first changes from xH to xL and then to xM .

The latter change will lead to an increase in ProbWar(θ) if there are no changes

in x∗(l, θ) or x∗(h, θ) at the same value of θ.

The precise result is stated in Proposition 3. The proof can be found in the
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appendix.

Proposition 3 For any balance of power parameter p ∈ (0, 1) and any cost of war

0 < cA <
1−p
2
for A there exists an open set of costs (cLB, c

M
B , c

H
B ) for B such that

• A makes the proposal xH when θ = 1
3
and

• ProbWar(θ) is not weakly decreasing.

Note that there is an upper bound on A’s cost of war in the proposition. This

condition is necessary for xH to be optimal for A at θ = 1
3
. With this proposal A

runs the highest risk of ending in war, which provides the expected utility p− cA.
This can only be optimal if cA is not too high. Also note that the proof explicitly

specifies the set of costs for B mentioned in the proposition. The fact that the

set is open shows that the two bullet points are not only satisfied in knife-edge

situations.

Figure 4 displays an example of the probability of war function in the case

where A proposes xH for θ = 1
3
. x∗(l, θ) and x∗(m, θ) change from xH to xL at

θ = θ̄3 and x∗(m, θ) changes from xL to xM at θ = θ′3.

Figure 4: An example of ProbWar(θ) in the case where A proposes xH for θ = 1
3
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Conclusion

We have demonstrated that, in a simple version of the standard ultimatum bargain-

ing model with private information about the costs of war, the ex ante probability

of war can sometimes increase when the incompletely informed state receives more

precise (less noisy) information about its opponent. So even though the model is

closer to the complete information benchmark when information is more precise,

the predicted probability of war will not necessarily be closer to zero.

Existing research on the link between the level of uncertainty about the char-

acteristics of opponents and the probability of war (e.g. Reed, 2003) has shown

that war always becomes less likely when the uncertainty is reduced in a way that

preserves the mean value of states’beliefs. Thus, a main contribution of this paper

is to highlight the difference between this approach, which is primarily useful for

comparing different crises with varying levels of uncertainty, and our approach,

which is more suitable for exploring how more precise information will affect the

outcome of a given crisis.
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Appendix

General solution to the model: x∗(s, θ) for all s, θ

We split the presentation into three cases depending on whether A’s proposal for

θ = 1
3
is xL, xM , or xH .

1. A makes the proposal xL for θ = 1
3
.

The conditions for xL to be optimal for θ = 1
3
are easily derived from the

equations (1)-(3) with qL = qM = qH = 1
3
:

cLB ≥
2cMB − cA

3
and cLB ≥

cHB − 2cA
3

. (4)

In this case x∗(s, θ) is:

x∗(l, θ) = xL for all θ,

x∗(m, θ) =

{
xL for θ ≤ θ′1

xM for θ > θ′1

}
,

x∗(h, θ) =


xL for θ ≤ θ′1

xM for θ′1 < θ ≤ θ′′1

xH for θ > θ′′1

 if θ′1 < θ′′1,

x∗(h, θ) =

{
xL for θ ≤ θ̄1

xH for θ > θ̄1

}
if θ′1 ≥ θ′′1,

where

θ′1 =
2cLB − cMB + cA

cMB + cA
, θ′′1 =

cMB + cA
2cHB − cMB + cA

, and θ̄1 =
cLB + cA
cHB + cA

.

At θ = θ′1 A is indifferent between the proposals x
L and xM after receiving

s = m or s = h. At θ = θ′′1 A is indifferent between x
M and xH after receiving

s = h. At θ = θ̄1 A is indifferent between xL and xH after receiving s = h.

2. A makes the proposal xM for θ = 1
3
.
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The conditions for xM to be optimal for θ = 1
3
are:

cMB >
3cLB + cA

2
and cMB ≥

cHB − cA
2

. (5)

In this case x∗(s, θ) is:

x∗(l, θ) =

{
xM for θ < θ′2

xL for θ ≥ θ′2

}
,

x∗(m, θ) = xM for all θ,

x∗(h, θ) =

{
xM for θ ≤ θ′′2

xH for θ > θ′′2

}
,

where

θ′2 =
cMB − cLB
cMB + cA

and θ′′2 =
cMB + cA

2cHB − cMB + cA
.

At θ = θ′2 A is indifferent between the proposals x
L and xM after receiving

s = l. At θ = θ′′2 A is indifferent between x
M and xH after receiving s = h.

3. A makes the proposal xH for θ = 1
3
.

The conditions for xH to be optimal for θ = 1
3
are:

cHB > 3cLB + 2cA and cHB > 2cMB + cA. (6)

In this case x∗(s, θ) is:

x∗(l, θ) =

{
xH for θ < θ̄3

xL for θ ≥ θ̄3

}
,

x∗(m, θ) =


xH for θ < θ̄3

xL for θ̄3 ≤ θ ≤ θ′3

xM for θ > θ′3

 if θ̄3 ≤ θ′3,

x∗(m, θ) =

{
xH for θ < θ′′3

xM for θ ≥ θ′′3

}
if θ̄3 > θ′3,

x∗(h, θ) = xH for all θ,
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where

θ′3 =
2cLB − cMB + cA

cMB + cA
, θ′′3 =

cHB − cMB
cHB + cMB + 2cA

, and θ̄3 =
cHB − 2cLB − cA

cHB + cA
.

At θ = θ′3 A is indifferent between the proposals x
L and xM after receiving

s = m. At θ = θ′′3 A is indifferent between x
M and xH after receiving s = m.

At θ = θ̄3 A is indifferent between xL and xH after receiving s = l or s = m.

Proofs

Proof of Proposition 2. Consider x∗(s, θ) in the case where A makes the proposal

xM for θ = 1
3
(see case 2 in the previous subsection). At θ = θ′′2 (immediately

after, to be precise), x∗(h, θ) changes from xM to xH . This means that Probwar(θ)

jumps upwards by the amount qH Pr(m|H) = 1
6
(1 − θ′′2) if there are no changes

in x∗(l, θ) or x∗(m, θ) at θ = θ′′2. This is the case if θ
′
2 6= θ′′2. I.e., we have that

Probwar(θ) is not weakly increasing unless θ′2 = θ′′2, which is equivalent to

(cMB − cLB)(2cHB − cMB + cA)− (cMB + cA)2 = 0.

Since the set of roots for a polynomial in Rn has Lebesgue measure zero, it fol-
lows that Probwar(θ) is not weakly increasing for almost all cost specifications

(cA, c
L
B, c

M
B , c

H
B ) (with the usual restrictions cA > 0 and 0 < cLB < cMB < cHB < 1−p)

such that A proposes xM for θ = 1
3
. �

Proof of Proposition 3. Let p ∈ (0, 1) and cA ∈ (0, 1−p
2

). Consider the set C of

costs (cLB, c
M
B , c

H
B ) for B (with the usual restriction 0 < cLB < cMB < cHB < 1 − p)

such that xH is optimal for A for θ = 1
3
and θ̄3 < θ′3 (see case 3 in the previous

subsection). These two conditions are equivalent to

cLB <
cHB − 2cA

3
and cLB >

cHB c
M
B − (cA)2

cHB + cMB + 2cA
. (7)

The first inequality is equivalent to the first inequality in (6), the second inequality

is equivalent to θ̄3 < θ′3. The second inequality in (6) follows from these two

inequalities.
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For (cLB, c
M
B , c

H
B ) ∈ C we have that ProbWar(θ) is not weakly decreasing because

it jumps upwards at θ = θ′3 (x
∗(m, θ) changes from xL to xM). So it suffi ces to

show that the set is non-empty and open. Because all conditions for (cLB, c
M
B , c

H
B )

to belong to C are given by strict inequalities it is easy to see that the set is open.

To see that it is not empty, first choose a number y with 2 < y < 1−p
cA
, which is

possible because cA <
1−p
2
. If we let cMB = 1

y
cA and cHB = ycA then the inequalities

in (7) become

cLB <
y − 2

3
cA and cLB > 0.

Thus we have that (cLB,
1
y
cA, ycA) ∈ C for all cLB in the interval (0,min{ 1

y
, y−2

3
}cA),

which shows that C is not empty. �
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