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Introduction and summary

This thesis consists of three chapters within the field of cooperative game theory. All

three chapters are self contained, and while they all deal with aspects of transferable

utility games, they are not closely linked. These pages provide an introduction to

cooperative games and a summary of each chapter.

Game theory analyzes the strategic interaction between players acting in their own

self-interest. In cooperative game theory, groups of individuals are assumed to be able

to make enforceable agreements on behavior. The possibility of making binding agree-

ments exists in many economic situations, one example being seller-buyer transactions.

By cooperating, an individual may end up being better off than when acting on his

own, and the fact that cooperation may be beneficial for the individual is the basis for

the most common model in cooperative game theory, the transferable utility model.

A transferable utility game (a TU game) models the situation in which a group of

players called the grand coalition jointly earn a surplus or incur a cost by associating a

monetary value with every possible (sub)coalition within the coalition. Each monetary

value represents the surplus (or cost) that the specific coalition could obtain if it acted

on its own without any interaction with the rest of the players. In the transferable

utility model, the focus is how to allocate the payoff from the joint actions of the

coalition between the players in the coalition. Several solution concepts with different

desirable properties have been proposed in the literature. Some of these are one-point

solutions, while others describe solution sets. One important solution set is the core.

The core of a game consists of all efficient allocations that ensure that no subcoalition

3



has incentives to break away from the grand coalition.

The chapters of this thesis deal with different aspects of TU games. The first chapter

considers the incentives of players to manipulate a TU game, by creating binding agree-

ments of so-called partnerships with other players. Chapter two deals with the class of

games called compromise stable games, and this chapter provides a characterization of

compromise stability in terms of the larginal vectors. The third paper investigates the

properties of cooperative cost games arising from Chinese postman problems on graphs,

when several depots exist. This is done by characterizing classes of graphs leading to

balanced and submodular games.

In the first chapter “Forming and dissolving partnerships in cooperative game situa-

tions”, we consider the incentives of players in a transferable utility game to manipulate

the game by forming binding agreements, called partnerships. When joining a partner-

ship, a player commits to not working with players outside the partnership without the

accept of all the members of the partnership. The formation of such partnerships may

change the game, implying that players could have incentives to manipulate a game by

forming or dissolving partnerships.

For a decision maker deciding on an allocation rule to be implemented, it may be

important to know whether using a specific rule could cause agents to manipulate the

game by forming or dissolving partnerships. This chapter therefore seeks to explore

the existence of allocation rules that are immune to this kind of manipulation. We say

that an allocation rule is partnership formation-proof if it is never strictly profitable

for any group of players to form a partnership when that particular allocation rule is

applied, and partnership dissolution-proof if no group can ever profit from dissolving a

partnership. We explore the existence of allocation rules that are partnership formation-

proof and/or partnership dissolution-proof, and furthermore, we consider whether some

well-known allocation rules are immune to this type of manipulation.

The second chapter, “Characterizing compromise stability of games using larginal

vectors” provides a new characterization of the class of compromise stable games. The

class of compromise stable games contains several interesting classes of games, such as
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clan games, big boss games, 1-convex games, and bankruptcy games.

A game is called compromise stable if the core is equal to the core cover. The

core cover is a superset of the core and equals the set of efficient solutions in which

each player gets at least his minimum right and at most his utopia demand. The core

cover is also equal to the convex hull of the larginal vectors, and a game is therefore

compromise stable if the core is the convex hull of the larginal vectors. A larginal vector

corresponds to an order of the players and describes the efficient payoff vector giving

the first players in this order their utopia demand as long as it is still possible to give

the remaining players at least their minimum right.

In this chapter, we describe two ways of characterizing sets of larginal vectors that

satisfy the condition that if every larginal vector of the set is a core element, then

the game is compromise stable. The first characterization of these sets is based on a

neighbor argument on orders of the players. The second one uses combinatorial and

matching arguments and leads to a complete characterization of these sets. We find

characterizing sets of minimum cardinality, a closed formula for the minimum number

of orders in these sets, and a partition of the set of all orders in which each element of

the partition is a minimum characterizing set.

In the third chapter “On games arising from Chinese postman problems with multi-

ple depots”, a special class of Chinese postman games is introduced, and the properties

of the games are analyzed. The Chinese postman problem (CPP) models a situation

in which a postman must deliver mail to a number of streets using the shortest possi-

ble route that both starts and ends at the depot (post office), and the paper studies

cooperative cost games arising from CPPs in which multiple depots exist.

A multi-depot CPP (k-CPP) is represented by a graph in which the edges of the

graph correspond to the streets to be visited, a fixed set of k vertices are depots, and

a weight function is defined on the edges. A solution to the problem is a minimum

weight tour visiting every edge in the graph. A multi-depot Chinese postman game

(k-CP game) is then the cooperative cost game that arises from associating every edge

of the graph with a different player and addressing the problem of allocating between
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these players the cost of the min. weight tour.

In this chapter, k-CP games are analyzed, and we characterize locally and globally

k-CP balanced and submodular graphs. A graph G is called locally (globally) k-CP

balanced (respectively submodular), if the k-CP game induced by a k-CP problem on G

is balanced (respectively submodular) for some (any) choice of depots and any weight

function on G.
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Chapter 1

Forming and dissolving partnerships

in cooperative game situations

Trine Tornøe Platz and Lars Peter Østerdal



Forming and dissolving partnerships in cooperative

game situations∗

Trine Tornøe Platz, Lars Peter Østerdal†

Department of Economics, University of Copenhagen

Abstract

A group of players in a cooperative game are partners (e.g., as in the form of a union

or a joint ownership) if the prospects for cooperation are restricted such that cooper-

ation with players outside the partnership requires the accept of all the partners. The

formation of such partnerships through binding aggrements may change the game im-

plying that players could have incentives to manipulate a game by forming or dissolving

partnerships. The present paper seeks to explore the existence of allocation rules that

are immune to this type of manipulation. An allocation rule that distributes the worth

of the grand coalition among players is called partnership formation-proof if it ensures

that it is never jointly profitable for any group of players to form a partnership and

partnership dissolution-proof if no group can ever profit from dissolving a partnership.

The paper provides results on the existence of such allocation rules for general classes

of games as well as more specific results concerning well known allocation rules.

JEL classification: C71, D63, D71.

Keywords: Cooperative games, partnerships, partnership formation-proof, partnership

dissolution-proof.

∗The authors are grateful to Philippe Solal, the editor Myrna Wooders, an anonymous associate editor,
and especially an anonymous reviewer for very detailed and helpful comments to a previous draft. Special
thanks are due to Peter Holch Knudsen and Mich Tvede for valuable input at the early stages of this work.
Of course, all deficiencies remain the responsibility of the authors.
†Correspondence: Lars Peter Østerdal, Department of Economics, University of Copenhagen, Øster

Farimagsgade 5, Building 26, DK-1353 Copenhagen K, Denmark. Email: lars.p.osterdal@econ.ku.dk. Tel:
+45 35323561, Fax: +45 35323000.

8



1 Introduction

A problem common to societies, clubs, joint venture organizations, and other formal social

structures is how to allocate the benefit, or cost, of a joint activity among the contributing

members. In the language of cooperative game theory, we can describe such a problem in the

following stylized way. There is a set of players, and each coalition of players has a worth.

This worth can be thought of as the income or surplus that the coalition can obtain without

cooperating with the other players, or it can be thought of as a claim on total income. The

problem is then to find an allocation rule that specifies how total income (i.e., the worth of

the grand coalition) is distributed among the players for any configuration of the coalitional

worths.

The present paper is concerned with the players’ incentives to create binding agreements

– called partnerships – in such cooperative game situations. If a group of players create a

partnership, they commit to not cooperate with players outside the partnership without the

accept of the rest of the group. We may think of such partnerships as if every player in

the group is given veto power over activities involving any member of the partnership. The

remaining players outside the partnership are also affected; these outside players are deprived

of the possibility of collaborating with any strict subset of the players in the partnership.

Examples of partnerships include members of a parliament joined in political parties or

particular parties in a coalition government, a couple getting married, countries forming a

union (e.g., a trade union or a political union), workers or groups of workers forming a labor

union, partners within a firm, or firms establishing joint ownerships over a common pool of

assets.

The creation of a partnership may change the game and hence the outcome of any

allocation process. Thus the creation or dissolution of a partnership can be seen as a way of

changing the cooperative game situation, whether it is due to players seeking to manipulate

the game or due to a modelling choice by the analyst. In any case, for someone deciding on

an allocation rule to be implemented in a cooperative game situation, knowledge of whether

a specific allocation rule gives players incentives to manipulate the game by forming or

dissolving partnerships could be highly relevant. Particularly it may be of special interest

to consider allocation rules that are “immune” to such manipulation or at least to be aware

of if such rules exist at all.

We willl call an allocation rule partnership formation-proof if it is never strictly profitable

for any coalition of players to form a partnership when applying the allocation rule and

partnership dissolution-proof if it is never strictly profitable to dissolve a partnership. Thus,

implementing a partnership formation-proof allocation rule implies that no manipulation
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in the form of players forming partnerships will occur while a partnership dissolution-proof

allocation rule will be immune to manipulation in the form of players dissolving partnerships.

The present paper explores whether allocation rules exist that are in this way immune to

manipulation, while still satisfying some desirable properties for allocation rules.

Manipulation of cooperative games has been studied by numerous papers starting with,

e.g., Postlewaite and Rosenthal (1974), Charnes and Littlechild (1975), Hart and Kurz

(1983), Kalai and Samet (1987), Legros (1987), Lehrer (1988), and Hart and Moore (1990).

The present paper is closely related to this literature, however, there are also some important

differences. In Postlewaite and Rosenthal (1974), Legros (1987), Lehrer (1988), and more

recently Haviv (1995), Derks and Tijs (2000), and Knudsen and Østerdal (2008,) groups

of players can amalgamate into a single player.1 The present paper follows Haller (1994),

Carreras (1996) and Segal (2003) and considers environments where the set of players is fixed

but the worth of coalitions can be manipulated.

Haller (1994) focuses on bilateral agreements (i.e. agreements between two players),

and considers so-called proxy- and association-agreements. In a proxy-agreement one of the

players becomes a null player, while the other player’s marginal contribution to a coalition is

set equal to the two players’ joint marginal contribution. Haller (1994, Section 6.4) discusses

the similarities and differences between proxy-agreements and amalgamations. If one of the

players in an association-agreement enter a coalition, it contributes as if both players entered.

Carreras (1996) considers partnerships as defined in the present paper and uses the Shapley

value to discuss the effect of partnership formation in (especially) simple games, see also

Carreras et al. (2005), Carreras et al. (2009). Segal (2003) contains a general taxonomy of

types of integration.

In contrast to, e.g., the proxy- and association-agreements discussed by Haller (1994),

the creation of partnerships does not yield any technical efficiency gains as a partnership

does not increase the worth of any coalition as long as the game is monotonic; it only

reduces the worth of coalitions containing some but not all members of the partnership. On

the other hand, there is a dual effect of creating a partnership, since players outside the

partnership cannot obtain the full worth from cooperation with strict subsets of players in

the partnership. The purpose of forming a partnership should therefore be to reduce the

power of outside players without reducing the power of players in the partnership equally.

However, it is generally not clear which of the aforementioned effects dominates.

Section 2 introduces the model and basic definitions. In section 3, some results on the

existence of partnership formation- and dissolution-proof allocation rules are given for several

1Postlewaite and Rosenthal (1974) and Legros (1987) follow Aumann (1973) and refer to a group of
players amalgamating into a single player as a syndicate. Charnes and Littlechild (1975) call it a union.
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general classes of cooperative games. We find that the equal-split rule is the only symmetric

allocation rule that is both partnership formation-proof and partnership dissolution-proof.

Further, while no symmetric partnership formation-proof allocation rule exists that satisfies

the null player condition, we find that on the class of monotonic games2 there do exist

symmetric partnership dissolution-proof allocation rules satisfying the null player condition.

In section 4, we restrict attention to convex games and consider some well-known allocation

rules with favorable properties on this class of games. We find that while a symmetric

probabilistic allocation rule, such as the Shapley value, is partnership dissolution-proof on

the class of convex games3 other well-known core allocation rules are neither partnership

formation- nor dissolution-proof.

In section 5, we address the influence of the definition of stability on the results presented

in section 3 and 4.

In section 6, we explore the situation in which several disjoint partnerships exist within

a population and consider whether more players could be expected to join a partnership

or if players have incentives to dissolve existing partnerships and possibly create new ones.

A few results on the stability of partnership structures are provided. We comment on the

consequence of applying different definitions of stability in this context. Section 7 concludes.

2 Partnerships: model and definitions

A cooperative game with side-payments is a pair (N, v), where N = {1, .., n} is a finite

set of players with |N | = n ≥ 3, and v is a mapping from 2N into R+, with v (∅) = 0.4

Note that we consider only non-negative coalition worths. Since N is fixed, we refer to a

game (N, v) simply as v, when no confusion can arise. Also, for players i and j, we write

v(i) instead of v({i}), v(i, j) instead of v({i, j}) etc. Coalitions of players are subsets S, T ,

Q... of N . Given a vector x ∈ RN , x (S) specifies the aggregate payoff
∑

i∈S xi of coalition

S ⊆ N . An allocation rule for a family of games V is a function φ : V → RN such that∑
i∈N φi(v) = v(N), i.e., it satisfies efficiency.

The core of a game v is the set C (v) = {x ∈ RN |x (N) = v (N) , x (S) ≥ v (S) for all

S ⊂ N }. A game v is balanced if C(v) 6= ∅, monotonic if v (S) ≤ v (S ′) for all coalitions

S, S ′ ⊆ N with S ⊆ S ′, superadditive if v (S) + v (S ′) ≤ v (S ∪ S ′) for any disjoint coalitions

S, S ′ ⊆ N , and convex if v (S) + v (S ′) ≤ v (S ∩ S ′) + v (S ∪ S ′) for all coalitions S, S ′ ⊆ N .

2Monotonicity implies that no player contributes negatively to a coalition.
3Convexity implies that a player’s marginal contribution to a coalition (weakly) increases as the coalition

grows.
4For a general treatment of cooperative games, see, e.g., Owen (1995) or Peleg and Sudhölter (2003).
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Convexity implies both superadditivity and balancedness, cf. Shapley (1971). Note also that

for convex games non-negativity implies monotonicity.

Players i, j ∈ N are said to be symmetric in v if for all S ⊆ N\{i, j} it holds that

v(S ∪ {i}) = v(S ∪ {j}). An allocation rule φ is symmetric if symmetric players are treated

equally, that is, if φi(v) = φj(v) for all symmetric players i, j ∈ N in v. We say that player i

is a null player in the game v if v (S ∪ {i}) = v (S) for all S ⊆ N\ {i}, and that an allocation

rule φ satisfies the null player condition (or briefly, is null) if φi (v) = 0 whenever i is a null

player.

A coalition T ⊆ N forms a partnership when each player in T commits to not contributing

to any coalition S for which T 6⊆ S. More precisely, we follow Kalai and Samet (1987) and

Carreras (1996) and say that a coalition T ⊆ N is a partnership in v if

v(R ∪ S) = v(R) for all S ⊂ T and all R ⊆ N\T.

This definition of a partnership corresponds to the notion of a p-type coalition introduced

in Kalai and Samet (1987) and to what Hart and Moore (1990) call a joint ownership, see

also Carreras (1996) and Segal (2003, p. 447).5 As in Carreras (1996), the creation of a

partnership changes the game from (N, v) to
(
N, vT

)
defined by

vT (S) =

{
v (S) , if T ⊆ S

v (S\T ) , otherwise.

Notice that in the partnership game, vT , of v any coalition S ⊂ T has the same worth as

the empty coalition, i.e. vT (S) = 0. Further, all players in T are symmetric in vT . As

mentioned above, we restrict attention to the class of non-negative games. This allows us to

preserve the natural interpretation of partnership formation and disregard situations where

the formation of a partnership allows the worth of a coalition within the partnership to

increase from some negative amount to zero.

Given an allocation rule φ, it is not profitable to create any partnership if and only if

∑

i∈T
φi
(
vT
)
≤
∑

i∈T
φi (v) ,

for all T ⊆ N and all v. Allocation rules that satisfy this condition will be called partnership

5We follow the line of literature defining a partnership as a property of a coalition with respect to the
game. In contrast, Reny et al. (2009) consider the “partnership property” which is a property of a collection
of coalitions and does not involve the game but plays a role for their study of allocations of a game for which
there are no asymmetric dependencies between any two players.

12



formation-proof. Note that the definition implies that redistribution of the joint profit is

possible among members of a partnership. If the reverse inequality always holds we say that

the allocation rule is partnership dissolution-proof. For convenience we use the abbreviations

PFP and PDP respectively throughout this paper.

Lemma 1 below states that the partnership game inherits any properties such as non-

negativity, monotonicity, superadditivity, balancedness, and convexity from the original

game. The proofs are straightforward for non-negativity, monotonicity, and superadditivity

(as pointed out in Carreras (1996)) and are omitted here. The proofs for the latter two

properties are given.

Lemma 1 The following classes of games are closed under partnership formation.

1. Non-negative

2. Monotonic

3. Superadditive

4. Balanced

5. Convex

Proof: To show that a balanced game is closed under partnerships, assume that x ∈ C (v).

Note that since v(i) ≥ 0 for all i ∈ N , we have C (v) ⊆ RN
+ . For coalitions S ⊆ N such

that T ⊆ S or T ∩ S = ∅, we have x (S) ≥ vT (S), since vT (S) = v (S) . For coalitions

S ⊆ N such that T ∩ S 6= ∅ and T 6⊆ S, we also have x (S) ≥ vT (S), since if not, then

x (S\T ) ≤ x (S) < vT (S) = v (S\T ) by C (v) ⊆ RN
+ , contradicting that x ∈ C (v). Thus,

x ∈ C
(
vT
)
.

Convex games are closed under partnerships if for any convex game v and any T it holds

that vT is convex, i.e., if for any two coalitions S, S ′ ⊆ N the inequality vT (S) + vT (S ′) ≤
vT (S ∪ S ′) + vT (S ∩ S ′) holds. If T ⊆ S and T ⊆ S ′, the inequality is immediate from the

convexity of v. If T 6⊆ S and T 6⊆ S ′, then

vT (S) + vT (S ′) = v (S\T ) + v (S ′\T )

≤ v ((S ∪ S ′) \T ) + v ((S ∩ S ′) \T )

≤ vT (S ∪ S ′) + vT (S ∩ S ′) ,
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where the first inequality follows from convexity of v, and the second follows since v ((S ∩ S ′) \T ) =

vT (S ∩ S ′) and vT (S ∪ S ′) = v((S ∪ S ′)\T ) if T 6⊆ S ∪ S ′ and vT (S ∪ S ′) = v(S ∪ S ′) ≥
v((S ∪ S ′)\T ) if T ⊆ S ∪ S ′ (because by monotonicity and convexity v is monotonic).

If T ⊆ S and T 6⊆ S ′, then

vT (S) + vT (S ′) = v (S) + v (S ′\T )

≤ v (S ∪ S ′) + v ((S ∩ S ′) \T )

= vT (S ∪ S ′) + vT (S ∩ S ′) ,

where the inequality follows from the convexity of v. Since the remaining case T 6⊆ S and

T ⊆ S ′ is symmetric, we conclude that vT is convex. �

3 Partnership formation- and dissolution-proofness

It is easy to construct an allocation rule that is both PFP and PDP. Consider as a trivial

example an allocation rule that always allocates the total worth of the grand coalition to

the same player, i.e., a dictatorial rule. Since the worth that is allocated to some coalition

S ⊆ N will be unchanged in any partnership game the dictatorial rule is both PFP and PDP.

There also exists a symmetric allocation rule φ that is both PFP and PDP: the equal-split

rule φES defined by φESi (v) = v(N)
n

for all v and all i ∈ N . It is, in fact, the only symmetric

rule that is both PFP and PDP.6

Proposition 1 For any class of games that is closed under partnerships, there is one and

only one symmetric PFP and PDP allocation rule: the equal split rule.

Proof: It is clear that the equal split rule is PFP and PDP. We show that it is the only

rule that satisfies both properties. Suppose that a symmetric rule φ is PFP and PDP, and

φ 6= φES. Thus, there is a game v such that φ(v) 6= φES(v). Pick a player imin ∈ N for which

no other player gets a smaller payoff at the allocation φ(v), and pick a player imax ∈ N for

which no other player gets a larger payoff at φ(v).

First, let T = N\{imin} and consider the partnership game vT based on v. Since φ is

both PFP and PDP, we have
∑

i∈T φi(v
T ) =

∑
i∈T φi(v), and hence φimin

(vT ) = φimin
(v). In

particular, we have by symmetry that φimax(vT ) =
∑

i∈T φi(v
T )

|T | > v(N)
|N | . Note that vT (S) = v(S)

for S = T , vT (S) = v(imin) for any coalition S 3 imin, S 6= N, and vT (S) = 0 otherwise.

6After the initial version of this paper was submitted for publication, it has come to our attention that a
similar result has recently and independently been found by Van den Brink (2009).
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Second, let U = N\{imax} and consider the partnership game vTU based on vT . (We

write vTU rather than (vT )U to avoid cumbersome notation). Since φ is both PFP and PDP,

we have
∑

i∈U φi(v
TU) =

∑
i∈U φi(v

T ), and hence φimax(vTU) = φimax(vT ) > φimin
(vT ). In

particular,φimin
(vTU) =

∑
i∈U φi(v

TU )

|U | < v(N)
|N | by symmetry. Note that vTU(S) = v(imin) if

S = U, S 6= N and vTU(S) = 0 for all S 6= U,N .

Third, consider again the coalition T = N\{imin} and the partnership game vTUT based

on vTU . Since vTU(imin) = 0 and vTU(T ) = 0 we have vTUT (S) = 0 for all S 6= N . In

particular, the game is symmetric. But since φ is PFP and PDP we have
∑

i∈T φ(vTUT ) =∑
i∈T φ(vTU), and therefore φimin

(vTUT ) = φimin
(vTU) < v(N)

|N | , contradicting that φ is sym-

metric. �

The equal split rule violates the null player condition. Thus, as a consequence of Propo-

sition 1 we get the following negative result:

Corollary 1 For no class of games that is closed under partnerships, does there exist a

symmetric allocation rule that is both PFP and PDP and satisfies the null player condition.

It is now natural to ask whether symmetric allocation rules exist that are either PFP or

PDP while satisfying the null player condition. We get the following:

Proposition 2 i) For the class of non-negative convex games, there exist no symmetric PFP

allocation rule satisfying the null player condition. ii) There exist no symmetric PDP allo-

cation rule satisfying the null player condition on the class of non-negative balanced games.

Proof: For the first part suppose that φ is a PFP allocation rule. Let n ≥ 3 and consider the

(convex) game v with v (N) = v(N \ {1}) = 1 and v (S) = 0 otherwise. The only allocation

consistent with symmetry and the null player condition is φ1(v) = 0, φi(v) = 1
n−1 for all

i ∈ N \ {1}. Now assume that players 1 and 2 form a partnership, T = {1, 2}. This implies

vT (N) = 1 and vT (S) = 0 otherwise. Then by symmetry φi
(
vT
)

= 1
n

for all i ∈ N . Since

φ1(v) + φ2(v) = 1
n−1 <

2
n

= φ1(v
T ) + φ2(v

T ) this contradicts that φ is PFP.

For the second part, in order to provoke a counter example suppose that φ is PDP and

consider the following (balanced) game v, where n ≥ 3. v (N) = 1, v(1) = 1, and v (S) = 0

otherwise. If T = {1, 2} form a partnership, the partnership game vT is symmetric implying

that by symmetry φi(v
T ) = 1

n
for all i ∈ N . For φ to be PDP it must therefore hold that

φ1 (v) + φ2 (v) ≤ 2
n
. Next consider instead the formation of a partnership U = {2, . . . , n}.

Then vU(N) = 1, vU(S) = v(S\U) = v(1) = 1 for all S where 1 ∈ S, and v (S) = 0

otherwise, implying that all players 2,...,n are null. Thus φ2(v
U) = · · · = φn

(
vU
)

= 0, and
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for φ to be PDP, it must therefore hold that φ2(v) = · · · = φn (v) ≤ 0. Since we know

that
∑n

i=1 φi (v) = 1, this implies that φ1 (v) = 1 −(n− 1)φ2 (v). Substituting this into the

condition that φ1 (v) + φ2 (v) ≤ 2
n

in turn gives φ2 (v) ≥ 1
n

which contradicts φ2 (v) ≤ 0. �

Note that for the first part where the counter example is a non-negative convex game the

result holds by implication for the classes of monotonic, superadditive, and balanced games.

Note also that the counter example used for the second part of Prop. 2 is not a monotonic

game. This is no coincidence as monotonicity does allow for a symmetric PDP rule that

satisfies the null player condition:

Proposition 3 There exist a symmetric PDP allocation rule satisfying the null player con-

dition on the class of monotonic games. Indeed, the equal non-null split rule (which divides

v(N) equally between all non-null players in N) satisfies PDP.

Proof: For a game v, let D(v) ⊆ N denote the set of null players i in N. Let φ∗ be the rule

that gives 0 to the null players and then divides v(N) equally between the remaining players

in N ; i.e. φ∗i (v) = 0 if i ∈ D(v) and φ∗i (v) = v(N)
|N\D(v)| otherwise. Clearly, φ∗ is a symmetric

rule satisfying the null player condition. We now show that φ∗ satisfies the PDP property.

For this, consider a game v and suppose that the players in T ⊆ N form a partnership.

We now claim that (i) for all i 6∈ T we have that i ∈ D(v) implies i ∈ D(vT ), and (ii) for all

i ∈ T we have that i 6∈ D(v) implies i 6∈ D(vT ).

Ad (i). Let i ∈ D(v)\T. Let S ⊆ N be an arbitrary coalition with i /∈ S. If S ∩T = ∅ or

T ⊆ S, we have vT (S) = v(S) and vT (S ∪{i}) = v(S ∪{i}), and thus vT (S ∪{i})− vT (S) =

v(S ∪ {i}) − v(S) = 0. If T * S and S ∩ T 6= ∅, then vT (S) = v(S\T ) and vT (S ∪ {i}) =

v((S\T ) ∪ {i}), and we have vT (S ∪ {i}) − vT (S) = v((S\T ) ∪ {i}) − v(S\T ) = 0. Thus,

i ∈ D(vT ).

Ad (ii). Let i ∈ T\D(v). Since i is not a null player, and the game v is monotonic,

there is a coalition S ⊆ N with i /∈ S such that v(S ∪ {i}) − v(S) > 0. In particular, we

have vT ((S ∪ T )\{i}) = v(S\T ) ≤ v(S), and vT (S ∪ T ) = v(S ∪ T ) ≥ v(S ∪ {i}) where the

inequalities follow by monotonicity of v. We therefore get vT (S ∪ T ) − vT ((S ∪ T )\{i}) ≥
v(S ∪ {i})− v(S) > 0. Thus, i /∈ D(vT ).

If v(N) > 0, we have N\D(v) 6= ∅, and since vT (N) = v(N), we get N\D(vT ) 6=
∅. In particular, it follows by (i) and (ii) that |T\D(v)|

|N\D(v)| ≤
|T\D(vT )|
|N\D(vT )| . Thus,

∑
i∈T

φ∗i (v
T ) =

|T\D(vT )|
|N\D(vT )|v

T (N) ≥ |T\D(v)|
|N\D(v)|v(N) =

∑
i∈T

φ∗i (v) which shows that φ∗ is PDP. �

Proposition 2 ii) implies that there exists no symmetric PDP allocation rule satisfying

the null player condition on the family of non-negative games. In fact, PDP allocation rules
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cannot be found on this family of games even if the symmetry requirement is dropped.

Proposition 4 There exist no PDP allocation rules satisfying the null player condition on

the class of non-negative games.

Proof: In order to provoke a counter example, suppose that φ is PDP and consider the

game v defined by n ≥ 3, v (N) = 1, v(i) = 1 for all i, v (S) = 0 otherwise. There must exist

some two player combination {i, j} for which φi (v) + φj (v) > 0. Then, if T = {i, j} forms

a partnership they become null players in vT with payoff φi(v
T ) = φj(v

T ) = 0 contradicting

that φ is PDP. �

4 The Shapley value and other core allocation rules

An allocation rule φ defined on the family of balanced games is a core allocation rule if

φ(v) ∈ C (v) for all balanced v. Note that all core allocation rules satisfy the null player

condition. It turns out that the positive result from Prop. 3 cannot be strengthened to the

case of core allocation rules, at least if n ≥ 6.

Proposition 5 For n ≥ 6, there exists no symmetric PDP core allocation rule on the class

of monotonic balanced games.

Proof: Suppose that φ is a PDP symmetric core allocation rule. Let n = 6 and define a

(monotonic balanced) game v as follows: v(i) = 0 for all i; v(1, 2) = v(1, 3) = v(2, 3) =

v(1, 2, 3) = v(4, 5, 6) = 2; v(S) = 2 if S contains at least two players in {1, 2, 3} but not

coalition {4, 5, 6}, or if S contains coalition {4, 5, 6} but no more than one of the players

in {1, 2, 3}; v(S) = 4 if S contains {4, 5, 6} and at least one of the coalitions {1, 2}, {1, 3},
{2, 3}; v(N) = 5; and v(S) = 0 otherwise. Then C(v) only contains one symmetric element

and we must have φ(v) = {1, 1, 1, 2
3
, 2
3
, 2
3
}. Let T = {1, 2, 3}. Then vT (S) = 0 if |S| ≤ 2,

and vT (S) = 2 if S contains either {1, 2, 3} or {4, 5, 6} but not both of them. By symmetry,

we have φ{1,2,3}(vT ) = φ{4,5,6}(vT ) = 5
2
< φ{1,2,3}(v) = 3, contradicting that φ is PDP.

Finally, we note that since φ is a core allocation rule it satisfies the null player condition.

Hence, we can extend the counter example to any n > 6 by adding null players. �

As stated in Prop. 5, it is not possible to find symmetric PDP core allocation rules on

the family of monotonic balanced games. It is, however, possible to find symmetric PDP

core allocation rules on the family of convex games. Segal (2003) gives a condition for a

partnership to always be (weakly) (un)profitable when a game is solved by a probabilistic
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value. It can be inferred from his analysis that partnerships are always (weakly) profitable

in convex games. We give a short and illustrative proof for the case of the Shapley value.

The Shapley value, which is a symmetric probabilistic value, is defined as

φShi (N, v) =
∑

S⊆N,S3i
p(S)(v(S)− v(S\{i})),

where p(S) = (|S|−1)!(|N |−|S|)!
|N |! , cf. Shapley (1953).

Proposition 6 The Shapley value (which is indeed a core allocation rule on convex games)

is a symmetric PDP core allocation rule on the class of non-negative convex games.

Proof: For any n ≥ 3 and i 6∈ T , we have

φShi
(
vT
)

=
∑

S⊆N,i∈S
p (S)

[
vT (S)− vT (S\ {i})

]

=
∑

S⊆N,i∈S,
T⊆S

p (S) [v (S)− v (S\ {i})] +
∑

S⊆N,i∈S,
T∩S=∅

p (S) [v (S)− v (S\ {i})] +

∑

S⊆N,i∈S,
T∩S 6=∅,T*S

p (S) [v (S\T )− v (S\ (T ∪ {i}))] .

The values for player i 6∈ T in the games v and vT respectively only differ in the last term.

That is,

φShi
(
vT
)
− φShi (v)=

∑

S⊆N,i∈S,
T∩S 6=∅,
T*S

p (S) [v (S\T )− v (S\ (T ∪{i}))− (v (S)− v (S\ {i}))] .

By convexity of v, we have v (S\T )−v (S\ (T ∪ {i})) ≤ v (S)−v (S\ {i}) implying φShi
(
vT
)
−

φShi (v) ≤ 0 for all i 6∈ T , and thus by efficiency,
∑

i∈T φ
Sh
i

(
vT
)
≥∑i∈T φ

Sh
i (v). Furthermore,

in the case of strict convexity we have
∑

i∈T φ
Sh
i

(
vT
)
>
∑

i∈T φ
Sh
i (v) . �

As a corollary of Prop. 6 and Lemma 1 it can be noted that when the Shapley value

is applied to strictly convex games some set of players can jointly profit from forming a

partnership as long as the game is not symmetric in which case further partnership formation

has no effect.
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The Shapley value was shown to be a PDP core allocation rule on convex games, however,

other well-known symmetric core allocation rules do not share this property as shown below.

Fujishige (1980) and Dutta and Ray (1989) and numerous subsequent papers have an-

alyzed the allocation rule that for any convex game selects the unique most egalitarian

allocation in the core. This rule will be denoted the Fujishige-Dutta-Ray allocation rule,

φFDR, in the following. The algorithm resulting in φFDR in a convex game partitions the

set of players N in a game (N, v) into subsets S1, S2, ..., Sm, where S1 is the (unique) largest

coalition having the highest average worth in (N, v). For any coalition S and any charac-

teristic function v, the average worth of S under v is defined by e(S, v) = v(S)/|S|. For

k = 2, ...,m, Sk is the unique largest coalition with the highest average worth in the game

(Nk, vk) with player set Nk = N\{S1 ∪ · · · ∪ Sk−1}, given that the worth of a coalition S

in any game (Nk, vk) is defined as vk(S) = vk−1(Sk−1 ∪ S) − vk−1(Sk−1), where v1 = v, see

Dutta and Ray (1989). Then the amount allocated to a player i according to φFDR equals

φFDRi = e(Sk, vk) for all i ∈ Sk. In convex games, φFDR is the unique egalitarian allocation

and belongs to the core.

Another well-known allocation rule with favorable properties on the class of convex games

is the nucleolus introduced by Schmeidler (1969). The nucleolus is the allocation rule φnu

that assigns an allocation x = φnu(v) to each game v such that x lexicographically minimizes

the vector of excesses e(S, x) = v(S) −∑i∈S xi. The nucleolus is unique and is in the core

whenever the core is non-empty.

While it follows from Prop. 2 i) that none of the above-mentioned core allocation rules

are PFP on convex games, it can be shown by way of simple counter examples that neither

the Fujishige-Dutta-Ray allocation rule nor the nucleolus is PDP on the class of convex

games.

Proposition 7 Neither the Fujishige-Dutta-Ray allocation rule nor the nucleolus is PDP on

the class of non-negative convex games.

Proof: For n = 3, consider a game v defined by v(N) = 2, v(1) = 1, v(1, 2) = v(1, 3) = 1

and v(S) = 0, otherwise. Then φFDR(v) =
(
1, 1

2
, 1
2

)
and φnu(v) =

(
4
3
, 1
3
, 1
3

)
. If a partnership

is formed between players 1 and 2, the game changes to vT (N) = 2, vT (1, 2) = 1, and

v(S) = 0 otherwise. This implies φFDR(vT ) =
(
2
3
, 2
3
, 2
3

)
, which shows that φFDR cannot be

PDP since φFDR1 (v) + φFDR2 (v) = 3
2
> 4

3
= φFDR1 (vT ) + φFDR2 (vT ). Likewise, we get that

φnu(vT ) =
(
3
4
, 3
4
, 1
2

)
from which we conclude that φnu cannot be PDP since φnu(v)+φnu(v) =

5
3
> 3

2
= φnu(vT ) + φnu(vT ).

Since the FDR allocation rule as well as the nucleolus satisfy the null player condition,

similar counterexamples can be constructed for n > 3 by adding null players to the game. �
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5 Weak partnership formation- and dissolution-

proofness

The definition of PFP and PDP applied in sections 3 and 4 holds an implicit assumption of

the ability of members in a partnership to redistribute the joint profit. An obvious alternative

to this definition is to consider a deviation to be profitable only if it is individually profitable

for every member of a partnership in question. Thus, we define an allocation rule φ to be

weakly partnership formation-proof (WPFP) if and only if for any game v and any nonempty

T ⊆ N there exists i ∈ T such that φTi (v) ≤ φi(v). Likewise, an allocation rule φ is said

to be weakly partnership dissolution-proof (WPDP) if and only if for any game v and any

nonempty T ⊆ N there exists i ∈ T such that φTi (v) ≥ φi(v). In the following, we reconsider

some of the previous results in light of these alternative definitions.

We consider again the equal non-null split rule φ∗ and show that it is both WPFP and

WPDP on the class of non-negative convex games. This finding contrasts Prop. 1.

Proposition 8 i) The equal non-null split rule φ∗ is both WPDP and WPFP on the class

of non-negative convex games, however, ii) There exists no symmetric WPFP rule satisfying

the null player condition on the class of monotonic games.

Proof: For the first part, as in the proof of Prop. 3, let D(v) denote the set of null players

in v, and let φ∗i (v) = 0 if i ∈ D(v) and φ∗i (v) = v(N)
|N\D(v)| otherwise. Note that since v is

convex, i ∈ N\D(v) if and only if v(N)− v(N\{i}) > 0. Consequently, for any partnership

such that T ⊆ N\D(v), it follows that
∣∣N\D(vT )

∣∣ = |N\D(v)|, and the allocation remains

unchanged, i.e., no one can profit from this type of deviation. However, for any partnership

T such that T 6⊆ N\D(v), we get
∣∣N\D(vT )

∣∣ > |N\D(v)| and φ∗i (N, v
T ) < φ∗i (N, v) for all

i ∈ N\D(v), implying that forming a partnership can never be strictly profitable for each

player in T . Thus, the allocation rule is WPFP. On the other hand, when T 6⊆ N\D(v)

and
∣∣N\D(vT )

∣∣ > |N\D(v)| then for those i 6∈ N\D(v) but in T (and thus in N\D(vT ))

we have that φ∗i (v) = 0 < v(N)
|N\D(vT )| = φ∗i (N, v

T ). Since these players will prefer to keep the

partnership intact the allocation rule will also be WPDP.

For the second part, let N = {1, ..., n} and consider the (monotonic) game v where

v(S) = 0 if |S| = 1 and v(S) = 1 otherwise (such that v(i, j) − v(i) = 1 for j 6= i and

v(S) − v(S\{i}) = 0 otherwise). Let φ be a symmetric rule satisfying the null player

condition. Then φi(v) = 1
n

for all i ∈ N . Now, let T = {1, ..., n − 1} form a partnership.

Then, vT (T ) = vT (N) = 1 and vT (S) = 0 otherwise. Since player n is a null player in vT ,

symmetry implies φi(v
T ) = 1

n−1 for all i ∈ T , contradicting WPFP. �
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From Prop. 3 we know that the equal non-null split rule (which is a a symmetric rule

satisfying the null player condition) is also WPDP on the class of monotonic games. Further,

the result from Prop. 5 holds also for the case of WPDP, that is, there exists no symmetric

WPDP core allocation rule on the family of monotonic balanced games. To see this, note

that in the example given in the proof of Prop. 5, every player in the partnership is strictly

better off by dissolving the partnership, implying that no WPDP allocation rule can be

found.

Reconsidering the allocation rules from the previous section, we notice first that since the

Shapley value is PDP it is also WPDP, but as shown below, it is not WPFP. However, the

FDR-allocation rule is WPFP. Recall that on convex games the allocation rule φFDR satisfies

the properties that φFDRi = φFDRj for all i, j ∈ St and t = 1, ..,m and that φFDRi > φFDRj if

i ∈ Sk, j ∈ St and k < t, cf. Dutta and Ray (1989).

Proposition 9 i) The FDR-allocation rule (which is indeed a symmetric allocation rule

satisfying the null player condition) is WPFP on the class of non-negative convex games,

however, ii) Neither the Shapley value nor the nucleolus is WPFP on non-negative convex

games.

Proof: For the first part consider a game (N, v), and let N be partitioned into subsets

S1, ..., Sm according to the description of the FDR-allocation rule in the previous section.

Then i ∈ S1 belongs to the coalition with the highest average worth, and φFDRi (vB) =

vB(S1)/|S1|. Since creating a partnership will not strictly increase the payoff of a coalition

but may decrease the payoff of certain coalitions, players in S1 can never strictly profit from

joining a partnership. Since no player belonging to S1 will form a partnership with players

outside S1 and no partnership among players in N\S1 can affect vB(S1), each player in of S1

is secured the payoff vB(S1)/|S1|.
The algorithm first allocates the worth to S1 and then considers the set of remaining

players N\S1. Thus, within the player set N\S1 the players in S2 will be allocated the

greatest worth among the remaining coalitions. Given this, the players of S2 could never

(strictly) profit from joining a partnership among the remaining players. This reasoning can

be applied to any Sk, k = 1, ..,m, in the partitioning of N . Since this holds for any v it can

be concluded that the FDR-allocation rule is WPFP.

For the second part, consider the (convex) game v defined by n = 3, v(N) = 3, v(1) =

1, v(2) = v(3) = 0, v(1, 2) = v(1, 3) = 2 and v(2, 3) = 1. Then φSh(v) = φnu(v) =
(
5
3
, 2
3
, 2
3

)
.

If a partnership is formed between players 2 and 3, the game changes to v(N) = 3, v(1) =

1, v(2) = v(3) = 0, v(1, 2) = v(1, 3) = v(2, 3) = 1. This implies φSh(vT ) =
(
4
3
, 5
6
, 5
6

)
, which

21



shows that φSh cannot be WPFP since φSh2 (v) = φSh3 (v) = 2
3
< 5

6
= φSh1 (vT ) = φSh2 (vT ).

Likewise, we get that φnu(vT ) =
(
6
4
, 3
4
, 3
4

)
from which we conclude that φnu cannot be WPFP

since φnu(v) = φnu(v) = 2
3
< 3

4
= φnu(vT ) = φnu(vT ). Again, similar examples can be

constructed for n > 3, by adding null players to the game. �
Since the FDR rule satisfies symmetry and the null player condition, it shows that Prop.

2 i) does not hold for the case of WPFP.

6 Stability of partnership structures

Until now we have considered the existence of PFP and/or PDP allocation rules on specific

classes of games as well as the properties of certain allocation rules. In this context we con-

sidered the decision of a group of players to form or dissolve a given partnership. However,

given a population where several disjoint partnerships may exist a related problem would be

to consider the incentives of any group of players (from the same or from different partner-

ships) to form a new partnership, possibly breaking up others in the process. In other words

we could consider the incentives of any group of players to change the partnership structure.

Consider a game v. Define any partition B = {T1, T2, ..., Tm} of N as a partnership

structure with m partnerships and note that we now consider an element of B with only

one member a partnership. The game vB is then defined by vB = (...(vT1)T2)...)Tm , and the

worth of a coalition S is vB(S) = v(
⋃
Tj⊆S Tj). This definition of the coalition worth is also

applicable to the case where different partnerships do not necessarily consist of disjoint sets of

players. As noted in Carreras (1996), the formation order of the partnerships does not matter.

Given a game v and an allocation rule φ, we say that a partnership structure B is stable, if

no set of players can profitably leave their respective partnerships and form new (possibly

trivial) partnerships. In this context, a change from one partnership structure (B) to another

(B′) is considered profitable for a set of players S if the payoff allocated to each player in the

set is strictly larger under the new partnership structure, that is, if φi(v
B′) > φi(v

B) for all

i ∈ S. Alternatively, one could apply a stronger notion of stability by considering a change

of partnership structure to be profitable for a set of players S whenever the total worth

allocated to S is greater under B′ than B. While the latter definition is in accordance with

the analysis of sections 3 and 4, in this section we nevertheless choose to consider its weaker

counterpart discussed in the previous section. First, this is the definition applied in other

papers where the stability of partnership structures – or alternatively, coalition structures

- have been analyzed, see e.g., Hart and Kurz (1983, 1984) and Segal (2003).7 Second,

7What we denote “a partnership” is in the terminology of Segal (2003) referred to as a special case of
“exclusion” or “exclusive integration”.
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while the previous analysis concerned only the group decision of whether or not to form

a partnership in a given game, the approach taken in the present section also considers an

individual’s incentives to leave an existing partnership and possibly join another. Concerning

such decisions, the strong version of stability may not be a satisfactory concept, as the

following example demonstrates.

Consider the game (N, v) defined by N = {1, 2, 3}, v(N) = 4, v(1, 2) = 3 and v(S) = 0

otherwise. Note that for the trivial partnership structure B = {{1}, {2}, {3}} we have that(
N, vB

)
= (N, v). In this game the FDR allocation becomes φFDR(vB) = (3

2
, 3
2
, 1). If a

partnership T = {1, 3} is created, the partnership structure changes to B′ = {{1, 3}, {2}},
and the game

(
N, vB

′)
is defined by vB

′
(N) = 4 and vB

′
(S) = 0 otherwise, implying that

φFDR(vB
′
) = (4

3
, 4
3
, 4
3
). Since the change from B to B′ is jointly profitable for the players

in the partnership, the trivial partnership structure cannot be (strongly) stable. However,

since φFDR1 (vB
′
) = 4

3
< 3

2
= φFDR1 (vB) player 1 as an individual was strictly better off under

B and will therefore have incentives to leave the partnership he just joined. The problem is

that when considering the strong version of stability we allow a player to form a partnership

even if he is individually worse off assuming that other members of the partnership will

be able to compensate him for joining. However, when considering his decision to leave the

partnership we only evaluate the payoff allocated to this player individually, according to the

allocation rule, and thus fail to take into account the possible compensation offered by other

partnership members (i.e., the redistribution of the joint profit). To avoid this problem, we

hereafter only consider the weaker notion of stability.

The definition of stability of partnership structures may also depend on what happens

when one player (or more) leaves a partnership that is, whether the entire partnership breaks

down or a partnership continues to exist among the remaining partners. In Hart and Kurz

(1983), this question leads to the definition of two distinct types of stability. For the extent

of this paper, we assume that in the case of some member(s) leaving a partnership the

remaining members will continue to cooperate. The following results, however, apply to

both settings.

Considering the stability of partnership structures, a relevant question is whether a stable

partnership structure always exists when employing a specific allocation rule. We find that

for the case of the Fujishige-Dutta-Ray allocation rule a stable partnership structure does

always exist. In fact, when using the FDR allocation rule the trivial partnership structure

is always stable for convex games.

Corollary 2 For the class of non-negative convex games, the trivial partnership structure

consisting of singletons is stable for any game (N, v) when the Fujishige-Dutta-Ray allocation
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rule is applied.

Proof: This follows directly from Prop. 8 i). �
For both the Shapley value and the nucleolus, examples of games where stable partnership

structures exist can be found. Consider, e.g., the example from Prop. 9 ii). For this game,

it can be shown that the partnership structure TB = {{1}, {2, 3}} is stable whether the

allocation is done by the Shapley value or the nucleolus.

However, for the Shapley value as well as the nucleolus there exist games for any n ≥ 3

such that no stable partnership structure exist, as shown below.

Proposition 10 For any n ≥ 3, there exist non-negative convex games such that no stable

partnership structure exists when the Shapley value φSh is applied.

Proof: For any given n ≥ 3, let the convex game v be defined as follows: v(N) = 2,

v(N\{i}) = 1 for all i 6= 1 and v(S) = 0 otherwise. Further, for any partnership structure

B = {T1, T2, ..., Tm} let TB denote the set that is the union of player 1 and all players in

some Ti that is not a singleton. Then it holds for all i ∈ TB that vB(N\{i}) = 0.

Recalling the definition of the Shapley value and noting the structure of the game v, it

is seen that the allocation to player i will equal

φShi (v) =
1

n
(v(N)− v(N\{i}) +

∑

S3i,|S|=n−1

1

n(n− 1)
(v(S)− v(S\{i})). (1)

This implies that the worth allocated to player i according to the Shapley value and a

partnership structure B will be: φShi (vB) = 1
n
∗2+ 1

n(n−1)
(
n− |TB|

)
for i ∈ TB and φShi (vB) =

1
n

+ 1
n(n−1)

(
n− |TB| − 1

)
for i 6∈ TB, where the first term in each expression reflects the

contribution made to the grand coalition, and the second term reflects the contribution

made to coalitions of size n− 1.

Now, consider any i 6∈ TB and let B′ denote some partnership structure such that i ∈
TB

′
(i.e., where i belongs to a non-trivial partnership). Then a change in the partnership

structure from B to B′ would induce the following change in the Shapley value of player i:

∆φShi (vB
′
, vB) = φShi (vB

′
) − φShi (vB) = 1

n
− ((|TB′| − |TB|) − 1) 1

n(n−1) > 0 where (|TB′| −
|TB|) reflects the change in the number of players belonging to a partnership. The change

∆φShi (vB
′
, vB) will always be positive, since |TB′ |−|TB| ≤ n−1, and a player currently not in

a partnership will therefore always have incentives to join one. Thus, if at least two players

(other than player 1) are not in a (non-trivial) partnership, they have incentives to form one.

On the other hand, any player i ∈ TB, TB′ is negatively affected when more players join

partnerships. To see this note that in this case ∆φShi (vB
′
, vB) = −(|TB′ | − |TB|)) 1

n(n−1) is

24



negative whenever |TB′ | > |TB|. A player in TB will therefore always prefer that fewer players

belong to non-trivial partnerships. This can be interpreted as an incentive to exclude other

players from partnerships or break up existing partnerships and form new and smaller ones.

Therefore, if partnerships with more than two players exists, there will always be incentives

to exclude one player. If a partnership with two players (other than player 1) exists, player

1 can benefit from forming a partnership with just one of the two players, and they will both

have incentives to break up the partnership and exclude their former partner. However, if

player 1 is in a two-player partnership he will have incentives to dissolve it. �
Since the result shows non-existence of stability in the weak sense it also applies to the

case where the stronger version of stability is invoked.

Proposition 11 For any n ≥ 3, there exist non-negative convex games such that no stable

partnership structure exists when the nucleolus φnu is applied.

Proof: For any given n ≥ 3, let the convex game v be defined as follows: v(N) = 2,

v(N\{i}) = n
n+2

v(N) = 2n
n+2

for all i 6= 1 and v(S) = 0 otherwise. Again, let B =

{T1, T2, ..., Tm} be a partnership structure, and let TB denote the union of player 1 and

the set of all players in some Ti that is not a singleton. Then for any n and any B the

allocation according to the nucleolus will be:

φnu(vB) =
2− 2n

n+2

|TB| +
2

n+ 2
for all i ∈ TB, and (2)

φnu(vB) =
2

n+ 2
for all i /∈ TB. (3)

First, to show this is true let

eij = max
S
i∈S
j /∈S

(v(S)−
∑

i∈S
xi)

be the maximum excess over coalitions that contain i but not j where x is the vector of

allocations. Then since the nucleolus coincides with the prekernel on the domain of convex

games it suffices to show that eij = eji for all i, j with i 6= j, cf. Maschler, Peleg and Shapley

(1971).

For any i /∈ TB it holds that v(i) − xi = − 2
n+2

while v(i) − xi < − 2
n+2

for all i ∈ TB.

Further, for all larger coalitions S where v(S) = 0 the excess must be even smaller. Thus,

the only coalitions left to consider are those coalitions where v(S) > 0. For all coalitions
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S = N \ {i} where i /∈ TB we get:

v(S)−
∑

i∈S
xi =

2n

n+ 2
−
(

2− 2n

n+ 2
+ |TB| 2

n+ 2
+ (n− |TB| − 1)

2

n+ 2

)

= − 2

n+ 2
.

Since all players in TB are symmetric, and all players not in TB are symmetric, we conclude

that eij = eji for all i, j, i 6= j. Specifically, for any i /∈ TB, j ∈ N, j 6= i we have eij = − 2
n+2

and for i ∈ TB, j /∈ TB we have eij = − 2
n+2

while eij = −φnu(vB) for all i ∈ TB, j ∈ TB, j 6= i.

The above allocation therefore equals the nucleolus.

Now, since the worth allocated to a player in TB always exceeds the worth allocated

to players not in TB (no matter the number of players in TB) any two players not in a

partnership will always have incentives to form one. On the other hand, considering two

different partnership structures TB, TB
′

where |TB′ | > |TB| it is seen that for a player i ∈
TB, TB

′
we have φnu(vB

′
) < φnu(vB). Therefore, if partnerships with more than two players

exists, there will always be incentives for the members to exclude one player. Again, if

partnerships with two players (other than player 1) exist, player 1 can benefit from forming a

partnership with either one of the two, since both have incentives to break up the partnership

and exclude their former partner. However, if player 1 is in a two-player partnership he will

have incentives to dissolve it. �

7 Concluding remarks

For several classes of games we have considered the existence of partnership formation-proof

and partnership dissolution-proof allocation rules. Such allocation rules will be immune to

manipulation by players forming or dissolving partnerships. We showed that if allocations

rules must satisfy symmetry and the null player condition then for some classes of games

neither partnership formation-proof nor partnership dissolution-proof allocation rules exist,

while dissolution-proof allocation rules that satisfy these properties do exist for other classes

of games.

We considered in particular three well-known allocation rules: the Shapley value, the

nucleolus and the Fujishige-Dutta-Ray rule. The first two are classical solution concepts that

are widely used and studied in the literature while especially in recent years the egalitarian

FDR-rule has attracted considerable attention.

We have focused here on non-negative games that are either convex or satisfy milder
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regularity conditions such a monotonicity, superadditivity and balancedness. Important

cooperative decision problems, such a classes of common pool games, oligopoly games, pro-

duction games and cost sharing situations, are indeed both non-negative and convex8. Thus,

many cooperative game situations fall within the classes of games considered here.

When considering the incentives of players to form partnerships, a key distinction is

whether partnerships are likely to form when every individual member is better off or simply

when members are jointly better off. This leads to our distinction between partnership

formation/dissolution-proofness and the weak versions of the concepts. The appropriate

concept depends on assumptions of redistribution possibilities between members. These

may vary greatly between different game situations and with the nature of the payoff (e.g.

money, publicity, seats in a parliament, individual utility). For instance, if partnerships

involve private firms establishing joint ownerships or a couple getting married, redistribution

between the partners is likely to take place unhindered. In contrast, in game situations where

players are, for example, different regions in a country or different departments of a public

institution allocations are likely to be determined by a fixed rule, and the possibilities for

internal redistributions between players severely limited.
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Abstract

The core cover of a TU-game is a superset of the core and equals the convex

hull of the larginal vectors. A larginal vector corresponds to an ordering of the

players and describes the efficient payoff vector giving the first players in the order

their utopia demand as long as it is still possible to assign the remaining players at

least their minimum right. A game is called compromise stable if the core is equal

to the core cover, i.e., the core is equal to the convex hull of the larginal vectors.

In this paper we describe two ways of characterizing sets of larginal vectors that

satisfy the condition that if every larginal vector of the set is a core element,

then the game is compromise stable. The first characterization of these sets is

based on a neighbor argument on orders of the players. The second one uses

combinatorial and matching arguments and leads to a complete characterization

of these sets. We find characterizing sets of minimum cardinality, a closed formula

for the minimum number of orders in these sets, and a partition of the set of all

orders in which each element of the partition is a minimum characterizing set.
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1 Introduction

The core, introduced by Gillies (1953), is a well-established solution concept for TU-

games and equals the set of efficient allocations that satisfy the property that no sub-

coalition has an incentive to leave the grand coalition and act on their own. The

Weber set (Weber (1988)) and the core cover (Tijs and Lipperts (1982)) are well-known

supersets of the core.

The Weber set of a TU-game is the convex hull of the marginal vectors. A marginal

vector corresponds to an order of the players and is the efficient allocation vector that

assigns to every player his marginal contribution to the coalition consisting of players

preceding him in the order. Shapley (1971) and Ichiisi (1981) showed that a TU-game

is convex if and only if the core is equal to the Weber set, i.e., if the core is the convex

hull of the marginal vectors.

A set of marginal vectors characterizes convexity if it satisfies the condition that

the game is convex whenever all marginal vectors of this set are core elements. Rafels

and Ybern (1995) showed that the sets consisting of either all even or all odd marginal

vectors are sets that characterize convexity. Van Velzen et al. (2002) improved this

result and found such characterizing sets with a smaller cardinality by using a neighbor

argument showing that if two consecutive neighbors of a marginal vector are in the

core, so is the marginal vector itself. Using combinatorial arguments, Van Velzen et al.

(2004) derive the minimum cardinality of sets that characterize convexity.

Quant et al. (2005) showed that the core cover equals the convex hull of the larginal

vectors. A larginal vector corresponds to an ordering of the players and equals the

efficient payoff vector giving the first players in the order their utopia demand as long

as it is still possible to assign the remaining players at least their minimum right. A

TU-game is compromise stable if and only if the core cover equals the core, i.e., if

the core is the convex hull of the larginal vectors. The interest in compromise stable

games is two-fold. In many TU-games the nucleolus (Schmeidler (1969)) is hard or

even impossible to compute, but for the class of compromise stable games, Quant et al.

(2005) provide a closed formula for the nucleolus. Moreover, the class of compromise

stable games contains several interesting classes of games such as clan games (Potters et

al. (1989)), big boss games (Muto et al. (1989)), 1-convex games (Driessen(1988)) and

bankruptcy games (Curiel et al. (1988)). In fact, the class of bankruptcy games is the

intersection between the classes of convex and compromise stable games. This means

that any game that is both convex and compromise stable is strategically equivalent to
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a bankruptcy game.

This paper is in the spirit of Van Velzen et al. (2002, 2004). We study sets of larginal

vectors that characterize compromise stability. A set of larginal vectors characterizes

compromise stability if it satisfies the condition that a game is compromise stable

whenever all larginal vectors of this set are core elements. To do so, we follow two

different approaches.

First, we use the same neighbor argument as Van Velzen et al. (2002) to provide an

upper bound on the cardinality of characterizing sets. Second, by using combinatorial

arguments and results on matching in bipartite graphs, we are able to identify the

minimum cardinality of characterizing sets and construct a procedure for finding such

sets. Furthermore, we show that the set of all orders can be partitioned into disjoint

characterizing sets of minimum cardinality.

While the results in this paper are similar to those of van Velzen et al. (2002,2004),

the difference in the structure of the larginal and the marginal vectors proves to sig-

nificantly change the reasoning in the proofs. In the first part of the paper, the proofs

differ due to the differences between marginal and larginal vectors while the results

turn out to be the same. In the second part of the paper, the different structure of

the vectors leads to a new approach based on the combination of a combinatorial and

graph theoretical argument. It leads also to different results on the lower bound on

the minimum cardinality of characterizing sets, and we find the minimum cardinality

of characterizing sets to be lower for compromise stability than for convexity.

The paper is organized as follows: Section 2 presents some notation. Section 3

contains the main body of the paper where we start by using the neighbor argument

to compute an upper bound on the cardinality of characterizing sets in section 3.1,

while the minimum cardinality of characterizing sets is derived in section 3.2. Section

4 describes the partition of the orders into disjoint characterizing sets of minimum

cardinality.

2 Preliminaries

A transferable utility game (TU-game) is a pair (N, v), where N = {1, . . . , n}, the grand

coalition, is a finite set of players and v : 2N → R is a function that assigns to every

coalition S ⊆ N a worth v(S), with v(∅) = 0. We often refer to a game as v rather than

(N, v) when no confusion can arise. The set of transferable utility games with player
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set N is denoted by TUN .

For k ∈ {1, . . . , n}, Sk denotes the set of all coalitions with cardinality k, i.e.,

Sk = {S ∈ 2N | |S| = k}.
Let N be a finite set of players. An order is a bijective function σ : {1, ..., |N |} → N .

The set of all orders is denoted Π(N), and σ(h) denotes the player at position h in the

order σ. An order σh denotes the h’th neighbor of σ which is obtained by switching

players at positions h and (h+1) in σ. Thus, σh = (σ(1) ... σ(h−1) σ(h+1) σ(h) σ(h+2)

... σ(n)). As an example let N = {1, 2, 3, 4}. If σ = (1234) we get σ1 = (2134),

σ2 = (1324), and σ3 = (1243).

Let the identity order e be the order such that e(i) = i for all i ∈ N . Then an even

order is an order that can be obtained from e by switching positions of neighboring

players an even number of times. An order that is not even is called odd. The neighbor

of an odd order is even and vice versa.

Let σ ∈ Π(N) be an order and let k ∈ {1, . . . , n}. Then the k-head of σ refers to

the first k positions of σ and the k-tail of σ refer to the last k positions of σ. Further,

denote the set of players belonging to the k-head of σ by Hσ
k = {σ(1), . . . , σ(k)}, hence

Hσ
l ⊆ Hσ

k if l ≤ k. Likewise, T σk = {σ(n− k + 1), . . . , σ(n)} denotes the set of players

belonging to the k-tail of σ, and T σl ⊆ T σk if l ≤ k.

The core of a game v is defined by

C(v) = {x ∈ RN |
n∑

i=1

xi = v(N),
∑

i∈S
xi ≥ v(S) for all S ⊆ N}

and describes the set of efficient allocation vectors such that no coalition has an incentive

to split off from the grand coalition. The core of a game may be empty.

The utopia demand of player i ∈ N is given by

Mi(v) = v(N)− v(N\{i})

and describes the maximum amount player i can achieve from cooperation, since the

coalition consisting of the rest of the players will never settle for less than v(N\{i}).
Player i can gather a coalition by promising the rest of the players in the coalition

their utopia demand. The maximum amount i can obtain in this way from some
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coalition is denoted the minimum right of player i:

mi(v) = max
S⊆N :i∈S

{v(S)−
∑

j∈S\{i}
Mj(v)}.

The core cover of a game v equals

CC(v) = {x ∈ RN |
n∑

i=1

xi = v(N),m(v) ≤ x ≤M(v)}

and thus gives the set of all efficient allocation vectors such that players receive at least

their minimum right but no more than their utopia demand. Observe that the core is

always a subset of the core cover (cf. Tijs and Lipperts (1982)). A game v ∈ TUN is said

to be compromise admissible if m(v) ≤ M(v) and
∑

i∈N mi(v) ≤ v(N) ≤∑i∈N Mi(v),

that is, if the core cover is non-empty. The class of compromise admissible games with

player set N is denoted CAN .

The core cover equals the convex hull of the larginal vectors of a game v ∈ CAN .

Let v ∈ CAN and σ ∈ Π(N). The larginal vector lσ(v) is defined by

lσσ(k)(v) =





Mσ(k)(v) if
∑k

j=1Mσ(j)(v) +
∑n

j=k+1mσ(j)(v) ≤ v(N),

mσ(k)(v) if
∑k−1

j=1 Mσ(j)(v) +
∑n

j=kmσ(j)(v) ≥ v(N),

v(N)−∑k−1
j=1 Mσ(j)(v)−∑n

j=k+1mσ(j)(v) otherwise.

for each k ∈ {1, ..., n}. For each order σ ∈ Π(N) the larginal vector lσ(v) is the efficient

payoff vector that assigns the utopia demand to the first players in σ as long as it is

still possible to give the remaining players their minimum rights. The first player that

does not receive his utopia demand is called the pivot player. A larginal lσ(v) is called

even (odd) if the corresponding order σ is even (odd). Furthermore, lσh(v) is a said to

be a neighbor of lσ(v), whenever σh is a neighbor of σ.

The following theorem is a straightforward consequence of the results of Quant et

al. (2005).

Theorem 2.1. Let v ∈ CAN . Then the following statements are equivalent.

(i) v is compromise stable,

(ii) C(v) = CC(v),

(iii) C(v) = conv{lσ(v)|σ ∈ Π(N)},
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(iv) v(S) ≤ max
{∑

i∈Smi(v), v(N)−∑i∈N\SMi(v)
}

for all S ⊆ N.

3 Characterizing compromise stable games using

larginal vectors

In this section, we describe specific sets of larginals satisfying the condition that a

game is compromise stable whenever all larginals of the set are core elements. While

this is known to be true for the full set of larginals (see Theorem 2.1) we can use the

specific structure of the larginal vectors to identify much smaller sets of larginals that

characterize compromise stability. We will describe such specific sets of larginals using

two different approaches. First, we use a neighbor argument to show that smaller sets

characterizing compromise stability can be found. Next, we combine combinatorial ar-

guments and graph theoretical results, in particular a matching argument, to construct

characterizing sets of minimum cardinality.

3.1 The neighbor argument

As a first approach, we consider the neighbor argument of Van Velzen et al. (2002) and

show that this argument can also be applied in the context of compromise stable games

despite the differences between the marginal and larginal vectors. Thus, we show that

if two consecutive neighbors of a larginal are in the core, then the larginal itself belongs

to the core. This result in turn implies that if all even larginals or all odd larginals are

in the core, then the game is compromise stable. While the results in the two cases are

parallel, the argumentation in the proofs depends on the structure of the marginal and

larginal vectors and therefore differs.

Lemma 3.1. Let v ∈ CAN , n ≥ 3, and σ ∈ Π(N). Suppose there is an h ∈ {1, ..., n−2}
such that lσh(v), lσh+1(v) ∈ C(v). Then lσ(v) ∈ C(v).

Proof. Since lσ(v) is by definition efficient, we only have to show that
∑

i∈S l
σ
i (v) ≥ v(S)

for all S ⊂ N . We distinguish between three cases depending on the position of the

pivot player.

Case 1. The pivot player in lσ(v) is at position j ∈ {1, . . . , h}. Therefore, lσi (v) =

36



l
σh+1

i (v) for all i ∈ N , and

∑

i∈S
lσi (v) =

∑

i∈S
l
σh+1

i (v) ≥ v(S)

for all S ⊂ N , where the inequality holds since lσh+1(v) ∈ C(v).

Case 2. The pivot player in lσ(v) is at position j ∈ {h + 2, . . . , n}. It follows that

lσi (v) = lσhi (v) for all i ∈ N , and therefore

∑

i∈S
lσi (v) =

∑

i∈S
lσhi (v) ≥ v(S)

for all S ⊂ N , where the inequality holds since lσh(v) ∈ C(v).

Case 3. The pivot player in lσ(v) is at position h + 1. Here, we distinguish between

two cases depending on whether the pivot player σ(h+ 1) belongs to S or not.

Case 3a. σ(h+ 1) ∈ S. Since σ(h+ 1) is the pivot player it follows from the definition

of the larginal vector that

lσσ(h+1)(v) + lσσ(h+2)(v) = l
σh+1

σ(h+1)(v) + l
σh+1

σ(h+2)(v)

and that lσi (v) = l
σh+1

i (v) for all i ∈ N \ {σ(h+ 1), σ(h+ 2)}. Furthermore, lσσ(h+1)(v) ≥
l
σh+1

σ(h+1)(v) implying that

∑

i∈S
lσi (v) ≥

∑

i∈S
l
σh+1

i (v) ≥ v(S),

where the first inequality is an equality if σ(h+ 2) ∈ S.

Case 3b. σ(h + 1) 6∈ S. Then since lσσ(h)(v) ≥ lσhσ(h)(v) and lσi (v) = lσhi (v) for every

i ∈ N \ {σ(h), σ(h+ 1)} we have

∑

i∈S
lσi (v) ≥

∑

i∈S
lσhi (v) ≥ v(S).

Combining all three cases yields lσ(v) ∈ C(v).

The above lemma states that if two consecutive neighbors of a larginal vector are

in the core so is the larginal vector itself. This implies in particular that if all odd or

all even larginals of a game belong to the core, then all larginals belong to the core, so
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the following theorem is a straightforward consequence of Lemma 3.1.

Theorem 3.1. Let v ∈ TUN , n ≥ 3. Then the following statements are equivalent:

1. v is compromise stable,

2. lσ(v) ∈ C(v) for all odd σ ∈ Π(N),

3. lσ(v) ∈ C(v) for all even σ ∈ Π(N).

This result is analogous to that of Rafels and Ybern (1995) for convex games. In fact,

we can use Lemma 3.1 to find smaller sets that imply compromise stability whenever

all the larginals of the set are in the core.

If A ⊆ Π(N) is a set of orders such that the corresponding larginals belong to the

core, then this set can be expanded by applying Lemma 3.1 and adding to the set any

order that has two consecutive neighbors in A. Consequently, all larginals corresponding

to the orders of this new set are core elements. By repeatedly applying this neighbor

argument, we ultimately arrive at a set that can not be expanded further. If this

resulting set is equal to Π(N) then the original set A is said to be neighbor-complete

or n-complete. This indicates that if in some game all larginals corresponding to the

orders of an n-complete set are core elements, then all larginals of the game are core

elements, and hence, the game is compromise stable.

Example 3.1. Let N = {1, 2, 3, 4} and consider the set of orders A = {(1234), (1342),

(1423), (2314), (2431), (2413), (3124), (3241), (3412), (4132), (4213), (4231)} consisting of

both odd and even orders. Then A is an n-complete set. Indeed, let A′ = A ∪
{(1243), (1324), (1432), (2134), (2341), (3143), (3214), (3421), (4123), (4312)} where A′

arises from A by adding to the set all orders with two consecutive neighbors in A.

Observe that A′ 6= Π(N). Next, A′′ = Π(N) where A′′ is obtained from A′ by

adding to the set all orders with two consecutive neighbors in A′. Consider the set

B = Π(N)\{(2143), (2413)} and note that B is not an n-complete set. Since (2143) is

the 2nd neighbor of (2413), and vice versa, none of the two can have two consecutive

neighbors in B. Therefore, B cannot be expanded to Π(N) by applying the neighbor

argument, and it is not an n-complete set. 4

In general, the sets of all odd or all even orders, as well as any set containing all odd

(or all even) orders, are examples of n-complete sets. Van Velzen et al. (2002) derive

upper and lower bounds for the minimum cardinality of n-complete sets. These results
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are based on the properties of orders and the neighbor argument alone, and they can

therefore be directly applied to our setting. This is true since Lemma 3.1 of this paper

is identical to Lemma 1 (pp.325) of Van Velzen et al. (2002), except that the first is

stated with respect to larginal vectors and the latter with respect to marginal vectors.

For a game with n players let Qn = min{|A| : A ⊆ Π(N) is n-complete} denote the

minimum cardinality of a n-complete set. Van Velzen et al. (2002) show that the lower

bound for Qn is: n! 1

2
n−2
2

if n is even and n! 1

2
n−1
2

if n is odd. Table 1 summarizes the

results for n = 3, ..., 9. Two numbers in brackets represent a lower and upper bound

respectively. Due to Lemma 3.1 the results from the table below carry over to the

present setting.

n 3 4 5 6 7 8 9
n! 6 24 120 720 5040 40320 362880
Qn 3 12 30 180 [630,1260] 5040 [22680,45360]

Table 1: Minimum cardinality of n-complete sets

In the following section, we no longer make use of the neighbor argument but take

a different approach that enables us to find characterizing sets of lower cardinality.

3.2 The cardinality of minimum characterizing sets

In this subsection, we present a necessary and sufficient condition for a set of orders to

characterize compromise stability. Based on this condition, we develop a procedure for

constructing characterizing sets of minimum cardinality.

We start by introducing the notion of compromise-complete (or c-complete) sets. A

set A ⊆ Π(N) is called c-complete if every game (N, v) ∈ CAN for which lσ(v) ∈ C(v)

for every σ ∈ A is compromise stable. In the preceding section several examples of

c-complete sets were encountered. The full set of orders Π(N) is a c-complete set, and

Theorem 3.1 shows that the sets of all odd and all even orders are c-complete sets.

In fact, all n-complete sets are also c-complete. The rest of this section explores the

structure and minimum cardinality of c-complete sets.

First, we introduce a necessary and sufficient condition for a set A ⊆ Π(N) to

be c-complete. Let P (N\S, S) denote the set of orders that begins with the players

of N\S and ends with the players of S, i.e., σ ∈ P (N\S, S) if σ(i) ∈ S for all i ∈
{n− |S|+ 1, . . . , n}.
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Lemma 3.2. A set A ⊆ Π(N) is c-complete if and only if

A ∩ P (N\S, S) 6= ∅ for all S ⊂ N with 1 < |S| < n− 1. (3.1)

Proof. First we prove the ‘if’ part. Let A ⊂ N be such that (3.1) holds and let

(N, v) ∈ CAN . Assume that lσ(v) ∈ C(v) for all σ ∈ A. We will show that A is

c-complete by showing that (N, v) is compromise stable. To do so, it is sufficient to

show that the inequality in Theorem 2.1 (iv) is satisfied for all S. Observe that if

S = N,S = N\{i} or S = {i} with i ∈ N , then this inequality is satisfied.

Let S ∈ 2N with 1 < |S| < n − 1. Take σ ∈ A ∩ P (N\S, S). Considering the

corresponding larginal, lσ(v), we distinguish between two cases.

Case 1. The pivot player of lσ(v) is in N\S. This implies
∑

i∈S l
σ
i (v) =

∑
i∈Smi(v),

and thus,

v(S) ≤
∑

i∈S
lσi (v) =

∑

i∈S
mi(v), (3.2)

where the inequality holds since lσ(v) ∈ C(v).

Case 2. The pivot player of lσ(v) is in S. This implies lσi (v) = Mi(v) for all i ∈ N\S.

Therefore,

v(S) ≤
∑

i∈S
lσi (v) = v(N)−

∑

i∈N\S
lσi (v) = v(N)−

∑

i∈N\S
Mi(v), (3.3)

where the inequality follows since lσi (v) ∈ C(v).

Combining (3.2) and (3.3) yields that

v(S) ≤ max




∑

i∈S
mi(v), v(N)−

∑

i∈N\S
Mi(v)



 .

We conclude that v is compromise stable, and therefore, A is c-complete.

Second, we prove the ‘only if’ part. We show that A is not c-complete if (3.1) is not

satisfied by providing a game such that all larginals corresponding to orders in A are

core elements while the game is not compromise stable.

Assume that A does not fulfill (3.1). Then there exists a coalition S∗ ⊂ N, 1 <
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|S∗| < n− 1 such that A ∩ P (N\S∗, S∗) = ∅. Define the game (N, v) by:

v(T ) =





1 if T = S∗,

0 if |T | ≤ |S∗|, T 6= S∗,

|T | − |S∗| if |T | > |S∗|.
(3.4)

Note, that the utopia demand and minimum right will be Mi(v) = 1 and mi(v) = 0

respectively for all i ∈ N . Then, for each σ ∈ Π(N) the larginal lσ(v) becomes

lσσ(h)(v) =

{
1 for all h ∈ {1, . . . , n− |S∗|}
0 for all h ∈ {n− |S∗|+ 1, . . . , n}.

(3.5)

First, we show that lσ(v) ∈ C(v) for all σ ∈ A.

Let σ ∈ A. We have to show that

∑

i∈T
lσi (v) ≥ v(T ) (3.6)

for all T ∈ 2N\{∅, N}. Let T ∈ 2N\{∅, N}.
If |T | ≤ |S∗|, T 6= S∗, then v(T ) = 0, and since lσi (v) ≥ 0 for all i ∈ N , (3.6) follows

immediately.

If T = S∗, then v(T ) = 1, and since σ /∈ P (N\S∗, S∗) at least one player in T is at

position h, with h ∈ {1, . . . , n− |S∗|}, and again (3.6) holds.

If |T | > |S∗|, then v(T ) = |T |− |S∗|, and by (3.5), (3.6) holds. Hence, lσ(v) ∈ C(v).

Second, we show that v is not compromise stable. Let σ ∈ P (N\S∗, S∗). Then

∑

i∈S∗
lσi (v) = 0 < v(S∗) = 1,

hence lσ(v) /∈ C(v) and v is not compromise stable. Thus A is not c-complete.

According to Lemma 3.2, a set A of orders can only be c-complete if for each S ⊂ N

with 1 < |S| < n− 1 there exists an order σ ∈ A such that T σ|S| = S. As an illustration,

we consider the following example.

Example 3.2. Let N = {1, 2, 3, 4} and let A,B ⊂ Π(N). An example of a c-complete

set is A = {1234, 1324, 1423, 2314, 2413, 3412} since every coalition of size 2 is contained

in the 2-tail of some order in A. Thus, A is c-complete, according to (3.1). However,

much larger sets of orders may not be c-complete. Consider for example the set B =
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Π(N) \ {3412, 3421, 4312, 4321}. This set contains 20 orders, but it cannot be a c-

complete set, since the coalition {1, 2} is not contained in the 2-tail of any order in B.

4
The above example illustrates that even large sets of orders with corresponding

larginals in the core may not be c-complete. An upper bound on the cardinality of sets

that are not c-complete is given in the proposition below.

Proposition 3.1. Let A ⊆ Π(N) be a set of orders with |A| > n! − dn
2
e!(n − dn

2
e)!.

Then A is c-complete.

Proof. For any set of players S ∈ Sk we have |P (N\S, S)| = (n − k)!k! , i.e., there

exist (n − k)!k! different orders σ ∈ Π(N) such that S = T σk . Since |P (N\S, S)| ≥
dn
2
e!(n − dn

2
e)! for any S ⊂ N , it holds that A ∩ P (N\S, S) 6= ∅ for all S ⊆ N . Thus,

A is c-complete.

Proposition 3.1 gives an upper bound for the cardinality of a c-complete set. Next,

we focus on the minimum cardinality of a c-complete set of orders which is defined as

follows:

Ln = min{|A| : A ⊆ Π(N) is c-complete}.

From Lemma 3.2 follows immediately the lower bound for the minimum cardinality:

Ln ≥
(
n

dn
2
e

)
(3.7)

In order to determine the minimum cardinality Ln, we identify the smallest possible

set of orders A, such that A∩P (N\S, S) 6= ∅ for all S ⊂ N . A c-complete set can easily

be created by choosing an order from P (N\S, S) for each S, resulting in a cardinality

of
∑n−2

k=2

(
n
k

)
. However, instead of picking for each S a new order where S is contained

in the tail, we can make use of the fact that the k-tail of any order σ ∈ A also contains

sets of smaller sizes. The final part of this section is devoted to finding the minimum

cardinality of c-complete sets and a procedure for creating c-complete sets of minimum

cardinality. Before we proceed, some intermediate observations are stated. The proofs

are trivial and omitted.

The first lemma states that given an order σ ∈ Π(N) rearranging entries within the

k-tail of σ will not affect the set of players in the k-tail.

Lemma 3.3. Let k ∈ {1, . . . , n−1} and let σ, τ ∈ Π(N) be orders such that σ(i) = τ(i)

for all i ∈ {1, . . . , n− k}. Then T σk = T τk .
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The second lemma states the observation that whenever every subset of size k is

contained in the k-tail of some order in a set A ⊆ Π(N) then every subset of size n− k
will be contained in the (n− k)-head of some order in A and vice versa.

Lemma 3.4. Let A ⊆ Π(N) be a set of orders and let k ∈ {1, . . . , n − 1}. For each

S ∈ Sk there exists a σ ∈ A such that T σk = S if and only if for each S ′ ∈ Sn−k there

exists a τ ∈ A such that Hτ
n−k = S ′.

Observe that if A satisfies condition (3.1), this is equivalent to saying that for each

k ∈ {2, . . . , n− 2} and for each S ∈ Sk there exists a σ ∈ A such that T σk = S. Then,

according to Lemma 3.4 there exists also for each k ∈ {2, . . . , n−2} and for each S ∈ Sk
a σ ∈ A such that Hσ

k = S.

The following example illustrates lemma 3.4.

Example 3.3. Let N = {1, 2, 3, 4, 5}. Then |S3| = 10. For each S ∈ S3 choose a

σ such that T σ3 = S. Ten such orders are listed below. A vertical line separates the

2-heads from the 3-tails.

45|123 35|124 34|125 25|134 24|135

23|145 15|234 14|235 13|245 12|345

Observe that for each S ∈ S3 there exists a σ such that T σ3 = S and for each S ∈ S2
there exists a σ such that Hσ

2 = S. 4

Next, we describe a procedure for generating c-complete sets. The key element of

this procedure is an iterative step starting from a set of orders where every subset of

size k is contained in a k-tail. By rearranging the entries within the k-tails, a new set

of orders is created where, besides every subset of size k being contained in a k-tail,

also every subset of size k − 1 is contained in the (k − 1)-tail of some order in this set.

We determine the right positions of the players in the tails by describing the problem

of rearranging tails as a matching problem. We construct suitable bipartite graphs

representing the problem and change the orders according to maximum matchings in

these specific graphs. Before we formally introduce the procedure, we provide some

notation and results from graph theory.

A graph G is a pair (V,E) where V is a non-empty, finite set of vertices and E is a

set of pairs of vertices called edges. For an edge {a, b} the vertices a, b are said to be

the endpoints of the edge. The edge {a, b} is said to be incident to each of the vertices

a and b, and the two vertices are said to be adjacent. The degree of a vertex w is equal
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to the number of edges incident to w. The maximum degree, ∆(G), of a graph equals

the largest degree of a vertex in the graph.

A bipartite graph G(V1, V2, E) is a graph with vertex set V = V1 ∪ V2, V1 ∩ V2 = ∅
and a set of edges E, where every edge in E has one endpoint in V1 and one in V2. A

bipartite graph is said to be k-regular if the degree of all vertices in V equals k, and

it is said to be (k, l)-semiregular if the degree of all vertices in V1 and V2 is k and l

respectively.

A subset M of E is called a matching in G if no edges in M are incident to the

same vertex. A vertex w is said to be covered under M if there is an edge in M that is

incident to w.

Consider a set of orders, A, where for any S ∈ Sk there exists an order σ such that

T σk = S. We now show that it is always possible to modify the k-tails of the orders in

A to obtain a new set A′ where, not only does there exist for every S ∈ Sk an order

σ ∈ A′ such that T σk = S, there also exists for every S ∈ Sk−1 an order σ′ ∈ A′ such

that T σ
′

k−1 = S. To do so, we first create a graph in which each coalition of size k and

k − 1 is represented by a unique node.

For some n ≥ 3 and k ≤ dn
2
e, let G(V1, V2, E) be a graph with vertex set V = V1∪V2,

V1 ∩ V2 = ∅. Let |V1| =
(
n
k

)
and define the map Sk : V1 → Sk that assigns to each

vertex of V1 a different coalition of size k. Let |V2| =
(
n
k−1
)
, and define the map

Sk−1 : V2 → Sk−1 that assigns to each vertex of V2 a different coalition of size k−1. Let

w1 ∈ V1 and w2 ∈ V2 be adjacent if and only if Sk−1(w2) ⊂ Sk(w1). Then two nodes

within V1 (or V2) will never be adjacent and G(V1, V2, E) is thus a bipartite graph.

Further, every vertex in V1 has degree k, while every vertex in V2 has degree n− k+ 1.

Hence, G is a (k, n− k + 1)-semiregular graph. Observe that n− k + 1 ≥ k.

Example 3.4. Let N = {1, 2, 3, 4, 5}. If k = 3, we have |V1| = |V2| = 10, and each

vertex in V has degree 3, see Figure 1. If we consider instead the graph for k = 2, we

see that |V1| = 10 > 5 = |V2|, and every vertex in V1 has degree 2 while every vertex in

V2 has degree 4, see Figure 2. 4

In the graph G(V1, V2, E), a matching covering every node in V2 can be used as a

basis for rearranging the k-tails of a set of orders that contains all coalitions of Sk such

that every subset of size k − 1 is contained in one of the (k − 1)-tails of the set. The

existence of such a matching is straightforward (cf. Berge (1973)).

Next, it is shown how such a matching can be used to determine a proper way of

arranging the players within the tails.
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Figure 1: G(V1, V2, E) for n = 5, k = 3

t t t t t t t t t t

t t t t t

V1: 12 13 14 15 23 24 25 34 35 45

V2: 1 2 3 4 5

A
A
A
A
A
A
A
A
A
A

�
�
�
�
�
�
�
�
�
�

S
S
S
S
S
S
S
S
S
S

@
@
@
@
@
@
@
@
@
@

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

c
c
c
c
c
c
c
c
c
c
c
cc

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

C
C
C
C
C
C
C
C
C
C

�
�
�

�
�
�

�
�
�

�

A
A
A
A
A
A
A
A
A
A

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�

�
�
�

�
�
�

�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 2: G(V1, V2, E) for n = 5, k = 2

Lemma 3.5. Let k ∈ {1, . . . , dn
2
e} and let A1, with |A1| =

(
n
k

)
, be a set of orders such

that for any S ∈ Sk there exists a σ ∈ A1 with T σk = S. Then there exists a set of

orders A2 that satisfies the following three properties:

(i) for every σ in A1 there exists a τ ∈ A2 such that τ(h) = σ(h) for all h ∈
{1, . . . , n− k},

(ii) for all S ∈ Sk−1 there exists a τ ∈ A2 such that T τk−1 = S,

(iii) |A1| = |A2|.

Proof. Consider the graphG(V1, V2, E). LetM be a matching covering V2 inG(V1, V2, E).

Let {w1, w2} be an edge in M such that w1 ∈ V1 and w2 ∈ V1. Take σ ∈ A1 such that

T σk = Sk(w1). Consider Sk−1(w2). If T σk−1 = Sk−1(w2), then define τ = σ. Otherwise,
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there exists a j such that σ(j) = Sk(w1)\Sk−1(w2). Now define τ as follows:

τ(h) = σ(h) if h ∈ {1, . . . , n− k} ∪ {j + 1, . . . , n},
τ(h) = σ(j) if h = n− k + 1,

τ(h) = σ(h− 1) if h ∈ {n− k + 2, . . . , j}.

Let A2 be the set that arises by changing each σ ∈ A1 as above. Then A2 satisfies

properties (i), (ii) and (iii).

Note that Lemma 3.5 can also be stated in term of heads instead of tails and similarly

proven. The following example illustrates Lemma 3.5.

Example 3.5. Let N = {1, 2, 3, 4, 5} and consider the set of orders A1 in which the

3-tails contain every subset of size 3:

45|123 35|124 34|125 25|134 24|135

23|145 15|234 14|235 13|245 12|345

We want to ensure that every 2-player coalition is contained in at least one 2-tail of

the ten orders. This is currently not the case since none of the sets {1, 2}, {1, 3}, {1, 4}
or {1, 5} are contained in any 2-tail. To solve this, consider the graph in Figure 1

and identify a matching covering V2. The matching M illustrated in Figure 3 is such

a matching. Next, we will transform the set A1 into the new set of orders A2 in

t t t t t t t t t t

t t t t t t t t t t

V1: 123 124 125 134 135 145 234 235 245 345
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Figure 3: A maximum matching M in G(V1, V2, E) for n = 5, k = 3

which the 2-tails and 3-tails contain every subset of size 2 and 3, respectively. For

example, the order σ = (45123) ∈ A1 defines an edge in Figure 3 that connects the

sets S3(w1) = {1, 2, 3} and S2(w2) = {2, 3}. Since T σ2 = {2, 3} = S2(w2), we define τ
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equal to σ. On the other hand σ = (24135) ∈ A1 defines an edge that connects the sets

S3(w1) = {1, 3, 5} and S2(w2) = {1, 5}. Since T σ2 = {3, 5} 6= S2(w2), we define τ by

τ(1) = σ(1), τ(2) = σ(2), τ(3) = σ(4), τ(4) = σ(3) and τ(5) = σ(5). By applying this

procedure to each σ ∈ A1, we obtain the set A2:

45|123 35|124 34|512 25|413 24|315

23|514 15|234 14|235 13|425 12|345

Notice that A2 is c-complete, according to Lemma 3.2, since n = 5 and the tails of the

set of orders contain every coalition of size 2 and 3. 4

Note that for k < dn
2
e, a (maximum) matching covering V2 will leave some nodes in

V1 unmatched since
(
n
k

)
>
(
n
k−1
)

for k < dn
2
e.

We are now ready to state the main results.

Theorem 3.2. For any n ≥ 3 there exists a c-complete set of cardinality
(
n
dn
2
e
)
.

Proof. Let n ≥ 3 and k = dn
2
e. We show that a c-complete set of cardinality

(
n
dn
2
e
)

can

be constructed for any n ≥ 3.

Let A1, with |A1| =
(
n
dn
2
e
)
, be a set of orders that satisfies (3.1) for all S ∈ Sdn

2
e.

Then there exists for every S ∈ Sdn
2
e a σ ∈ A1 such that T σdn

2
e = S.

From Lemma 3.5 we can construct a set of orders A2 ⊂ Π(N), |A2| = |A1|, such that

there exists for any S ∈ Sdn
2
e−1 a τ ∈ A2 with T τdn

2
e−1 = S. Since Lemma 3.5 holds for

any k, we may iteratively apply this argument. This will, after j iterations, result in a

set of orders A1+j such that |A1+j| = |A1| and such that for any k ∈ {dn
2
e− j, . . . , dn

2
e}

and any S ∈ Sk there exists a τ ∈ A1+j with T τk = S. Thus, after dn
2
e − 2 iterations we

have constructed the set Adn
2
e−1 where for each S ∈ Sk and any k ∈ {2, . . . , dn

2
e} there

exists a τ ∈ Adn
2
e−1 with T τk = S.

Since Lemma 3.5 can also be stated in terms of heads, we may apply a similar

argument to Adn
2
e−1 to iteratively construct new sets by changing the heads of orders.

After bn
2
c − 2 iterations this will result in a set A∗ such that for each S ∈ Sk with

k ∈ {2, . . . , bn
2
c} there exists a τ ∈ A∗ with Hτ

k = S.

Then, by Lemma 3.4 there exists for any S ∈ Sk with k ∈ {n−bn
2
c, . . . , n−2} a τ ∈

A∗ such that T τk = S. Since there already exists for any S ∈ Sk with k ∈ {2, . . . , dn
2
e}

a τ ∈ A∗ such that T τk = S, A∗ is c-complete by Lemma 3.2.

Thus, we have showed that there exists a c-complete set of cardinality
(
n
dn
2
e
)

for any

n ≥ 3. The following corollary is a straightforward consequence of Theorem 3.2 and

(3.7).
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Corollary 3.1. For n ≥ 3, the minimum cardinality of a c-complete set is Ln =
(
n
dn
2
e
)
.

From Van Velzen et al. (2004), the minimum cardinality of sets characterising con-

vexity is Mn = n!
2(n−3

2
)!(n−1

2
)!

for odd n and Mn = n!
2(n−2

2
)!(n−2

2
)!

for even n. A comparison

of the minimum cardinality of complete sets for the cases of compromise stability and

convexity is given in Table 2, for n = 3, . . . , 9. It shows that Ln < Mn for any n > 3. In

fact, the relative size of the minimum cardinalities can be calculated as Ln/Mn = 8
n2−1

for odd n and Ln/Mn = 8
n2 for even n .

n 3 4 5 6 7 8 9
n! 6 24 120 720 5040 40320 362880
Mn 3 12 30 90 210 560 1260
Ln 3 6 10 20 35 70 126

Table 2: Summary of results

4 Partitioning the set of orders

In the previous section, we showed that a c-complete set of cardinality
(
n
dn
2
e
)

can be

found for any n ≥ 3. It is easily observable that for e.g. n = 3 it is possible to partition

the full set of orders, Π(N), into disjoint c-complete sets of minimum cardinality, namely

the two sets consisting of the odd and even orders, respectively. In this section we show

that a partition of Π(N) such that each element of the partition is a c-complete set of

cardinality
(
n
dn
2
e
)

can be found for any n ≥ 3. Note that such a partition will result in

n!/
(
n
dn
2
e
)

= (n− dn
2
e)!dn

2
e! minimum c-complete sets.

We use the procedure from Theorem 3.2 along with properties of the bipartite graphs

from the previous section to create the partition.

Let n ≥ 3 and k ≤ dn
2
e. Let G(V1, V2, V3) be the (k, n − k + 1)-regular bipartite

graph, as defined in the previous section, in which V1 and V2 represent all coalitions of

size k and k − 1 respectively. The Integer Flow Theorem immediately implies that

there exists k disjoint maximum matchings of G, say E1, E2, . . . , Ek. Hence, each

matching covers V2 completely. Now, define the following k edge-disjoint bipartite

graphs Gi = (V1, V2, Ei ∪E∗i ), i ∈ {1, . . . , k}, where E∗1 , E
∗
2 , . . . , E

∗
k is a partition of the

edges not included in any matching, i.e. ∪kj=1E
∗
j = E\∪kj=1Ej, and |E∗j | =

(
n
k

) (
n−2k+1
n−k+1

)
,

for all j ∈ {1, 2, . . . , k}, and the degree of each vertex of V1 in G is equal to one, We

illustrate this partition in the following example.
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Example 4.1. Let N = {1, 2, 3, 4, 5}, and let k = 2. Then the corresponding (2, 4)-

regular bipartite graph G = (V1, V2, E) is displayed in Figure 4. Figure 5 represents

the edge-disjoint partition G1, G2 in which the bold edges correspond to the maximum

matchings. 4
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Figure 4: G(V1, V2, E) for n = 5, k = 2
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Figure 5: An edge-partitioning G1, G2 of G

Since the above described partition is based on disjoint matchings, the following
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lemma is a straightforward generalization of Lemma 3.5. The proof is similar to the

proof of Lemma 3.5., and therefore, it is omitted.

Lemma 4.1. Let n ≥ 3 and k ∈ {1, . . . , dn
2
e}, and let A be a set of orders such that

for any S ∈ Sk there exists a σ ∈ A with T σk = S. Then we can construct k disjoint

sets A1, . . . , Ak ⊆ N , such that for each j ∈ {1, . . . , k} it holds that:

(i) for each σ in A, there exists a τ ∈ Aj such that τ(h) = σ(h)

for all h ∈ {1, . . . , n− k},

(ii) for every S ∈ Sk−1, there exists a τ ∈ Aj such that T τk−1 = S,

(iii) |Aj| = |A|.

Note, that also this lemma can be stated in terms of heads as well as tails.

The following theorem is a straightforward result of Lemma 4.1 and Theorem 3.2.

Theorem 4.1. For any n ≥ 3 the set of orders Π(N) can be partitioned into

dn
2
e!(n− dn

2
e)! disjoint c-complete sets of cardinality

(
n
dn
2
e
)
.

In the final example we provide a partition of the orders if N = {1, 2, 3, 4, 5}.

Example 4.2. Table 3 provides a partition of the set of orders of Π(N) with N =

{1, 2, 3, 4, 5} where every row corresponds to a c-complete set. Observe that it is not a

unique partition, because the collection of disjoint maximum matchings is not unique.

54|132 35|142 43|521 25|413 42|315 32|514 15|243 14|235 13|425 21|354
54|123 35|124 43|512 25|431 42|351 32| 541 15|234 14|253 13|452 21|345
54|321 35|214 43|125 25|143 42|513 32|415 15|342 14|532 13|254 21|435
54|312 35|241 43|125 25|134 42|531 32|451 15|324 14|523 13|245 21|453
54|213 35|421 43|215 25|314 42|135 32|154 15|432 14|325 13|542 21|543
54|231 35|412 43|251 25|341 42|153 32|145 15|423 14|352 13|524 21|534
45|132 53|142 34|521 52|413 24|315 23|514 51|243 41|235 31|425 12|354
45|123 53|124 34|512 52|431 24|351 23| 541 51|234 41|253 31|452 12|345
45|321 53|214 34|125 52|143 24|513 23|415 51|342 41|532 31|254 12|435
45|312 53|241 34|125 52|134 24|531 23|451 51|324 41|523 31|245 12|453
45|213 53|421 34|215 52|314 24|135 23|154 51|432 41|325 31|542 12|543
45|231 53|412 34|251 52|341 24|153 23|145 51|423 41|352 31|524 12|534

Table 3: Twelve disjoint c-complete sets of minimum cardinality for n = 5

4
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On games arising from multi-depot Chinese postman

problems

Trine Tornøe Platz1 Herbert Hamers2

Abstract

A multi-depot Chinese postman problem is represented by a connected graph

G, a set of k depots that is a subset of the vertices of G, and a non-negative

weight function on the edges of G. A solution to the problem is a minimum

weight tour of the graph consisting of a collection of subtours, such that the sub-

tours originate from different depots, and each subtour starts and ends at the

same depot. A cooperative Chinese postman game is induced from a multi-depot

Chinese postman problem by associating every edge of the graph with a different

player and addressing the problem of allocating between these players the cost

of the minimum weight tour. This paper considers multi-depot Chinese postman

(k-CP) games and characterizes locally and globally k-CP balanced and submod-

ular graphs. A graph G is called locally (globally) k-CP balanced (respectively

submodular), if the k-CP game induced by a k-CP problem on G is balanced (re-

spectively submodular), for some (any) choice of depots and every non-negative

weight function.

Keywords: Chinese postman problem, cooperative game, submodularity, bal-

ancedness.
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1 Introduction

A Chinese postman problem (CPP) models the situation in which a postman must

deliver mail to a given set of streets using the shortest possible route, under the con-

straint that he must start and end at the post office, see e.g. Edmonds and Johnson

(1973). In this paper, we consider Chinese postman problems in which multiple depots

exists. Applications of the (multi-depot) CPP are many and include road sweeping,

snow plowing, and garbage collection.

A multi-depot Chinese postman problem (k-CPP) is represented by a graph in which

the edges of the graph correspond to the streets to be visited, a fixed set of k vertices

serves as depots, and a non-negative weight function is defined on the edges. A solution

to the problem is a minimum weight tour consisting of a collection of sub-tours such

that every edge of the graph is visited, and such that the subtours originate at different

depots. Furthermore, each subtour must start at a depot, visit a set of edges, and

return to same depot.1 The ‘standard’ Chinese postman problem arises as a special

case of the k-CPP, when k = 1.

If each edge of the graph is associated with a different player, a related problem is

how to allocate between these players the incurred cost of the minimum weight tour.

This cost allocation problem can be addressed in the form of a cooperative (cost) game,

and we refer to cooperative games induced by k-CP problems as k-CP games. The

topic of this paper is the analysis of k-CP games.

A k-CP game is an example of a so-called operations research game (OR-game).

OR-games are cooperative games addressing (cost) allocation problems that arise from

optimization problems in the operations research literature, see Borm et al. (2001) for

a survey. The OR-games considered in this paper arise from an underlying network

problem. Other examples of OR-games arising from network problems include the

Chinese postman (CP) games (Hamers et al. (1999), Hamers (1997), Granot et al.

(1999)), traveling salesman games (Potters et al. (1992), Herer and Penn (1995)),

highway games (Çiftçi et al. (2010)), and minimum coloring games (Deng et al. (1999)).

In the present paper, we explore the (total) balancedness and submodularity of k-

CP games. In a (totally) balanced game, the core (of every subgame) is non-empty, and

submodular games have several desirable properties. For example, submodular games

are (totally) balanced, and the Shapley value of a submodular game is the barycenter

1The k-CPP can be seen as a special case of the multi-depot capacitated arc routing problem
(MD-CARP) described in, e.g., Wøhlk (2008), and Kansou and Yassine (2010).
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of the core, Shapley (1971). Furthermore, some solution concepts coincide for this class

of games. The kernel is equal to the nucleolus, and the bargaining set coincides with

the core, Maschler et al. (1972).

A connected graph or a strongly connected digraph G is said to be globally k-CP

submodular (balanced) (totally balanced) if for all Q ∈ V (G) with |Q| = k, the induced

k-CP game is submodular (balanced) (totally balanced) for every non-negative weight

function.2 G is locally k-CP submodular (balanced) (totally balanced) if for some

Q ∈ V (G) with |Q| = k, the induced game is submodular (balanced) (totally balanced)

for all non-negative weight functions.

We characterize classes of globally and locally k-CP balanced and k-CP submodular

graphs and digraphs. We show that for k = 1 and k ≥ |V (G)−1|, a graph G is globally

k-CP submodular if and only if G is weakly cyclic, where a graph is called weakly cyclic

if every edge is part of at most one cycle. Furthermore, we find that no connected

graph is globally k-CP submodular, for 1 < k < |V (G) − 1. On the other hand, G is

locally k-CP submodular for k ∈ {1, . . . , |V (G)|} if and only if G is weakly cyclic, and

the depots can be located in a specific pattern.

The corresponding characterizations for the standard version of the CP game can

be found in the literature. Hamers et al. (1999) introduced CP games and showed that

weakly Eulerian graphs are CP-balanced, while Hamers (1997) showed that weakly

cyclic graphs are CP-submodular.3 Full characterizations of the classes of CP-balanced

and CP-submodular graphs were given in Granot et al. (1999). In Granot et al. (2004),

the distinction between global and local requirements was made, and the authors char-

acterized the classes of locally CP-submodular graphs and digraphs. Similar charac-

terizations of classes of graphs exists in the literature for other types of OR-games, see

e.g. Herer and Penn (1995) and Granot et al. (2000) for the case of traveling salesman

games.

The paper is organized as follows. In section 2, some terms and notions from game

theory and graph theory are introduced. In section 3, the model is presented, and in

section 4, we analyze k-CP games and characterize the classes of k-CP balanced and

submodular graphs. Section 4.1 considers undirected graphs, while the case of directed

2This notation follows Granot et al. (1999), where a graph is said to be CP balanced (submodular)
(totally balanced) if every single-depot CP-problem on this graph gives rise to a balanced (submodular)
(totally balanced) CP game.

3A graph is said to be weakly Eulerian if the components that remain after removing all bridges in
the graph are either Eulerian or singletons, where a component is Eulerian if every vertex is of even
degree.
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graphs is analyzed in 4.2. Finally, section 5 presents some results on k-CP totally

balanced games.

2 Preliminaries

Before we present the model, we first recall some definitions and terms from cooperative

games and graph theory, respectively.

A cooperative (cost) game is a pair (N, c) (often referred to simply as c when no

confusion arises) in which N = {1, . . . , n} is a finite set of players denoted the grand

coalition, and c : 2N → R is a function that assigns to every coalition S ⊆ N a cost

c(S), with c(∅) = 0. x ∈ RN is an allocation of the cost of the grand coalition, c(N),

between the players. The core of a game c is defined by

Core(c) = {x ∈ RN |
n∑

i=1

xi = c(N),
∑

i∈S
xi ≤ c(S) for all S ⊆ N}.

Thus, the core is the set of efficient allocations in which no coalition has an incentive

to split from the grand coalition. The core of a game may be empty. A game in which

the core is non-empty is said to be balanced. Let cS denote the restriction of c to the

subsets of players in S. Then, if the subgame (S, cS) is balanced for every S ⊆ N , the

game, (N, c), is said to be totally balanced. A game is submodular if it holds for all

j ∈ N and all S ⊂ T ⊆ N \ {j} that:

c(T ∪ {j})− c(T ) ≤ c(S ∪ {j})− c(S). (2.1)

A submodular game is totally balanced, Shapley (1971).

An undirected (directed) graph G is a pair (V (G), E(G)) where V (G) is a non-

empty, finite set of vertices, and E(G) is a set of pairs of vertices called edges (arcs).

Throughout the paper, we let m = |V (G)| denote the cardinality of V (G). An edge

{a, b} joins the vertices a, b in an undirected graph. An arc (a, b) that joins the vertices

a and b in a directed graph is directed from a to b and can only be traversed in this

direction. The vertices of an edge (arc) {a, b} are the endpoints of the edge. An edge

(arc) is said to be incident to each of its endpoints, and the two endpoints are said to

be adjacent.

A (directed) walk is a sequence of vertices and edges (arcs) v0, e1, v1, . . . , vm−1, em, vm,
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in which m ≥ 0, v0, . . . , vm ∈ V (G), and e1, . . . , em ∈ E(G) such that ej = {vj−1, vj}
for all j ∈ {1, . . .m}. If v0 = vm, the walk is said to be closed. A (directed) path is a

(directed) walk in which no edge (arc) or vertex is visited more than once. A (directed)

circuit is a closed (directed) path. In a path v0, e1, v1, . . . , vm−1, em, vm, the vertices v0

and vm are called the endpoints of the path. If there exists an undirected (directed)

path between any to vertices in a graph, then the graph is said to be connected (strongly

connected). In a connected graph G, an edge b ∈ E(G) is called a bridge, if removing b

results in a graph that is not connected. The set of all bridges in G is denoted B(G).

A graph G is said to be Eulerian, if the degree of every edge in E(G) is even. We say

that a connected graph G is weakly Eulerian, if removing all bridges in G results in a

disconnected graph in which every connected component is Eulerian. Furthermore, we

say that a graph G is weakly cyclic, if every edge in G belongs to a most one cycle.

Note that a weakly cyclic graph is weakly Eulerian.

3 k-CP games

Let G = (V (G), E(G)) be a connected undirected (or strongly connected directed)

graph in which V (G) denotes the set of vertices, and E(G) denotes the set of edges

(arcs). Furthermore, let Q ⊆ V (G) be a fixed subset of the vertices, which will be

referred to as depots. Let Q be of cardinality k with k ∈ {1, . . . ,m}, and let S ⊆ E(G).

Then an S-tour wrt. Q is a collection of closed walks such that every player in S is vis-

ited, and such that each closed walk originates from a different depot in Q where it both

starts and ends. Formally, let Q = {v10, . . . , vk0}. Then for an S-tour d(S) in G, there ex-

ists a p ∈ {1, . . . , k} such that d(S) = {(v10, e11, v11, ..., e1m1 , v10)..., (vp0, e
p
1, v

p
1, ..., e

p
mp , v

p
0)}.

The set of S-tours associated with S ⊆ E(G) is denoted by D(S).

Let t : E(G) → [0 : ∞) be a non-negative weight function defined on the edges

(arcs) of G. Then for every S ⊆ N we can assign a cost to the S-tours in the graph.

The cost of the S-tour d(S) = {(v10, e11, v11, ..., e1m1 , v10)..., (vp0, e
p
1, v

p
1, ..., e

p
mp , v

p
0)} is equal

to

C(d(S)) =

p∑

l=1

ml∑

j=1

t(elj).

Let Γ = (E(G), (G,Q), t) be a multi-depot CP problem in which E(G) is the set of

players (edges, arcs), Q is a set of depots with cardinality k, and t : E(G)→ [0 :∞) is
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the non-negative weight function. The induced k-CP game (N, c) is then defined by

c(S) = min
d(S)∈D(S)

C(d(S)).

That is, for any S ⊆ N , c(S) equals the cost of a minimum weight S-tour in G. To

emphasize the set of depots in the underlying k-CP problem, we refer to the k-CP game

induced by Γ = (E(G), (G,Q), t) as (N, cQ) whenever relevant. Note that for k = 1, the

k-CP situation and its induced game will coincide with the class introduced in Hamers

(1999).4

An example of a k-CP game is given below. It shows that not all graphs are globally

k-CP balanced.

Example 3.1. Consider Figure 1 below. Assume that Q = {v0, v2}, and let t(e) =

v0

v1

v3

v2f
@
@
@

�
�
�

f

f
f@@

@

�
�
�

e1 e2
e3

e4 e5

Figure 1: Non k-CP-balanced graph

1 for all edges in the graph. Then we see that c(e1, e2, e3) = c(e3, e4, e5) = 3, and

c(e1, e2, e4, e5) = 4. However, since c(N) = 6, the worth of the grand coalition can not

be allocated between the players such that x(N) = c(N) without violating x(S) ≤ c(S)

for some S ⊂ N . The game is therefore not balanced, and the graph is not k-CP

balanced for k = 2. 4

The above example showed that even when k > 1, some graphs are not globally

k-CP balanced. From Granot et al. (1999), all weakly cyclic graphs are globally k-

CP submodular for k = 1, but for the case of k > 1, a weakly cyclic graph is not

necessarily globally k-CP submodular, as the following example shows. This example

also illustrates how different choices of Q with the same cardinality may lead to different

games.

4In Hamers (1999), the games are called delivery games, while the term Chinese postman (CP)
games is used in subsequent publications on this topic.
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Example 3.2. Consider the undirected graph in Figure 2, and let t(e) = 1 for all edges

in the graph. Let Q = {v0, v1} and Q′ = {v0, v3}. The induced games are shown in

Table 1. The second row corresponds to the induced game when depots are located at

{v0, v1}, while the third row illustrates the costs of the coalitions in the induced game,

when depots are located at {v0, v3}. For example, in case the depots are at {v0, v3}, the

min. S-tour of S = {e1, e3} is equal to {(v0, e1, v1, e1, v0), (v3, e3, v3)} with an associated

cost of 4. For ease of exposition a coalition {ei, ej} is in the table written as ij.

v0 v1 v3

v2

e1

e2 e3

e4e e��
�
�
��

e
@
@
@
@
@@ e

Figure 2

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N
c{v0,v1}(S) 2 2 3 2 4 5 4 3 3 3 5 5 5 3 5
c{v0,v3}(S) 2 3 2 2 4 4 4 3 3 3 5 5 5 3 5

Table 1: Two different 2-CP games arising from the same graph

From Table 1, it is evident that different choices of depots leads to different games.

Furthermore, while the two games are both balanced, only the first is submodular, since

c{v0,v3}(e1, e2, e3)− c{v0,v3}(e2, e3) = 2 > 1 = c{v0,v3}(e1, e2)− c{v0,v3}(e2). 4

While we have just shown that not all k-CP games are balanced or submodular, it

is straightforward to verify that every k-CP game (N, c) satisfies the following: c(S) ≤
c(T ) for all S ⊂ T ⊆ N (monotonicity), and c(S ∪ T ) ≤ c(S) + c(T ) for all S, T with

S∩T = ∅ (subadditivity). Furthermore, the worth of the grand coalition is independent

of Q and k. That is, if we let Q,Q′ ⊂ V (G), Q′ 6= Q and consider the games (N, cQ)

and (N, cQ′), then

cQ(N) = cQ′(N), for all Q,Q′ ⊂ V (G).
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It follows that a 2-player k-CP game is submodular, and it can be verified that all

graphs with |V (G)| ≤ 3 are k-CP submodular. In the following, we therefore restrict

attention to graphs G = (V (G), E(G)) with |V (G)| ≥ 4.

Below we provide a lemma stating how the presence of certain structures in a k-CP

problem precludes submodularity of the induced game. First some notation is, however,

needed.

Let {a, b} be an edge in a graph G. Then {a, b} is said to be subdivided, if we replace

it by a path of length two, that is, if we construct a new vertex c and replace the edge

{a, b}, by the edges {a, c}, {c, b}. A subdivision of a graph G is then any graph that

can be obtained by recursively subdividing edges in G. Furthermore, let P4 denote a

path with four vertices in which the endpoints of the path are (the only) depots, and let

S4 denote a star graph with four vertices in which exactly one edge is not incident to a

depot. P4 and S4 are illustrated in Figure 3. Let G = (E(G), V (G)) be an undirected

P4

v0 v1 v2 v3
u e e ue1 e2 e3

S4

v0 v1 v3

v2

u e u
e

e1 e3

e2

Figure 3: Path graph and star graph

connected graph, and let Q ⊆ V (G). Then we say that G is (P4, S4)−free wrt. Q, if no

subdivision of P4 or S4 exists in G when depots are located at the vertices in Q. We

state the following lemma.

Lemma 3.1. Let G = (E(G), V (G)) be a connected undirected graph. Let Γ =

(E(G), (G,Q), t), and let (N, c) be the induced k-CP game. If G is not (P4, S4)−free

wrt. Q, then (N, c) is not submodular for all non-negative weight functions.

Proof. Let Q ⊆ V (G) be such that G is not (P4, S4)-free wrt. Q. Then there exists a

subgame (U, cU) such that this subgame is defined on a subdivision of P4 or S4. We

show that (U, cU) is not submodular. Consider the graphs in Figure 3, and let t(e) = 1

for all edges in the graphs. Let S = {e2} and T = {e1, e2}. Then, in both cases,

c(T ∪ {e3})− c(T ) = 6− 4 = 2 > 0 = 4− 4 = c(S ∪ {e3})− c(S),
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and the game is not submodular. Since we can choose a weight function on U so as to

mimic the situation in Figure 3, (U, cU) is not submodular for all non-negative weight

functions, and neither is (N, c).

We are now ready to proceed to characterizing classes of graphs leading to k-CP

games with desirable properties.

4 k-CP graphs

In this section, we characterize k-CP submodular and k-CP-balanced graphs and di-

graphs, and in addition, we consider both global and local requirements, for each of the

different properties.

4.1 Undirected k-CP graphs

We analyze first the case of undirected graphs and characterize connected k-CP bal-

anced graphs. We find that the class of connected k-CP balanced graphs coincide with

the class of connected CP-balanced graphs characterized in Granot et al. (1999).

Theorem 4.1. Let G = (V (G), E(G)) be a connected graph. Then the following state-

ments are equivalent:

(i) G is weakly Eulerian,

(ii) G is globally k-CP balanced for all k ∈ {1, . . . ,m},

(iii) G is locally k-CP balanced for all k ∈ {1, . . . ,m}.
Proof. (i) → (ii): Let k ∈ {1, . . . ,m}, and let Q ⊆ V (G) have cardinality k. Let

Γ = (E(G), (G,Q), t) be a k-CP situation for which (N, c) is the induced k-CP game.

We have to show that (N, c) is balanced.

Define an allocation x ∈ RN as:

x(e) =

{
2t(e) if e ∈ B(G),

t(e) otherwise.

Since G is weakly Eulerian, c(N) =
∑

e∈E(G) t(e) +
∑

e∈B(G) t(e), and consequently,

x is efficient.5 Furthermore, c(S) ≥ ∑
e∈S t(e) +

∑
e∈B(G)∩S t(e) = x(S), where the

5In a weakly Eulerian graph there exists a min N -tour that visits every bridge in the graph twice
and all other edges exactly once.
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inequality holds since every player in S must be visited at least once, and every player

on a bridge must be visited twice, for any location of the depots. Hence, (N, c) is

balanced for every Q of cardinality k, and G is globally k-CP balanced.

(ii) → (iii). Follows readily, since each globally k-CP balanced graph is locally

k-CP balanced.

(iii) → (i): Let Γ = (E(G), (G,Q), t) and assume that G is not weakly Eulerian,

but (N, c) is balanced. Then by Granot et al. (1999) the cardinality of Q is at least two.

Consider a v ∈ Q, the corresponding Γ1 = (E(G), (G, v), t), and the induced CP-game

(N, cv). Then since cv(N) = cQ(N) and cv(S) ≥ cQ(S), we may infer that Core(cQ) ⊆
Core(cv). From Granot et al. (1999), there exists a t such that Core(cv) = ∅, and

therefore Core(cQ) = ∅. Thus, G is not locally k-CP balanced.

We proceed to consider k-CP submodular graphs. We show that for k ∈ {2, . . . ,m−
2}, no undirected connected graph is globally k-CP submodular, and we characterize

globally k-CP submodular graphs, for k ∈ {1,m− 1,m}.

Theorem 4.2. Let G = (V (G), E(G)) be a connected graph. If k ∈ {2, . . . ,m − 2},
then G is not globally k-CP submodular.

Proof. Since |V (G)| ≥ 4, there exists in G a connected subgraph with four vertices.

The possible non-isomorphic structures of this subgraph are displayed in Figure 4. Let
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Figure 4: Non-isomorphic connected graphs with 4 vertices

Γ = (E(G), (G,Q), t), and let (N, c) be the induced k-CP game. Then there exists a

3-player subgame (U, cU) that is defined on a path with three edges or a star graph with

three edges. Since k ≤ m− 2, we can in either case assign the k depots to the vertices

of G, such that G is not (P4, S4)-free wrt. Q. It, therefore, follows from Lemma 3.1

that G is not globally k-CP submodular.

For k ∈ {1,m− 1,m} we state the following result:

Theorem 4.3. Let G = (V (G), E(G)) be a connected graph and let k ∈ {1,m− 1,m}.
Then G is globally k-CP submodular if and only if G is weakly cyclic.
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Proof. From Granot et al. (1999), it is sufficient to consider the case of k ≥ m− 1. Let

Γ = (E(G), (G,Q), t), let (N, c) be the induced game, and let k ∈ {m− 1,m}. For the

‘if part’, we have to show that (2.1) holds for all e ∈ N and all S ⊂ T ⊆ N \ {e}. Let

G be weakly cyclic. Then G consists of a set of edge-disjoint circuits and bridges. Let

C(G) and B(G) denote the set of circuits and bridges, respectively, and observe that

for any S ⊆ N , we have:

c(S) =
∑

C∈C(G):C∩S 6=∅
min{

∑

a∈C
t(a),

∑

a∈S∩C
2t(a)}+

∑

b∈B(G):b∈S
2t(b), (4.1)

and recall that we need to show

c(S ∪ {e})− c(S) ≥ c(T ∪ {e})− c(T ) for all S ⊂ T ⊆ N. (4.2)

We distinguish between two cases:

Case 1. e ∈ B(G). From (4.1) it readily follows that c(S ∪ {e})− c(S) = c(T ∪ {e})−
c(T ) = 2t(e) for all e ∈ N and all S ⊂ T ⊆ N \ {e}, so (4.2) is satisfied.

Case 2. e 6∈ B(G). Then there exists a C ∈ C(G) such that e ∈ C. Let A =
∑

a∈C t(a),

B =
∑

a∈S∩C 2t(a), and D =
∑

a∈T∩C 2t(a). Then (4.1) implies that

c(S ∪ {e})− c(S) = min{A,B + 2t(e)} −min{A,B}, and

c(T ∪ {e})− c(T ) = min{A,D + 2t(e)} −min{A,D}.

Observe that B ≤ D. Now,

if A ≤ B then c(S ∪ {e})− c(S) = c(T ∪ {e})− c(T ) = 0,

if A > B and A > D + 2t(e), then c(S ∪ {e})− c(S) = c(T ∪ {e})− c(T ) = 2t(e),

if A > B and A ≤ D + 2t(e), then c(T ∪ {e})− c(T ) = A−min{A,D}
= max{0, A−D} ≤ min{A−B, 2t(e)} = c(S ∪ {e})− c(S),

where the last inequality follows from B ≤ D and A ≤ D+2t(e). Thus, (4.2) is satisfied

for all e ∈ N and all S ⊂ T ⊆ N \ {e}.
Turning to the ‘only if’ part, we note that if G is not weakly cyclic, there exists

a subgraph G1 in G that is on the form of the graph in Figure 5. Consider Figure 5

and let E1, E2 and E3 denote the set of edges in each of the three paths between w1
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and w2, respectively. Let the weight function on the edges of G be such that t(e) = 1

for every e ∈ E1 ∪ E2 ∪ E3, while t(e) is arbitrarily large for all e ∈ E(G) \ E(G1).

Since k ≥ m− 1, either w1 or w2 is in Q, and then since a (sub)tour in the graph must

start and end at the same depot, an allocation x ∈ RN in the core of the (sub)game

(E(G1), c
E(G1)) must fulfill the following:

x(E1 ∪ E2) ≤ c(E1, E2) = |E1|+ |E2|,
x(E1 ∪ E3) ≤ c(E1, E3) = |E1|+ |E3|,
x(E2 ∪ E3) ≤ c(E2, E3) = |E2|+ |E3|.

Adding the inequalities leads to

x(N) ≤ |E1|+ |E2|+ |E3| < c(N),

and (E(G1), c
E(G1)) is not balanced. Since G1 is not globally k-CP balanced, we know

that G (and any other supergraph of G1) is not globally k-CP totally balanced, and

therefore, G is not globally k-CP submodular.

The theorems above stated that only weakly cyclic graphs are globally k-CP sub-

modular, and that this is only the case if there is just one depot or every edge is incident

to a depot. In the following subsection, we relax the strict global requirement and con-

sider undirected locally k-CP submodular graphs. The following theorem follows readily

from Lemma 3.1

Theorem 4.4. Let G = (V (G), E(G)) be a connected graph. If there exists no Q ⊆
V (G) with cardinality k such that G is (P4, S4)-free wrt. Q, then G is not locally k-CP

submodular.

Being (P4, S4)-free is, however, not sufficient for connected graphs in general to be
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k-CP submodular, as the following example shows.

Example 4.1. Consider Figure 5 and assume that Q = V (G) implying that every

vertex in the graph is associated with a depot, and that the graph is (P4, S4)-free. Let

S = {e4, e5} and T = {e1, e2, e4, e5}. Then c(T ∪ {e3})− c(T ) = 2 > 1 = c(S ∪ {e3})−
c(S), and the game is not submodular. 4

This leads us to the following result:

Theorem 4.5. Let G be a connected graph. If there exists a Q ⊆ V (G) with cardinality

k such that G is (P4, S4)−free wrt. Q, then G is locally k-CP submodular if and only if

G is weakly cyclic.

Proof. For the if ’ part, let G be a weakly cyclic graph, let Γ = (E(G), (G,Q), t), and

let (N, c) be the induced k-CP game. We have to show that c(S ∪ {e}) − c(S) ≥
c(T ∪ {e})− c(T ) for all e ∈ N and all S ⊂ T ⊆ N \ {e}.

First, let G1 be the subgraph induced by all paths between the vertices of Q, and

observe that G1 is also weakly cyclic. Then every edge in E(G1) is incident to at least

one vertex of Q, since G is (P4)-free. Furthermore, since G is (S4)-free, the edges in

E(G) \ E(G1) can be partitioned into r sets {A1, . . . , Ar} such that for each Ai with

i ∈ {1, . . . , r}, there exists a unique ai ∈ Q such that G \ {ai} is disconnected, and a

path from ai to any edge e ∈ Ai contains no other depot than ai. We let cai denote the

one-depot game in which the single depot is located at ai, and consequently, we have:

c(S) = c(S ∩ E(G1)) +
r∑

i=1

cai(S ∩ Ai).

Observe that G1 is weakly cyclic, and that every edge in G1 is incident to at least

one vertex in Q. Then for every coalition U ⊆ E(G1), the cost c(U) can be expressed

as in (4.1), and we can follow the proof of Theorem 4.3 to prove that (2.1) holds for

every e ∈ E(G1). Furthermore, it follows from Granot et al. (1999) that (N, cai) is

submodular for all i ∈ {1, . . . , r}, so (2.1) holds for every e ∈ Ai, i ∈ {1, . . . , r}. We

conclude that (N, c) is submodular.

For the ‘only if’ part, note that if G is not weakly cyclic, there exists a subgraph G∗

with a structure on the form of Figure 5. We need to show that for every k, there exists

a t and a location of the k depots in G for which (N, c) is not totally balanced and

hence not submodular. For k = 1 the result follows from Granot and Hamers (2004).

We consider k ≥ 2 and distinguish between three cases:
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Case 1. Q ∩ V (G∗) = ∅: Since G is connected, there exists for every vertex v0 ∈ Q a

vertex v ∈ V (G∗) such that the path from v0 to v contains no other vertices in V (G∗).

Choose a pair v0, v such that the path P1 from v0 to v contains no vertices of Q. If

v 6= w1, w2, let P2 be the path from v to w1 that visits only the edges of Ei, for some

i ∈ {1, 2, 3}. Let E(Pi) denote the set of edges in the path Pi, and let t(Ei \ E(P2))

denote the sum of the weights of the edges in Ei \E(P2). We choose a weight function

t such that t(e) = 0 for all e ∈ E(P1) ∪ E(P2), t(Ei \ E(P2)) = 1 for all i ∈ {1, 2, 3},
and t(e) = 100 for all other edges in G. Now, the cost of a min weight tour that visits

every edge in G∗ is equal to 4, while the cost of a min weight tour visiting all edges of

Ei ∪ Ej, i 6= j, i, j ∈ {1, 2, 3} is equal to 2.

Case 2. |Q ∩ V (G∗)| = 1. Consider v0 ∈ Q ∩ V (G∗) and note that for this choice of

v0, P1 consists only of v0. If v0 6= w1, w2, let P2 denote the path from v0 to w1 that

visits only the edges of Ei for some i ∈ {1, 2, 3}. As before, we let t(e) = 0 for all

e ∈ E(P1) ∪ E(P2), t(Ei \ E(P2)) = 1 for all i ∈ {1, 2, 3}, and t(e) = 100 for all other

edges in G. Then c(E(G∗)) is again equal to 4, as well as c(Ei ∪ Ej) = 2, for all i 6= j,

i, j ∈ {1, 2, 3}.
Case 3. |Q ∩ V (G∗)| ≥ 2. Now, at least two vertices of Q are in G∗. If these depots

belong to (at least) two different paths from w1 to w2, we choose a weight function

t(Ei) = 1 for i ∈ {1, 2, 3}, and t(e) = 100 otherwise. If, on the other hand, the vertices

in Q∩V (G∗) are all on the same path between w1 and w2, we choose one of these depots,

and construct a P2 as before. Again, we let t(e) = 0 for all e ∈ E(P2), t(Ei \E(P2)) = 1

for all i ∈ {1, 2, 3}, and t(e) = 100 for all other edges in G. It can easily be verified that

in both subcases we get c(E(G∗)) = 4 and c(Ei ∪ Ej) = 2 for all i 6= j, i, j ∈ {1, 2, 3}.
In each of the three cases above, we reach the conclusion that c(E(G∗)) = 4,

while c(Ei ∪ Ej) = 2, for all i 6= j, i, j ∈ {1, 2, 3}. This implies that the subgame

(E(G∗), cE(G∗)) is not balanced. To see this note that an allocation x ∈ RN in the core

must fulfill the following:

x(E1 ∪ E2) ≤ c(E1 ∪ E2) = 2,

x(E1 ∪ E3) ≤ c(E1 ∪ E3) = 2,

x(E2 ∪ E3) ≤ c(E2 ∪ E3) = 2,

x(E(G∗)) = c(E(G∗) = 4. (4.3)

If we add the inequalities, we get 2x(E(G∗)) = 6 which implies that x(E(G∗)) = 3 <
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4 = c(E(G∗), and this contradicts the assumption that x(E(G∗)) = c(E(G∗). Since the

subgame is not balanced, (N, c) is not totally balanced and therefore not submodular.

This completes the proof.

Theorem 4.5 shows that the class of locally k-CP submodular graphs does not

coincide with the class of globally k-CP submodular graphs. This differs from the

result in Granot et al. (1999) that the classes of globally and locally CP-submodular

graphs coincide. We now turn to the case of directed graphs.

4.2 Directed k-CP graphs

In this section, we consider strongly connected directed graphs, and as in the previous

section, we characterize k-CP balanced and k-CP submodular graphs. The results turn

out to be similar in structure to the undirected case.

First, we extend to the case of multiple depots in the underlying graph the result

from Granot et al. (1999) that every strongly connected digraph is CP-balanced. Thus,

also in the case of directed graphs do the classes of globally k-CP balanced and globally

CP-balanced graphs coincide. Furthermore, the classes of globally k-CP balanced and

locally k-CP balanced graphs coincide as well. We state the following equivalence

theorem.

Theorem 4.6. Let G = (V (G), E(G)) be a directed graph. Then the following state-

ments are equivalent:

(i) G is strongly connected,

(ii) G is globally k-CPP balanced,

(iii) G is locally k-CPP balanced.

Proof. (i) → (ii): Let Γ = (E(G), (G,Q), t) where Q ⊂ V (G) is of cardinality k,

and let (E(G), c) be the induced game. Consider the game (E(G), c∗) for which the

linear programming problem in (4.4) represents a linear production game formulation

of (E(G), c∗). Let xij denote the flow in arc (vi, vj) and tij the cost of the arc and
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consider the LP-problem below.

c∗(S) = min
∑

i,j∈E(G)

tijxij

subject to (4.4)
∑

j∈E(G)

xji −
∑

j∈E(G)

xij = 0 for all i ∈ E(G)

xij ≥ 1 for all arcs (vi, vj) ∈ S
xij ≥ 0 for all arcs (vi, vj) 6∈ S

If S = E(G), the solution to the problem is a minimum cost circulation in which the

flow in every arc is at least 1. According to Orloff (1974), this is equivalent to an optimal

Chinese postman tour of E(G) with cost function t. Thus, c(E(G)) = c∗(E(G)). For

S ⊂ E(G), the solution to the linear programming problem will be a minimum cost

circulation that may consist of several disconnected min cost subtours. In the k-CP

problem, each subtour must visit a depot, and consequently, c(S) ≥ c∗(S). Owen (1975)

has shown that (E(G), c∗) is a totally balanced game, and since c(E(G)) = c∗(E(G)),

and c(S) ≥ c∗(S) for each S ⊂ E(G), this implies that (E(G), c) is balanced. Hence,

G is globally k-CP balanced.

(ii) → (iii): Follows readily, since every globally k-CP balanced digraph is locally

k-CP balanced. (iii) → (i): Follows per definition, since the k-CP problem is only

defined for strongly connected digraphs.

Next, we turn to the submodularity of games arising from directed graphs. We

note that whenever a digraph, G, is a directed circuit, submodularity of the induced

game (N, c) is trivial, since c(S) =
∑

e∈N t(e) for all S ⊆ N and all Q ⊆ V (G). A

characterization of globally k-CP submodular digraphs is given below. First, however,

we state a few definitions.

A directed weakly cyclic graph is a 1-sum of directed circuits, where a 1-sum of

two graphs H and G is the graph that arises from coalescing one vertex in H with

a vertex in G. Furthermore, we say that a directed circuit C is internal if it shares

vertices with at least two other circuits, and we let |C| denote the number of edges in

C. Furthermore, let C(G) denote the set of internal circuits in G. We are now ready to

characterize globally k-CP submodular digraphs.

Theorem 4.7. Let G = (V (G), E(G)) be a strongly connected digraph, and let k >
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m − min{|C||C ∈ C(G)}. Then G is globally k-CPP submodular if and only if G is

weakly cyclic.

Proof. For the ‘if’ part, let Γ = (E(G), (G,Q), t), and let (N, c) be the induced game.

We have to prove that (2.1) holds. Recall that G is weakly cyclic, and every internal

circuit contains at least one depot, while the non-internal circuits may contain no

depots. For a non-internal circuit C let Cn denote the neighboring circuit sharing a

vertex with C. Finally, let C∗ denote the circuit containing e, and let t(C∗) denote the

sum of the weights on the edges in C∗. We distinguish between three cases:

Case 1. T ∩ E(C∗) 6= ∅: Then c(T ∪ {e})− c(T ) = 0, and (2.1) clearly holds.

Case 2. T∩E(C∗) = ∅ and Q∩V (C∗) 6= ∅: Then c(T∪{e})−c(T ) = c(S∪{e})−c(S) =

t(C∗), and (2.1) holds.

Case 3. T ∩E(C∗) = ∅ and Q∩V (C∗) = ∅: then c(T ∪{e})−c(T ) ≤ c(S∪{e}−c(S) ≤
t(C∗) + t(C∗n). Again (2.1) holds.

For the ‘only if’ part: If G is not weakly cyclic, it is not a 1-sum of circuits, and there

exists a subgraph G1 in G, such that at least one arc in G1 belongs to more than one

cycle, as in Figure 6. Consider Figure 6, and let the set of arcs contained in the three
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Figure 6: Non-weakly cyclic directed graph

directed paths between w1 and w2 be given by E1, E2 and E3 respectively. Let t(e) = 1

for all e ∈ E1 ∪ E2 ∪ E3, and let t(e) be arbitrarily large for all e ∈ E(G) \ E(G1). If

we assume, for example, that w1 ∈ Q, then

c(E1 ∪ E2 ∪ E3) + c(E3) = (|E1|+ |E2|+ 2|E3|) + (|E3|+ min{|E1|, |E2|})
> (|E1|+ |E3|) + (|E2|+ |E3|)
= c(E1 ∪ E3) + c(E2 ∪ E3),

and therefore, c(E1 ∪ E2 ∪ E3)− c(E1 ∪ E3) > c(E2 ∪ E3)− c(E3),
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which shows that the game is not submodular. Hence, G is not globally k-CP submod-

ular.

The theorem above showed that even if every vertex is associated with a depot,

only weakly cyclic digraphs are globally k-CP submodular. If, on the other hand, there

are too few depots in the multi-depot CP problem, a connected digraph is not globally

k-CP submodular.

Theorem 4.8. Let G be a strongly connected directed graph, and let 1 < k ≤ m −
min{|C||C ∈ C(G)}. Then G is not globally k-CP submodular.

Proof. From Theorem 4.7 it follows that a digraph that is not weakly cyclic is not k-CP

submodular for any k ∈ {1, . . . ,m}. To prove the present theorem, we therefore only

need to show that a directed weakly cyclic graph is not globally k-CP submodular, for

1 < k < m−min{|C||C ∈ C(G)}. Let Γ = (E(G), (G,Q), t), let (N, c) be the induced

game, and let 1 < k < m − min{|C||C ∈ C(G)}. Then we can choose a Q ⊂ V (G)

such that at least one internal circuit does not contain a depot but is situated ’between’

circuits containing depots, e.g., as in Figure 7 below. To see that the induced game
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Figure 7: Internal circuit containing no depots in a weakly cyclic digraph

is not submodular for every non-negative weight function, consider the three circuits

C1, C2, C3 in Figure 7, and let S = {E(C2)} and T = {E(C1), E(C2)}. If we let

t(e) = 1 for all edges in the graph, we see that c(S ∪ E(C3)) = c(S) = 8 whereas

c(T ∪ E(C3)) = 12 > 8 = c(T ). Thus, the induced game is not submodular for all

non-negative weight functions, and G is not globally k-CP submodular.

Before we turn to consider locally k-CP submodular graphs, we describe a simple

procedure for placing depots in a graph G in a convenient way, when G is directed

weakly cyclic.

Recall that G is a 1-sum of directed circuits. Choose a circuit C in the graph

and place a depot at some vertex in C. Continue by placing depots at the remaining
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vertices in C. For k > |C|, we make use of a neighboring circuit (i.e, a circuit sharing a

vertex with C) and place depots at vertices in this circuit. We continue by repeatedly

placing depots at all vertices in one circuit and then moving to a neighboring circuit.

By placing depots in this way, we ensure that the subgraph consisting of all circuits

containing depots is strongly connected.

The final result of this section show that all directed weakly cyclic graphs are locally

k-CP submodular.

Theorem 4.9. Let G be a strongly connected digraph. If G is weakly cyclic, then G is

locally k-CP-submodular.

Proof. Let G be weakly cyclic, let Γ = (E(G), (G,Q), t), and let (N, c) be the induced

game. We need to show that (2.1) holds. For every k ∈ {1, . . . ,m}, there exists a

Q ⊆ V (G) such that the depots are located according to the procedure above. Let G1

denote the subgraph consisting of all circuits in G that contain depots according to Q,

and note that G1 is strongly connected. Let C∗ denote the circuit containing e. We

consider two cases:

Case 1. e ∈ E(G1): If c(T ∪ {e}) − c(T ) = 0, then (2.1) holds, and otherwise, c(T ∪
{e})− c(T ) = c(S ∪ {e})− c(S) = t(C∗).

Case 2. If e ∈ E(G) \ E(G1), there exists a vertex v ∈ Q such that every S ∪ {e}-tour

must pass v in order to visit e. Thus, for any S ⊆ N \ {e} there is a min. weight

S ∪ {e}-tour in which e is serviced by v, along with all other edges in C∗. Then for

every e ∈ E(G) \ E(G1) there exists a submodular one-depot CP game (N, cv) such

that cQ(S ∪ {e}) − cQ(S) = cv(S ∪ {e}) − cv(S) for all S ⊂ T ⊆ N \ {e}, and (2.1) is

fulfilled.

From Theorem 4.7 and Theorem 4.9, it follows that the set of locally k-CP submod-

ular digraphs is a superset of the set of globally k-CP submodular digraphs.

5 k-CP totally balanced graphs

In this section we state some insights on k-CP totally balanced graphs. First, note

that in contrast to the CP case with k = 1, the classes of undirected globally k-CP

submodular and globally k-CP totally balanced graphs do not coincide, for k > 1. We

show that there exists globally k-CP totally balanced graphs that are not globally k-CP

submodular. Consider for example a line graph with three edges. From Lemma 3.1 this
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graph is not globally k-CP submodular, but it is globally k-CP totally balanced, as

shown below.

Proposition 5.1. The class of connected globally k-CP totally balanced graphs is a

superset of the class of connected globally k-CP submodular graphs.

Proof. Let G be a path with three edges. Let Γ = (E(G), (G,Q), t) and let (N, c) be

the induced game. Let k ∈ {3, 4} and note that for all Q ⊂ V (G) with |Q| = k, every

edge in the graph is incident to a depot. We need to show that the core of the subgame

(S, cS) is non-empty, for all S ⊆ N . For every e ∈ S, let x be defined as x(e) = 2t(e).

Clearly, x is efficient, and x(U) = cS(U), for all U ⊆ S. Thus, G is globally k-CP

totally balanced for k ∈ {3, 4}.

In addition, we find that there exists locally k-CP totally balanced graph that are

not locally k-CP submodular.

Proposition 5.2. The class of connected locally k-CP totally balanced graphs is a

superset of the class of connected locally k-CP submodular graphs.

Proof. LetG be the circuit with 5 edges illustrated in Figure 8. Let Γ = (E(G), (G,Q), t)

and let (N, c) be the induced game. G is not locally k-CP submodular for k = 2, since

it is not (P4)-free wrt. Q, for any choice of Q ⊂ V (G). Assume that Q = {v1, v3}.
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We show for every S ⊆ N that the subgame (S, cS) is balanced, for every non-

negative weight function. We consider two separate cases:

Case 1. e5 6∈ S, or at least one of the pairs {e1, e5} or {e4, e5} is contained in S: It

follows that c(S) = min{∑e∈S 2t(e),
∑

e∈N t(e)}. We define x as:

x(e) = 2t(e)−max

{
0,

(∑

e∈S
2t(e)−

∑

e∈N
t(e)

)
1

|S|

}
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for every e ∈ S. Note that x is efficient.

Now, for a subset U ⊂ S, either

c(U) ≥
∑

e∈U
2t(e) ≥ x(U), or c(U) =

∑

e∈N
t(e) = c(S) = x(S),

implying that x(U) ≤ c(U) for every U ⊆ S. Thus x is a core element in (S, cS).

Case 2. S is equal to one of the subsets, {e5}, {e2, e5}, {e3, e5} or {e2, e3, e5}: We get

c(S) = min{c(e5) +
∑

e∈S\{e5} 2t(e),
∑

e∈N t(e)}, and we define an efficient allocation x′

according to:

x′(e) =

{
c(e)− α if e = e5,

2t(e)− α if e ∈ {e2, e3},

where α = max{0, 1
|S|
(
c(5) +

∑
e∈S\{e5} 2t(e)−∑e∈N t(e)}. For every U ⊂ S that does

not contain e5, we have

c(U) = min{
∑

e∈U
2t(e),

∑

e∈N
t(e)},

which readily shows that c(U) ≥ x′(U). For every U ⊆ S that contains e5,

c(U) = min{c(e5) +
∑

e∈U\{e5}
2t(e),

∑

e∈N
t(e)},

and again c(U) ≥ x′(U).

When Q = {v1, v3}, the induced subgame is, therefore, balanced, for all non-negative

weight functions, and the graph is locally k-CP totally balanced, for k = 2.

The above proposition contrasts the result from Granot et al. (1999) that the classes

of locally CP submodular and locally CP-totally balanced graphs coincide.

For directed graphs we find similar results, and we show that the set of globally (re-

spectively locally) k-CP submodular digraphs does not coincide with the set of globally

(respectively locally) k-CP totally balanced digraphs.

Proposition 5.3. The class of strongly connected globally k-CP totally balanced di-

graphs is a superset of the class of strongly connected globally k-CP submodular di-

graphs.

Proof. Consider Figure 9 and note that from Theorem 4.7 and 4.8, the graph G in

Figure 9 is not globally submodular for any k ∈ {1, . . . , 4}. However, for k ∈ {2, 3, 4},
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both cycles in G contains a depot for every Q ⊆ V (G) with |Q| = k, and it follows from

the proof of Theorem 4.6 that G is globally k-CP totally balanced, for k ∈ {2, 3, 4}.
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Figure 9

Consequently, if Q contains sufficiently many depots, then every strongly connected

digraph is globally k-CP totally balanced. In addition to this, we show that the set of

globally k-CP totally balanced digraphs is contained in the set of locally k-CP totally

balanced digraphs.

Proposition 5.4. The class of locally k-CP totally balanced digraphs is a superset of

the class of globally k-CP totally balanced digraphs.

Proof. Consider again Figure 9 and note that for every k ∈ {1, 2, 3, 4}, it is possible to

choose a Q ⊆ V (G) with |Q| = k such that both cycles in G contain a depot. Again,

it follows from the proof of Theorem 4.6 that the induced game is totally balanced for

all non-negative weight functions, and therefore, G is locally k-CP totally balanced for

k ∈ {1, 2, 3, 4}.
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