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Chapter 1

Summary & Introduction

This thesis consists of four papers, two of which I have written jointly with Mich

Tvede and two of which I have written on my own. Let me first try to explain

the background for my results and my motivation for choosing the papers I have

included. Instead of summarizing each paper individually, I will try to put them

into a context I find natural.

This thesis has as its main subject the theory of General Equilibrium (GE).

GE has as its main object the study of markets, our behavior as traders and the

impact on welfare. To start with the last word, equilibrium, we are concerned with

behavior and prices that are invariant, in the sense that traders cannot improve

upon their personal welfare by exchanging commodities on the market at the going

prices. Implicitly this implies that non-equilibrium states are uninteresting and

unimportant! As scientists we try to find systematic and persistent patterns, and

non-equilibrium behavior must by definition be unsystematic and change as time

passes by. The first word, general (as opposed to partial), emphasises that we are

concerned with several markets - and not just a single market. One can, in some

sense, say that we are concerned with a closed system, i.e., a system which does

not receive impulses from external and unexplainable sources. All changes must be

explained by modeled phenomena.

The majority of analyses on GE has thus far been focused on

• Existence, i.e., does stable states exist?

• Determinacy, i.e., if stable states exist, how many different stable state does

our theory predict? and

• Efficiency, i.e., how desirable is the stable states?

These are of course important and interesting questions, and we shall address some

of them in this thesis. However, one message I would like to promote is that general
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Chapter 1

equilibrium analysis is more than these issues. I would like to emphasise that a GE

analysis is essential in understanding the interrelation between the financial markets

and the real economic decisions, such as consumption, savings and investments.

Maybe too much energy has been put into the extension of results concerning the

above mentioned categories, while other issues have been neglected.

My thesis concern general equilibrium with a special emphasis on the financial

markets. Up until the late 1950’s the financial markets were considered as just

merely another market and encompassed into the theory of Arrow and Debreu (see

[4] and [18]). They reduced the theory of financial markets to a one-shot game, where

financial contracts were perfect contingencies on either commodities or income. This

implied that the theory of financial markets fitted perfectly into the existing theory,

and moreover, the efficiency issues were then solved: financial markets admitted

efficient allocation of risk and savings decisions, and economic policy decisions were

reduced to distributional considerations. These were just applications of the funda-

mental theorems of welfare economics and showed the advantages of the abstract

approach. The consequence was also that either people could trade only initially,

and then let the contingent contracts execute the subsequent trades, or they could

transfer income using simple contracts and then trade on spot markets. Both meth-

ods produced the same result. A third result was then directly reusable, namely that

such trades and prices constituting an equilibrium always existed, which guarantees

that if the world approximately is as assumed in the model, then it makes sense to

analyze such states. If the existence was not generically guaranteed, then it would

be like King Arthur and his knights’ search for the Holy Grail.

However, in the mid 1970’s a branch of GE emerged, which showed that the

issue of efficient risk allocation was not solved yet (see [35], [53] just to mention

a few references). The point is that financial markets are not perfect in the sense

that not all people are capable of obtaining full insurance, even if they can meet

the repayments requested by the insurance company. Thus, people might be credit

constrained. This can be attributed to asymmetric information which implies that

lenders are reluctant to lend money to borrowers, since the borrower cannot credibly

convenience the lender that he will be able to repay the loan. Examples of this are

the well-known moral hazard and adverse selection problems. This problem can

partially be solved by the use of collateral, but this requires a sufficiently developed

legal system. Also, the existing model assumed that the cost of trading in itself

was either negligible or non-existing. The branch was later referred to as GEI -

General Equilibrium of I ncomplete financial markets. Within GEI the issue of why

asset markets are incomplete is in general not treated, but the existing assets are

taken as part of the fundamentals of the economy, and not a variable that agents can
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Chapter 1

influence. Assuming that all existing securities are essential1, generically, the models

cannot explain why some assets are not traded, i.e., why the market breaks down,

and why others are. There are some different theories on financial innovation [2]

and collateral [26] addressing this issue, just to mention some few. However, we will

stay in the realm of GEI and take the financial structure as given. Also, GEI only

considers perfectly competitive behaviour, i.e., the hypothesis that traders and the

households act as if they them self have a neglect able effect on the aggregate terms

and, thus, take the prices and behaviour of other agents as given. This is of course an

abstraction in many cases, but nevertheless it provides a good framework of analysis

since it provides us with a benchmark case. Moreover, we do not consider the case

of asymmetric information and thus the prices’ role as signals and aggregator of

information.

Generally, the exchange of commodities between individuals occurs either due

to differences in preferences, endowments, or beliefs. This also holds within the

financial markets, where we often label these causes as insurance and saving. While

many authors have emphasized the importance of informational costs and value

(see e.g. [5]), i.e., the costs related to acquiring information relevant to forming

expectations and verifications, we emphasise the importance of transaction costs,

in particular on the financial markets. A fundamental contribution in the general

equilibrium literature of transaction costs was by [33], showing the first general

existence theorem in an economy with transaction costs. We shall analyse such

economies and the consequences of transaction costs more closely. Moreover, we

depart from [33] in the existence result by considering intermediation costs, i.e.,

costs that are not based upon any use of real resources in the process of transactions.

The financial markets are an important part of an economy and its ability to

function properly. Whether it is insurance against fire, accidents, theft, unemploy-

ment, sickness or disability, or it is the provision of company’s financial foundation

- financial markets provide these services. Since these markets are so vital for the

economy, it is important to understand and comprehend the functioning of these

markets in order to determine the right policies and design of the institutions under

which the financial markets operate.

We shall be concerned with two subjects:

• Implications of transaction costs on equilibrium states

• Volatility and incomplete financial markets

1Loosely speaking, a security is essential if its payoffs cannot be generated by any other com-
bination of securities.
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1.1 Implications of transaction costs on equilib-

rium states

First, we are concerned with the implications for the equilibrium states that emerge

as we introduce transactions costs on the financial markets. This is the subject of

the articles “On Financial Equilibrium and Intermediation costs”2, Chapter 2 and

“The Existence of a Free Lunch, Equilibrium in Income Streams, and Intermediation

Costs”, Chapter 4.

Transaction costs are the wedge between the revenue of the seller and the ex-

penses of the buyer. A transaction cost which everybody knows of is the exchange

rate gap, i.e., the difference in the buying- and selling-price of exchange agencies.

Another example is the interest gap of banks, i.e., the gap between the loan- and the

borrowing-rate. However, these are only the “visible” transaction costs. Also, the

costs of obtaining the required information of assessing the value of an asset, and

the actual cost of actually obtain the required portfolio, are examples of transaction

costs. Again, we take the particular form of transaction costs as exogenous given.

A particular form of transaction cost is merely a redistribution of income in that

the real costs associated with the transaction is zero. An obvious question is then

why such institutions might exist, since they do not perform any socially productive

function. We do not address this question, but an obvious reason could be monopoly

power, resulting either from scale effects in production or publicly supported licenses

limiting the competition. More general transaction costs are associated with bring-

ing the two parties to a deal together, i.e., matching of traders, and also payments

to market makers, i.e., agents who guarantee a sufficient liquidity in the market.

Obviously, transaction costs make insurance and saving more expensive and must

hence by that measure be bad. However, they may have an advantage, namely

that they restore the existence property. It was shown (see [35]) that existence of

equilibrium was not guaranteed when traders were allowed to go short, which in some

situations could affect prices in such a manner that the asset market was no longer

durable. Examples have shown that this is a robust property when derivative assets

are included in the set of essential securities. The consequence of transaction costs

is to reduce this tendency to sell short assets, and thereby to reduce the effect on

prices of asset markets. This guarantees the existence of a competitive equilibrium.

Also, we show that small changes in the transaction costs do not change the resulting

equilibrium, as long as they are positive. Having showed existence of equilibrium

states with transaction costs, we turn to the question of how these equilibrium states

may look. An interesting question is whether free lunches, i.e., costless profits, are

2Published in Journal of Mathematical Economics, 2008.
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consistent with competitive equilibrium states. In particular, we ask the following

questions

• Can there exist unexploited, free lunches?, and

• Can free lunches be exploited in equilibrium?

Without transaction costs the answer is negative for both of these questions. How-

ever, when transaction costs are present and they are strictly convex, i.e., the

marginal transaction cost increases with increasing trade, then the answer is af-

firmative to both questions. With imperfect competition the first is valid, while

the second is invalid. With irrational traders both questions, again, are answered

affirmative, however, our results are true even with rational traders. Our results in-

dicate that it’s necessary condition that traders are sufficiently diverse in their need

for income transfers, and that simple, representative consumer economies cannot

capture such phenomena. Moreover, the income distribution influence the likeli-

hood of exploited free lunches, the more income inequality; the more likely it is that

free lunches can be exploited in equilibrium.

1.2 Volatility and incomplete financial markets

Since the first testable models of asset pricing emerged, an ever lasting question has

been whether the competitive hypothesis and no-arbitrage principle can explain the

asset prices and predict trade in securities. Also, the securities markets have been

almost exploding in size, both the number of securities and the volume of trade,

also relatively to the total income of the society. It is difficult to understand this

using the basic Arrow-Debreu model which should place the responsibility for this

in the preferences of the households and their need for income transfers. However,

we offer different explanations:

• the design of the securities and/or

• the liberalization of financial markets.

Since the early 80’s the financial markets have experienced a huge increase in the

different types of securities available to be traded. In particular, the securities

referred to as derivative securities3 have emerged and their usage has exploded.

While most critics have focused on the complexness and opaqueness, and hence the

3They have been named so because their dividend is derived from other (primary) securities.
Examples of such securities are options on stocks and CDO (Credit Derivative Options) used by
banks to trade credit risk.
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difficulties of correctly valuing the security, we do not address this problem regardless

how relevant it might be. Alternatively, we suggest that, if the derivatives are

essential in the risk dispersion, it is the feedback between the underlying prices and

their risk characteristics which is problematic. Secondly, we argue that additional

to the direct effect of liberalization on the financial markets making trades less

expensive, the indirect effect of changing future equilibrium prices can, potentially,

have a very large effect.

Basically, we have four important conclusions:

• Asset prices can jump without the underlying fundamentals changing signifi-

cantly when the asset market is incomplete,

• Asset trading can be arbitrarily large, even with complete markets,

• Liberalization of asset markets can explain an arbitrary large increase in the

asset trading, and

• The presence of derivative assets mitigates the above stated results.

The three last results are included in the paper “Volatility of Security Trade

and Incomplete Financial Markets”, Chapter 3, while the first is in “Jumps in As-

set Prices: A General Equilibrium Explanation, Chapter 5. The first considers a

Ramsay-model, with uncertainty and heterogeneous consumers, financial markets

and intermediation costs in an infinite-horizon economy. The emphasis in this pa-

per is on the volume of trade and its relation with changing transaction costs and

security design. The latter paper considers a finite-horizon economy and analyses

the asset prices. It shows that the prices with incomplete financial markets can

be subject to discontinuous jumps as the fundamental characteristics change by in-

finitely small changes. We show that with complete markets these jumps cannot

occur, and hence we conclude that this is a way of testing whether financial mar-

kets are incomplete. However, the test can only falsify that markets are complete,

since incomplete markets are only a necessary condition to obtain the discontinuity.

Moreover, our example shows a multitude of different equilibria and hence an inde-

terminacy of the resulting equilibrium states. This is obtained even with real assets,

thus contrasting the general result in the case of a finite set of states of nature.

The result suggests that there is a qualitative difference between Radner equilibria

in the finite and in the continuum case, and hence that the finite case is a poor

approximation of the continuum case. Our results further show that the occurrence

of a sudden large drop in asset prices cannot per se indicate whether there has been

a bubble or not. Also, the “thick tails” of asset price distributions observed in data

can be explained by our result.

6



Chapter 1

Thus, the two papers analyse the financial markets with different focuses, either

volume of trade or asset prices.

1.3 Conclusion

One of the conclusions that I want to emphasise is that general equilibrium anal-

ysis matters, illustrated by the paper “Volatility of Security Trade and Incomplete

Financial Markets”. Here, one of the necessary conditions for the results is the

interplay between markets, namely the feedback of income exchanges and relative

commodity prices on the opportunities of risk diversion.

A main hypothesis in microeconomic theory is that the world is populated by

diverse agents, having different and divergent interests, and that these conflicting

interests are the engine of the phenomena that we observe in the world. The results

of the paper “The Existence of a Free Lunch, Equilibrium in Income Streams, and

Intermediation Costs”, Chapter 4, illustrate how this diversity is needed and is

automatically assumed away in models of representative households economies.

I hope that the conclusions of this dissertation can contribute to the growing

literature which illustrates that general equilibrium theory does not solely consist

of existence results. I think that several economists have abandoned the GE due to

the large focus on these perhaps inferior questions.

I would like to emphasise that we have not made any welfare conclusion, in

particular, we have not concluded that transaction costs are neither positive nor

negative. Here we have to take two effects into account each point in two different

directions. Firstly, transaction costs are inefficient in that they prevent trades of

income which would otherwise take place, beneficial for each two parties. However,

this cannot, in general, lead us to the conclusion that in the absence of transaction

everybody is better of. Here the theory of second-best comes into the picture, since

the case of no transaction costs is in general inefficient, and price effects might

decrease someone’s welfare. Second, transaction costs re-establish the existence of a

competitive equilibrium, but in order to assess the benefits of this we need a theory

of what is happening when no competitive equilibrium exists.

Moreover, we cannot conclude whether the existence of arbitrage opportunities

and exploration of these are socially costly.

A central part of economic activity is not represented in the papers constituting

this dissertation, and this is production, i.e., the transformation of commodities into

other commodities taken into its most broad definition. There are several reasons

why production has been left out. Firstly, we do not think the inclusion of production

would change our qualitative results, since the mechanisms yielding our result are not
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mitigated by firms. Second, introducing firms requires that we choose an objective

on which the firms take decision to maximize. This is in general not obvious how this

objective should be formed when the financial markets are incomplete. When the

security markets are incomplete firms not only transform commodities, but they can

further transform income streams and hence their decisions affect society’s ability to

allocate risk. When the owners of a company differs in their evaluation of risk this

role plants a seed of disagreement between owners which the markets cannot remove

(for a more thorough treatment of the firm in GEI see [21]). An inclusion would

thus require a decision on the objective of the firm which is undecided theoretically

yet, without contributing significantly. Third, much of the literature on GEI has

thus far ignored the firm.

An important question which we have left unanswered is the nature of transac-

tion cost and thus also what properties it has. An important property is that as the

volume of trade increases infinitely the transaction costs also go to infinity. This

is probably not controversial. However, the convexity assumption which is funda-

mental in the result of chapter 4, is obviously controversial. It exclude the case of a

fixed fee and constant marginal costs.

8



Chapter 2

On Financial Equilibrium and

Intermediation Costs

Tobias Markeprand

Abstract. This paper studies the set of competitive equilibria in financial economies

with intermediation costs. We consider an arbitrary dividend structure, which in-

cludes options and equity with limited liabilities. We show a general existence result

and upper-hemi continuity of the equilibrium correspondence. Finally, we prove

that when intermediation costs approach zero, unbounded volume of asset trades is

a necessary and sufficient condition, provided that, there is no financial equilibrium

without intermediation costs.

JEL classification:. D41; D52; D53;

Keywords:. Incomplete Markets, Intermediation Costs, General Equilibrium The-

ory
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2.1 Introduction

This paper studies the properties of the set of competitive equilibria when inter-

mediation costs are present. We allow the asset structure to include non-linear

dependence on spot market prices. We show that every economy has a competi-

tive equilibrium and that the equilibrium correspondence parameterised by the cost

function and endowments is upper-hemi continuous. Further, when the intermedia-

tion costs go to zero and no equilibrium exists without intermediation costs in the

economy, the asset trades are unbounded. The results are due to a boundary on

asset trades induced by the intermediation cost, which is assumed to go to infinity

when the volume of asset trades goes to infinity.

We consider a two-period model with S different states. In each period-state,

spot trading of goods takes place and asset trading takes place in the first period

before uncertainty is revealed. Trading in asset markets is costly due to intermedi-

ation costs, and the revenues from these trades are redistributed to the consumers1.

This could be in proportion to some pre-specified fraction.

The global existence property arises from the presence of intermediation costs.

Non-existence, when such costs are not present, arises from the discontinuity of

demand for assets when commodity prices converge to prices for which the dividend

matrix drops in rank. The presence of intermediation costs prevents the drop in

rank from inducing discontinuity of the demand correspondence.

This paper extends the existence result in [52] to a more general asset structure

and intermediation cost function. The result in Préchac concerns real assets that

depend linearly on the commodity prices, and with dividends that are positive.

However, this excludes important classes of assets like options, futures etc. We

obtain the stronger result by imposing more restrictions on the cost function. In

Préchac, intermediation cost depends on the value of the trades and not on the

volume of trade. Hence, if the asset price is zero, the cost is zero. When an asset

yields dividends with different signs in different states, the price might be zero in

equilibrium. The existence result is then obtained by assuming that the dividends

are strictly positive. The issue of continuity of the equilibrium correspondence is

not addressed by Préchac.

Initially, existence results in financial economies with incomplete markets were

established by [53]; here an exogenous boundary on asset trades was imposed. Later,

[35] showed that this boundary assumption was essential for the existence result,

providing an example in which no financial equilibrium existed when the boundary

1Therefore, it is an intermediation cost rather than a transaction cost. We prefer to distinguish
between the two, since the latter is a real cost that arises in the exchange of commodities, while
the former is a transfer of income between agents.
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assumption was dropped. Both contributions considered an asset structure that

depended linearly on commodity spot prices. In relation to these results, [24] showed

that the non-existence of equilibrium is a non-generic property: a small perturbation

of the economy will re-establish the existence of equilibrium. However, this result

was due to the linearity of the dividends’ dependence on spot market prices as shown

in [51]. They provide an example involving options, which gives rise to a robust

non-existence of financial equilibrium. As showed in [11], robust non-existence of

competitive equilibrium can also arise in economies when preferences are not strictly

convex.

It is from this perspective the existence result of this paper should be viewed.

Préchac shows existence when asset structure is linearly dependent on spot market

prices and positive dividends, while in this paper we only assume continuity. This

comes at the expense of more restrictions on the cost function. However, our result

allows asset structures with nominal and real assets including options.

Let us briefly suggest an interpretation of our results. If we consider the com-

petitive equilibrium a reasonable description of the state of the economy, then non-

existence of equilibrium implies that prices cannot coordinate the actions of the

agents. With robust examples of non-existence, such situations occur with nonzero

probability. The results of this paper imply that these problems disappear when

trade on financial markets is costly, even though the revenue from such costs is

transferred back to the agents. Intuitively, the upper hemi continuity implies that,

even though the agents make small mistakes in their assessment of the character-

istics of the economy, the error in the expectation of prices and allocation will be

small.

The paper will proceed as follows: In section 2.2 we formalise the model and

present the results. Section 2.3 contains the proofs of the results.

2.2 The Model

We consider a two-period model with H, a finite set of consumers, and S, states

of nature, to be revealed in the second period. We denote by s a generic state and

take, due to ease of notation, s = 0 as the first period. In each state and period

there are L perishable goods and hence the commodity space is RL(S+1). We denote

by P ⊂ RL(S+1)
+ the space of spot market prices2. There are J assets represented by

2Notation: Given x, y ∈ Rn, we write x ≥ y iff. xi ≥ yi for i = 1, ..., n, x > y iff. x ≥ y and
x 6= y. This further gives us the sets Rn+ = {r ∈ Rn | r ≥ 0} and Rn++ = {r ∈ Rn | r � 0}. We
denote by δi = (0, .., 1, ..., 0) ∈ Rn the vector in Rn which is 0 on all coordinates expect in the
i’th coordinate, where it is 1. Given a normed vector space X, we denote by Oε(x) the open ball
with radius ε > 0 and centre in x ∈ X. The set of all subsets of a set X is denoted 2X and if

11
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a dividend structure V : P → L(J, S)3 representing the space of income transfers.

A portfolio is denoted by z ∈ RJ while q ∈ Q ⊂ RJ denotes an asset price vector.

Denote by (uh, ωh, Xh) a consumer with utility function uh, initial endowment of

commodities ωh ∈ RL(S+1) and consumption possibilities set Xh ⊂ RL(S+1). We

denote by Ω ⊂ RHL(S+1) the set of endowments.

Consider a function c : RJ × RJ → R such that c(q, z) ≥ 0 is the intermediation

cost of obtaining the portfolio z = (zj)
J
j=1 ∈ RJ given asset prices q = (qj)

J
j=1 ∈ RJ .

We denote by C the set of intermediation cost functions, i.e., costs by trading in the

asset market in excess of the linear cost given by the price per unit.

Given spot market prices p = (p(s))Ss=0 ∈ P , asset prices q ∈ RJ and a transfer

w ∈ R+, the budget set Bh(p, q, w) of consumer h is the set of commodity bundles

x = (x(s))Ss=0 ∈ Xh and portfolios z ∈ RJ , such that

p(0) · x(0) ≤ p(0) · ωh(0)− q · z − c(q, z) + w

and for every s = 1, ..., S,

p(s) · x(s) ≤ p(s) · ωh(s) + Vs(p) · z

We denote by

φh(p, q, w) = (φxh, φ
z
h)(p, q, w) = arg sup{uh(x) | (x, z) ∈ Bh(p, q, w)}

the demand correspondence of consumer h. We shall sometimes denote the demand

correspondence of h by φh(p, q, w;ω, c) when we want to emphasise the underlying

economy (ω, c) ∈ Ω× C.
We now define our equilibrium of this economy (ω, c) ∈ Ω × C, taking the in-

termediation cost function as given. It is a pair of commodity and asset prices, an

allocation of commodities and portfolios, which are maximal for each consumer, each

market clears and the revenue from the asset trades are distributed to the consumers

by lump-sum transfers:

Definition 1 (Competitive Equilibrium) A competitive equilibrium of (ω, c) is

a tuple (p, q, x, z), such that there exists w = (wh)h∈H satisfying the following con-

ditions:

1. (xh, zh) ∈ φh(p, q, wh) for every h ∈ H

2.
∑

h∈H xh − ωh = 0

X = RN , then we write 2N . If X =
∏
i∈I Xi, then we denote by proji : X → Xi := (xi)i∈I 7→ xi,

the projection map.
3L(J, S) is the space of linear mappings RJ → RS .

12
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3.
∑

h∈H zh = 0

4.
∑

h∈H wh =
∑

h∈H c(q, zh)

Denote by E(ω, c) the set of such tuples (p, q, x, z), where there exists a competitive

equilibrium.

Let Z = RL(S+1)×RJ × (RL(S+1)×RJ)H , then E(ω, c) ⊂ Z for every (ω, c) ∈ Ω×C
and we shall refer to E : Ω× C → 2Z as the Equilibrium correspondence.

Assume next that the following conditions are satisfied:

Assumptions. Given the economy (H,RL(S+1), (uh, ωh, Xh)h∈H , V, c) we assume

that

1. ωh ∈ intXh for every h ∈ H

2. Xh = RL(S+1)
+ is closed, convex and bounded from below

3. uh : Xh → R is continuous, quasi-concave and strictly monotone

4. V : P → L(J, S) is continuous

5. c : Q× RJ → R+ is continuous and c(q, 0) = 0 for every q ∈ Q

6. if λ > 1 then c(q, λz) ≥ c(q, z) for every z ∈ RJ for every q ∈ Q

7. for any λ ∈ [0, 1] and z, z′ ∈ RJ we have c(q, λz + (1− λ)z′) ≤ λc(q, z) + (1−
λ)c(q, z′) for every q ∈ Q

8. c(q, ejλ)→∞ whenever λ→∞ for every q ∈ Q and j = 1, ..., J

We denote by C the subset of C(RJ×Q) with the compact-open topology, which

satisfies the assumptions4. We note that C is not complete since 0 ∈ C \ C. In

particular, this implies that any convergent sequence in the subspace C must have

a limit point that is different from the zero function. Hence, C is a convex cone

pointed at 0, which is not closed.

Remark 1 We note that continuity and strict monotonicity of preferences imply

the following property: for every x ∈ Xh there exists ε > 0 and y(0) − x(0) ∈ RL
+

such that for every (y(s))Ss=1 with ‖(x(s)− y(s))Ss=1‖ < ε implies that u(y) > u(x).

Dividend structures satisfying the assumptions include the following types:

4A sequence {fn} converges to f in the compact-open topology if and only if for every K ⊂
RJ compact and every ε > 0 there exists N ≥ 1, such that for every n ≥ N we have that
supx∈K |fn(x)− f(x)| < ε. According to [46], this space is metrizable, separable and complete.

13
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1. V (p) = V (p′) for every p, p′ ∈ P .

2. Consider the matrix R ∈ RSL such that the dividend matrix V (p) is given by

Vs(p) = p(s) · Rs = Vs(p(s)), where p(s) ∈ RL
+ is the commodity price vector

of state s, while Rs ∈ RL is a commodity bundle.

3. As in the above example, but letting p̄(s) = ( pl(s)
pl(0)

)Ll=1 (when p � 0), we have

that Vs(p) = p̄(s) ·Rs.

4. Considering an asset r1 = (rs(p(s)))
S
s=1 with r(·) continuous, then letting an

asset having the dividend vector given by r2(p) = (max{k − rs(p(s)), 0})Ss=1

for some k ≥ 0, we have that V (p) = (r1(p), r2(p)) satisfies the assumptions.

Thus, the dividend structure includes securities such as nominal assets (i.e.,

bonds and Arrow securities), contingent contracts on commodity bundles, options

and equity contracts with limited liabilities.

The last assumptions concern the properties of the intermediation costs: we

assume that the costs are non-negative, increasing and zero if the asset trades are

zero. Further, if the volume of asset trades goes to infinity, the costs go to infinity.

Finally, the costs behave continuously in both asset prices and trades. An example

of a cost function that satisfies these assumptions is the following: Let cj, kj > 0 for

j = 1, ..., J , then

c(q, z) = α
J∑
j=1

cj|qjzj|n + β
J∑
j=1

kj|zj|m

for every n,m ∈ N satisfies the assumptions when α, β > 0. An example of a cost

function that does not satisfy the assumptions is

c(q, z) =

{
0 z = 0

αq · |z|+ F z 6= 0

for some α, F > 0, since it violates the continuity and convexity property in z = 0.5

Our main result is that under our maintained assumptions, every economy pos-

sesses a competitive equilibrium and the equilibrium correspondence is (upper-hemi)

continuous:

Theorem 1 For every (ω, c) ∈ Ω× C we have E(ω, c) 6= ∅.

Proposition 2 E : Ω× C → 2Z is upper-hemi continuous.

The difficult part is to show that the intermediation costs induce an endogenous

boundary on the optimal portfolio choice. We do this by showing that arbitrary small

5With |z| = (|z1|, ..., |zJ |).

14
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changes in future income can be converted into infinite positive income in the present

period. Thus, arbitrary small changes in future consumption, by continuity and

strict monotonicity of preferences, we can compensate the consumer by increasing

the present consumption.

Further, consider a sequence cn ∈ C with cn → 0 and E(ω, 0) = ∅. The non-

existence of equilibrium must imply the need for income transfer when costs ap-

proach zero and hence a positive demand for assets - the discounting of future state

income must differ across consumers. But then as the cost function is ε-distance

from the zero function for ε > 0 small enough, there exists some positive amount of

trade and as ε tends to zero, the asset trades go to infinity.

Proposition 3 Assume that E(ω, 0) = ∅, cn ∈ C, cn → 0 and (pn, qn, xn, zn) ∈
E(ω, cn), then for every M ≥ 0 there exists N ≥ 1 such that if n ≥ N then

‖zn‖ > M .

In the example of [51], these results imply, that when intermediation costs on

asset trade are positive, there exists a competitive equilibrium. However, as this

cost goes to zero, the volume of asset trade goes to infinity.

Remark 2 We note that E(ω, 0) ⊂ E(ω, C) for every ω ∈ Ω. Thus, it is possible to

construct an intermediation cost function that satisfies the conditions of continuity,

convexity etc., while still obtaining the competitive equilibrium without intermedi-

ation costs. The point is to tax only those asset trades whose volume exceeds the

equilibrium asset trade. The inclusion holds for every ω ∈ Ω by the convention

∅ ⊂ A for any set A.

2.3 Proofs of the Main Theorems

Before giving the proofs, we define the sets used in this section. We denote by

D =
S∏
s=0

Ps ×Q =
S∏
s=0

{p(s) ∈ RL
+ |

L∑
l=1

pl(s) = 1} × {q ∈ RJ | max
j
|qj| ≤ 1}

the price space and

M(ω) = {x ∈
∏
h∈H

Xh |
∑
h∈H

xh − ωh = 0}

15
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the set of market equilibria of commodity allocations. A summary of the sets is:

RL(S+1) The commodity space

Ω ⊂ RHL(S+1) The set of endowments

X =
∏

h∈H Xh The set of allocations

M(ω) The set of spot market clearing allocations

D ⊂ RL(S+1) × RJ The set of normalised spot and asset prices

Z = D ×X × RHJ The set of prices, allocations and portfolios

C ⊂ C(Q× RJ) The set of intermediation cost functions

For every n ∈ N, let En = (ω, c)n ∈ Ω× C be the restricted economy with

Bn
h(p, q, w;ω, c) = Bh(p, q, w;ω, c) ∩ projhM(ω)× [−n, n]J

φnh(p, q, w;ω, c) = arg sup{uh(xh) | (xh, zh) ∈ Bn
h(p, q, w;ω, c)},

being the restricted budget and demand correspondences of consumer h ∈ H.

2.3.1 Proof of Theorem 1

We now state and prove a theorem similar to [53], stating that every bounded

economy contains an equilibrium.

Lemma 1 Given n ∈ N, assume that φnh is upper-hemi continuous, non-empty and

convex-valued for every h ∈ H. Then there exists (pn, qn, xn, zn) ∈ E(En).

Proof:

Define µ0 by

µ0(x̄, z̄) = arg max
(p,q)∈D

∑
h∈H

p(0) · (x̄h(0)− ωh(0)) + q · z̄h,

and let µ1 be given by

µ1(x̄, z̄) =

(
arg max

(p,q)∈D
p(s) ·

∑
h∈H

x̄h(s)− ωh(s)

)S

s=1

.

Note that the correspondence is well-defined since the maxima used in µ0 and µ1

are independent. Let then µ be given by

µ(x̄, z̄, p̄, q̄) = µ0(x̄, z̄)× µ1(x̄, z̄)×

(∏
h∈H

φnh(p̄, q̄, w̄h)− (ωh, 0)

)
,

with w̄h = πh
∑

k∈H c(q̄, z̄k) for some πh > 0 and
∑

h∈H πh = 1.

16
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Assume that (p̄, q̄, x̄, z̄) ∈ µ(p̄, q̄, x̄, z̄), then we have that∑
h∈H

p̄(0) · (x̄h(0)− ωh(0)) + q̄ · z̄h ≥
∑
h∈H

p(0) · (x̄h(0)− ωh(0)) + q · z̄h,

for every (p(0), q) ∈ P0 ×Q and using the budget constraints∑
h∈H

p̄(0) · (x̄h(0)− ωh(0)) + q̄ · z̄h = 0, (2.1)

which implies that ∑
h∈H

p(0) · (x̄h(0)− ωh(0)) + q · z̄h ≤ 0.

Since δ0l ∈ D for all l = 1, ..., L, we have that
∑

h∈H x̄h(0) − ωh(0) ≤ 0 and∑
h∈H z̄h ≤ 0. Also, we have that −δj ∈ Q such that

∑
h∈H z̄h ≥ 0, implying that∑

h∈H z̄h = 0. Further, we have that∑
h∈H

p̄(s) · (x̄h(s)− ωh(s)) ≥
∑
h∈H

p(s) · (x̄h(s)− ωh(s))

for every p(s) ∈ Ps, but then since p̄(s)·(x̄h(s)−ωh(s)) = Vs(p̄)·z̄h and
∑

h∈H z̄h = 0,

we have that
∑

h∈H p(s) ·(x̄h(s)−ωh(s)) ≤ 0. Again, this implies that
∑

h∈H x̄h(s)−
ωh(s) ≤ 0 for every s = 1, ..., S. By monotonicity, we have that

∑
h∈H x̄h(s)−ωh(s) =

0 for every s = 0, 1, ..., S.

By standard arguments, the correspondence µ is upper-hemi continuous, non-

empty, convex-valued mapping a non-empty, convex and compact subset of an Eu-

clidean space into itself. Thus, according to [1] there exists some ē ∈ µ(ē).

�

Remark 3 Note that we only need L(S + 1)− (S + 1) price variables to obtain an

equilibrium, and not L(S + 1) − 2, which is standard when the asset structure is

not real. Hence, we can restrict ourselves to price systems that have positive spot

prices in each state. This prevents examples of budget correspondences which are

not lower-hemi continuous as was the case with the example given in [28, section 4].

Next, we show that there exists an equilibrium for the original economy, i.e.,

that the optimal asset trades must be bounded:

Lemma 2 Let (pn, qn, xn, zn) ∈ E(En) be an equilibrium for every n ∈ N, then

there exists some (p, q, x, z) ∈ E(ω, c), which is a cluster point of the sequence

(pn, qn, xn, zn)n∈N.

17
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Proof:

Consider a sequence of equilibria (pn, qn, xn, zn) with wnh = πh
∑

h∈H c(q
n, znh),

where π ∈ RH
++ and

∑
h∈H πh = 1. Since (pn, qn, xn)n∈N ⊂ D ×M(ω), there exists

a convergent subsequence and by passing to this subsequence we can assume that

(pn, qn, xn)→ (p, q, x) ∈ D ×M(ω).

Assume that limn→∞ ‖zn1 ‖ = ∞. Then by market clearing we can assume that

limn→∞ ‖zn2 ‖ =∞. But since limn→∞ |wn1−qn ·zn1 −c(qn, zn1 )| <∞ and limn→∞w
n
1 =

∞, we must have that limn→∞ q
n · zn1 + c(qn, zn1 ) =∞.

Given the sequence (zn1 )n∈N, define z̃n1 = (1 − λ)zn1 for some λ > 0. Then for

every n ∈ N,

−qn · z̃n1 − c(qn, z̃n1 ) ≥ −qn · zn1 − c(qn, zn1 ) + λ(qn · zn1 + c(qn, zn1 )),

by convexity of c(q, ·) and c(q, 0) = 0, and thus for every λ > 0,

lim
n→∞

wn1 − qn · z̃n1 − c(qn, z̃n1 ) ≥ lim
n→∞

λ(qn · zn1 + c(qn, zn1 )) + p(0) · (x1(0)− ω1(0))

= ∞.

Thus, we have obtained a portfolio that yields infinitely (in the limit) more income

in the first period. Let (x̃n1 )n∈N ⊂ X1 be a sequence satisfying x̃n1 (s) = (1− λ)xn1 (s)

for s = 1, ..., S and n ∈ N. Then limλ→0 x̃
n
1 (s) = x1(s) for every s = 1, ..., S, n ∈ N

and

pn(s) · (x̃n1 (s)− ω1(s)) = Vs(p
n) · z̃n1 .

But x̃n(0) can be chosen arbitrarily for n large enough. By using the result in remark

1, we obtain the desired contradiction, since u1(x̃n1 ) > u1(xn1 ).

Since the sequence (pn, qn, xn, zn) is bounded, we have that there exists some

m ∈ N, such that for every h ∈ H

arg max{uh(xh) | (xh, zh) ∈ Bm
h (p, q, wh)}

= arg max{uh(xh) | (xh, zh) ∈ Bh(p, q, wh)},

since Bn2
h () ⊂ Bn1

h () for every n1 > n2.

Hence the sequence (pn, qn, xn, zn) must contain a convergent subsequence, but

then the cluster point (p, q, x, z) of this sequence is an equilibrium of E : the market

clearing conditions are obviously satisfied and the constraint on the revenue from

intermediation costs also. Thus, we need to show that (xh, zh) ∈ φh(p, q, wh). As-

sume that (x′h, z
′
h) ∈ Bh(p, q, wh) and uh(x

′
h) > uh(xh). Then given (pn, qn, wnh) →

(p, q, wh), there exists by lower-hemi continuity of Bh(·) a sequence (x̄nh, z̄
n
h) ∈

Bh(p
n, qn, wnh) such that (x̄nh, z̄

n
h) → (x′h, z

′
h); but then there exists some N ≥ 1

such that for every n ≥ N we have that uh(x̄
n
h) > uh(x

n
h) by continuity of uh, a

contradiction.
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�

In order to apply the maximum theorem, we need the following result that the

budget correspondence Bn
h is continuous, non-empty and convex-valued for every

consumer h and every n ∈ N:

Lemma 3 The correspondence Bn
h(ω, c) : D × R+ → 2X × 2J given (ω, c) ∈ Ω × C

is continuous, non-empty and convex-valued for every n ∈ N.

In the proof we omit sub- and superscripts indices of the consumers h, and we

show the lower-hemi continuity of the original correspondence Bh.

Proof:

Non-emptiness and convexity is obvious.

Upper-hemi continuity: Since Bn(p, q, w) have values in a compact space, this

is equivalent to the closed graph property. Consider a sequence (pm, qm, wm) →
(p, q, w), (xm, zm) ∈ Bn(pm, qm, wm) and (xm, zm)→ (x, z). But then we have that

pm(0) · xm(0) + qm · zm + c(qm, zm) ≤ pm(0) · ω(0) + wm

pm(s) · xm(s) ≤ pm(s) · ω(s) + Vs(p
m) · zm

for every m ∈ N and taking limits, these inequalities are preserved, i.e., (x, z) ∈
Bn(q, p, w).

Lower-hemi continuity: Consider (x, z) ∈ B(p, q, w) and a sequence (pm, qm, wm)→
(p, q, w). If p(0)·x(0)+q·z+c(q, z) < p(0)·ω(0)+w, then there exists someN ≥ 1 such

that for every m ≥ N we have that pm(0) ·x(0)+qm ·z+c(qm, z) < pm(0) ·ω(0)+wm.

Thus consider the sequence

(xm(0), zm) =

{
(ω, 0) m ≤ N

(x(0), z) m > N

If on the other hand p(0) · x(0) + q · z + c(q, z) = p(0) · ω(0) + w, then since

p(0) · ω(0) + w > 0, there exists (x′, 0) ∈ RL × RJ such that for some N we have

that m ≥ N implies

pm(0) · x′ < pm(0) · ω(0) + wm.

Since the map (x(0), z) 7→ pm(0) · x(0) + qm · z + c(qm, z) is continuous, for every m

there exists (xm(0), zm) such that

pm(0) · xm(0) + qm · zm + c(qm, zm) = pm(0) · ω(0) + wm,

and (xm(0), zm)m∈N can be chosen to converge to (x(0), z).

By the s = 1, ..., S budget constraints, we let

tm(s) =
pm(s) · ω(s) + Vs(p

m) · zm

pm · x(s)
,
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such that limm→∞ t
m(s) = 1 by continuity of V (·). Hence we have found a convergent

sequence (xm, zm) ∈ B(pm, qm, wm) with (xm, zm)→ (x, z) ∈ B(p, q, w).

�

This concludes the proof of theorem 1: by lemma 1 there exists for every bounded

economy market clearing prices, allocations and portfolios maximising utility. By

lemma 2 there exists a boundary on allocations and portfolios due to intermediation

costs. By lemma 3 the budget correspondence is continuous, non-empty and convex

valued, which implies that the demand correspondence is upper-hemi continuous

and convex-valued and thus the conditions of lemma 1 are satisfied and the result

of theorem 1 is proved.

2.3.2 Proofs of Proposition 2 and 3

In order to apply the maximum theorem to the demand correspondence, we need to

know the continuity property of the budget correspondence wrt. the space of cost

functions: To obtain the result of upper-hemi continuity of φh, we use the maximum

theorem (see [1]) extended to general topological spaces due to the fact that C is

not a subspace of any Euclidean space.

Lemma 4 Given (p, q, w) ∈ D×R+, the correspondence Bh(p, q, w;ω, ·) : C → 2X×
2J is continuous.

In the following, we denote B(c) = B(p, q, w;ω, c) for every (p, q, w) ∈ D × R+ and

(ω, c) ∈ Ω× C, and omitting the prescript h.

Proof:

It is easy to see that B has a closed graph: since if cn → c and (qn, zn)→ (q, z)

then cn(qn, zn) → c(q, z) by uniform convergence6. Since cn → c, we have that if

(x, z) ∈ B(c), then limn→∞ p(0) · (x(0)− ω(0)) + q · z + cn(q, z)− w = 0 and hence

for every ε > 0 there exists δ > 0, such that if c′ ∈ Oδ(c)∩C then B(c′) ⊂ Oε(B(c)).

Consider now an element (x, z) ∈ B(c) and a sequence (cn) such that cn →
c. We look for a sequence (xn, zn) ∈ B(cn) such that (xn, zn) → (x, z). Take

(xn, zn) = arg d((x, z), B(cn))7. But convergence in the compact-open topology

implies pointwise convergence in every compact subset. Taking the compact set

containing (ω, 0) and the sequence (xn, zn), we have that d((x, z), B(cn)) → 0 and

hence limn→∞(xn, zn) = (x, z).

�

6The evaluation map (c, (q, z)) 7→ c(q, z) is continuous.
7Where we have that d(x,A) = infa∈A ρ(x, a) in any metric space X with metric ρ and A ⊂ X

closed.
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Note that as a corollary to the lemmatas 3 and 4, the correspondence B : D ×
R+ × Ω× C → 2X × 2J is continuous in the product topology of D × R+ × Ω× C.

As a corollary to the proof in lemma 2, we have that the set of equilibria is

bounded given any intermediation cost function.

Lemma 5 Let (ωn, cn)→ (ω, c) then
⋃
n∈NE(ωn, cn) is bounded.

Proof:

Indeed, every E(ωn, cn) is bounded. By assuming that there exists zn, such that

‖zn‖ → ∞ and replicating the argument in the proof of lemma 2, we obtain a

contradiction.

�

The equilibrium set is bounded:

Lemma 6 E(ω, c) is compact for every (ω, c) ∈ Ω× C.

Proof:

Since E(ω, c) is bounded, we can restrict the demand correspondences without

changing the set of equilibria. But then φmh : D × R+ → 2L(S+1) × 2J is upper-

hemi continuous. But then if (pn, qn, xn, zn)→ (p, q, x, z), (pn, qn, xn, zn) ∈ E(ω, c),

we have that (xnh, z
n
h) = φmh (pn, qn, wnh) → φmh (p, q, wh) = (xh, zh) and the market

clearing conditions are satisfied. Thus (p, q, x, z) ∈ E(ω, c).

�

This induces that the equilibrium correspondence is upper-hemi continuous in

the endowment space, since given any sequence the equilibrium set
⋃
n∈NE(ωn, c

n) is

contained in a compact subspace and hence the closed graph property is equivalent

with upper-hemi continuity.

Proof: [Proof of Proposition 2]

Since {E(ωn, cn)}n∈N is contained in a bounded set of Z, there exists a convergent

subsequence (pn, qn, xn, zn) of selections in E(ωn, cn), but then by upper-hemi conti-

nuity of φh(·), we have that (xh, zh) ∈ φh(p, q, w;ω, c) and hence (p, q, x, z) ∈ E(ω, c).

�

This gives us the result of proposition 2: by lemma 4 the budget correspondence

is continuous in Ω×C; hence by the Maximum Theorem the demand correspondence

is upper-hemi continuous.

Next we prove proposition 3.

Proof: [Proof of Proposition 3]

Using the result of [53], we have that if ‖z‖ ≤ L for all z then E(ω, 0) 6= ∅, thus

implying that if E(ω, 0) = ∅ then for any allocations of commodities and portfolios
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(x, z) such that
∑

h∈H xh−ωh = 0 and
∑

h∈H zh = 0 and prices (p, q) with (xh, zh) ∈
Bh(p, q, wh;ωh, 0), there exist (x′, z′) and h with uh(x

′
h) > uh(xh) and (x′h, z

′
h) ∈

Bh(p, q, wh;ωh, 0). Assume that there exist M ≥ 0 such that supn ‖zn‖ ≤ M ; let

(pn, qn, xn, zn) ∈ E(ω, cn) be a convergent (sub)sequence with limit (p, q, x, z) ∈ Z,

then we have that

0 =
∑
h∈H

xh − ωh

0 =
∑
h∈H

zh

(xh, zh) ∈ Bh(p, q, wh;ωh, 0),

(the last inclusion follows from the closed graph property of the budget set) but

then there exists (x′, z′) and h ∈ H such that uh(x
′
h) > uh(xh) and (x′h, z

′
h) ∈

Bh(p, q, wh;ωh, 0); then by continuity of uh there exists some δ > 0 such that for

every x̄h ∈ Xh with ‖x̄h − x′h‖ < δ implies that uh(x̄h) > uh(xh). Since cn → 0,

there exists some N ≥ 1 such that for all n ≥ N we have that Bh(p
n, qn, wnh ;ωh, c

n)∩
Oδ(x

′
h, z
′
h) 6= ∅, but then (pn, qn, xn, zn) cannot be an equilibrium since h can obtain

higher utility and can therefore not maximise utility.

�

2.4 Final remarks

In this paper we have proved the existence of equilibrium in financial economies when

intermediation costs are present. We have shown that the equilibrium correspon-

dence mapping cost functions into prices, allocations and portfolios is upper-hemi

continuous. Also we have shown that if the cost function converges to the zero

function, then the portfolios of the agents must diverge and hence are unbounded.

The assumption of strict monotonicity is obviously very restrictive, and the proof

also shows that a less restrictive condition could be imposed and our result would

still hold. However, this would be less standard and would not provide considerably

new insights.

We could extend the existence result to cost functions that are non-convex and

semi-continuous when considering large economies. However, as the proof is con-

structed, this would require a condition that implied that the reduction in interme-

diation cost due to some small fraction would not be zero. It is easy to see that a

two-part tariff with positive marginal costs would satisfy this condition.

In this paper we have considered intermediation costs on the net asset trade. We

note however that the result is easily extendable to the case where intermediation

costs are on sale and purchase of the same asset.

22



Chapter 3

Volatility of Security Trade and

Incomplete Financial Markets

Tobias Markeprand & Mich Tvede

Abstract. In the recent decades the ratio between the volume of trade in securities

and income has increased dramatically. We show that this increase can be explained

in a general equilibrium model with incomplete financial markets and intermediation

costs. The model is a stochastic version of a multi-agent Ramsey model with sta-

tionary fundamentals of an exchange economy. We show that the effect of financial

liberalizations on the trading volume is potentially very large. Further, we show how

the changes in the dividend structure can explain both an increase in the volume

and volatility of trade. This can happen even though the risk dispersion offered

by the market is unchanged. These results can only occur in economies where the

financial market is (potentially) incomplete, whose dividends depend on endogenous

variables such as e.g. prices.

JEL classification:. D41; D52; D53; G11

Keywords:. Incomplete markets, General Equilibrium, Volatility, Portfolio Choice.

23



Chapter 3

3.1 Introduction

Empirical studies have shown that the volatility of stocks has been increasing during

the period from mid 70’s until today (see [57]). The volume of trade on NYSE has

increased almost monotonically throughout the decade 1990-1999 by an annually

instantaneous rate of 16 %, while the number of trades has increased by almost

22 %. In the same period the GDP of the US has increased annually by 2.7 %.

And the same pattern is observed throughout a large part of the world. During

this period the main trend of public policy of financial regulation has been that of

deregulation, and hence has decreased the costs of trading securities. Here we show

that the high volume of trade can be explained by a decrease in the intermediation

costs. While this might not seem too surprising, we claim that the observed increase

in trades is not only the direct effect of a decrease in the trading costs. We also

need to take into account the indirect equilibrium effects (and thus basically we

justify a general equilibrium approach). The indirect effect goes as follows: when

intermediation costs decreases, asset and commodity prices change current, as well

as future, prices. These changes in prices (and price expectations) result in changed

securities’ returns, such as options, stocks, etc. If these induced changes in the

dividend reduce the risk dispersion of a current portfolio, the traders need to trade

more intensive in order to obtain the same risk profile. In this paper, we show that

this effect can be very large and, potentially, without boundary. Thus, high volume

of trade and volatility is not necessarily due to irrational noise traders but can be

explained in a perfectly rational model!

We consider the following model: Assume that the fundamentals are stationary

Markov processes, where the fundamentals are the initial endowments, the security

dividends and the consumer preferences. Formulated differently, the economy is

subject to random shocks which are independent and invariant over time. No pro-

duction takes place and the only economic activity is the exchange of a perishable

good and of short-lived securities with a zero net supply. The dividend of each secu-

rity can depend upon the realisation of future security prices. A departure from the

traditional finance models, trading securities is subject to an intermediation cost.

There is a finite set of households each with an infinite lifespan. The consumer’s

utility satisfies the independence axiom and the von-Neumann Morgenstern utility

is bounded away from the boundary. Households are, in addition to the usual in-

tertemporal budget constraint, subject to a transversality condition using their own

present value vector. This prevents Ponzi-game schemes, i.e., financing debt with

increasing debt into the indefinite future. In short, our model is a stationary version

of [43] with the addition of intermediation costs and price dependent dividends.

Let us relate this paper to the more general discussion on financial volatility
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and efficiency of the financial markets. The main point of the market efficiency

hypothesis is that the price of an asset equals the present value (using an appropriate

discount factor) of the future dividends. More specifically, the discount rates are

martingales, i.e., the expected value is equal to the current value. One might be

more correct in labeling this hypothesis the market information efficiency, since

it does not tell us anything about the (Pareto) efficiency of the allocation of real

goods like savings and investment. It only implies that it is not possible to obtain

any arbitrage on the financial markets, i.e., there is no free-lunch. We shall not

challenge the efficient market hypothesis here. However, we do allow the financial

markets to be incomplete, such that not all risk profiles are tradable on the financial

markets.

Much of the finance literature has focused on the pricing of securities, rather

than the volume of trade. However, let us briefly discuss some contributions on

volatility of security prices which we find relevant. They are relevant in that their

models are within the same framework as ours. Also, the volume of trade and

price changes are not independent, empirically according to [39], [50] where volume

and prices are positive correlated, and theoretically [56] where rational traders,

due to informational asymmetries, use trading volumes to interfere information and

hence volume affects prices. In this way prices and volume of trade are intimately

related. In [3] incomplete financial markets, or more specifically, limited market

participation is also related to excess volatility of asset prices. They attribute this

to liquidity trade, i.e., a sudden need of cash and the sale of securities in order

to meet such needs, and limited market participation. A model like [20] is used

and this opens up for self-fulfilling expectations in the decision of participation on

the security market, which is subject to a fixed entry cost: If investors expect small

participation rates, future security markets will be sensitive to liquidity trade, which

can discourage investors from paticipating on the security market. Instead they use

the liquid cash as means of saving. [17] studies volatility of security prices and

financial innovation. Their results point in two directions, depending on the nature

of risk, more specifically whether there is aggregate risk or not. When there is no

aggregate risk, completing the asset market will generically reduce the asset price

volatility. While in the case of aggregate risk, reducing the degree of incompleteness

per se is not necessarily associated with a volatility reduction. We take the financial

structure as exogenous. These are only two examples and many more could have

been added.

Let us try to justify our introduction of intermediation cost on asset trading.

Presumably the best known example of an intermediation cost is known as bid-ask

price spreads, i.e., the difference between the prices that financial institutions buys

assets from costumers and the price that they sell the assets at. Every person who
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has travelled from one currency area to another knows that the exchange of money

in itself cost money. Also, trading on a stock exchange is subject to a trading cost

net of the price of a stock. Thus, they do exist! We defer further discussion to

section 3.7.

The outline of the paper is as follows: in section 3.2 we formulate the model and

introduce the relevant concepts. In section 3.3 we state our main results. In section

3.4 shows the model formulated in income streams. This formulation in income

streams illustrates how examples of non-existence of equilibria can exist. The point

is that the model is equivalently formulated as portfolio choices and asset prices

as to income stream choices through the achievable income streams generated by

portfolio choices. The section shows that non-existence of an equilibrium is indeed

a sufficient condition but not a necessary condition. In section 3.5 we show the

existence of an ergodic equilibrium in any economy with positive transaction costs.

In section 3.6 we also give specific examples of economies and their equilibria. Using

the terminology of income spaces we obtain a wide range of economies where the

volume of trade is boundless as the intermediation costs goes to zero. Finally, in

section 3.7 we conclude and comment on the results and assumptions.

3.2 The Model

Time goes from t = 0 to ∞, thus t ∈ N0. In each period there is a single perishable

consumption good and k shot-lived purely financial securities, i.e., with a zero net

supply. Let there be n agents each living infinitely. No production takes place and

the only available resources are the initial endowments of the consumption good.

Let Y be a finite set of shocks and π : Y → P (Y ) a transition map, i.e., given a

state y, π(y) is a probability distribution on Y and π(y, y′) ≥ 0 is the probability

that the next state is y′ conditional on y. We assume wlog that for every y′ ∈ Y
there exists y ∈ Y such that π(y, y′) > 0, i.e., no state is superfluous.

Agent i evaluates any consumption stream x = (xt)t∈N0 which is uniformly

bounded, where xt is a random variable with values in R+ and distribution µ, by

using the real-valued map

Ui(x) = E[
∞∑
t=0

βtiui(xt)] =

∫ ∑
βiiui(xt) dµ(x),

where ui : R+ → R is a von-Neumann-Morgenstern utility function and βi is the

discounting rate. For any T denote by

UT
i (x) = E[

T∑
t=0

βtiui(xt)],
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the “cut-off”-utility or T -horizon utility of some consumption stream.

We take the consumption space to be the set of uniformly bounded R+-sequences,

i.e., X = `∞(Y ) = {(xt)t∈N0 | supt ‖xt‖ < ∞} where xt : Y
t → R+ is the consump-

tion at date t contingent on the history (yτ )τ≤t.

Assume that the assets are short-lived with return D(y, q)θ ∈ R in state y if the

portfolio θ ∈ Rk is held from the previous to the current period and the current

asset price vector is q. We assume that D(y, q) ≥ 0 for every y ∈ Y , q ≥ 0. Let

Θ = {(θi)ni=1 ∈ Rnk |
n∑
i=1

θi = 0}

be the set of market clearing portfolio (spot) allocations. Given a portfolio θ, let

c(θ) ∈ R+ be the intermediation cost of this portfolio. We assume that c(·) is

continuous, convex, c(0) = 0 and lim‖θ‖→∞ c(θ) = ∞. Denote by C the set of

intermediation cost functions endowed with the compact-open topology.

We take the portfolio space to be the set of uniformly bounded Rk-sequences, i.e.,

Z = `∞(Rk) = {(zt)t∈N0 | supt ‖zt‖ <∞} where zt : Y
t → Rk is the consumption at

date t contingent on the history (yτ )τ≤t.

Note that the securities here are in zero net supply, and thus there is no aggregate

accumulation of wealth in the economy. Thus, in a particular equilibrium path an

individual can be rich, but this accumulation of wealth of a single individual must

be offset by a equivalent accumulation of debt by other consumers.

The reason why we choose short-lived securities, is threefold: first, they suite the

stationary environment well, and second any finite-lived security structure would be

no obstacle only more cumbersome notation, and finally, as shown in [44] with

zero net supply of securities the model permit speculative bubbles, i.e., the price

of a security can deviate from the fundamental value. Also, it eases the notational

difficulties.

Each agent has an endowment ei : Y → R++ of consumption goods and an initial

endowment of assets ξi ∈ Rk such that
∑

i ξi = 0. Assume that ei(y) +D(y, q)ξi > 0

for every y ∈ Y and q ≥ 0.

A financial economy with intermediation costs is characterized by the following

information

E = (π,D, c, (ei, ui, βi, ξi)
n
i=1),

and sometimes just E = (e,D, c), when the remaining characteristics are fixed.

Note that for any intermediation cost function c ∈ C and D the set of economies is

parametrized by a finite dimensional vector space RI#Y .

Assume that limx→0 ui(x) = −∞ and limx→∞ ui(x) <∞, i.e., the von-Neumann

Morgenstern function is bounded from above and boundless from below. This as-

sumption implies the existence of a “reservation” consumption level given r > 0,
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xi(r) > 0 such that

ui(xi(r)) +
βi

1− βi
ui(r) ≤

1

1− βi
min
y∈Y
{ui(ei(y))} (3.1)

i.e., the consumer prefers the initial endowment in all periods to consuming x today

and the maximal consumption r in all of the future periods. This property imposes

a lower bound on consumption allocations which can arise in equilibrium.

The endogenous state space is

Z = Θ×Θ× Rn
+ × Rk × Rn

+.

A generic element is denoted by (θ−, θ, x, q, w), where θ− ∈ Θ is the portfolio al-

location from the previous period, θ ∈ Θ is the current portfolio, x ∈ Rn
+ is the

allocation of consumption goods, q ∈ Rk is the asset prices and w ∈ Rn
+ is a transfer

to each agent redistributing the revenue from intermediation costs. Then the state

space is

S =

{
(y, (θ−, θ, x, q, w)) ∈ Y × Z |

∑
i xi − ei(y) = 0∑
i c(θi)− wi = 0

}
. (3.2)

For an S-valued finite horizon stochastic process (st)
T
t=1 (on some unspecified prob-

ability space) we write st = [yt, (θ
−
t , θt, xt, qt, wt)] = [yt, zt]. We call such a process

(st)
T
t=1 a consistent state process provided that, for alle t < T , the conditional distri-

bution of yt+1 given s1, ..., st is almost surely π(yt), i.e., Prob{yt+1 = y | s0, . . . , st} =

π(yt, y) for every y ∈ Y 1. A sequence (at)t∈N0 of random variables (on the same

probability space on which (st) is defined) is adapted to (st)t∈N0 if at is (s1, ..., st)-

measurable2 for all t ∈ N0.

Henceforth, we shall write (x, θ) = (xt, θt)t∈N0 , when there is an infinite sequence

of random variables.

Definition 2 (Feasible Strategy) Given a state process (st)t∈N0, a feasible strat-

egy for agent i is an (st)-adapted process (θ, x) satisfying, for all t,

qt · θt + xt = ei(yt) +D(yt, qt)θt−1 − c(θt) + wit

almost everywhere with θ0 = ξi and such that

lim
T→∞

E[βTi u
′
i(xiT )(qT θiT + c(θiT )− wT ) | s1, . . . , st] = 0.

almost every where for every t = 0, 1, . . . .

1See e.g. [22], section 10.
2The σ-algebra generated by the functions (s1, ..., st) is finer than the σ-algebra generated by

at.
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The first condition is referred to as the intertemporal budget constraint while the

second is referred to as the transversality condition. The transversality condition

guarantees that the agent does not enter into a Ponzi-game scheme. This condition

is not necessary in [23] since the portfolios are uniformly bounded by definition.

This boundary implies that the transversality condition is automatically satisfied.

The transversality condition implies that the sequence of portfolios must have a

boundary on the growth of wealth. While the concept of transversality is maybe

hard to accept due to its lack of economic content, however, as showed in [43] any

equilibrium with transversality constraints is equivalent to an equilibrium with debt

constraints. This last concept may be more acceptable from an empirical point

of view. However, it does not fit well into the competitive framework and the

anonymity of markets. The point of their result is that the Ponzi-game condition

is self-imposed using the transversality condition, i.e., if I do not think anyone is

willing to accept a Ponzi-game strategy then it is not optimal for me to engage into

a Ponzi-game scheme.

Note further that imposing the transversality condition implies that the budget

constraint could be transformed into a single with the requirement that income

transfers should be in the market space. However, we have chosen the form above

as this is a minimum of modification relative to [23].

Definition 3 (Optimal Strategy) An optimal strategy given (st) for i is a feasi-

ble strategy (θ, x) such that, for any other feasible strategy (θ′, x′), we have Ui(x) ≥
Ui(x

′).

Let us next introduce some central concepts of dynamic systems.

Consider a Borel space S of states3, referred to as the state space. Denote

by P (S) the set of measures on S. A transition map is a measurable set J ⊂
S and a measurable map Π: J → P (J) such that Π(s) ∈ P (J) for every s ∈
J . An equilibrium correspondence is a correspondence G : S → P (S), where for

every s ∈ S the set G(s) ⊂ P (S) is the set of probability measures µ on S which

are compatible with temporary equilibrium conditions. We also refer to G as an

expectations correspondence, when it has a closed graph. A measurable set J ⊂ S

is self-justified (wrt. G) if J 6= ∅ and G(s)∩ P (J) 6= ∅ for every s ∈ J . A transition

map (J,Π) is a (homogenous) Markov equilibrium (wrt G) if Π(s) ∈ G(s) for all

s ∈ J , i.e., if any initial state in J is mapped into an equilibrium measure on J .

Given a transition map (J,Π), a measure µ is invariant if for every measurable

subset A ⊂ J we have that

µ(A) =

∫
J

Π(s, A) dµ(s),

3A complete, separable, metric space equipped with the Borel σ-algebra
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i.e., if the measure µ is induced by the transition Π and the initial distribution µ4.

Given an invariant measure µ, a measurable subset A0 ⊂ J is invariant if

µ({s ∈ A0 | Π(s) ∈ P (A0)}) = 1,

i.e., if µ-almost everywhere a state in A0 will be transformed into A0 by Π5. A

measure µ is ergodic if µ(A0) ∈ {0, 1} for any invariant set A0
6. We shall refer to

(J,Π, µ) as an ergodic Markov equilibrium of G.

Let S = Y × Z, with Y and Z being Borel spaces. Given µ ∈ P (S), let suppµ

denote the support of µ. Denote by PF (Y × Z) the set of probability measures

µ ∈ P (Y × Z) such that to each µ there exists a map hµ : Y → Z such that if

s ∈ suppµ there exists a y ∈ Y such that s = (y, hµ(y)) µ-a.e., i.e., µ(Gr(hµ)) = 1

where Grhµ = {(y, hµ(y)) ∈ Y × Z | y ∈ Y } is the graph of hµ.

A Markov equilibrium (J,Π) is spotless if Π(s) ∈ PF (Y × Z) for all s ∈ J , i.e.,

if for any state the transition map has a one-to-one correspondence between the

exogenous and endogenous variables. A Markov equilibrium (J,Π) is conditionally

spotless if, for all s ∈ J , there is some M ⊂ PF (S) ∩G(s) and α ∈ P (M) such that

Π(s) =
∫
M
ν dα(ν).

How do these definitions relate to our model?

Definition 4 (Equilibrium) An equilibrium of E is a consistent S-valued state

process s = (st) with the property that, for all i, the strategy (θi, xi) is optimal given

s.

This is the standard competitive equilibrium concept. It is encompassed into

our framework as follows.

Definition 5 (Equilibrium transition) An equilibrium transition of E is a pair

(J,Π), where J ⊂ S is measurable and Π: J → P (J) is a transition map with the

properties:

1. for any ȳ ∈ Y , there is a point [ȳ, (θ−, θ, x, q, w)] ∈ J , and

2. each time-homogeneous Markov J-valued process (st) with transition Π is an

equilibrium process.

The first condition states that any starting parameter y ∈ Y is admissible. The

second condition, that each state process generated by the transition map is an

equilibrium, i.e., consistent and individually optimal.

4If we consider the map µ 7→ KΠ[µ] =
∫

Π(s,A) dµ(s) from P (J) into itself, then an invariant
measure is a fixed point of this map.

5Note that {s ∈ A0 | Π(s) ∈ P (A0)} = Π−1(P (A0)) ∩A0.
6The set of ergodic measures is the set of extreme points of the set of invariant measures. Thus,

if Π is continuous by the Krein-Milman there exists ergodic measures. However, this is in general
too strong a requirement since Π is “endogenous”.
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3.3 The Results

Firstly, we state the result that there exists an open set of endowments which has

no competitive equilibrium without intermediation costs. The second result, is that

there exists stationary equilibrium processes, moreover these can be ergodic, while

this may involve “sun-spots”, see the discussion in [23]. And thirdly we state results

concerning conditions on the economy under which the volume of the equilibrium

portfolios increases without boundary when the intermediation costs go to zero.

Proposition 4 There exists an economy E = (e,D, 0) such that there exists no

equilibrium. There exists an economy E = (e,D, 0) and an open neighbourhood Ω′

of e such that any economy E ′ = (e′, D, 0), e′ ∈ Ω does not have an equilibrium.

Proof:

Example 11 in section 3.6 shows the first statement.

It is easy to see that perturbating the endowments in this example preserves the

non-existence of an equilibrium, and hence the second statement is proved.

�

A finite horizon example is given in [51].

Proposition 5 Any economy E = (e,D, c) has a spotless equilibrium transition with

intermediation costs c > 0.

Proof: The proof is in section 3.5. �

Let us add some comments on this result. First of all, it is remarkable that a

stationary equilibrium exists with heterogeneous agents. However, as pointed out in

[23] the solution is to expand the state space, and include the asset portfolio from

the previous period in the state space, while imposing consistency requirements in

the construction of an equilibrium. Why should we care about the existence of a

stationary equilibrium? One important argument is the coordination of expectations

among agents. To quote [32]

“an equilibrium which does not display minimal regularity through time

- maybe stationarity - is unlikely to generate the coordination between

agents that it assumes.”.

A stronger result would be to show the existence of an ergodic equilibrium. An

advantage compared to “just” a THME is that, in the latter, you can have several

invariant sets and thus there exist more simple equilibrium transitions - vaguely one

can say that every measurable subset of states in an ergodic equilibrium is essential.
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If you take a measurable subset of positive measure then any equilibrium process

has a positive probability of occurring in this subset.

The stationarity and the use of a dynamic system is essential in the interpretation

of our results on volatility, while not the technical arguments.

Proposition 6 Assume that (e,D, 0) does not have an equilibrium and that cn → 0,

for every K ≥ 0 there exists an integer n0 ≥ 0 such that for every n ≥ n0, there

exists an equilibrium of (e,D, cn), with θn being the portfolio process, such that

‖θn‖∞ ≥ K.

Proof: The proof is in section 3.5. �

Let us try to explain the intuition behind our result: Assume that without inter-

mediation costs there exists no equilibrium. This non-existence must arise due to a

lack of boundary on the security trades, since all other variables are bounded. In-

troducing intermediation costs implies that financing such portfolios with increased

volume must imply that at least agent has no lower bound on the consumption of

the perishable good, and she can increase her utility by not using such a portfolio.

Thus, there exists an equilibrium with intermediation costs. Considering then an

economy with no intermediation costs and with no equilibrium, and a sequence of

equilibria with intermediation costs, such that the costs go to zero, then the volume

of security trades must go to infinity, eventually.

Corollary 1 There exists an open set Ω′ ⊂ Ω and a dividend D, such that any

(e,D, c) ∈ Ω′ × {D} × {0} if cn → 0 and (xn, θn, qn) ∈ E(e, cn) for every n, then

there exists an integer N such that ‖θn‖∞ ≥ K for every n ≥ N .

To conclude, we have showed that without changing the fluctuations of the fun-

damentals in the economy, the volume of asset trade can increase infinitely when

the intermediation costs goes to zero. Moreover, for a given asset structure the

probability of having an economy with this property is strictly positive.

Another result is stated as follows:

Corollary 2 Let e ∈ Ω be such that E(e, 0) = ∅, then for every K ≥ 0 there exists

an open neighbourhood U of e such that if e′ ∈ U , cn → 0 and (xn, θn, qn) ∈ E(e′, cn)

for every n, then there exists an integer N such that ‖θn‖∞ ≥ K for every n ≥ N .

The point is that using proposition 6, we get boundless asset trade when the pure

equilibrium does not exist, while economies close to this economy also have equilibria

that are close to the equilibria of this economy, but then going arbitrarily close to

this economy, a zero sequence of costs implies asset trades without boundary. This
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last result obviously extends the scope of our result, since even asset structures with

linear dependence on prices have open sets with arbitrarily boundless asset trade.

Our results so far have shown that a sufficient condition for a boundless increase

in the volume of trade in securities is that the pure economy does not have an

equilibrium. However, this condition is not necessary as shown in section 3.4.

3.4 Income streams

Let us reformulate the model in income streams instead of portfolios and the asset

market is characterized by a map from prices into the collection of subsets of income

streams. Thus asset prices and dividends are “build” into the concept of feasible in-

come streams. This concept should help us explain the non-existence of equilibrium

processes.

It is easy to see that the model is equivalently formulated using either of the

two: For any D : Rn → Rm define 〈D〉 = {Dθ | θ ∈ Rn} to be the range of D. It is

then easy to see that for any two economies E = (e,D, 0) and E ′ = (e,D′, 0), with

〈D〉 = 〈D′〉, then (x, θ, q) is an equilibrium of E if and only if it is an equilibrium

of E ′. Denote by (ri) the corresponding income transfer processes. By the result

of [43] if D = D0 is a constant, i.e., we consider purely nominal assets, then there

always exists an equilibrium price q0 ∈ Q, see e.g. [7]. Assume moreover that7

rit ∈ ri〈D0〉 for some i and t, i.e., that at least one trade in all of the states is carried

through8. Next, consider a continuous map D : Q→ RY such that 〈D(q0)〉 = 〈D0〉,
such that if D is homogenous of degree one, then, generically, the set of equilibria

is finite and locally unique. We claim that we can choose a path γ : [0, 1]→ D such

that γ(0) = D(q0) = D0 and γ(1) = D1, such that 〈γ(t)〉 = 〈D0〉 for every t < 1

and rankD1 < rankD0
9. Then for any sequence of economies En = (e, γ(tn), 0),

tn = 1
1−n−1 all has p0 as equilibrium pricevector. This is because what matters for

7Where riA is the relative interior of a set A ⊂ Rn, i.e., the interior relative to the smallest
affin space containing A.

8This condition resembles the condition of [7] which states that the matrix D·10 (f(p, ω0)) has
full rank, which basically states that consumers disagree on the residual states over the number of
assets.

9To see this, let A : Rn → Rm be a linear map of full rank. Consider then the linear map
Bt : Rn → Rm given by Aei = Btei for i < n and Bten = (1 − t)Aen. Then rankBt = rankA for
every t 6= 1 and rankB1 = rankA − 1. Alternatively, let Bei = Aei for i < n and Ben = Aen−1

and consider the map Ct : Rn → Rm with Ctei = Aei for i < n and Cten = (tB + (1− t)A)en. We
note that regardless of the choice of Ct above, detCt = (1 − t) detA (since detB = 0 and in the
last case detCt = tdetB + (1− t) detA) such that since detA 6= 0, detCt 6= 0 if and only if t 6= 1.
Let r ∈ 〈A〉, r = Aθ θ = (θiei) ∈ Rn, then r = Btθ̄ with θ̄ = (θ−n, (1 − t)−1θn). Also, r = Ct

¯̄θ
with ¯̄θ = (θ−n, θn − t(θn − θn−1)). This implies that 〈A〉 = 〈Bt〉 = 〈Ct〉 for every t 6= 1.
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each consumer is the income stream, and not the particular portfolio necessary to

achieve the income stream. Assume then that q0 is not a no-trade equilibrium, then

we claim that any sequence of asset trades (θn) associated with the equilibrium q0

of the sequence of economies (En) must satisfy that lim ‖θn‖ = ∞. Assume not,

then letting θ̄ be a limit point we must have by the continuity of the dual map

(A, x) 7→ Ax on the Banach space of linear maps that r = lim γ(tn)θn = D1θ̄.

However, since r is an interior point of 〈D0〉 = 〈γ(t)〉, t < 1 we cannot have that

r ∈ 〈D1〉.
However, more is true. Assume that the economy is regular such that in a

small neighbourhood of e there exists a continuous function q(e) of equilibrium

prices. Consider then for any e′ close enough to e the path γ̃ such that γ̃(s) =

D(q(se+ (1− s)e′)) and paste the paths γ and γ̃. This implies that there exists an

open set of economies parameterized by the endowments such that asset trades are

above some given threshold M <∞. This indeed implies that high volumes of asset

trades is not a negligible phenomenon.

We claim that var(θni ) → ∞, generically. If this were not true, then we should

have that var( 1
E θn

i
θni ) → 0. However, this would imply that the income stream is

constant across states, which is not true in general.

To illustrate our point(s), consider the following example:

Example 7 Let

Dt =

 1 0 0

1 1 1

t t 1


be the asset structure for any t ∈ [0, 1). Then for any income stream v = (v1, v2, v3)

the corresponding portfolio is given by

θt =

 v1

−v1 + v2−v3
1−t

v3−tv2
1−t

 .

But then limt→1 ‖θt‖ =∞ whenever v2 6= v3.

In the example we obtain that var(θt3) = 1
(1−t)2 var(v3− tv2), such that if var(v3−

v2) 6= 0 then we have that limt→1 var(θt3) = ∞. Note also that the “normalized”

variance is
var(θt

3)

E(θt
3)

= 1
1−t

var(v3−tv2)
E(v3−tv2)

, and thus that it is not just due to the increased

level of trade but also in order to obtain a better risk dispersion. Actually, we have

var(θt) =

 var θt1
var θt2
var θt3

 =

 var v1

var v1 + 1
(1−t)2 var(v2 − v3)− 1

1−t cov(v1, v2 − v3)
1

1−t var(v3 − tv2)

 ,
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where cov(s, t) = E[(s − E s)(t − E t)] is the covariance wrt the random variables

s, t. Again, whenever var(v2 − v3) = var(v2 − v3) 6= 0 it holds that limt→1 var(θt2) =

limt→1 var(θt3) =∞.

3.5 Existence of equilibrium transitions

In this section we show the proof of proposition 5 and 6. For that purpose we

define a (not necessarily non-empty-valued) correspondence which is going to be

our equilibrium correspondence or expectations correspondence:

Definition 6 Given a state s0 = [y0, (θ
−
0 , θ0, x0, q0, w0)] ∈ S, denote by g(s0) ⊂

P (S) the set of measures µ ∈ P (S) such that

1. supp(µ) = Gr(hs0) for some function hs0 : Y → Z

2. the marginal of µ on Y (resp. Θ−) is µY = π(y0) (resp. µΘ− = δθ0)10

3. for all i, (x0i, x1i, θi0) solves

maxui(x0i) + β E[ui(x1i)]

subject to

q0 · θi0 + xi0 = D(y0, q0)θ−i0 + ei(y0)− c(θi0) + wi0

q1 · θi1 + xi1 = D(y1, q1)θi0 + ei(y1)− c(θi1) + wi1

for any random variable s1 = [y1, (θ
−
1 , θ1, x1, q1, w1)] with distribution µ

4. x1 ≥ x almost surely.

Remark:

Note that there is no measurebility problem in the definition of g condition 3

since, by condition 1, the support of µ is finitely valued and hence the maximization

problem is a finite dimensional Euclidean space. This implies given µ ∈ g(s0) then

for every random variable s1 with distribution µ there exists multipliers λi(s1) ≥ 0,

elements of R#Y for every consumer i, such that (xi0, xi1, θi0) solves

maxu(x0) + β
∑
y

µ(y, hs0(y))u(x1(y, hs0(y))) + λi0(s1)k0(s0) + λi1(s1)Tk1(s0, s1)

and k1(s0, s1) ∈ R#Y . The functions k0, k1 being the budget constraints of condition

3.

10We denote by δx the Dirac-measure with unit-mass on x.

35



Chapter 3

Since c is a convex function the set of subgradients ∂c(x) is non-empty11 (see

[54]) and thus according to the Kuhn-Tucker theorem [54, p. 281, Theorem 28.3] we

must have that

u′(x0) + λ0 = 0 (3.3)

βµ(y)u′(x1(y)) + λy1 = 0 (3.4)

λ0(q0 + κ(θ0)) +
∑
y

λy1D(y) = 0 (3.5)

where κ(θ0) ∈ ∂c(θ0) being the necessary and sufficient conditions. Thus, we could

substitute the condition 3 of definition 6 with equations (3.3)-(3.5).

End of remark

Remark:

Second, note the following: if g 6= ∅ and J is an invariant set, then we obtain a

map H : J × Y → Z given by

H(s0, y) = H((y0, [θ
−
0 , θ0, x0, q0, w0]), y) = hs0(y) ∈ Z

such that a realised equilibrium path (st) must satisfy that st+1 = (yt+1, H(st, yt+1))

and hence zt+1 = H(zt, yt+1).

End of remark

Denote by η(T ) the set of T -horizon equilibria states, i.e., the set of T -horizon

processes (st)
T
t=1 that are optimal to each consumer using the utility index UT

i .

The following lemmas show how to construct an ergodic equilibrium: The first

establish a lower bound on the consumption compatible with any finite equilibrium.

Lemma 7 There exists x̄ ∈ Rn
++, such that for all T and (st)

T
t=1 ∈ η(T ), then for

all i and t, xit ≥ x̄i almost surely.

Proof:

Follows immediately from the fact that the endowment is always feasible, and

the property from equation (3.1) with r0 = maxy
∑

i ei(y) > 0 and x̄i = xi(r0) > 0.

�

Next, we show that any equilibrium price sequence must be uniformly bounded.

Lemma 8 There exists q̄ ∈ Rk
+, such that, for any finite T , if (st)

T
t=1 ∈ η(T ), then

for all t we have |qt| ≤ q̄ almost surely.

11x? ∈ Rn is a subgradient of c at x0 if c(x0)− c(x) ≥ x? · (x0−x) for every x ∈ Rn, and ∂c(x) is
called the subdifferential of c at x. When c is differentiable the subgradients are unique and equals
it’s gradient
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Proof:

Let (θit, xit)t be a strategy in equilibrium of consumer i. Consider the following

modification of the strategy: In the current period t, replace the final portfolio θit

with (1 − ε)θit, spending additional εqt · θit on consumption. In any period τ > t,

replace (θiτ , xiτ ) with (1 − ε)(θiτ , xiτ + ε
1−εei). This strategy is still feasible, since

both the intertemporal budget constraints, the intermediation costs are convex, and

the transversality condition are satisfied.

This modification of the strategy leads to a loss of expected utility in future

periods that is bounded, and this bound can be made uniform, such that it does

not depend on the horizon T , and it goes to zero when ε→ 0. Moreover, the loss is

independent of asset prices.

Assume next that (qt) is unbounded. Note, that for every t there exists some i

such that εqt · θit > 0. Then, consider this consumer and using the above described

strategy, since qt →∞, this increment can be taken to be bounded away from zero

even though ε→ 0. But the loss goes to zero, and hence the strategy could not be

optimal in the first place. Thus, (qt) must be bounded.

�

We note that this boundary on securities prices is also valid even when c = 0.

We next show that the portfolios of any finite horizon equilibria are uniformly

bounded:

Lemma 9 There exists θ̄ ∈ Rk
+, such that, for any finite T , if (st)

T
t=1 ∈ η(T ), then

for all t we have |θit| ≤ θ̄ almost surely, for every i.

Proof:

Assume that for every θ̄ there exists T0 and (st)
T0
t=0 ∈ η(T0) such that ‖θit‖ > θ̄

for some t. Thus, there exists a sequence (Tn)n∈N, (tn)n∈N and (snt ) ∈ η(Tn) such

that limn→∞ ‖θnitn‖ = ∞ for some i. Since
∑

iw
n
itn − c(θnitn) = 0 this must imply

that there exists j such that limnw
n
jtn = ∞. Note that we can assume that it is

the same j since the number of consumers is finite. Consider then the alternative

strategy (x̃njt, θ̃
n
jt) with θ̃njt = (1 − ε)θnj,t for every t 6= tn then the consumption x̃jtn

must satisfy that

x̃njtn − x
n
jtn = εqntn · θ

n
jtn − εD(ytn , q

n
tn) · θni,tn−1 − c(θ̃njtn) + c(θnjtn)

≥ ε(qntn · θ
n
jtn −D(ytn , q

n
tn) · θni,tn−1 + c(θnjtn))

and since limn q
n
tn · θ

n
jtn − D(ytn , q

n
tn) + c(θnjtn) = ∞ because (xnit) is bounded and

limnw
n
jtn =∞ we must have that limn x̃

n
jtn−x

n
jtn =∞. Further, let x̃nj,t = (1−ε)xnj,t

for every t 6= tn which is feasible. This must imply that taking ε > 0 sufficiently
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small there exists some n0 such that (θ̃n0
jtn0

, x̃n0
jtn0

) is a better feasible trading plan

than (θn0
jtn0

, xn0
jtn0

) which is a contradiction.

�

Lemma 9 also induces a boundary w̄ ∈ R+ such that any equilibrium process

must have that wt ≤ w̄ for every t.

We next show that any partial sequence of a finite equilibrium is also a equilib-

rium in the corresponding partial economy.

Lemma 10 For any T ≥ 2, if (st)
T
t=1 ∈ η(T ), then (st)

T
t=2 ∈ η(T − 1).

Proof:

This follows from the Bellman’s principle of optimality and, in particular, from

the separability of the utility.

�

For any T , let

ST = {s ∈ S | ∃(st)Tt=1 ∈ η(T ) : s1 = s = [y, (ξ, θ, x, q, w)]},

i.e., the set of initial states in some T -horizon equilibrium. We next show that for

every finite horizon, this set projected onto Y is the entire space:

Lemma 11 For all finite T and all y0 ∈ Y , there exists [y0, (ξ, θ, x, q, w)] ∈ ST

Proof:

This follows from [45] and the extension to multiple periods in appendix A.

�

In particular, this implies that ST 6= ∅ for every T .

Define next the compact subset K of S by

K ≡ {[y, (θ−, θ, x, q, w)] ∈ S | x ≥ x ∧ |q| ≤ q̄ ∧ |θ| ≤ θ ∧ w ≤ w̄},

where x ∈ Rn
++ is given by equation (3.1), q̄ ∈ Rk

++ is obtained from lemma 8 and

θ ∈ Rk
++ (and w̄ ∈ R++) is obtained from lemma 9.

We define a sequence (C0T )T∈N0 as follows: let C00 = K and for every T ≥ 1 let

C0,T = {s ∈ K | ∃ν ∈ g(s) : ν?(C0,T−1) = 1},

i.e., the set of states of equilibrium such that the inner measure12 of C0,T−1 is 1. The

reason why we use the inner measure, instead of the measure itself, is that we do

12Given a probability space (Ω,M, ν) the inner measure ν? of ν is given by ν?(A) =
supB∈M,B⊂A ν(B) for every subset A ⊂ Ω.

38



Chapter 3

not know the measurability property of C0,T−1. Moreover, we consider the double

sequence (Ci,j)i,j∈N0 for i, j ≥ 1 given by

Ci,j = {s ∈ C0,j | ∃s′ ∈ Ci−1,j+1, ν ∈ G(s′) : s ∈ supp ν, ν?(C0j) = 1}.

Thus, Cij contains the states that would occur in period i of an “(i+ j + 1)-period

equilibrium” in K running from period 0 to period i + j. We next show that ST

is contained in every C0,T , and hence according to lemma 11, C0T 6= ∅ for every

T ∈ N0:

Lemma 12 For every T we have ST ⊂ C0,T .

Proof:

The proof is by induction on T . When T = 1 then C0,T−1 = C00 = K and thus

C0,1 = {s ∈ K | ∃ν ∈ g(s) : ν?(K) = 1}

Obviously, if (st) ∈ S1 then s1 = s ∈ K. But then consider the measure ν = δs1
and since δs1 ∈ g(s) and δs1(K) = 1, since s1 ∈ K we are done. Next, assume that

ST−1 ⊂ C0,T−1, we must then show that this implies that ST ⊂ C0,T . Thus, consider

some element s ∈ ST , then there exists (st) such that (st) ∈ η(T + 1) and s1 = s,

but then by lemma 11 we have that (st) ∈ η(T ), such that s1 ∈ ST−1 and thus

s1 ∈ C0,T−1, by the induction hypothesis. But then δs1(C0,T−1) = 1.

�

We now apply the following result:

Theorem 8 ([23], Theorem 1.2) Suppose that g is a correspondence with closed

graph such that C0,j 6= ∅ for every j = 0, 1, . . . . If there exists i0 such that Ci0,j0 has

compact closure for some j0 then
⋂
j∈N0

clCi0,j is a self-justified set.

Thus, since closedness is preserved under arbitrary intersections, the self-justified

set is a closed subset of a compact set, and hence compact.

In particular, lemma 12 implies that C0,T 6= ∅ for every T . Now, it is easy to see

that g has closed graph, and thus by lemma 12 and theorem 8, we obtain a compact

self-justified set.

The next proposition is also from [23]:

Proposition 9 ([23], Proposition 1.3) Let Y be a finite set, and for s ∈ S let

g̃(s) = {ν ∈ g(s) | ν ∈ PF (Y × Z)} = g(s) ∩ PF (Y × Z),

with g(s) ⊂ P (S) being an expectations correspondence. Then
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1. g̃ is an expectations correspondence.

2. If g̃ has a compact self-justified set J , then g̃ has a spotless THME, and there

is an ergodic Markov equilibrium for the correspondence ĝ : J → P (J) := s 7→
ĝ(s) = cl conv g̃(s).

3. If g is convex-valued, then an ergodic Markov equilibrium for ĝ is a condition-

ally spotless ergodic Markov equilibrium for g.

Denote next ĝ : S → P (S) by ĝ(s) = cl conv g(s). Using proposition 9 we obtain

a spotless THME for g and there is an ergodic Markov equilibrium for ĝ. Denote

this ergodic equilibrium (J,Π, µ), where Π: J → P (J) is the equilibrium transition

map, J is the compact self-justified and invariant set, and µ is an invariant measure

on J .

Proposition 10 Given a state process (st)
∞
t=1 = ([yt, (θ

−
t , θt, xt, qt)])

∞
t=1 with transi-

tion function Π, for any agent i, the corresponding strategy (θit, xit)
∞
t=1 is optimal.

Proof:

The proof follows closely [23, pp. 768, Proposition 3.2] and we shall not replicate

the proof here. We only note that according to the equations 3.3-3.5 we obtain a

sequence of subgradients η(θ) ∈ ∂c(θ) however according to [54, Theorem 24.4] this

sequence converges to a subgradient of the limit portfolio. Using this subgradient

instead of the gradient in [23] the proof goes through.

�

This ends the proof of proposition 5. We next turn to the proof of proposition

6.

Proof: [Proof of Proposition 6]

First we note that continuity of the budget correspondence in the transaction

costs is showed as in [45] when we endow the space of cost functions with the

compact-open topology.

The non-existence of an equilibrium without any transaction costs, i.e., c = 0,

implies the following: Let (st) be a sequence which is S-valued, then there exists

some i, a strategy (x′it, θ
′
it) and τ such that (x′iτ , θ

′
iτ ) 6= (xiτ , θiτ ) which is feasible

and Ui(x
′
i) > Ui(xi).

Assume that the sequence of equilibrium process ((snt )t∈N0)n∈N0 is bounded and

let (snt )t∈N0 be a limit point. Using the continuity of Ui there exists an open neigh-

bourhood U of (x′it, θ
′
it) such that every strategy in U is strictly preferred to (xit, θit).

Using the continuity of the budget there exists some N large enough such that
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(x′it, θ
′
it) is feasible with transaction costs cn, n ≥ N . Again, using the continuity of

the utility there exists N ′ such that Ui(x
′
i) > Ui(x

n
i ) for every n ≥ N ′.

�

3.6 Examples

Consider the following example showing that there exists an economy in which there

exists no equilibrium when the intermediation cost is zero:

Example 11 Let H = {A,B}, a single perishable commodity, Y = {1, 2} and

π(1) = π(2) = 1
2
. The endowments

eA0 = eB0 = (e0(1), e0(2)) = (1, 1)

(eAt , e
B
t ) = ((eAt (1), eAt (2)), (eBt (1), eBt (2)))) = ((

4

3
,
2

3
), (

2

3
,
4

3
)),

and the von-Neumann Morgenstern utility functions

uh(x) =
x1−γh

1− γh
.

with subjective discount factor βh. Let

Dt =

(
v1 v1

0 v2

)

be the asset structure. Assuming that βA = βB the allocation

(xAt , x
B
t ) = ((1, 1), (1, 1))

will be an equilibrium. The prices on the Arrow-securities will then be(
q1

q2

)
=

(
βu′(1)v1

π2βu
′(1)v2

)

Assume on the other hand that Dt = (1, 1). Then xht = eht , h = A,B will be the

equilibrium allocation with asset price

q = β
1

2
(u′(e1) + u′(e2)).

Assume next that v2 = max{k − q1, 0} and v1 = 1 (denote Ṽ this asset structure)

which implies that (
q1

q2

)
=

(
βu′(1)

1
2
βu′(1) max{k − βu′(1), 0}

)
.
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Asset 2 is then an (call) option on asset 1. Then when k > βu′(1) there exists no

equilibrium: Assume that (xAt , x
B
t ) = ((1, 1), (1, 1)) is an equilibrium allocation of Ṽ ,

but then q2 = v2 = 0 and q1 = βu′(1). Hence, if

1

2
β(u′(e1) + u′(e2)) > k > βu′(1)

we have a contradiction. However, this is possible when 1
2
u′(e1) + 1

2
u′(e2) > u′(1)

but this holds when

u′(π1e1 + π2e2) < π1u
′(e1) + π2u

′(e2)

which is the case here. But u′′′(x) = γ(γ + 1)x−γ−2 > 0 and thus u′ is convex the

inequality holds.

This is also the case when v(x) = − 1
a
e−ax.

The point of this example is that, if we consider a sequence of equilibria with

decreasing intermediation costs and this sequence converges to this equilibrium,

then the volume of asset trades will go to infinity.

Example 12 Consider the following economy: Y = {1}, L = 2 with

e0 =

(
eA0
eB0

)
=

(
(4

3
, 1)

(4
3
, 2

3
)

)

et =

(
eAt
eBt

)
=

(
(2

3
, 4

3
)

(4
3
, 2

3
)

)

uh(x1, x2) =
∑
l

ηhl
x1−γ
l

1− γ

and the discounting βA = βB = 99
100

. Let γ = 2 and

η =

(
ηA

ηB

)
=

(
(2, 1)

(1, 1)

)
We consider different asset structures: one with complete and several with different

degrees of incomplete markets. These gives us relative prices (i.e. rt ≡ p1t

p2t
):

(r0, rt) = (0.545, 1.394)

(r0, rt) = (0.574, 1.382),

(r0, r1, rt) = (0.555, 1.422, 1.382),

(r0, r1, r2, rt) = (0.55, 1.408, 1.408, 1.382).

The first are relative prices when income transfers are perfectly tradeable; the second

where income transfers are not tradeable at all; the third where trade is possible
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between the first and second period but not in the succeeding periods, etc. We see

a pattern here: if T ≥ 1 markets are open initially and t > T is closed, then we

obtain relative prices rT0 ∈ [0.574, 0.545], rTt ∈ [1.395, 1.422] for every t < T , and

rTt = 1.382 for every t > T .

Whence introducing the following option

Dt(p) = max

{
k − p1t

p2t

, 0

}
(3.6)

there exists no equilibrium with k ∈ (1.382, 1.394).

Alternatively, let the endowments be

e0 =

(
eA0
eB0

)
=

( (
4
3
, 4

3

)(
2
3
, 2

3

) )

Again, we consider two different asset structures: one with complete and one with

incomplete markets. Similarly, relative prices (i.e. rt ≡ p1t

p2t
) are then

(r0, rt) = (1.445, 0.361)

(r0, rt) = (1.579, 0.355)

(r0, r1, rt) = (1.496, 0.374, 0.355)

(r0, r1, r2, rt) = (1.47, 0.367, 0.367, 0.355).

Again, introducing the option in equation 3.6 there exists no equilibrium with

k ∈ (0.355, 0.361). We note that as a function of the number of open markets, the

relative price of period 1 jumps up going from autarky to trade between period 0

and 1. Henceforth, the relative price decreases monotonically towards the complete

market relative price, while still being above the autarky relative price.

Here, since there exists no equilibrium without intermediation cost, and any equi-

librium sequence with decreasing intermediation costs must have a boundless volume

of asset trades.

3.7 Conclusion and comments

Empirical observations indicate that the number and volume of trades of stocks

have increased during the period 1990-2000, and that is has, by far, exceeded the

increase in income (GDP). Thus, it is difficult to believe that the increased income

can account for this remarkable increment. This paper suggests that the increased

volume of trade can be explained by a decrease in the intermediation or transaction

cost of trading on the financial markets. While this might not seem too surprising,

we claim that the observed increase in volume of trade is not only the direct effect
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of a decrease in the trading costs. We suggest an additional contributing element:

the indirect effect of the reduction in the intermediation costs. We show that when

intermediation costs decrease this has an effect on asset and commodity prices,

now as well as in the future. This change in prices results in changes in the price-

dependent securities’ dividends, such as options, stocks, etc. Now, if these induced

changes in the dividend reduce the risk dispersion of a current portfolio, the traders

need to trade more intensively in order to obtain the same risk profile. In this paper

we show that this effect can be very large and, in extreme cases, without boundary.

Let us again try to justify the introduction of intermediation costs: we argue

that even in the case of fixed fee there is an increasing intermediation/transaction

cost in the amount of securities that you have to trade. However, we admit that

the story does not fit very well with the competitive framework that we consider

in this paper. The justification is based upon market microstructure theory and/or

search models. They both take their starting point in the actual situation in which

a trader finds him self: the actual trading process. But as long as the competitive

framework is considered as an approximation to reality, we believe that the story is

not that far from reality. Assume that given an initial portfolio and some expected

average asset price, you wish to change your portfolio. Now, this desired change

must be carried about using some form of trading strategy using a trading place,

like a stock exchange. Now, all significant changes in portfolios in a market affect

the trading price that you obtain: if you sell in a thin market you will end up with

a low price, while buying in a thin market increases you buying price. Thus, you

will have to choose some appropriate strategy to obtain the most profitable trading

prices. The market game is then given by a strategy, specifying when to announce

your buying and selling orders and how large volumes each buying/selling order

should amount to. The payoff is the expected revenue from the trades carried out

given the strategies of every trader. The point is that the larger the volume of trade

a trader wants to carry through is to his disadvantages, and thus that the marginal

cost increases as the volume of the desired portfolio change increases, and that in

the limit this cost is infinity. The search theory would take the starting point that

in order to make a trade the buyer and the seller literally have to find each other.

However, we shall not pursue this any further.

As can be easily realized our result does not depend on the fact that we consider

intermediation costs instead of transaction costs. Also, adding more spot commodi-

ties does not alter our results. It also seems robust to the assumption of stationarity.

A more severe problem is that we take the security structure and intermediation cost

function as exogenous. Ideally, these variables should be endogenous in a genuine

general equilibrium model.
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The Existence of a Free Lunch,

Equilibrium in Income Streams,

and Transaction Costs

Tobias Markeprand

Abstract. We show that in the presence of strictly convex transaction costs, an

arbitrage opportunity is consistent with equilibrium with rational agents. We show

that there exist equilibria where arbitrage opportunities exist but are not exploited.

Further, we show that equilibria exist where arbitrage opportunities exist and are

exploited. This may undermine the importance of arbitrage in the theory of financial

pricing based solely on the no arbitrage principle.

JEL classification:. D11, D51, G12, G14.

Keywords:. Incomplete Markets, General Equilibrium, Transaction Costs, Free

Lunches.
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4.1 Introduction

As [58] argues, the concept of no-arbitrage, which includes the law of one price or

the absence of a free lunch, in its most general interpretation is fundamental in

the concept of competitive equilibrium and in the way economists think. The basic

content of the no-arbitrage principle is that you cannot gain something for free -

there is no free lunch. And as [41] writes

“In any economic equilibrium, it should not be possible to purchase

at zero cost a bundle of goods that will strictly increase some agent’s

utility.”

Also, this principle is the foundation upon which almost all of finance theory, empiri-

cally and theoretically, is based. We show that in the case that intermediation costs,

or transactions costs, are present the no-arbitrage principle does not necessarily hold

within the framework of a general equilibrium model with perfect competition and

symmetric information. We show that agents with small demand for risk disper-

sion can benefit from small marginal intermediation costs and exploit the constant

marginal asset prices, to exploit an arbitrage opportunity and obtain a positive

income stream in each state, the current as well as the future states. We show

that there exist equilibria where arbitrage opportunities are exploited and equilibria

where they are not exploited. The key point when preferences are strictly monotone,

is that the costless gains are bounded, as in [14]1 where it is called Limited arbitrage.

Often the argument for no-arbitrage goes as follows: Consider the price of gold,

then the absence of arbitrage possibilities implies that the price must be the same

in New York and in Paris; if not, e.g., if the price is 1 in New York and 0.9 in

Paris, then one could buy an ounce of gold in Paris and sell it in New York gaining

a profit of 0.1. A modification of this is that the prices can differ by the costs

of transportation. However, this is not a violation of the no free lunch principle,

since the price difference cannot be exploited to gain a riskless positive profit. The

approach adopted in this paper assumes that the marginal transportation cost is

not linear and increases when the quantity of gold is large enough; Hence only small

quantities of gold can exploit the arbitrage opportunity, and explains why not all of

the gold in Paris is shipped to New York.

Yet another illustration of the no-arbitrage argument, is the joke of a professor

of economics who refuse the existence of a $ 100 bill lying on the ground, due to the

fact that then someone would have picked it up! The examples in this paper show

that this is in general false. The lesson learned from this paper is that you cannot

1We stress that the results of [14] and [15] are based upon a false prove, see the discussion [48]
and [49].
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conclude that there is not any certain gain to obtain - just because nobody else has

earned it!

The existence of arbitrage opportunities in equilibrium has been showed before.

However, this has been in the framework of market games, i.e., with imperfect

competition, see e.g. [40]. The main argument is that arbitrage opportunities may

exist, since if any agent attempts to exploit this opportunity, he/she will change the

resulting prices and taking this into account it may be disadvantageous. However,

while they may exist in equilibrium they cannot be exploited, and it is thus not a

genuine arbitrage opportunity. Moreover, [29] shows that a necessary condition for

this result is the presence of wash-sales, i.e., the simultaneous buying and selling in

the same market by a single trader. However, such a trading strategy is eliminated

by utility maximizing when (arbitrary small, linear) transaction costs are introduced,

see [10]. [10] then proceeds to conclude that the results by [40] are not robust to

the introduction of arbitrarily small transaction costs. Our result shows that this

relies on the introduction of linear transaction costs, while the introduction of non-

linear transaction costs not only reestablish, but strengthen the result. [42] argues,

like us, that mispricing might persist due to costs of trading, but they assume

the existence of noise, and hence irrational, traders. In their model the irrationality

creates uncertainty, which again creates costs of trading to risk averse traders, which

then eliminates the rational traders from exploiting the arbitrage opportunity. This

is in contrast to our model were all traders are rational! Furthermore, they cannot

explain persistent deviation of prices from the fundamental value, whereas we can.

Thus, the explanations of existence of free lunches in equilibrium have been based

upon either imperfect competition or irrational behaviour. We show that neither of

these assumptions are necessary.

A framework close to ours is [38], which studies the asset pricing in a model with

frictions, and, like us, they obtain an opportunity set which is convex. They do,

however, not analyze the existence of free lunches, but extend the work of [34] and

[41]. They obtain asset prices where atleast one agent is satisfied with consuming her

endowment (of income), such a price system is referred to as viable and they show

that such prices are consistent with an equilibrium and equivalent with the absence

of asymptotic free lunches. Furthermore, they characterize the set of viable asset

price systems in terms of a linear asset price. They show that the linear functional

must lie below the convex pricing rule on the marketed set. While the concept of

viable prices in the framework of [34] is characterizing asset prices that can occur in

equilibrium, i.e., with no frictions in the markets, our results show that this is not

the case with convex transaction costs. Further, our results imply that the claim by

[38] that
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“...viability is the minimal requirement for a price system (M,π) to

model an economic equilibrium...”

is false. Indeed, we find an economy and an equilibrium, where the viability condi-

tion is violated.

Finally, we relate our results to the economics of asymmetric information. The

main focal point of this literature is The Efficient Market Hypothesis (see e.g. [30]

or [25]), which, informally, states that in a competitive market where agents ahve

rational expectations, current prices reflect all information available in the econ-

omy on the future return of the security. This implies that security prices convey all

available information and no trader can gain by exploiting private information. How-

ever, as [31] shows when the acquisition of information is costly and traders choose

their information level, prices only convey the aggregate information partially, since

informed traders have to be compensated for their expenditure on information ac-

quisition. This can only be the case if private information has a value. In this sense,

information is a public good provided by informed traders through the price mecha-

nism. Thus, without taking into account the cost of information there is a free lunch

to be exploited by the uninformed traders. However, to exploit the free lunch the

trader needs to acquire information which more than offsets the gain. Thus, again

the free lunch is not genuine. They consider competitive, rational traders as we do,

but differ by informational asymmetries.

In section 4.2 we introduce the model and in section 4.3 give our main results,

examples illustrating our main result on the existence of arbitrage opportunities. In

section 4.4 we show how the model of section 4.2 can be obtained as the trading of

assets with intermediation or transaction costs, and thus relates our model with the

standard GEI model. Section 4.5 concludes.

4.2 Arbitrage and Equilibrium

Let there be two dates and S <∞ future states, the present s = 0 and the future,

s = 1, . . . , S.

The basic concept of a finance economy is the set of income streams, M ⊂ RS+1,

i.e., the set of income streams the agents can trade among each other.

Definition 7 A set of income streams is a set M ⊂ RS+1
++ such that

1. M is closed, convex and non-empty

2. if r ∈M and r′ ≤ r then r′ ∈M , and

3. 0 ∈M
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Denote by M the collection of income streams sets. Any element r = (rs)Ss=0 =

(r0, r1, r2, . . . , rS) ∈ M ∈ M is called an income stream and rs is the income

available in state s.

We say that an income stream r ∈ M ∩ RS+1
+ is an arbitrage opportunity or a

free lunch if r 6= 0. M satisfies the no-arbitrage principle when there is no-arbitrage

opportunity, i.e., when M ∩RS+1
+ = {0}. We say that M has limited free lunches if

there exists K > 0 such that M ∩ {r ≥ 0 | ‖r‖ > K} = ∅.
According to the separation theorem of convex sets, for every income stream set

M ∈ M the no-arbitrage principle is satisfied if there exists a vector λM ∈ RS+1

and a number βM ∈ R such that λM · r < βM < λM · p for every r ∈ M and

p ∈ {p ∈ RS+1
+ |

∑
p = 1}.

When M is a cone we obtain the well-known characterization by state prices

Proposition 13 Assume that M is a convex cone, then M satisfies the no-arbitrage

principle if and only if there exist λ ∈ RS+1
++ such that λ ·M ≤ 0.

Our concept of an economy basically lies close to [41], but we extend it with

some additional objects allowing us to include transaction costs.

Definition 8 A finance economy is a map M : X → M , where X a subset of a

vector space, an utility function ui representing the preferences on RS+1 for each

consumer i ∈ I, and a set Y ⊂ RI(S+1) referred to as the income production set.

Denote such an economy by E = (M, (ui)i∈I , Y ). Y is the set of aggregate

income streams which the economy can produce. The usual assumption is that

Y = {(ri) |
∑
ri = 0}, but other cases are also possible, and allow us to consider the

case of real transaction costs, i.e., where resources are required to exchange income.

We want to emphasis that introducing utility functions this way implies that

the income streams we consider are net income streams. However, in order to

avoid unnecessary repetation we just call an element r an income stream with the

understanding that it is actually a net income stream. Section 4.4 shows how we

can derive the utility functions from a more general model.

Definition 9 A financial equilibrium of E is then an asset price vector x? ∈ X and

income transfers (r?i )i∈I such that

• r?i maximizes ui on M(x?), and

• (r?i )i∈I ∈ Y .

In this paper, we assume that ui is a continuous, strictly monotone and quasi-

concave function for every agent i. Strict monotonicity implies that agents prefers

more income to less income, while quasi-concavity implies risk aversion. Two prop-

erties that seem very natural.
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4.3 The Results

What is then the relationship between no-arbitrage asset prices and an equilibrium

of a finance economy?

When M(x) is a convex, additive cone2 for all x, and strictly monotone pref-

erences3 then the no-arbitrage principle is a very natural property that an equilib-

rium asset price vector must satisfy: if r̄ ∈ M(x) is an arbitrage opportunity then

γr̄ ∈ M(x) is also an arbitrage principle for any γ ≥ 0. But then there exists no

maximizing consumption bundle: for any income stream r̃, since preferences are

strictly monotone ui(r̃ + γr̄) > ui(r̃) for any γ > 0, and r̃ cannot be an income

stream chosen in equilibrium since r̃ + γr̄ ∈M(x).

Thus, we arrive at the result not particularly original:

Lemma 13 Let M(x?) be an additive cone and (x?, (r?i )i∈I) is a financial equilib-

rium, then M(x?) ∩ RS+1
+ = ∅.

However, when M(x) is not an additive cone, then the close relationship between

the no-arbitrage principle and equilibrium does no longer hold! And the fact that

βM = 0, as in Proposition 13, does not hold any longer. This can also be illustrated

with two questions:

• Can there exist equilibria where an arbitrage opportunity is available, but no

agent exploit this opportunity? The answer is yes!

• Can an equilibrium exist in which an arbitrage opportunity is exploited by

some agent(s)? The answer is, again, yes!

We argue by means of two examples, the first supports the first claim, while the

second supports our second claim.

We show that arbitrage opportunities and exploitations of arbitrage opportu-

nities can exist in a model of perfect competition and symmetric information, but

with intermediation costs. This also implies that there exists some consumer i with

λi · ri > 0, and the Proposition 13 does no longer hold.

More specifically, we show that

Proposition 14 When I ≥ 3, there exists economies E and a financial equilibrium

(x?, (r?i )i), such that M(x?) ∩ RS+1
+ 6= {0} and r?i > 0 for some i.

Proposition 15 There exists economies E, I ≥ 2 and a financial equilibrium (x?, (r?i )i),

such that M(x?) ∩ RS+1
+ 6= {0}.

2A set M ⊂ Rn is an additive cone when x+ λy ∈M for every x, y ∈M and λ ≥ 1.
3f : Rn → R is strictly monotone if x > y then f(x) > f(y).
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The essential feature of this explanation of why arbitrage opportunities might

exists and be exploited in equilibrium is that intermediation costs are not (piecewise)

linear; this implies that, on the margin, small trades have low marginal intermedia-

tion costs, while large trades have high marginal intermediation costs. Thus, large

trades have no possibility of exploiting any arbitrage opportunity! Agents that do

not exploit the arbitrage opportunity does not have the incentive since the arbitrage

opportunity does not offer the same risk dispersion as the “normal” income streams.

When M(x) is not an additive cone, the no-arbitrage condition, i.e., that M(x)∩
RS+1

+ = {0}, is not a necessary condition for a financial equilibrium to exist. In-

formally, if the gain in the arbitrage opportunity is sufficiently small, then a no-

arbitrage income stream might be preferred by a household: This is illustrated in

Figure 4.1. The point is that even when an arbitrage opportunity exist a maximal

income stream may exist!

-

6

M(x)

Figure 4.1: Income trade offs

An equilibrium in income streams relative to M(x) could look something like

Figure 4.2, where the income production set is of the form Y = {(ri) |
∑

i ri = 0}.
The most important thing is that the set M(x) does not recedes in the direcion

RS+1
+ (see [54, pp. 61]), i.e., for any vector ξ ∈ RS+1

+ , ξ 6= 0 we must have that

sup{γ | γξ ∈M(x)} <∞. If M(x) has a direction of infinity, then as the arguments

go above, the set of consumption bundles in the budget set is not compact, and thus

x cannot be an equilibrium asset price vector under any circumstances.

Before we give the second example we make three observations:

Two trivial statements about arbitrage and equilibrium can be stated: in equi-

librium there cannot exist a consumer which has non-positive (negative) transfers,

since 0 ∈ M(x) for any price x. Thus, any arbitrage opportunity must be financed

by other households having positive and negative transfers. This excludes an arbi-

trage opportunity to be exploited in equilibrium when there are only two (types of)
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Figure 4.2: Equilibrium in income transfers

agents. Moreover, not all traders can exploit an arbitrage opportunity in equilib-

rium. Thus, someone has to pay for the exploitation of an arbitrage opportunity.

In that sense it is a zero-sum game. Note also, that in any equilibrium it must hold

that4 ri ∈ ∂M , i.e., the income stream chosen in equilibrium by each agent must be

on the boundary of the income stream space. Thus, there cannot exist r′ ∈M such

that r′ > ri. Further, this guarantees the exists of state prices λi ∈ RS+1
++ such that

λi · r ≤ λi · ri for every r ∈M .

These results are stated as follows:

Lemma 14 Let (x?, (r?i )i) be a financial equilibrium, then r?i /∈ −RS+1
+ \ {0}.

Lemma 15 Let (x?, (r?i )i) be a financial equilibrium and I = 2, then r?i /∈ RS+1
+ .

Lemma 16 Let (x?, (r?i )i) be a financial equilibrium, then for every i there exists

λi ∈ RS+1
++ such that λi · (r?i − r) ≥ 0 for every r ∈M(x?).

Example 16 Let there be 3 agents, 2 states and a single consumption good in each

state. To see this, let M ⊂ R2 be the convex set defined as follows:

M = conv{λa+ (1, 1) | a ∈ {(2,−5), (−5, 2)} ∧ λ ≥ 0}.

And consider the income streams r1 = (1, 1), r2 = (3,−4) and r3 = (−4, 3). Then

obviously r1 + r2 + r3 = (0, 0). Take further the (indirect) utility functions to be of

the form vi(r) = ln(r0 + bi0) + ln(r1 + bi1) for some vector bi = (bi0, b
i
1) ∈ R2. Choose

4Given a set A, ∂A is the set of boundary points of A, i.e., the set of points x ∈ X such that
any neighbourhood of x intersects with A.
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then (b1, b2, b3) such that

1

1 + b1
0

− 1

1 + b1
1

= 0

2
1

3 + b2
0

− 5
1

−4 + b2
1

= 0

−5
1

−4 + b3
0

+ 2
1

3 + b3
1

= 0.

This is satisfied when e.g. b1 = (1, 1), b2 = (1, 6), and b3 = (6, 1). Then (r1, r2, r3)

is an equilibrium of the economy (M, (vi)
3
i=1) given above.

This situation is illustrated in Figure 4.3
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Figure 4.3: Equilibrium with an arbitrage opportunity exploited

In the example M is piecewise linear, however we could easily construct it with

a positive curvature, and such that we could construct M with an intermediation

cost function which is strictly convex.

4.4 Intermediation Costs in Portfolios and Income

Streams

This section contains some miscellaneous of topics related to the results and concepts

of sections 4.2 and 4.3.

• How does the concept of intermediation costs of portfolios relate to interme-

diation costs of income streams?
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Let c : RK → R+ be a convex function and denote, for every x ∈ RK , the

dividends of the assets by D(x) ∈ RS
K . Define then the income stream set by

M(x) = {r ∈ RS+1 | ∃z ∈ RK : r ≤ (−x · z − c(z), D(x)z)}.

This set is convex: for every r, r′ ∈ M(q) and α ∈ [0, 1] we have that by

convexity of c(·)

αr+(1−α)r′ ≤ (−x ·(αz+(1−α)z′)−c(αz+(1−α)z′), D(x)(αz+(1−α)z′))

where (−x · z̄ − c(z̄), D(x)z̄) ∈M(x) with z̄ = αz + (1− α)z′.

When c(0) = 0, we have that 0 ∈M(x).

If c(z) is the intermediation cost required to obtain a given portfolio, we can

define the intermediation costs required to obtain a given income stream r ∈
RS+1 as the minimum costs of a portfolio that given the gross income stream,

i.e.

c(r;D) = cD(r) = inf{c(z) | r1 ≤ D(x)z ∧ r0 ≤ −x · z − c(z)},

whenever r1 ∈ 〈D〉5, while when r1 /∈ 〈D〉 we let c(r;D) = c(v(r;D);D) where

v(r;D) = arg min{‖r − r̃‖ | r̃ ∈M(x,D)}. The reason why we choose c(r;D)

in this way is to insure continuity of c(·;D) given D.

Note that for every r0 = Dz0, when D has a left-inverse D−1, i.e., if it is one-

to-one, we have that z0 = D−1r0 and we obtain c(r0, D) = c(D−1r0) = c(z0).

Note that the set {z ∈ RK | r1 ≤ D(x)z ∧ r0 ≤ −x · z − c(z)} is convex,

denote it by Z(r0). If c(·) is strictly convex there exists a unique z0 such that

c(r0, D) = c(z0). But then we have that

αc(r;D) + (1− α)c(r′;D) = αc(z) + (1− α)c(z′) ≥ c(αz + (1− α)z′)

≥ c(αr + (1− α)r′;D)

for every z ∈ Z(r) and z′ ∈ Z(r′). Thus, c(·;D) is convex.

Furthermore, obviously it holds that lim‖r‖→∞ c(r;D) =∞.

The question is then whether the map6 c : RS+1×Ω→ R̄+ is7 not continuous?

Let An → A be a convergent sequence of maps An ∈ Ω with 〈An〉 = 〈Am〉 = E

for any n,m while 〈limn→∞An〉 = 〈A〉 6= E. Let then r ∈ E \ 〈A〉 then we

5If D : RJ → RS is a linear map we denote by 〈D〉 the image space, i.e., 〈D〉 = {Dz | z ∈ RJ}.
6Let Ω be the set of linear one-to-one mappings A : RK → RS endowed with the usual metric.
7We denote by R̄+ = R+ ∪ {∞} the extended real line endowed with the one-point-

compactification topology, i.e., the open sets consists of every open set of R+ and all sets of
the form R̄+ \ C for some C ⊂ R+ compact. E.g., (a,∞] is an open set.
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must have that limn→∞ c(r, An) =∞ and also c(r, limn→∞An) = c(r, A) =∞.

Thus, c(·; ·) is continuous.

But then we obtain an income stream correspondence (R,RK) 3 (λ, x) 7→
M(λ, x) by

M(λ, x) = {(−λr0 − c(r;D(x)), r1) | r = (r0, r1) ∈ R× 〈D(x)〉}

which satisfies the conditions of Definition 7.

• The following example illustrates no-arbitrage asset prices when transaction

costs are linear.

Example 17 Whenever c(z) =
∑K

k=1 ak|zk| =
∑K

k=1 ak(z
+
k − z

−
k ), where z+

k =

max{zk, 0} and z−k = max{−zk, 0}, we have an particular simple characteri-

zation of no-arbitrage asset prices, as also shown in [52]. And in such cases,

the existence of an arbitrage opportunity is not consistent with an equilibrium,

because the income space generated is a cone and the result of Proposition 13

applies. In order for x to satisfy the NA condition it must hold that

λ̃ ·Dk − ak ≤ xk ≤ λ̃ ·Dk + ak,

for every k = 1, . . . , K or in vector form

λTD − a ≤ x ≤ λTD + a.

• The next two examples show how we can obtain income stream sets as in

section 4.3 where arbitrage opportunities are present.

Example 18 As a numerical example of an intermediation cost function which

allows arbitrage opportunities is the case where c(z) = az2, where a > 0, and

let ds > 0 be the dividend of the asset. Then any asset price x ∈]−a, 0[ allows

an arbitrage opportunity with z ∈]0,−a
x
[, but there is an asymptotic absence

of a free lunch.

Example 19 Consider the asset structure V =

(
1 1

1 −1

)
, the intermedia-

tion cost function c(z) = αz2
1 + βz2

2 with α + β < 1 and the asset pricevec-

tor q = (2, 1). Then the portfolio z = (1,−1) generates the income stream

(1 − α − β, 0, 2) ∈ R3
+ \ 0. Note also, that lim‖z‖→∞ q · z − αz2

1 − βz2
2 = −∞

and hence there is limited arbitrage opportunities.
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• These last examples illustrate an important implication of strictly convex

transaction costs, namely that there always exist asset prices which allows

limited free lunches. We now show this in more general cases.

Let c be a strictly convex intermediation cost function, then there exists some

x0 ∈ RK and z0 ∈ RK such that −λx0 ·z0− c(λz0) > 0 for every 0 < λ < 1 but

−λx0 ·z0−c(λz0) ≤ 0 for every λ ≥ 1: Given a z0 6= 0, the map x 7→ f(x; z0) =

−x · z0 − c(z0) is continuous, supx f(x; z0) = ∞ and infx f(x; z0) = −∞ and

there exists x0 such that f(x0, z0) = 0. By strict convexity of c we have that

c(λz + (1 − λ)z′) < λc(z) + (1 − λ)c(z′) for every λ ∈]0, 1[ and z 6= z′, and

hence c(λz) < λc(z) for every λ < 1 while c(λz) > λc(z) for every λ > 1. By

choosing z0 such that Dz0 > 0 the statement is proved, assuming that such a

portfolio exists. Obviously, the set of such x0 is convex and open. By other

words, for every strictly convex intermediation cost function there is a convex,

open set of asset prices that allows for free lunches but have the absence of

asymptotic free lunches property.

• Finally, we show how to obtain a financial economy as in section 4.2 from a

more general model, as e.g., [18]. A typical economy in the Arrow-Debreu

sense is characterized by the utility functions v over consumption bundles and

the initial endowments of consumption commodities ω. Given a spotmarket

price system (ps)
S
s=0 and a consumption bundle x = (xs)

S
s=0 we obtain a income

stream r = (rs)
S
s=0 given by

rs = ps · (xs − ωs)

for every s = 0, . . . , S. We can thus define the utility of an income stream r,

u(r), as the maximal possible utility obtainable given the prices p, i.e.,

u(r) = max{v(x) | ps · (xs − ωs) ≤ rs∀s}.

If we consider a single-commodity economy then we normalize ps = 1 and we

obtain an utility independent of prices. The properties assumed in section 4.2

are easily shown to be satisfied.

4.5 Conclusion

We have shown that when intermediation or transaction costs are present and they

are convex, then the existence and exploitation of arbitrage opportunities are not

inconsistent with a competitive, symmetric information equilibrium.
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Figure 4.4: Non-convex transaction costs

The question then is of course whether transaction costs have an increasing

marginal cost, or equivalently, a diminishing return in the “production of income

streams”, as implied by the assumption of convex transaction costs.

One argument could be the usual argument that labour has a diminishing return,

in that firms hire the most productive units first and as it employs more labour the

average product then decreases as the new units employed become less productive.

A second argument could be that large quantities of income trade increases the

possibility that the market is thin when the income is traded and thus the price is

unfavourable to the trader.

Note however that an intermediary will not necessarily be hurt by the existence

of arbitrage opportunities since this might increase some of the consumers’ income

trade. But of course also discourage other consumers’ income trade, and the total

effect is ambiguous.

As is shown in [42] in the presence of noise traders the prices deviate, and this

extra cost increases more than proportionally with the trade by any trader. Thus,

any trader is faced with an increasing cost of asset trading in the risky asset.

Note also that “global convexity” is not a necessary condition for this example

to hold, but merely that it is convex “asymptotically”. An example is in figure 4.4.

Here for any portfolio z′ ∈ [z̄, ¯̄z] yields an arbitrage opportunity when dividends

are positive, since −q · z′ > c(z′) > 0. But asymptotically there is an absence of a

free lunch, e.g. when z > ¯̄z. Note also that the costs are concave for small z’s but

become convex for z large.

As one presents examples to illustrate some important and interesting results
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an important question is whether the example is exceptional and are based upon

non-generic parameter values. We claim that the examples given in this paper

are robust wrt. perturbations in the utility functions, and thus the existence of

arbitrage opportunities consistent with equilibrium is a robust property. However,

as was noted in section 4.4 the model does not work in cases where costs are concave,

i.e., where transaction costs have diminishing marginal costs.

The results in this paper suggest a more general result with separated markets:

if the “transportation” costs between two markets are non-linear, arbitrage opportu-

nities, exploited and unexploited, may be consistent with a general equilibrium. The

situation is not only restricted to the case of financial markets, but also consumption

goods are subject to these results.

We note that according to [45] whenever M(·) is generated according to the form

in Section 4.4 there exists an equilibrium. The question is then of course how often

a situation like the example in Section 4.2 occurs? As we see, a necessary condition

is that consumer preferences are sufficiently different.
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Jumps in Asset Prices: A General

Equilibrium Explanation

Tobias Markeprand & Mich Tvede

Abstract. An important question is how incompleteness of the financial markets

affects the pricing of securities and the allocation of real commodities in the econ-

omy. In this paper we show that incompleteness of financial markets can induce

large changes in commodity prices even if the fundamental characteristics do not

change significantly. We show that walrasian equilibria, and thus perfect insurance

opportunities, would eliminate such changes. Thus, our results provide a test with

which incompleteness of markets can be verified. Further, our example exhibit a

continuum of equilibria.

JEL classification:. D50, D52, G12, G14.

Keywords:. General Equilibrium, Incomplete Markets, Asset Pricing.
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5.1 Introduction

A fundamental question is how shocks transmit into the economy and the resulting

allocation and prices. Every day the economy is submitted to shocks influencing the

fundamental characteristics of the state of the economy. You slip in the bathroom

during your morning shower hurting your back, changing your working capabilities;

the frost prevents the train from starting and thereby preventing a load full of pas-

sengers to arrive at their planned destination, etc. The question is then whether

and how all these shocks affect the overall economy and the allocation of resources

in the economy. Obviously, the financial markets are affected by the real economy

in that they determine the inflow of funds and they affect the dividend stream of

many securities. On the other hand, the financial markets affect the real economy

by allowing consumers to reallocate income through time and uncertainty. A fun-

damental principle in finance is that prices are determined by their fundamental

value, i.e., by their future dividend stream. Thus, if the dividends change by a

small amount, so will asset prices. Many asset pricing models assume that divi-

dends follow continuous paths and hence prices should move continuous. However,

these models have difficulties in generating the observed asset prices, in that, among

many things, they fail to account for the “thick tails” in the distribution, i.e., the

overrepresentation of large changes in prices, as expressed by [13]

“In continuous-time setting, jumps in financial prices seem necessary to

account for thick tails in asset returns, and the corresponding implied

volatility smiles in near-maturity options.”

We show how these jumps can be explained by incompleteness of the financial mar-

kets, i.e., by the inability of consumers to save and insure perfectly against shocks.

[55] argues that asset prices fluctuate too much to be explained by the dividends

and hence that the fundamental pricing theory is incorrect. However, we show how

asset prices can exhibit excess volatility due to market incompleteness, while still

maintaining the market efficiency hypothesis.

Why is it important that prices can jump even if the shocks to the economy are

small? This is important since the presence of multiple equilibria is associated with

a coordination problem among market participants. Moreover, our result shows

that these jumps are connected to real jumps and hence have consequences for the

welfare of the households. One can relate this to crashes on the stock exchanges

experienced in Argentina and Russia. Both examples where financial crashes and a

real melt down of the economy happened simultaneously. Furthermore, our example

shows that sudden drops in asset prices are not necessarily evidence that a bubble

has burst, or that a bubble has been present. This makes it even more difficult
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for the monetary authorities to develop tools to remedy bubbles since prices can

change rapidly in a short moment of time, and that they have to be compared with

indicators of real activity such that e.g. GDP or others in order to find out whether

there is a bubble. However, such indicators are only available after the authorities

have to make a decision on whether they should intervene or not.

Furthermore, Our result shows the importance of working with a general equilib-

rium model, taking the interaction between the real economy and financial market

into consideration.

In the present paper we show that incompleteness of financial markets can in-

duce discontinuities in commodity prices as the fundamental characteristics changes.

We show that Walrasian equilibria, and thus perfect insurance opportunities, would

eliminate such changes. Thus, our results provide a test with which incompleteness

of markets can be verified. In order to give content to the phrase “if the funda-

mental characteristics do not change significantly”, we consider a non-atomic state

space, more specifically, a continuum of states. We assume then that fundamentals,

endowments, dividends and densities, are continuous in the states. Furthermore,

we show that with differentiable utilities and real assets there is a continuum of

equilibria, and hence the equilibrium exhibit real indeterminacy. [47] shows how in-

determinacy is a generic phenomenon with real assets and incomplete markets when

there is a finite number of securities and infinite states. More specifically, the result

is as follows, for any real asset there exists an open set of endowments and utility

functions where every element contains an equilibrium set with cardinality equal to

the continuum. Our example confirms his result. Our proofs follow along the lines

of [47] very tightly, in that the continuity property is proved using Pareto efficiency,

while the example also closely relates to his example. However, we focus on the

continuity property of the prices. Our result hinges on the fact that the spotmarket

equilibrium set can have multiple elements, and thus, that the price expectations

must be coordinated given the realization of a future state. Thus, the discontinu-

ity is the result of changing expectations, changes that are not continuous. In the

complete market case, these jumps in expectations are forced to be eliminated since

contracts can be signed which would leave the parties of an exchange better of and

thus prices would change to equilibrate demand and supply.

[6] tells a story to explain the content of the results of analyzing the equilibrium

manifold. It is told that passing through irregular economies could, and must even-

tually, imply a “large” change in commodity prices. This is obviously true in the

case of autarky. We formalize and generalize this story, and we show that in order

for this story to be true, we need incomplete financial markets, so that traders can-

not insure against these changes, since complete markets would prevent such jumps

from occurring. Obviously, risk averse traders would like to insure against such risk.
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A related problem is the upper hemi continuity of the equilibrium correspon-

dence, i.e., the equilibrium prices and allocations parameterized by the endowment.

This property implies that any convergent sequence of endowments must have a

converging sequence of equilibrium states. It is, however, easy to see that the equi-

librium correspondence is upper hemi continuous, and, thus, our result shows that

these questions are independent.

Let us briefly take an overview on how volatility in asset prices has been studied

in a theoretical framework (We apologise for any unjustified omissions)

In the paper [37] it is shown that in a continuous time model of financial pricing

model, prices have continuous sample paths when the information structure is con-

tinuous1 and thus showing that in this model a phenomenon as jumps in asset prices

cannot occur. Among those continuous information structures is the Brownian Mo-

tions. Basically, it is a continuity of the itô parameters which gives the contiunity.

In that sense, our information structure is discontinuous since the time of trade is

discrete. [12] shows that with CARA utility functions interest rates can fluctuate

over time, but not over states since there are idiosyncratic shocks and aggregate

certainty. Also, he shows that there is a unique equilibrium. [13] incorporate jumps

in the drift and volatility components of the dividend process and they take a sta-

tistical approach to the asset pricing. They use a so-called multifractal model which

diverges from the normal Gaussian model by allowing jumps in the drift and volatil-

ity of the dividend processes, i.e., the itô parameters. However, they do not explain

these jumps, while our jumps are perfectly endogenous. [26] shows by means of an

example that incompleteness of the markets can induce increased volatility on the

prices on durable commodities. He considers a model of asset market which endog-

enize the default rate and the level of collateral. The use of durable commodities as

collateral tends to increase the demand for these commodities and hence increase the

price. Again, a general equilibrium model is required for this result, since commodi-

ties through collateralization is tied up together. Thus, the price of one commodity

affects the other commodities as well. The paper [17] studies volatility of security

prices and financial innovation. Their results point in two directions, depending on

the nature of risk, more specifically whether there is aggregate risk or not. When

there is no aggregate risk, completing the asset market will generically reduce the

asset price volatility. While in the case of aggregate risk, reducing the degree of

incompleteness per se is not necessarily associated with a volatility reduction. We

take the financial structure as exogenous. The paper [36] shows that the equilibrium

price has a continuous density. However, we provide a different proof of this result,

as we exploit the relationship between Pareto efficiency and Walrasian equilibria

1Inforamlly, an information structure is continuous if the induced conditional probabilities is
continuous, i.e., the map t 7→ P (B | Ft) is continuous.
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given by the first fundamental theorem of welfare economics. Our results moreover

show that the continuity property is intimately related to the efficiency property,

since any such allocation must be continuous.

Finally, let us just state some remarks on our indeterminacy result. In [19] it

is shown that with complete markets, generically, there is a finite set of equilibria,

while in [8], [27] it is shown that with real assets and a finite set of states of nature

there is generically a finite set of equilibria. In the other extreme, with nominal

securities [7] shows that the indeterminacy is large and calculates the dimension of

indeterminacy to be of the difference between the number of states and securities.

Our example shows that the result of determinacy with real assets and finite states

does not extend to the case of a continuum of states. We have not shown that our

example is robust, however we claim without any proof that it is actually robust.

The paper is structured as follows: In section 5.2 we introduce notation and

the equilibrium concepts, and further state our assumptions on the fundamental

characteristics of the economy. Then in section 5.3 we state and prove that with

complete markets the prices are continuous in states, and in section 5.4 an example

illustrates that asset prices can have jumps when the asset market is incomplete

with finitely many securities. Section 5.5 concludes.

5.2 The model

Set-up

There is a finite number T +1 of dates with t ∈ {0, . . . , T}. There is uncertainty, the

set of states at date t ≥ 1 is S = [0, 1] with s ∈ S and π : ST → R+ is the density

on the set of states ST . There is a finite number of goods ` at every state with

j ∈ {1, . . . , `}. A collection of maps p = (pt), where pt : St → R`
++, is a price system

for goods. The space ST is endowed with the σ-algebra induced by the density π.

There is a finite number m of consumers with i ∈ {1, . . . ,m}. Consumers are

described by their identical consumption sets X = (R`
++)T+1, endowments ωi =

(ωti)t, where endowments at date t is described by a map ωti : St → X, and state

utility function ui : X → R. A collection of maps xi = (xti)t, where xti : St → R`
++,

is a consumption bundle. An allocation of goods x = (xi)i is a list of individual

consumption bundles.
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Walras equilibrium

Let st = (s1, . . . , st) denote the history of states to date t, then the problem of

consumer i is:

max
xi

∫
ST

u(x0
i , . . . , x

T
i (sT )) π(sT ) dsT

s.t.

∫
ST

∑
t

pt(s
t) · xti(st) dsT ≤

∫
ST

∑
t

pt(s
t) · ωti(st) dsT

Please note that the problem of consumer i may not have a solution because none

of the integrals may be defined. For now it is hoped that informally the problem

makes sense.

Definition 1 A Walrasian equilibrium is a price system for goods and an allo-

cation of goods (p̄, x̄) such that:

• x̄i is a solution to the problem of consumer i for all i, and;

• markets clear
∑

i x̄
t
i(s

t) =
∑

i ω
t
i(s

t) for all t and st.

Financial market equilibrium

There is a finite number n of assets with k ∈ {1, . . . , n} where the dividend of asset

k at date t is described by a map atk : St+1 → R`. A collection of maps q = (qt),

where qt : St → Rn, is a price system for assets. A collection of maps zi = (zti)t,

where zti : St → Rk, is portfolio plan. An allocation of assets z = (zi) is a list of

portfolio plans. Portfolios are restricted to be in Z where Z ⊂ Rn is convex and

closed.

A price system (p, q) is a price system for goods and a price system for assets.

An allocation (x, z) is an allocation of goods and an allocation of assets.

Let at(s
t) be the ` × n-matrix of dividends (a1

t (s
t) . . . ant (sT )) at date t in state
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st, then the problem of consumer i is:

max
(xi,zi)

∫
ST

u(x0
i , . . . , x

T
i (sT )) π(sT ) dsT

s.t.



p0 · x0
i + z0

i · q0 ≤ p0 · ω0
i

pt(s
t) · xti(st) + zti(s

t) · qt(st)

≤ pt(s
t) · ωti(st) + zt−1

i (st−1) · (qt(st) + pt(s
t)at(st))

for all t ∈ {1, . . . , T − 1}

pT (sT ) · xTi (sT ) ≤ pT (sT ) · ωTi (sT ) + zt−1
i (sT ) · (pT (sT )aT (sT ))

zti(s
t) ∈ Z for all t ∈ {0, . . . , T − 1}

Definition 2 A financial market equilibrium is a price system and an allocation

((p̄, q̄), (x̄, z̄)) such that:

• (x̄i, z̄i) is a solution to the problem of consumer i for all i, and;

• market clears
∑

i x̄
t
i(s

t) =
∑

i ω
t
i(s

t) and
∑

i z̄
t
i(s

t) = 0 for all t and st.

Assumptions

The consumers are supposed to satisfy the following assumptions:

(A.1) ωti ∈ C1([0, 1]t, X).

(A.2) ui ∈ C2(X,R) with Dui(xi) ∈ R`T
++ for all xi and vTD2ui(xi)v < 0 for all xi

and v 6= 0.

(A.3) If xi → x̂i and x̂i ∈ ∂X, then ‖Dui(xi)‖ → ∞.

The economy is supposed to satisfy the following assumptions:

(A.4) π ∈ C1([0, 1]T ,R++).

(A.5) atk ∈ C1([0, 1]t,R`) for all k and t.

All the allocations and prices are of course assumed to be measurable wrt. the

σ-algebra on ST induced by π. Moreover, we assume that allocations are uniformly

bounded, i.e., they are elements of L∞. When we consider Walrasian equilibria we

assume that prices are elements of L1, i.e., they are µ-integrable. In the next section,

however, we show that more is true, namely that they are continuous.
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5.3 Complete financial markets

In the present paper functions that are identical except for a set of measure zero are

considered to be identical.

Definition 3 A measurable function f : ST → R is continuous at ŝT if and only

if there exist a neighborhood A of ŝT and a function g : ST → R, where g−1(B) is

open for B open, such that∫
A

1{sT |f(sT )6=g(sT )} π(sT ) dsT = 0.

A function is continuous if and only if it is continuous at all points.

Walrasian equilibrium

At Walrasian equilibria, prices and consumption bundles are differentiable functions

of states of nature. The proof consists of two steps: in Lemma 1 it is shown that

prices and consumption bundles are continuous functions of states, and; in Theorem

1 it is shown that they are continuous functions of states, then they are differentiable

functions of states.

Lemma 1 Suppose that (p̄, x̄) is a Walrasian equilibrium, then it is continuous in

sT .

In [9] it its shown under which conditions prices are integrable, and not only

representable as abstract functionals on the commodity space, i.e., (L∞)? = ba which

is the set of bounded additive set functions absolutely continuous with respect to µ.

Proof: Suppose that (p̄, x̄) is a Walrasian equilibrium, then there exists λ1, . . . , λm >

0 such that x̄ is the solution to the following problem

max
x

∑
i

λi

∫
ui(x

0
i , . . . , x

T
i (sT )) π(sT ) dsT

s.t.
∑
i

xti(s
t) =

∑
i

ωti(s
t) for all t and st

(5.1)

The proof that x̄ is continuous in sT is by backward induction on t.

“t = T” Suppose that ĉT−1 = (x̂0, . . . , x̂T−1) and ŝT are fixed and consider the

following maximization problem

max
xT

∑
i

λiui(ĉ
T−1
i , xTi )

s.t.
∑
i

xTi =
∑
i

ωTi (ŝT ).
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Then for every ĉT−1 and ŝT there exists a unique continuous solution to the maxi-

mization problem according to assumptions (A.2) and (A.3). Let fT : (Xm)T×ST →
Xm be the solution, then it is continuous according to Berge’s maximum theorem

and if cT−1 = (x̄0(s0), . . . , x̄T−1(sT−1)), then fT (cT−1, sT ) = x̄T (sT ). Moreover the

function vTi : (Xm)T × ST → R defined by

vTi (cT−1, sT−1) =

∫
ui(c

T−1
i , fTi (cT−1, sT )) π(sT |sT−1) dsT

is strictly concave in x0, . . . , xT−1.

“t = T − 1” Suppose that ĉT−2 = (x̂0, . . . , x̂T−2) and ŝT−1 are fixed and consider

the following maximization problem

max
xT−1

∑
i

λivi(ĉ
T−2, xT−1, ŝT−1)

s.t.
∑
i

xT−1
i =

∑
i

ωT−1
i (ŝT−1).

Then for every ĉT−2 and ŝT−1 there exists a unique continuous solution to the maxi-

mization problem according to assumptions (A.2) and (A.3). Let fT−1 : (Xm)T−1×
ST−1 → Xm be the solution, then it is continuous according to Berge’s max-

imum theorem and if cT−2 = (x̄0(s0), . . . , x̄T−2(sT−2)), then fT−1(cT−2, sT−1) =

x̄T−1(sT−1). Moreover the function vT−1
i : (Xm)T−1 × ST−1 → R defined by

vT−1
i (cT−2, sT−1)

=

∫
vTi (cT−2, fT−1(cT−2, sT−1), sT−1) π(sT−1|sT−2) dsT−1

is strictly concave in cT−2.

The steps for t = T − 2, . . . , 0 are similar to the step for t = T − 1. The solution

(x̄t)t, where x̄t : St → Xm, to problem (5.1) is defined as follows

x̄0 = f 0

x̄1(s1) = f 1(x̄0, s1)
...

x̄T−1(sT−1) = fT−1(x̄0, x̄1(s1), . . . , x̄T−2(sT−2), sT−1)

x̄T (sT ) = fT (x̄0, x̄1(s1), . . . , x̄T−1(sT−1), sT ).

The price system p̄ is collinear with the gradients of the consumers, so the price

system is continuous in sT too. Indeed there exists τ > 0 such that

p̄t(s
t) = τλi

∫
Dxtui(x̄i(s

T )) π(st+1, . . . , sT |st) d(st+1, . . . , sT ).
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for all i, t and st.

�

Remark: In the proof of Lemma 1 it is only used that utility functions are once

differentiable and strictly concave, but it is not used that utility functions are twice

differentiable with negative definite Hessian matrices.

End of remark

Theorem 1 Suppose that (p̄, x̄) is a Walrasian equilibrium. Then (p̄, x̄) is differ-

entiable in sT .

Proof: Suppose that (p̄, x̄) is a Walrasian equilibrium, then according to Lemma 1

it is continuous in sT and there exists λ1, . . . , λm > 0 such that x̄ is the solution to

the following problem

max
x

∑
i

λi

∫
ui(x

0
i , . . . , x

T
i (sT )) π(sT ) dsT

s.t.
∑
i

xti(s
t) =

∑
i

ωti(s
t) for all t and st.

The proof that x̄ is differentiable in sT is by induction on t. At step t it is assumed

that x0 is differentiable in s0,. . . , xt−1 is differentiable in st−1.

“t = 0” The first-order conditions with respect to x0 at s0 are

λi

∫
Dx0ui(x

0
i , . . . , x

T
i (sT )) π(sT ) dsT − α0 = 0 for all i∑

i

x0
i −

∑
i

ω0
i = 0

The `(m + 1) × `(m − 1)-matrix H of derivatives with respect to x0 and α0 of the

first-order conditions is 
D0

1 −I
. . .

...

D0
m −I

I · · · I


where D0

i is a `× `-matrix defined by

D0
i = λi

∫
D2
x0x0ui(x

0
i , . . . , x

T
i (sT )) π(sT ) dsT

and I is a the `×`-identity matrix. The matrix of derivatives with respect to x0 and

α0 of the first-order conditions has full rank. Therefore according to the Implicit

Function Theorem x0 is a differentiable function of s0, because x1 is a continuous

function of s1,. . . , xT is a continuous function of sT .
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“t = T” The first-order conditions with respect to xT at sT are

λiDxTui(x
0
i , . . . , x

T
i (sT ))− αT = 0 for all i∑

i

xTi (sT )−
∑
i

ωTi (sT ) = 0

The `(m + 1) × `(m − 1)-matrix H of derivatives with respect to x1 and α1 of the

first-order conditions is 
DT

1 −I
. . .

...

DT
m −I

I · · · I


where DT

i is a `× `-matrix defined by

DT
i = λiD

2
xT xTui(x

0
i , . . . , x

T
i (sT )).

The matrix of derivatives with respect to x1 and α1 of the first-order conditions has

full rank. Therefore according to the Implicit Function Theorem xT is a differentiable

function of sT , because x0 is a differentiable function of s0,. . . , xT−1 is a differentiable

function of sT−1.

The fact that p̄ is differentiable in sT follows from the proof that p̄ is continuous

in sT in the proof of Lemma 1 and that x̄ is differentiable in sT .

�

Financial market equilibrium

At financial market equilibria, where the allocation is Pareto optimal, prices includ-

ing asset prices, consumption bundles and portfolios are differentiable functions of

states.

Corollary 1 Suppose that (p̄, x̄) is a Walrasian equilibrium and a = (ak)k, where

ak = (atk)t and atk : St → R`, is an asset structure such that ((p̄, q̄), (x̄, z̄)) is a

financial market equilibrium. Then q̄ is differentiable in sT .

Proof: The proof that q̄ is differentiable in sT is by backward induction on t.

“t = T − 1” The asset price of asset k at date T − 1 in state sT−1 is

q̄T−1
k (sT−1) =

∫
p̄T (sT−1, sT ) · aTk (sT−1, sT ) dsT

where p̄T is continuous in sT according to Lemma 1 and aTk is continuous in sT

according to assumption (A.5). Therefore q̄T−1
k is continuous in sT−1.
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“t = 0” Trivial because q̄0
k is a number rather than a function. However the asset

price of asset k at date 0 is

q̄0
k =

∫
(p̄1(s1) · a1

k(s1) + q1
k(s1)) ds1

where p̄1 is continuous in s1 according to Lemma 1 and a1
k is continuous in s1

according to assumption (A.5). Therefore q̄0
k is continuous.

�

Remark: In the proof of Corollary 1 it is only used that (p̄, x̄) is continuous and that

a is continuous, but it is not used that a is differentiable.

End of remark

5.4 Incomplete financial markets

Financial market equilibrium

At financial market equilibria there may be jumps in prices including asset prices,

consumption bundles and portfolios. The proof is based on an example.

Theorem 2 There exists an economy such that if ((p̄, q̄), (x̄, z̄)) is a financial market

equilibrium, then q̄ is not continuous in sT .

Proof: Consider an economy with three dates T = 2, one good per state ` = 1, two

consumers m = 2, one asset n = 1 and Z = R. We let S = [0, 1] be the set of

states. The dividend of the asset is supposed to be one unit of the good at the last

date. Endowments and asset dividends are supposed to independent of the state at

the first and last date. For the density π : S → R++ suppose that π(s1) = 1 for

all s1 ∈ S. The information algebra is such that the information set at t = 0 is

F0 = {∅, S} and finally, the σ-algebra generated by F1 = F2 = {{s} | s ∈ S}.
Endowments at the first date are supposed to be identical ω0

2 = ω0
1 and endow-

ments at the last two dates are supposed to be reverse ω1
2(s1) = ω2

1(1 − s1) and

ω2
2(s1) = ω1

1(1− s1). Similarly, utility functions are supposed to be identical for the

first date and reverse for the last two dates u2(x0, x1, x2) = u1(x0, x2, x1).

For c0
i let f(·; c0

i ) : R2
++ × R++ → R2

++ denote the demand function for the

consumer with endowments ei(s1) = (ω1
i (s1), ω2

i (s1)) and utility function vi(·; c0
i ) :

R2
++ → R defined by vi(x

1
i , x

2
i ; c

0
i ) = ui(c

0
i , x

1
i , x

2
i ). Then (p, s1) ∈ R2×R2

++×S is an

equilibrium for the Edgeworth box economy E(s1; (c0
i )i) = (ei(s1), vi(·, ; c0

i ))i if and

only if

f1(p, p · e1(s1); c0
1) + f2(p, p · e2(s1); c0

2) = e1(s1) + e2(s1)
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Clearly (p1, p2, s1) is an equilibrium for E(s1; (c0
i )i) if and only if (p2, p1, 1− s1) is an

equilibrium for E(s1; (d0
i )i), where d0

1 = c0
2 and d0

2 = c0
1.

Suppose that equilibrium prices are normalized such that the sum of the prices

is equal to one and let E ⊂ R2
++ × S be the equilibrium set for the collection of

Edgeworth economies (E(s1; (c0
i )i)s1 , where c0

i = ω0
i (s0), so

E = { (p, s1) | (p, s1; (c0
i )i) is an equilibrium for E(s1; (c0

i ))}.

Suppose that E is S-shaped as shown in Figure 5.1 and let r : S → R2
++ be a

selection from E such that r1(s1) is the lowest equilibrium price for s1 < 1/2, r1(s1) =

(1/2, 1/2) for s1 = 1/2 and r1(s1) is the highest equilibrium price for s1 > 1/2. In

Figure 5.1: The equilibrium set E.

order to construct a financial market equilibrium: let the allocation x be defined

by x0
i = ω0

i , x
j
i (s1) = f ji (r(s1), ei(s1);ω0

i ) for j ∈ {1, 2}; let the portfolio plan z

be defined by z0
i = 0 and z1

i (s1) = (r1(s1)/r2(s1))(ω1
i (s1) − f 1

i (r(s1), ei(s1);ω0
i )) =

f 2
i (r(s1), ei(s1);ω0

i )− ω2
i (s1); let the price system p be defined by p2(s2) = p1(s1) =

p0(s0) = 1, and; let the price system for assets q be defined by q1(s1) = r2(s1)/r1(s1)

and q0 > 0 such that∫ (
−q0∂ui(xi(s1))

∂x0
i

+ q1(s1)
∂ui(xi(s1))

∂x1
i

)
ds1 = 0.

Then ((p, q), (x, z)) is a financial market equilibrium and the asset price at date 1 is

discontinuous at s1 = 1/2.
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Finally, We note that the portfolio z0
1 of consumer 1 at date 0 is bounded from

below by

z = −min
s1

ω1
1(s1) + q1(s1)ω2

1(s1)

q1(s1)

and from above by

z = min
s1

ω1
2(s1) + q1(s1)ω2

2(s1)

q1(s1)
,

i.e., z ≤ z0
1(s1) ≤ z for every s1 ∈ S. When ‖(ω1

1(s1), ω2
1(s1))‖ is bounded from

above by M > 0 for s1 ∈ [0, 1] and the marginal rates of substitution at the Pareto

optimal allocations in the economies E(s1) for s1 ∈ [0, 1] are bounded away from

zero and infinity, then for M sufficiently small, the set of equilibria for the collection

of economies {E(s1)} is S-shaped for all feasible portfolios so there is a discontinuity

in prices.

�

Remark: The proof of Theorem 2 reveals that any measurable selection r : S → R2
++

such that r1(s1) = 1 − r1(1 − s1) and r2(s1) = 1 − r2(1 − s1) is part of a financial

market equilibrium. Therefore as shown in [47] there is a continuum of financial

market equilibria.

End of remark

On the example in the proof of Theorem 2

Let us try, informally, to argue that the example in the proof of Theorem 2 is

robust. In order to consider pertubations of fundamentals suppose that the set of

fundamentals is endowed with the Whitney topology, endowments and dividends

with the C1-topology and utility functions with the C2-topology.

The S-shape of the equilibrium set E is robust to perturbations in fundamentals

and small changes in portfolios. Therefore every selection from the equilibrium set is

discontinuous. Hence assets prices are discontinuous. The robustness of the example

in the proof of Theorem 2 shows that the symmetry in the example is not essential,

but merely convenient.

5.5 Final remarks

In the present paper we have shown, admittedly by use of an example, that jumps

in asset prices are possible in case of incomplete financial markets. Moreover, we

have shown that jumps are impossible in case of complete financial markets. Our

results show that with incomplete financial markets on the one hand consumers are
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not able to insure themselves against all uncertainty and on the other hand induce

price effects such as jumps in asset prices.

From a finance perspective it would be interesting to calibrate a parametric

model such as an optimal growth model or an overlapping generations model to see

whether jumps in asset prices are compatible with data.

From a general equilibrium perspective a partial answer to the question of the

appropriate commodity for economies with infinite dimensional commodity spaces.

Indeed we have shown that for Walrasian economies restricting attention to contin-

uous maps on the underlying state space as in [16] is no real restriction.

One might argue that such jumps as are observed in real life are abrupt changes

of prices over time, and they are not easily studied in a model with discrete time.

However, one might conjecture that our model could be transformed into a model of

continuous time, by utilizing the fact that we have a continuum of states. One could

argue as follows2: interpret the states as the time between the two periods and let

there be no uncertainty. Let there be a single asset. If there is no boundary on short

sale, the asset market is complete and our first result applies. However, introducing

short-sale boundaries income transfers becomes limited and the S-shaped curve in

the example re-emerges. Then as time passes by the asset price must jump.

2This is an interpretation attributed to Yves Balasko, in a conversation with one of the authors.
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Existence of finite horizon

equilibrium

We need to extend the result of [45] to the case of multiple periods: Again, let Y be

finite and let T <∞ be the number of periods, then the state space is Ω = Y T and

the probability of a state s = (s1, . . . , sT ) is given by P (s) = π(s1, s2)·· · ··π(sT−1, sT ).

Let (Dt)
T
t=1 be a finite sequence of partitions of Ω, wlog. {Ω} = D1 ⊂ D2 ⊂ · · · ⊂

DT−1 ⊂ DT =
⋃
ω∈Ω{ω}.

A process (Rm-valued) is a finite sequence (xt)
T
t=1 such that xt : Ω → Rm is

Dt-measurable, i.e., for every U ⊂ Rm open and every t = 1, . . . , T , x−1
t (U) is

measurable wrt. σ(Dt)
1. This implies that xt(ω) = xt(ω

′) whenever there exists

Q ∈ Dt such that ω, ω′ ∈ Q. This follows since any σ(Dt)-measurable set E is

the union of atoms from Dt. Assume that there exists Q ∈ Dt, ω, ω
′ ∈ Q and

xt(ω) 6= xt(ω
′). Then take open disjoint sets U, V ⊂ Rm, xt(ω) ∈ U and xt(ω

′) ∈ V .

But then x−1
t (U \ V ) = x−1

t (U) \ x−1
t (V ) which is not a union of atoms of Dt since

ω ∈ x−1
t (U) \ x−1

t (V ) but ω′ /∈ x−1
t (U) \ x−1

t (V ).

Denote by L the set of consumption processes (Rl-valued) and Θ the set of

portfolio processes (Rk-valued). An allocation is a process (x, θ) ∈ (L × Θ)n such

that ∑
i

xit(ω)− eit(ω) = 0∑
i

θit(ω) = 0

P -a.e., i.e., for a subset E ⊂ Ω with P (E) = 1. A commodity pricevector is a process

p ∈ L+ and an asset pricevector is a process q ∈ Θ. We say that (x, θ) ∈ L × Θ is

1Where σ(Dt) is the σ-algebra generated by Dt, i.e., the smallest σ-algebra containing Dt. Since
Dt is a partition this makes σ(Dt) particular simple, since if A,B ∈ Dt then either A ∩ B = ∅ or
A = B, and thus any set E ∈ σ(Dt) is of the form E =

⋃
D∈D D where D ⊂ Dt.
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feasible if

p0 · (x0 − ei0) + q0 · θ0 ≤ wi0 − c(θ0)

and for every t = 1, . . . , T

pt(ω) · (xt(ω)− et(ω)) + qt(ω) · θt(ω) ≤ D(ω) · θt−1(ω) + wt(ω)− c(θt(ω))

P -a.e. Denote by B(p, q, w) the set of feasible policies given the price processes

(pt, qt)
T
t=1 and transfer process (wt)

T
t=1.

A T -horizon equilibrium is then a finite sequence (st)
T
t=0 with S-values such that

for every i the strategy (xit, θit)
T
t=0 is optimal.

Proposition 20 For any T there exists a T -horizon equilibrium.

The difficult part of the result is to show that the budget constraint is lower hemi-

continuous. Note first that since pt·et > 0 and wt ≥ 0 the Slater condition is satisfied;

i.e., that there exists a strategy (xt, θt) such that the inequalities are all satisfied

with strict inequalities. Let (pn, qn, wn)→ (p, q, w) and consider (x, θ) ∈ B(p, q, w).

The desired sequence (xn, θn) ∈ B(pn, qn, wn) is obtained using the method of

forward induction: first solve t = 0 and obtain (xn0 , θ
n
0 ), then given this solution let

ηn1 =
pn1 · e1 +Dn(qn) · θn0 + wn1
pn1 · x1 + qn1 · θ1 + c(θ1)

,

when n is large enough (since this guarantee that the fraction is well-defined). Ob-

viously, 0 ≤ ηn ≤ 1 and lim ηn1 = 1 and thus, the sequence (xn1 , θ
n
1 ) = (ηn1x1, η

n
1 θ1)

satisfies the required properties. Assume that (ητ )
t−1
τ=0 is constructed such that

(xnτ , θ
n
τ ) = ηnτ (xτ , θτ ) for any τ ≤ t − 1 and n ∈ Z0. Then we define ηnt using

the formula

ηnt =
pnt · e(yt) +Dn

t · θnt−1 + wnt
pnt · xt + qnt · θt + c(θt)

.

Using this algorithm, we obtain the desired sequence (xn, θn) = (xnt , θ
n
t )Tt=0.

We note that we have showed the existence of a spotless equilibrium, since the

endogenous variables only depend on the fundamental states given by Ω.
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