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ABSTRACT

The problem is to predict whether a random outcome is a “success”
(R = 1) or a “failure” (R = 0) given a continuous variable Z. The
performance of a prediction rule D = D(Z) ∈ {1, 0} boils down to
two probabilities, β = Pr(D = 1|R = 1) and α = Pr(D = 1|R = 0).
We wish β is high, α is low. Given a set of rules D such that any
D ∈ D is attributed to a specific α, I define the “generalized” receiver
operating characteristic (GROC) curve as a function that returns β for
any α ∈ [0, 1]. The GROC curve associated with D = {D(Z) = I(Z >

c), c ∈ R} is the “conventional” ROC curve, while an “efficient” ROC
(EROC) curve derives from rules that return the largest possible β for
any α ∈ [0, 1]. I present estimation theory for the GROC curve and
develop procedures for estimating the efficient rules and the associated
EROC curve under semiparametric and nonparametric conditions.

Keywords: classification problem, receiver operating characteristic
(ROC) curve, likelihood ratio rule, semi-parametric estimation, non-
parametric estimation
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1 Introduction

Consider a binary decision problem where one predicts whether a random outcome is

a “success” (R = 1) or a “failure” (R = 0) given a continuous variable Z. Optimally,

one fishes to discover the set of prediction rules that attain the highest probability of

predicting success D = 1 when it realizes R = 1 (denote this conditional probability

by β = Pr(D = 1|R = 1)) given a risk that the rule predicts success when a failure

realizes R = 0 (denote this conditional probability by α = Pr(D = 1|R = 0)). When Z
is continuously distributed, it is straightforward (under general conditions) to generate

sets of prediction rules such that each rule in a set is attached to a specific α and β.

The simplest case derives from a cut-off rule that predicts success, if Z exceeds a given

constant, c, and failure otherwise. By letting c vary from −∞ to ∞, one obtains a set of
rules that yields a specific β for any α ∈ [0, 1]. The resulting plot (that depicts β as an
increasing function of α) is commonly called the receiver operating characteristic (ROC)

curve. It summarizes the trade-off between α and β when the prediction is based on a

rule of the form D(Z) = I(Z > c), where I(E) = 1, if E holds, and I(E) = 0, otherwise.

In general, the simple cut-off rule behind the ROC curve, henceforth the ROC curve

rule, is not optimal. That is, another form of binary function of Z may be needed to attain

the largest β given any α ∈ [0, 1]. The classical Neyman-Pearson lemma implies that the
optimal rule is of the form D(Z) = I(h∗(Z) > c), where h∗ is a monotone function of

the likelihood ratio, the ratio of the distribution of Z given R = 1 and the distribution

of Z given R = 0. Hence, the problem of an optimizing decision maker is to find the

function h∗. We will analyze this problem under the assumption that h∗ belongs to a

class of continuous functions whose support may be partitioned into a finite number of

intervals within which the function is either monotone increasing or monotone decreasing.

Take a function h from such a class and the corresponding rule D(Z) = I(h(Z) > c). By

letting c vary over the range of h one can attain any β ∈ [0, 1] as a monotone increasing
function of α ∈ [0, 1]. We call the resulting plot as the generalized ROC (GROC) curve,
when h is not necessarily the optimal one, and the efficient ROC (EROC) curve, when

h yields the optimal rules (i.e., h = h∗). As in the case of the standard ROC curve, the
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generalized ROC curve summarizes the trade-off between α and β when a given prediction

rule, specified by h, is applied. The EROC curve describes the maximal predictive power

of the underlying continuous predictor, as it returns the largest possible β given any

α ∈ [0, 1] attainable provided the efficient rules are known.
As an analog to the “area under the ROC curve” (AUROC), I define the area under

the GROC curve (GAUROC) and the area under the EROC curve (EAUROC). These

concepts provide summary indices for the underlying curves. More importantly, GAUROC

can serve as a criterion for identifying the optimal rule among a set of rules.

We present estimation procedures for the GROC curve and the GAUROC for a given

h-function and derive their asymptotic properties under the random sampling assumption.

These results form the basis for empirical investigation and comparison of the performance

of alternative prediction rules. We also develop procedures for estimating the efficient

rules, the EROC curve and EAUROC under two settings. In the first setting, the h-

function is assumed to belong to a parametric family of functions. This is regarded

as a semiparametric approach, because the distribution of Z (conditional on R) remains

nonparametrically specified. The estimator of the parameter of the semiparametric model

is shown to be consistent (at the rate of square root of the sample size) and asymptotically

normal. In the second setting, the h-function is only subject to nonparametric conditions.

The goal of the paper is to pave the way for improving binary predictions in situations

where a continuous predictor is used. An important field of application is medical diag-

nosis, where a single “biomarker” may be used to predict whether a patient is healthy or

diseased. It is standard to use the simple ROC curve rule for prediction and to apply the

ROC curve to measure and compare the performance of alternative biomarkers. We point

out that the ROC curve rule is not always optimal and that it may be beneficial to explore

the performance of alternative rules based on the predictor. We provide well-founded con-

cepts and tools for comparing alternative prediction rules and demonstrate that we are

basically after the ROC curve rule formulated in terms of the optimal transformation

of the original predictor. We provide techniques for finding the optimal transformation

under semiparametric and nonparametric conditions.

While the concept of the generalized ROC curve presented in this paper is (to the

2



best of my knowledge) new to the literature on binary prediction and classification, its

development is much inspired by McIntosh and Pepe (2002) and Pepe (2003) who point

out the importance of Neyman-Pearson lemma for an optimal binary prediction. The

asymptotic analysis of the empirical versions of the GROC curve and GAUROC can be

regarded as an extension to the one of the empirical versions of the ROC curve and

AUROC (see Hsieh and Turnbull (1996)). The proposed procedures for estimating the

efficient rule are novel; I am not aware of similar estimators in the current literature. In

an ongoing work, I extend some of the results of the present paper on a binary prediction

problem where there are several (continuous or discrete) predictors rather than just a

single continuous predictor.

Section 2 presents the prediction problem and the key concepts of the paper. Section

3 presents estimation procedures for the GROC curve and GAUROC under a large class

of prediction rules. Section 4 develops estimation procedures for the efficient rule, the

EROC curve and EAUROC under semiparametric and nonparametric conditions. Section

5 concludes.

2 Foundations

2.1 The Prediction Problem

The value of the binary random variable R ∈ {0, 1} is predicted by using a continuous
random variable Z. Call the realization R = 1 as “success” and R = 0 as “failure.”

The binary prediction is a decision rule D = D(Z) ∈ {0, 1}, an indicator function.
The underlying problem is equivalent to the one of deciding whether an observation on

Z is from one of two distributions, the distribution of Z conditional on R = 0 or the

distribution of Z conditional on R = 1. We refer to these two distributions by the

random variables X and Y . We assume that X and Y are absolutely continuous (with

respect to Lebesgue measure on R) and denote their cumulative distribution functions

by F and G and density functions by f and g. By definition, X and Y are mutually

independent.
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Consider the conditional probabilities

β = Pr(D(Z) = 1|R = 1) = Pr(D(Y ) = 1)

α = Pr(D(Z) = 1|R = 0) = Pr(D(X) = 1)

In biometrics, β is often called the “true positive fraction,” and α the “false positive

fraction” (see Pepe (2003)). In the terminology of statistical hypothesis testing, D could

indicate that the “null hypothesis” (R = 0) is “accepted” (D = 0) or “rejected” (D = 1)

in favor of an “alternative hypothesis” (R = 1). Hence, α can be regarded as the “size”

and β as the “power” of the prediction.

Let u(d, r) denote the level of “utility” (e.g., reward in terms of money) that is as-

sociated with the prediction D = d ∈ {0, 1} and the realization R = r ∈ {0, 1}. Let
Pr(R = 1) = δ ∈ (0, 1) and notice that Pr(D = d,R = r) = Pr(D = d|R = r) Pr(R = r).

One wishes to maximize the expected utility

E(u(D,R)) = βδ(u(1, 1)− u(0, 1))− α(1− δ) (u(0, 0)− u(1, 0))

+δu(0, 1) + (1− δ)u(0, 0) (1)

The following assumption is natural.

Assumption 1 (i) u(1, 1) > u(0, 1) and u(0, 0) > u(1, 0); (ii) |u(d, r)| ≤M <∞.

By part (i) of Assumption 1 it is always better to forecast correctly. The case with

u(1, 1) < u(0, 1) and u(0, 0) < u(1, 0) can always be returned to this case by replacing

R with R̃ = 1− R. The boundedness condition in part (ii) ensures that the expectation

in (1) is well defined. If Assumption 1 does not hold, there is no interesting prediction

problem. For example, if u(1, 1) > u(0, 1) and u(0, 0) ≤ u(1, 0), it is always optimal to

set D = 1 (no matter what value Z takes).

2.2 The Efficient Prediction Rule

Under Assumption 1 it is clear that for a given α (β) one is always better off the higher

β (the smaller α) is. This is as in the statistical hypothesis testing problem where one
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wishes to have a test that has the highest possible power given the size of the test. The

“fundamental lemma” of Neyman and Pearson (1933) gives a principle by which such an

optimal test can be obtained. The optimal decision assumes the likelihood ratio (LR) rule

D∗
α(Z) = I(LR(Z) > c) (2)

where, for any z ∈ R,
LR(z) =

g(z)

f(z)
(3)

and c is a constant such that Pr(LR(Z) > c|R = 0) = α.

At a general level, the Neyman-Pearson lemma entails that the decision (the rule) may

be randomized. Randomization is needed when LR(z) is a constant over a subset of the

support of Z. In this type of situation, the formula in (2) alone does not yield rules for

all α ∈ [0, 1]. For example, we may have LR(z) = c whenever z ∈ [z1, z2], z1 < z2. To

generate optimal rules for all possible α ∈ [0, 1] in this case, the Neyman-Pearson lemma
uses a “critical function” that randomizes the decision when z takes on a value on the

interval [z1, z2]. Such a critical function is not needed in the present paper, because we

will below assume that LR(z) is a constant at a set of measure zero, except when X

and Y are equally distributed. In the exceptional case (i.e., if F = G), Z is independent

of R and has no predictive content for R. The best that one can do in this case is to

apply a purely randomized rule Dα ∈ {0, 1}, which is independent of R and such that

Pr(Dα = d) = αd(1 − α)1−d, α ∈ [0, 1], d ∈ {0, 1}. By using Dα, we get β = α for any

α ∈ [0, 1].
By the Neyman-Pearson lemma, the LR rule in (2) yields the largest β for any α ∈

[0, 1]. Basically, by letting the constant c in (2) vary over the range of LR(Z), one

obtains a continuum of rules that generate the set of points {(α, β), α, β ∈ [0, 1]} such
that β = EF (α) for a continuous, increasing and concave function EF : [0, 1] → [0, 1].

The fact that the function EF (the “efficient frontier”) is continuous, increasing and

concave can be deduced by exploring the fundamental lemma (see Lehmann and Romano

(2005)), but it will also become evident in Section 2.4, where we analyze the performance

of rules within a general class.

In general, there may exists an efficient rule that yields β = 1 for some α < 1. In
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this case, EF (α) = 1 for all α ∈ (α, 1]. On the other hand, if there is a rule that yields
β > 0 for α = 0, then EF contains all of the points {(0, β), 0 ≤ β ≤ β}. These types of
situations are again ruled out by assumptions that we impose below. Hence, EF will be

a strictly concave curve from point (0, 0) to the point (1, 1). Also, we typically have in

mind a situation where EF (α) is smooth enough to be differentiable on (0, 1), that is, the

derivative EF ′(α) is finite for all α ∈ (0, 1). Then, (under Assumption 1 and assuming X
and Y are not equally distributed) the optimal decision rule that maximizes the expected

utility in (1) is characterized by the first order condition

EF ′(α) =
u(0, 0)− u(1, 0)

u(1, 1)− u(0, 1)

1− δ

δ
(4)

Under (4), the optimum is a unique point (α, β) ∈ (0, 1), where the slope of EF (α)
equals the ratio of the expected net utility of the correct prediction of failure (R = 0) and

the correct prediction of success (R = 1). Letting (u(0, 0) − u(1, 0)), (u(1, 1) − u(0, 1))

or δ ∈ (0, 1) vary, a variety of “slopes” are possible. In particular, if u(1, 1) − u(0, 1)

is very small or u(0, 0) − u(1, 0) is very large (δ fixed), then (4) may not hold for any

(α, β) ∈ (0, 1), and the optimal rule boils down to a corner solution with (α, β) = (0, 0).
Similarly, a corner solution with (α, β) = (1, 1) is possible, if u(1, 1) − u(0, 1) is very

large or u(0, 0)−u(1, 0) is very small. Nevertheless, to please everybody (with any utility
function) maximally, one has to be able to produce predictions that yield the efficient

frontier as a whole.

Notice that given any strictly monotone increasing function η : R→ R, the rule in (3)

is equivalent to the rule

D∗
α(Z) = I(η(LR(Z)) > η(c))

In particular, as noted by McIntosh and Pepe (2002), we have the monotone relationship

π(z) = Pr(R = 1|Z = z) =
Pr(R = 1)g(z)

Pr(R = 1)g(z) + Pr(R = 0)f(z)
=

δLR(z)

δLR(z) + 1− δ
(5)

and hence the rule in (2) is equivalent to the rule

D∗
α(Z) = I(π(Z) > c′) (6)

where c′ is such that Pr(π(Z) > c′|R = 0) = α.
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Viewing the representations (2) and (6), one can observe that the optimal rules are non-

parametrically (semiparametrically) identifiable either through the nonparametric (semi-

parametric) identification of F and G, or of π(Z). Hence, the modeling of F and G, or of

π(Z), is a possible approach for obtaining the optimal rules. However, the modeling of F

and G, or π(Z) is often a difficult task. It is desirable to develop alternative approaches

for finding the optimal rule that do not entail specifying F and G, or π(Z). The concepts

that we introduce in the following form a basis for developing such procedures, as we will

demonstrate in Section 4.

2.3 A General Class of Prediction Rules

The following condition will be used in what follows.

Condition 1 A function ` satisfies the condition, if its domain can be written as the

union of a finite number of intervals such that over each of the intervals ` is strictly

increasing or strictly decreasing and differentiable except possibly at the end points.

We assume:

Assumption 2 The density functions f and g are continuous and nonzero on R. When

R and Z are not independent, the likelihood ratio LR(z) = g(z)/f(z) satisfies Condition

1.

Under Assumption 2, when X and Y are not equally distributed, one can partition R

into a finite number of successive intervals, within which LR(z) is either strictly monotone

increasing or strictly monotone decreasing. If X and Y have the same distribution (i.e.,

if R and Z are independent), then LR(z) = 1 for all z ∈ R.
Given Assumption 2, our interest is to consider prediction rules of the form

Dc(Z) = I(h(Z) > c) (7)

where the function h is subject to Condition 1. Under Assumption 2 the optimal rule can

always be represented in the form (7) for some h that satisfies Condition 1. In the special

case, where X and Y follow the same distribution, the optimal rule is purely randomized
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and can be obtained by any function h meeting Condition 1. This will become evident

below.

As X and Y are absolutely continuous, the transformed variables h(X) and h(Y ) are

absolutely continuous (e.g., Rohatgi 1976, p. 73). Let Fh and Gh (fh and gh) denote the

distribution (density) functions of h(X) and h(Y ). As f and g are nonzero on R, the

densities fh and gh are nonzero on Ah, the range of h, an interval.

Notice that we could well assume Ah = R, because we can always replace h in (7) by

its strictly monotone increasing transformation without changing the rule and without

violating Condition 1. Similarly, without loss of generality we could modify Assumption

2 so that f and g are nonzero on a common subset of R. If there is a set S such that

Pr(X ∈ S) > 0, while Pr(Y ∈ S) = 0, then we know that R = 0, if Z = z ∈ S. There is
a prediction problem only, if Z takes on a value on a set that is common to the supports

of X and Y . Hence, it is not restrictive to assume that X and Y have the same support,

R.

2.4 Measuring the Performance of a Prediction Rule

Consider the set of prediction rules

Dh = {Dc(Z) = I(h(Z) > c), c ∈ Ah}

where the subscript h signifies a particular function (meeting Condition 1) in the rule (7).

For any given value c ∈ Ah we have

β(c) = Pr(Dc(Y ) = 1) = Pr(I(h(Y ) > c)) = 1−Gh(c)

α(c) = Pr(Dc(X) = 1) = Pr(I(h(X) > c)) = 1− Fh(c)

As Fh(c) and Gh(c) are continuous distribution functions, α(c) and β(c) are strictly

monotone decreasing functions from Ah to [0, 1]. Consider the set

{(α(c), β(c)) = (1− Fh(c), 1−Gh(c)), c ∈ Ah}

The inverse functions (the quantile functions) F−1h : [0, 1] → Ah and G
−1
h : [0, 1] → Ah

are well defined. The inverse of 1 − Fh(c) is F
−1
h (1 − t), a strictly monotone increasing
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function from [0, 1] to Ah. Hence, we have

{(α(c), β(c)), c ∈ Ah} = {(t, GROC(t)), t ∈ [0, 1]}

where the function GROC : [0, 1]→ [0, 1] is given by

GROCh(t) = 1−Gh(F
−1
h (1− t)) (8)

The curve defined by the set of points (t, GROCh(t)), t ∈ [0, 1] is called the generalized
ROC (GROC) curve. It is strictly monotone increasing and expresses how β grows as a

function of α, when the rule in (7) with some given function h (under Condition 1) is

applied.

When h is the identity function (or any strictly monotone increasing function), the

GROC curve is equal to the (standard) ROC curve:

ROC(t) = 1−G(F−1(1− t))

As an equivalent alternative to GROC(t), we may consider the “generalized ordinal

dominance” (GODC) curve with

GODCh(t) = Fh(G
−1
h (t)) (9)

which expresses 1−α as a function of 1−β, when the rule in (7) with some given function
h (under Condition 1) is applied. The GODC curve reduces to the standard ODC curve

(ODC(t) = F (G−1(t))) when h is any strictly monotone increasing function.1

Notice that if F = G, then

GROCh(t) = GODCh(t) = t

That is, if R is independent of Z, then any h under Condition 1 yields the optimal

randomized rule, with α = β.

Assume h(Z) is

h∗(Z) = η(LR(Z)) (10)

1See Hsieh and Turnbull (1996) for discussion on the ODC curve.
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where η is any strictly monotone increasing continuous function. As the rule in (7) using

h from (10) is equivalent to (2), the resulting set of points {(α(c), β(c)), c ∈ Ah∗} must
be optimal, and the resulting GROC curve coincides with EF (the efficient frontier). Ac-

cordingly, a GROC curve that assumes h in (10) is called the “efficient” ROC curve or the

EROC curve. In this case, we writeEROC(t) andD∗ = {D∗
c(Z) = I(h∗(Z) > c), c ∈ Ah∗}.

Consider
∂GODC(t)

∂t
=
∂Fh(G

−1
h (t))

∂G−1h (t)

∂G−1h (t)

∂t
=
fh(G

−1
h (t))

gh(G
−1
h (t))

(11)

where the last equality follows, as ∂G−1h (t)/∂t = 1/[∂Gh(G
−1
h (t))/∂G

−1
h (t)]. From (11) one

can see that the slope of the GROC curve as a function of the cut-of-point c is generally

determined by the likelihood ratio gh(c)/fh(c) of the transformed variables h(X) and

h(Y ). When h = h∗, this ratio is a monotone increasing function of the likelihood ratio

of the original variables X and Y (i.e., LR(c)). As c is a monotone decreasing function of

α, the slope of the EROC curve is monotone decreasing, showing that the EROC curve

is strictly concave (which we already known from above). In general, the GROC curve

need not be concave, it can have concave and convex segments.

The following result is a consequence of the Neyman-Pearson lemma.

Theorem 1 Assumption 2 holds. Given any GROCh(t), EROC(t) ≥ GROCh(t) for all

t ∈ [0, 1].

2.5 Summary Measures

We define the “area under the GROC curve” (GAUROC) for a given h as

GAUROC(h) =

∫ 1

0

GROCh(t)dt

We have GAUROC(h) =
∫ 1
0
GODCh(t)dt and GAUROC(h) ∈ [0, 1]. When h is a

monotone increasing function, GAUROC is equal to the area under the (conventional)

ROC curve (AUROC), and we may write AUROC =
∫ 1
0
ROC(t)dt.

We define the area under the efficient ROC (EAUROC) as

EAUROC =

∫ 1

0

EROC(t)dt
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Theorem 1 implies the following result.

Corollary 1 Assumption 2 holds. Then EAUROC ≥ GAUROC(h) for any h.

If LR(z) is monotone increasing, then EROC = ROC and EAUROC = AUROC.

If F = G, then EROC(t) = ROC(t) = GROCh(t) = t, and EAUROC = AUROC =

GAUROC(h) = 1
2
for any h under Condition 1. If F 6= G, then EROC(t) > 1

2
, while

some functions h under Condition 1 yield GAUROC(h) < 1
2
.

We have

GAUROC(h) =

∫ 1

0

Fh(G
−1
h (t))dt

=

∫

Ah

Fh(s)dGh(s)

=

∫

Ah

(∫ s

−∞

fh(u)du

)
gh(s)ds

=

∫

Ah

∫

Ah

I(u < s)fh(u)gh(s)duds

= Pr(h(X) < h(Y ))

where we apply the change of variable formula (to replace t by s = G−1h (t)) and the

last line follows from the independence of X and Y . Notice that when h is a monotone

increasing function, GAUROC = Pr(X < Y ) = AUROC, where the last equality is well

known from the ROC curve literature. As is also well known, the so called Mann and

Whitney U-statistic for testing whether F = G is an estimate of Pr(X < Y ).

An alternative summary index for a GROC curve is defined as

KS(h) = max
t
|GROCh(t)− t|

It can be shown that KS(h) is equivalent to the Kolmogorov-Smirnov measure of distance

between the distributions Fh and Gh. When h is a monotone increasing function, i.e., if

GROCh(t) = ROC(t), then KS(h) = KS = maxt |ROC(t)− t|. Pepe (2003) calls KS
(we call KS(h)) as the Kolmogorov-Smirnov ROC (GROC) measure.

Define for a given rule h its “maximal hit rate” as

MHR(h) = max
c
Pr(D(h(Z) > c) = R)

The following result is obvious.
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Corollary 2 Assumption 2 holds. Then KS(h∗) ≥ KS(h) and MHR(h∗) ≥ MHR(h)

for any h.

Each of the summary indices, GAUROC(h), KS(h), or MHR(h) is maximized by

the EROC curve and can be used as a criterion for identifying the efficient rule (for more

on identification see Section 4.1). In particular, note that the efficient rule is identified as

the one yielding the best “hit rate,” i.e., the minimum percentage of wrong predictions.

Other measures of distance between Fh and Gh (such as the Cramer von Mises criterion)

could be used as a basis for summarizing the GROC curve, and such measures would also

identify the efficient rule.

2.6 An Illustration

Assume X (Z given R = 0) follows the standard normal distribution, and Y (Z given

R = 1) follows the extreme value distribution with the location parameter and the scale

parameter both equal to 1. The density functions of X and Y are shown in Figure 1.

The prediction rule (7) based on a given function h is conveniently expressed by the

representation

Dα(Z;h) = I(1− Fh(h(Z)) < α) (12)

where Fh is the distribution function of h(X) and α = Pr(Dα(X;h) = 1) ∈ [0, 1]. The
optimal decision rule is based on h = h∗, where h∗(z) is any strictly monotone increasing

function of the likelihood ratio LR(z). In the present example, we can write h∗ as

h∗(z) = z +
z2

2
− exp(z − 1) (13)

The function h∗(z) is depicted in Figure 2(a), while Figure 2(b) shows the conditional

probability function, Pr(R = 1|Z = z). Figure 2(c) shows the function a∗(z) = 1 −
Fh∗(h

∗(z)) and illustrates the optimal rule by means of the presentation in (12). When

α = 0.1, the optimal rule is D∗
0.1(Z) = I(Z < −2.62) + I(1.29 < Z < 2.75). This is

shown by the blue lines in Figure 2(c). Similarly, the red lines in Figure 2(c) indicate how

D∗
0.5(Z) is determined. The blue and red lines in Figures 2(a) and 2(b) correspond to the

ones of Figure 2(c).
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Figure 2(d) displays the EROC curve (the red curve) that is obtained by using the

formula in (8) with h = h∗. The blue solid line is the conventional ROC curve based on

the rule with h being the identity function h(z) = z (and Dα(Z;h) = I(1− F (Z) < α)),

while the blue dotted line (denoted as “ROC(−1)”) is obtained by applying the ROC
curve rule on the −Z, i.e., h(z) = −z. The efficient rule is superior to the two ROC
curve rules, but coincides with the “negative” ROC curve rule, when α is close to zero

(α < 0.0018) or one (α > 0.9992). The value of EAUROC is 0.671, while the AUROC

based on Z is 0.64 and the one based on −Z is 0.36 (= 1− 0.64).

3 Estimation Under a Given Rule

In applied work one wishes to estimate the GROC curve for alternative rules. For example,

one may want to assess empirically whether a “quadratic rule,” D(Z2 > c), has better

performance than the conventional ROC curve rule, D(Z > c). This section presents

basic estimation theory for the GROC curve of any given rule. In addition, we introduce

the empirical counterpart of GAUROC and analyze its asymptotic properties.

3.1 Empirical GROC Curve

The GROC curve of any given prediction rule D(h(Z) > c) can be estimated in the same

manner as the standard ROC curve. There are two types of sampling settings. In a

“two-sample setting,” we have two independent samples, one on X, another on Y . In a

“one-sample setting,” we have a single random sample on (R,Z). In both cases, we denote

observations on X (or Z given R = 0) by X1, ..., XnX and those on Y (or Z given R = 1)

by Y1, ..., YnY . In this section, following the convention of the ROC curve literature (see

Hsieh and Turnbull (1996)), we assume the two-sample setting and present asymptotic

results under n = nX + nY → ∞ such that nY /n → κ ∈ (0, 1). With some minor

modification, the asymptotic results hold also under the one-sample setting. In the one

sample setting, we have n→∞, and due to random sampling nY /n→ δ = Pr(R = 1).

We seek to estimate GROCh(t) = 1 − Gh(F
−1
h (1 − t)) or equivalently GODCh(t) =

Fh(G
−1
h (t)) for a given function h. The standard empirical counterparts for Fh and Gh

13



are given by

F̂h(u) =
1

nX

nX∑

i=1

I(h(Xi) ≤ u) and Ĝh(u) =
1

nY

nY∑

i=1

I(h(Yi) ≤ u)

while the inverses F−1h and G−1h are estimated by F̂−1h (s) = inf(u : F̂h(w) ≥ s) and

Ĝ−1h (s) = inf(u : Ĝh(w) ≥ s). We estimate GROCh and GODCh, respectively, by

ĜROCh(t) = 1− Ĝh(F̂
−1
h (1− t)) and ĜODCh(t) = F̂h(Ĝ

−1
h (t))

It suffices to consider the latter estimator.

Theorem 2 Assumption 2 holds. h meets Condition 1. (a)

sup
t∈[0,1]

∣∣∣ĜODCh(t)−GODCh(t)
∣∣∣ a.s.→ 0, as n→∞

(b) There exists a probability space on which one can define sequences of two independent

Brownian bridges {B1
n(t), 0 ≤ t ≤ 1}, {B2

n(t), 0 ≤ t ≤ 1} such that on any subinterval
[a, b] of (0, 1) on which fh(G

−1
h (t))/gh(G

−1
h (t)) is bounded, we have

√
n
(
ĜODCh(t)−GODCh(t)

)
=

√
1

1− κ
B1
n(Fh(G

−1
h (t)))

+

√
1

κ

fh(G
−1
h (t))

gh(G
−1
h (t))

B2
n(t) + op(n

− 1

2 log(n)2) a.s.

uniformly on [a, b], as n→∞.

If h is the identity function (i.e., when GODC = ODC and GROC = ROC), Theorem

2 agrees with Theorems 2.1 and 2.2 of Hsieh and Turnbull (1996). Theorem 2 follows from

arguments given in Hsieh and Turnbull (1996).

3.2 Empirical GAUROC

For a given h, the obvious estimator of GAUROC(h) = Pr(h(X) < h(Y )) is

̂GAUROC(h) =

∫ 1

0

F̂h(Ĝ
−1
h (t))dt =

1

nXnY

nX∑

i=1

nY∑

j=1

I(h(Xi) < h(Yj)) (14)
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Analogously to Hsieh and Turnbull (1996), we can apply Theorem 2 to show that ̂GAUROC(h)

is consistent and asymptotically normal. Here we present more general limiting results

that concern a set of h-functions jointly.

Assume the two-sample setting as in Section 3.1. Notice that ̂GAUROC(h) for any

given h is a two-sample U-statistics with kernel I(h(Xi) < h(Yj)) specified by h. Let H
denote a class of h-functions. Then, the family

{
̂GAUROC(h), h ∈ H

}
is a two-sample U-

process and the corresponding standardized two-sample U-process is {UnXnY (h), h ∈ H},
where

UnXnY (h) =
√
n
(

̂GAUROC(h)− Pr(h(X) < h(Y )
)

An application of the central limit theorem for two-sample U-processes of Neumeyer (2004)

yields the following result.

Theorem 3 Assumption 2 holds. H is a class of functions that meet Condition 1.

Then, as n→∞, the process {UnXnY (h), h ∈ H} converges weakly to a Gaussian process
{G(h), h ∈ H} with zero mean and covariance kernel

cov(G(h1),G(h2)) =
1

1− κ

∫ ∞

−∞

[1−Gh1(h1(x))] [1−Gh2(h2(x))] f(x)dx

+
1

κ

∫ ∞

−∞

Fh1(h1(y))Fh2(h2(y))g(y)dy

− 1

(1− κ)κ

(∫ 1

0

Fh1(G
−1
h1
(t))dt

)(∫ 1

0

Fh2(G
−1
h2
(t))dt

)

Theorem 3 implies:

Corollary 3 Assumption 2 holds. Take a given h under Condition 1. Then,

√
n
(

̂GAUROC(h)− Pr(h(X) < h(Y ))
)

d→ N(0, Vh), as n→∞

where

Vh =
1

1− κ

∫ 1

0

[
1−Gh(F

−1
h (t))

]2
dt+

1

κ

∫ 1

0

Fh(G
−1
h (t))

2dt

− 1

κ(1− κ)

(∫ 1

0

Fh(G
−1
h (t))dt

)2
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When h is a monotone increasing function, we have ̂GAUROC(h) = ̂AUROC and

Corollary 3 agrees with Theorem 2.3 of Hsieh and Turnbull (1996).

Note that in Corollary 3 we can write

Vh =
1

1− κ

∫ 1

0

GROCh(t)
2dt+

1

κ

∫ 1

0

GODCh(t)
2dt− 1

κ(1− κ)
GAUROC(h)2

The following uniform convergence in probability follows fromTheorem 2.9 of Neumeyer

(2004).

Theorem 4 The conditions of Theorem 3 hold. Then

sup
h∈H

∣∣∣ ̂GAUROC(h)− Pr(h(X) < h(Y ))
∣∣∣ = op(1)

Under the one-sample setting, the result in Theorem 4 can be strengthened to uniform

almost sure convergence (see Neumeyer (2004, p. 78)).

4 Finding and Estimating the Efficient Rule

The primary goal of an optimizing decision maker is to find the efficient rules, which allow

her to choose the optimum point as in Section 2.2. The previous section shows that one

can consistently estimate the GROC curve for any given rule. This allows searching for

the best rule among any alternative rules, but in practice one wishes to have a procedure

that automatically finds the efficient rule. We consider this problem in semi-parametric

and non-parametric settings.

4.1 The Starting Point

The starting point of the estimation of the efficient rules is that one specifies a class of

rules

C = {Dh, h ∈ H}

where each Dh is as in (7) and H is a given family of functions that meet Condition 1. We

configure the set H so that its members amount to distinct, unique rules. The following

condition is sufficient.
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Condition 2 The family of functionsH is such that the set of roots {z : h(z) = c, c ∈ Ah}
are real and unique to each h ∈ H.

Under Condition 2, H can be interpreted as an index set for a class of rules. Let h∗

denote the efficient rule and assume h∗ ∈ H. We estimate h∗ by

ĥ = argmax
h∈H

̂GAUROC(h) (15)

In Section 4.2, we analyze (15) in a situation where H is a parametric class of functions.

This is regarded as a semiparametric estimation approach, because it does not entail

specifying F and G or Pr(R|Z) parametrically. Section 4.3 advances a procedure for
handling (15) when H is specified nonparametrically.

The general motivation of the estimator in (15) arises from Corollary 12, that is,

GAUROC(h∗) ≥ GAUROC(h) for all h ∈ H (16)

By Condition (16) and Theorem 4, one can show that the estimator ĥ is consistent for

h∗.3 Here we must recognize that h∗ is not always unique (even if Condition 2 holds).

That is, there may be a set H∗ ⊂ H of several (or a “continuum” of) rules such that

GAUROC(h) = EAUROC for all h ∈ H∗ and EAUROC > GAUROC(h) for all h ∈ H,
where H∗∪H = H and H∗∩H = ∅. Any h in H∗ is efficient and yields the EROC curve.

In this situation, the estimator ĥ is consistent in the sense that it picks up one of such

rules with probability tending to one, as n→∞. Hence, ĥ is a reasonable estimator even
if h∗ is not unique. Nevertheless, situations where h∗ is not unique require some attention

when the estimator is applied in practice. Two mains cases are discussed in the following.

The first case arises when F = G, as then any h (under Condition 1) is efficient and

we have H∗ = H and H = ∅. The problem in (15) is not very interesting, as any solution

2Given Corollary 1, the estimation problem in (15) could be based on alternative criterion functions

such as KS(h) or MHR(h), but such alternatives are not studied in this paper.
3Heuristically, as n tends to infinity, we eventually learn GAUROC(h) for all h ∈ H and thereby

we find h∗ that maximizes GAUROC(h), h ∈ H. Formally, we must restrict H to be a compact

metric space and such that h∗ is an inner point of the space. One relevant metric is d(h, h′) =

|GAUROC(h) − GAUROC(h′)|. We would then have d(ĥ, h∗) = op(1). We leave a careful probabil-

ity theoretical treatment of the estimator for later research.
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to it is efficient. Hence, for the estimation problem in (15) to be meaningful, we must

have F 6= G (i.e., R cannot be independent of Z). Sometimes it is not clear in advance

whether R depends on Z. One approach for handling this question is to apply existing

tests for the hypothesis F = G.

The second case arises when h∗ is monotone. While the class of monotone functions

under Condition 2 is uncountable, we only need to examine whether h∗ is increasing or

decreasing. The problem in (15) is very simple. We choose ĥ(z) = z, if ̂AUROC ≥ 0.5,
and ĥ(z) = −z, otherwise. The problem in (15) becomes more interesting when we suspect
that h∗ is a nonmonotone function. Hence, in applied work, it would be useful to have a

procedure for investigating whether h∗ is monotone or not. If one finds evidence that h∗

is not monotone, then (under Assumption 1) one can ask whether there are one or more

“turning points,” where h∗ switches between increasing and decreasing segments. The

procedures that we will consider below assume that one knows the maximum number of

turning points of h∗. When H is a parametric class of functions (Section 4.2), then this

information is incorporated into the chosen parametric class of functions. In the case of

the nonparametric procedure (Section 4.3), this is the key restriction imposed on the class

H.
Suppose h∗ is a non-monotone function and that we have specified H so that h∗∈ H.

Then under our assumptions there is generally a single function h∗ for which

GAUROC(h∗) > GAUROC(h) for all h 6= h∗, h ∈ H (17)

That is, GAUROC(h) identifies a unique optimal rule. This is desirable at least from the

point of view of conventional estimation theory. However, there are situations where the

identification condition in (17) does not quite bite in the sense that there may be a set of

rules that are “locally” efficient even if they are “globally” inefficient. As we demonstrate

in the following section, such a situation can arise, when F and G are both normal. In this

example, h∗ is in general a quadratic function. However, it is possible that the probability

mass of Z concentrates almost solely on the increasing (decreasing) segment of h∗ so that

there is only a negligible probability that Z takes on a value at the decreasing (increasing)

segment of h∗. It is then possible that one cannot identify the true optimal rule even with
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a large number of observations. This type of situation may be a nuisance for statistical

inference, but the estimator ĥ is still working to the right direction and captures in large

samples a rule that is effectively equal to the efficient rule.

Finally, in applied work it is of course possible that the assumed classH is misspecified
in the sense that h∗ /∈ H. In such a situation, maximizing GAUROC(h) over h ∈ H does

not yield the best rule for all situations (i.e., for all α). This is because the GROC curves

of two different rules can cross. Nevertheless, it is still possible that there is a single rule

h† ∈ H such that

GAUROC(h†) > GAUROC(h) for all h 6= h†, h ∈ H

Hence, the maximization of GAUROC(h) may well identify some rule even if h∗ /∈ H.
While the identified rule is not efficient in this case, it may be a good approximation to

the efficient one, as we will demonstrate below.

4.2 Semi-parametric Approach

One possible choice for H in (15) is a parametric family of functions. We can think that

the underlying parametric function is fully specified by a parameter vector ψ of dimension

p+1. To meet Condition 2, ψ must be subject to a constraint or a normalization. Without

loss of generality, we can assume that once such constraint is imposed on ψ we can write

ψ = (θ0, θ
′)′, where θ0 ∈ R is fixed and θ ∈ Θ ⊆ Rp. As a result, individual functions

within the parametric family are indexed by θ. Accordingly, write h as hθ, h(z) as h(z; θ).

Furthermore, we write Fθ (Gθ) for Fh (Gh), GROCθ(t) for GROCh(t), GAUROC(θ) for

GAUROC(h), and so on. Suppose hθ = h∗ for some θ = θ∗. The problem in (15) reduces

to

θ̂ = argmax
θ∈Θ

̂GAUROC(θ) (18)

Section 4.2.1 gives an illustration when H constitutes a set of polynomial functions. Sec-

tion 4.2.2 shows that θ̂ is
√
n-consistent and asymptotically normal under regularity con-

ditions.
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4.2.1 Polynomial Rules

A rule is called a “polynomial rule,” if it can be expressed by

h(z;ψ) = ψ1z + ψ2z
2 + · · ·+ ψp+1z

p+1 (19)

In order to meet Condition 2, this function must be “scale normalized.” We may impose

‖ψ‖ = 1 or ψj = 1 for some j ∈ {1, 2, ..., p+1}. If we choose ψ1 = 1 (as we do below), then
our parameter of interest is θ = (θ1, θ2, ..., θp)

′ = (ψ2, ψ3, ..., ψp+1)
′, while θ0 = ψ1 = 1 is

fixed.

When we set p = 0 in (19), we obtain a “linear rule.” This rule is solely specified by

the sign of ψ1 (the value of ψ1 does not matter). If ψ1 > 0 (e.g., ψ1 = 1), we have a

ROC curve rule, and if ψ1 < 0 (e.g., ψ1 = −1), we have a “negative ROC curve rule” (as
it was named earlier). If LR(z) (h∗(z)) is monotone, then one of these rules is efficient

and we identify it as the one that maximizes AUROC. If LR(z) is non-monotonic, then

one of the rules maximizes AUROC, but none of the two is efficient. If F = G, (i.e., if R

and Z are independent), then both of the rules are efficient, as they can serve as a purely

randomized rule. Finally, in this setting, the estimation problem in (19) boils down to

one, where we choose ĥ(z) = z, if ̂AUROC ≥ 0.5, and ĥ(z) = −z, otherwise.
Setting p = 1 in (19) yields the “quadratic rule”

h(z;ψ) = ψ1z + ψ2z
2 (20)

IfX is standard normal and Y is normal with mean µ and variance σ2, it is easy to see that

the efficient rule is obtained by setting ψ1 = µ/σ2 and ψ2 = (σ
2−1)/2σ2. If X and Y have

unequal means (µ 6= 0), but the same variance (σ2 = 1), then the ROC curve rule (with
ψ1 = sign(µ)) is efficient. Otherwise, the efficient rule assumes a quadratic polynomial

(we must have ψ2 6= 0). Notice that when µ = 0 and σ2 = 1, i.e., when F = G, the above

formulae yield ψ1 = ψ2 = 0. Nonetheless, in this situation, any nonzero values of ψ1 and

ψ2 yield a purely randomized rule, which is efficient when R is independent of Z. Finally,

note that the quadratic rule does not entail that X and Y (or T (X) and T (Y ) for some

common transformation function T ) are normal.
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Normalize ψ1 = 1 in (20) so that the rule can be written as

h(z; θ) = z + θz2 (21)

where θ = ψ2/ψ1. Keep with the above example, i.e., X ∼ N(0, 1) and Y ∼ N(µ, σ2).

Then the efficient rule is given by θ = θ∗ = (σ2 − 1)/2µ. Let µ = 1. Figure 3 displays
GAUROC as a function of θ when (a) σ2 = 4, θ∗ = 1.5, (b) σ2 = 1.5, θ∗ = 0.25, (c)

σ2 = 0.6, θ∗ = −0.2, (d) σ2 = 0.1, θ∗ = −0.45. In each case, GAUROC(θ) is a smooth
concave function and attains its maximum at θ∗. In cases (a) and (d), GAUROC(θ)

serves as a clear (population level) criterion for identifying θ∗. However, when θ∗ is closer

to 0 (or when σ is closer to 1), GAUROC(θ) is fairly flat around θ∗. In particular, in

case (c), one can hardly recognize that GAUROC(θ) is maximized at θ∗ = −0.2. These
observations indicate that when θ∗ is nonzero, but close to 0, it is difficult to distinguish

the efficient rule from the simple ROC curve rule (obtained by setting θ = 0). It also turns

out that in these cases the ROC curve rule does not lose much (if anything) compared to

the efficient rule. An illustration follows.

Figure 4 displays the actual densities f and g as well as the function 1 − Fθ∗(z) = α

(describing the efficient rule) and the function 1 − F (z) = α (describing the ROC curve

rule) for the cases of Figure 3. The dotted black horizontal lines (the green solid lines)

describe the efficient rule (the ROC curve rule) for α = 0.1. For example, in panel (b) of

Figure 4, the efficient rule for α = 0.1 is

I(1− Fθ∗(Z) < 0.1) = I(Z < −5.2816 or Z > 1.2816)

while the ROC curve rule for α = 0.1 is

I(1− F (Z) < 0.1) = I(Z > 1.2816)

Observe from the underlying densities that the “lower triggering condition” Z < −5.2816
of the efficient rule “kicks in” extremely rarely (for example, if Pr(R = 1) = 0.5, we have

Pr(Z < −5.2816) = 1.049× 10−7). On the other hand, the “upper triggering condition”
Z > 1.2816 of the efficient rule is the same as the one of the ROC curve rule. That is,

the two rules do not differ in practice when α = 0.1. Overall, one can see that in the case
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(b) the efficient rule and the ROC curve rule are practically identical whenever α is not

larger than, say, 0.8. For larger values of α (i.e., if α ∈ (0.8, 1)), one can see from the

figure that the “lower triggering condition” of the efficient rule hits with some recognizable

probability and that the “lower triggering condition” of the efficient rule differs slightly

from the one of the ROC curve rule. Hence, when α is close to 1, the efficient rule and the

ROC curve rule differ to the extent that it might matter in some practical application.

Along similar lines one can see from Figure 4 that in the case (c) the efficient and the

ROC curve rule are virtually identical. For example, when α = 0.1, the efficient rule is

I(1− Fθ∗(Z) < 0.1) = I(1.281 < Z < 3.719)

while the ROC curve rule is

I(1− F (Z) < 0.1) = I(Z > 1.282)

The two rules do not differ much in practice, because it is rare that Z > 3.719 (for

example, if Pr(R = 1) = 0.5, we have Pr(Z > 3.719) = 0.0079). The same conclusion

holds over the whole range of α ∈ (0, 1). By contrast when one looks at cases (a) and (d)
in Figure 4 one can recognize that the efficient rule and the ROC curve rule are clearly

different for most values of α.

Figure 5 depicts the EROC curve and the ROC curve for the cases of the previous

figures. As one can expect, in cases (a) and (d), the EROC curve is superior to the ROC

curve for a large range of values of α, while in cases (b) and (c) one can hardly recognize

that the EROC curve is above the ROC curve. Figure 6 shows the actual difference

ROC(t)−EROC(t) between the curves in each case. The magnitude of the difference is
recognizable in cases (a) and (d), but negligible in cases (c) and (d).

The above example illustrates that in some situations a “continuum” of rules are

practically indistinguishable from the efficient rule. In such situations, GAUROC(θ)

is nearly flat around θ∗, which makes it difficult to identify and estimate the “exact”

efficient rule in any finite sample. However, as the example illustrated, in such situations,

any rule sufficiently close to the efficient rule is optimal in practical terms. Hence, there

are situations where it suffices that one is able to pick up a rule from a large set of equally
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good rules. This is what h(θ̂) tends to do, because it is (as a special case of ĥ in (15))

consistent for h∗.

In the appendix we analyze the performance of the polynomial rule in the example of

Section 2.6, where X is standard normal and Y follows the extreme value distribution. In

this situation the true efficient h∗ cannot be written as a polynomial (of any finite order).

Hence, the assumed family of rules is misspecified in the sense that it does not include the

efficient rule. However, the polynomial rule is shown to yield a very good approximation

to the efficient rule. The example illustrates that polynomial rules may have merit in a

variety of situations.

4.2.2 Asymptotic Distribution

Assume the one-sample setting. Denote the underlying random sample on (R,Z) by

(R1, Z1), ..., (Rn, Zn). Notice that the estimation problem in (18) remains the same when

̂GAUROC(θ) is replaced by

Cn(θ) =
1

n(n− 1)
∑

i6=j

I(Ri > Rj)I(h(Zi; θ) > h(Zj; θ)) (22)

This criterion function is similar in form to the one of the maximum rank correlation

(MRC) estimator of Han (1987) with the exception that in the MRC estimator h(Z; θ)

is replaced by a linear combination of exogenous regressors. If h(Z; θ) is a polynomial of

order p, then Cn(θ) corresponds to the criterion function of the MRC estimator, where

the regressors are the polynomial terms Zj, j = 1, ..., p. Sherman (1993) presents general

methods that can be applied to show that the MRC estimator is
√
n-consistent and

asymptotically normal. The methods handle the fact that the criterion function in (22)

is not differentiable with respect to θ. To apply these methods in the present setting, we

impose the following assumption.

Assumption 3 Let N denote a neighborhood of θ∗.

(i) For each z in R, all mixed second order partial derivatives of Fθ(h(z; θ)) and of

Gθ(h(z; θ)) exist on N .
(ii) There is an integrable function M(z) such that for all z in R and θ in N it holds that
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∥∥∥ ∂2

∂θ∂θ′
Fθ(h(z; θ))

∥∥∥ ≤M(z)|θ − θ∗| and
∥∥∥ ∂2

∂θ∂θ′
Gθ(h(z; θ

∗))
∥∥∥ ≤M(z)|θ − θ∗|.

(iii) E
∣∣ ∂
∂θ
Fθ(h(Z; θ

∗))
∣∣2 <∞ and E

∣∣ ∂
∂θ
Gθ(h(Z; θ

∗))
∣∣2 <∞.

(iv) E
∣∣∣ ∂2

∂θi∂θj
Fθ(h(Z; θ

∗))
∣∣∣ <∞ and E

∣∣∣ ∂2

∂θi∂θj
Gθ(h(Z; θ

∗))
∣∣∣ <∞, i, j = 1, ..., p.

(v) The matrix E
{

∂2

∂θ∂θ′
[(1− δ)I(R = 1)Fθ(h(Z; θ

∗)) + δI(R = 0) (1−Gθ(h(Z; θ
∗)))]

}
is

negative definite.

Theorem 5 Let the efficient parameter θ∗ be an interior point of Θ, a compact subspace

of Rp. Then, under Assumption 3, as n→∞, √n(θ̂ − θ∗)
d→ N(0, J−1QJ−1), where

(δ − δ2)−1Q = (1− δ)E

{[
∂

∂θ
Fθ(h(Y ; θ

∗))

] [
∂

∂θ
Fθ(h(Y ; θ

∗))

]′}

+δE

{[
∂

∂θ
Gθ(h(X; θ

∗))

] [
∂

∂θ
Gθ(h(X; θ

∗))

]′}

and

V = (δ − δ2)
∂2

∂θ∂θ′
GAUROC(θ∗)

Note that condition (iii) of Assumption 3 implies that the matrix Q exists. The fact

that the matrix V exists and is non-singular follows from condition (v) of Assumption 3.

In fact, in condition (v), it is legitimate to change the order of expectation (integration)

and differentiation so that one can see that the matrix in the condition is equal to V

(see the proof of the theorem). Basically, the role of Assumption 3 is to ensure that the

expectation of the criterion function Cn(θ) can be approximated sufficiently accurately

by a second order Taylor expansion around θ∗. This is one of the key conditions applied

to handle the fact that Cn(θ) is not differentiable with respect to θ.

Given the estimate θ̂, we can estimate EROCθ(t) by ĜROC θ̂(t) and EAUROCθ by

̂GAUROC(θ̂). As θ̂ is consistent for θ∗ we obtain the following result.

Corollary 4 The conditions of Theorem 5 hold. Then, as n → ∞, ̂GAUROC(θ̂)
p→

EAUROC and supt∈[0,1]

∣∣∣ĜROC θ̂(t)− EROC(t)
∣∣∣ p→ 0.

The quantities Q and V in Theorem 5 can be expressed alternatively as in the binary

choice model example of Sherman (1993). First, note that h(Z; θ∗) = η(LR(Z)) for some

strictly increasing function η. Let η−1 be the inverse function of η and note that by (5)

24



we have

Pr(R = 1|Z) = Λ(h(Z; θ∗))

where Λ(·) = δη−1(·)/(δη−1(·)+1−δ) is a strictly increasing distribution function. Hence,
the binary variable R is determined by

R = I(h(Z; θ∗)− ε > 0) (23)

where ε is a random variable (error) that is independent of Z and has the distribution

function Λ. This representation is similar to the binary choice model analyzed in detail

by Sherman (1993) with the exception that in Sherman (1993) h(Z; θ) is replaced by a

weighted sum of some regressors, where the weights are determined by θ.

Write U∗ for ∂h(Z; θ∗)/∂θ and U
∗
for E(U∗|h(Z; θ∗)). Let q∗θ(w) (qθ(w)) denote the

density of h(Z; θ∗) (h(Z; θ)) and let λ(t) = ∂/∂tΛ(t). Now, provided the assumptions of

Theorem 5 hold, we can write

Q = E
{
(U∗ − U

∗
)(U∗ − U

∗
)′ [q∗θ(h(Z; θ

∗))]2 Λ(h(Z; θ∗))[1− Λ(h(Z; θ∗))]
}

and

V = −E
{
(U∗ − U

∗
)(U∗ − U

∗
)′q∗θ(h(Z; θ

∗))λ(h(Z; θ∗))
}

These expressions correspond to “∆” and “V ” in page 134 of Sherman (1993).

Suppose θ̂ is an estimator for the quadratic rule h(z; θ) = z + θz2, when X is N(0, 1)

and Y is N(µ, σ2), as in the example of Section 4.2.1. The quantities Q and V (based

on either of the above presented expressions) can be derived explicitly for any θ. It is

found that whenever µ 6= 0 and θ 6= 0 (σ2 6= 1), Q and V are well defined. That is, for

the estimator θ̂ (multiplied by
√
n) to have a finite asymptotic variance, the underlying

two normal distributions must have different means and variances. Recall that under this

condition both coefficients in (20) are non-zero. Figure 7 plots the asymptotic standard

deviation (
√
Q/V 2) of θ̂ for a range of values of θ∗ = (σ2 − 1)/2µ, when µ = 1. The

asymptotic standard deviation of θ̂ is extremely large whenever θ∗ is at most about 0.1

away from 0 (alternatively when σ2 is at most about 0.2 away from 1). This observation

does not mean that θ̂ yields an unreliable estimate for the efficient rule. It reflects the fact
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that when θ∗ is close to zero, GAUROC(θ) is very flat around θ∗ so that a large range

of values of θ yield GROC curves that are indistinguishable from the EROC curve. For

example, when θ∗ = 0.1 (σ2 = 1.2), the difference EAUROC −GAUROC(θ) is less than
0.0000001 for all θ ∈ [−.11, 0) and all θ ∈ (0, 0.15]. Such a small difference is possible only
when the corresponding GROC curve is extremely close to the EROC curve. Simulations

indicate that in this type of situations, even in quite large samples θ̂ tends to concentrate

on a value from such a region rather than on θ∗. The sample size must be extremely large

for θ̂ to concentrate on the exact θ∗, as the consistency of θ̂ entails, as n→∞.
The above discussed example reveals that there are situations where θ∗ is so poorly

identified, even if it is a unique maximizer of GAUROC(θ), that θ̂ tends to behave as if

it were consistent for a value from a set of values around θ∗. Fortunately, the underlying

set is such that values within it yield rules that hardly ever deviate from the efficient rule.

However, these types of cases have implications for statistical inference. For example,

it would be of interest to test whether θ∗ = 0, i.e., whether the ROC curve rule or a

monotone rule is efficient. In the above example, the estimator θ̂ does not offer a reliable

basis for such a test. The reason is that a range of values of θ is able to approximate the

efficient rule very accurately “locally.” Here “local” refers to the part of the support of

Z where Z takes on values most of the time. In the above example, if θ∗ = 0 (σ2 = 1),

then about 99.9% of the probability mass of Z lays within the interval [−3.1, 4.1]. Now,
the quadratic rule h(z; θ) = z + θz2 is monotone increasing within this range whenever

θ ∈ (0, 0.16]. Hence, a quadratic rule h(z; θ) = z + 0.16z2 yields efficient predictions on

average 999 out of 1000 times. One can imagine that a huge number of observations is

required for one to be able to recognize a difference between any θ ∈ (0, 0.16] and the
efficient parameter θ∗ = 0.

While the fact that the criterion function in (18) (equivalently (22)) is not continuous

is no concern for the estimation theory, it causes some trouble for the practical imple-

mentation. A trick by which one can avoid discrete optimization is to apply a modified

criterion function where the discontinuous function I(h(Zi; θ) > h(Zj; θ)) is replaced by

its “smoothed” version K((h(Zi; θ) > h(Zj; θ))/ςn), where K is a symmetric distribution

function with a continuous second derivative and ςn > 0 is a decreasing number satisfying
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ςn → 0, as n→ 0 (see Ma and Huang 2007). The continuous function K(z/ςn) is better

approximation to I(z), the larger n is. The smoothing of the criterion function does not

alter the asymptotic properties of the estimator.

4.3 Non-parametric Approach

In this section we consider the estimator in (15) when H is a nonparametric class of

functions that satisfy Assumption 2. That is, our starting point is that LR(Z) is a

continuous function consisting of a finite number, henceforth denoted by sLR, of decreasing

and increasing segments. Assumption 2 entails that there is a finite sLR. Here we make

the additional assumption that we know a maximum smax (a finite integer) such that

sLR ≤ smax.

Recall from Section 2.6 that a rule based on h can be expressed as

Dα(Z;h) = I(a(Z) < α) (24)

where

a(z) = 1− Fh(h(z))

Any h-function is related to a unique a-function (as a is a strictly monotone transformation

of h). If h meets Condition 1 so does a. Corresponding to a class of h-functions there is

always an equivalent class of a-functions. The problem of finding the efficient h(z), h∗(z),

is the same as the one of finding the efficient a(z), a∗(z) = 1− Fh∗(h
∗(z)).

Let As denote the class of a-functions that satisfy Condition 1 with the qualification
that the number of switches between decreasing and increasing segments is exactly s. For

a given a-function let ̂GAUROC(a) be as ̂GAUROC(h) in (14) with h replaced by −a
(also, an h-function). Then, given a known smax, we estimate the efficient a

∗ (and hence

the efficient rule) by

ã = arg max
a∈{ã0,ã1,...,ãsmax}

̂GAUROC(a) (25)

where

ãs = argmax
a∈As

̂GAUROC(a), s = 0, 1, ..., smax (26)
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If sLR ≤ smax, then ã is consistent for a
∗ (as was discussed in Section 4.1). In what follows,

we illustrate how the problem (25) can be solved in practice.

Consider the problem of finding ãs, i.e., solving (26) for a given s. If s = 0, then a

is either (i) increasing, or (ii) decreasing. If s = 1, then a is either (i) first increasing,

then decreasing, or (ii) first decreasing, then increasing. If s = 2, a is either (i) first

increasing, then decreasing, then increasing, or (ii) first decreasing, then increasing, then

decreasing. That is, for a given s, a is either ‘first increasing’ (property (i)), or ‘first

decreasing’ (property (ii)). If a has property (i), then −a (the “mirror image” of a) has
property (ii). Let As = {a : a ∈ As and a has property (i)} and As = {a : −a ∈ As}.
We have As = As ∪ As and As ∩ As = ∅. We can solve (26) as follows. Find as and as,
respectively, that maximizes and minimizes ̂GAUROC(a) over a ∈ As. Then, we have
ãs = as, if ̂GAUROC(as) > 1− ̂GAUROC(as), and ãs = as otherwise.

4

Assume the case smax = 1. We need to find ã0 and ã1, of which ã0 is straightforward

(you only need to check whether ̂AUROC > 0.5). Consider ã1. The rules corresponding

to a ∈ A1 are of the form

Dα(Z) = I(Z < τ 1(α) or Z > τ 2(α)) (27)

where the node τ 1 (τ 2) is increasing (decreasing) function of α with τ 1(1) = τ 2(1), τ 1(0) =

−∞, τ 2(0) =∞. Clearly, if a ∈ A1, then the corresponding “node function” τ 1(α) (τ 2(α))
is the inverse function of a(z) when a(z) is increasing (decreasing). The problem of finding

a1 can be stated as the one of finding τ 1(α) and τ 2(α) such that the underlying empirical

GAUROC is maximized. Let Z(j), j = 1, ..., n denote a sample of observations on Z and

assume Z(j) are all unequal and ranked such that Z(j) < Z(j+1) for all j. The rule in

(27) results in the same classification of the observations whenever τ 1 ∈ (Z(j−1), Z(j)] and
τ 2 ∈ [Z(j), Z(j+1)) for j, j such that 1 < j ≤ j < n − 1. Clearly, there is a finite number
of possible classifications and these are obtained by all possible choices of τ 1 = Z(j) and

τ 2 = Z(j) (1 < j ≤ j < n− 1). A classification is specified by a pair (j, j) of observation
ranks and results in corresponding estimates (α̂(j, j), β̂(j, j)) of (α, β). There are more

4In practice, one may be able to conclude that ãs = as (ãs = as) without solving for as (as). This is

seen in the simulated example discussed at the end of this section (see footnote 5).
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(rank index) pairs (j, j) than different estimates (α̂, β̂). An empirical rule is specified by

a sequence of pairs J = {(j
k
, jk), jk, jk ∈ {1, ..., n}, jk ≤ j

k+1
, jk ≥ jk+1, jk ≤ jk}. A

sequence J and the associated “threshold observations” Z(j) and Z(j) ((j, j) ∈ J) amount
to corresponding empirical node functions τ 1(α̂), τ 2(α̂) and estimates for the GROC curve

and GAUROC (henceforth denoted as ̂GAUROC(J)). The estimate a1 is obtained by

maximizing ̂GAUROC(J) over all possible J .

To further illustrate the problem of finding a1, suppose X is standard normal and Y

is normal with mean µ = 1 and variance σ2. As was seen in Section 4.2, if σ2 6= 1, we

obtain the efficient rule by h∗(Z) = Z + θ∗Z2, where θ∗ = (σ2 − 1)/2. Alternatively, we
can write

h∗(Z) = (Z − %)2

where % = −1/(σ2 − 1). Henceforth, assume σ2 = 4 so that % = −1/3. As h∗ has the
property (ii), the corresponding a∗ has property (i), and the optimal rule is of the form

(27). The optimal function a∗(z) = 1 − Fh∗(h
∗(z)) is blotted as a black line in Figure 8.

Note that τ ∗1(α) (τ
∗
2(α)) is the inverse of a

∗(z) when z ∈ (−∞,−1/3] (z ∈ [−1/3,∞)).
The blue solid line (the red solid line) depicts the density f (g) of X (Y ).

The blue squares (the red crosses) in Figure 8 are associated with observations on

X (Y ) based on a simulated sample (assuming the above specified setting together with

Pr(R = 1) = 0.6) of size n = 100 (nX = 45, nY = 55). The ticks of the vertical axis

indicate the alpha estimates that can be obtained by using the rule (27) on the simulated

observations. Squares and crosses along the same vertical line refer to a single observation,

but for each tick we mark only observations that can yield the corresponding estimate α̂.

For example, the estimate α̂ = 0 can be attained by choosing τ 1 ≤ X(1) and τ 2 ≥ X(n),

and we have α̂ > 0, if τ 1 > X(1) or τ 2 < X(n). The black circled observations and the

associated dashed line constitute the estimate, ã, of the efficient rule a∗. That is, the

rule yields the largest GAUROC estimate among rules consistent with (27) and the ROC

curve rule. Visually the estimated rule is fairly similar to the efficient rule. The GAUROC

estimate ̂GAUROC(ã) = 0.780 is not much larger than EAUROC = 0.744. The green

circled observations and the associated dashed line show the empirical ROC curve rule in

the present sample.
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Figure 9 shows all estimates (α̂, β̂) (the black dots) obtainable from the simulated

sample by using either the rule in (27) or the ROC curve rule. The red solid line in the

figure is the EROC curve. The black line with circles is the estimated EROC curve, i.e.,

the empirical GROC curve based on the estimate of the efficient rule (the black dotted

line with circles in Figure 8).5 The estimated EROC curve gives a good approximation to

the true EROC curve. Qualitatively, it is also equally accurate as the empirical GROC

curve based on the true efficient rule that is shown as the red line with circles. This

suggests that the nonparametric estimate of the efficient rule is about as accurate as one

can hope given the available sample. Simulations confirm that nonparametric estimates

for the efficient rule, EROC and EAUROC become more accurate the larger is the sample

size.

The above described estimation procedure can be easily extended to cases with smax >

1. For example, when smax = 2, the set of possible rules can be expressed by

Dα(Z) = I(Z < τ 1(α) or τ 2(α) < Z < τ 3(α)) (28)

where τ 1(α) ≤ τ 2(α) ≤ τ 3(α) for all α ∈ [0, 1]. If a ∈ A2, then τ 1 (τ 2) [τ 3] is increasing
(decreasing) [increasing] function of α, and there are constants α(1), α(2), α(3) and α(4)

such that α(1) < α(2), α(2) > α(3), α(3) < α(4), τ 1(α
(2)) = τ 2(α

(2)), τ 2(α
(3)) = τ 3(α

(3)),

τ 1(α
(1)) = −∞, τ 3(α

(4)) = ∞, and α(j) = 0 for j = 1 or j = 3 or both, and α(j) = 1

for j = 2 or j = 4 or both. If a ∈ A1, then we set τ 3(α) = ∞ for all α ∈ [0, 1] so that
(28) reduces to (27). Finally, the case of the ROC curve rule, a ∈ A0, is obtained from
(28) by setting τ 2(α) = τ 3(α) for all α ∈ [0, 1]. We have already seen how a0 and a1 are

obtained. The case a2 makes no essential difference to a1. A rule is specified by a sequence

of threshold triples τ 1 = Z(j1), τ 2 = Z(j2) and τ 3 = Z(j3) (1 < j1 ≤ j2 ≤ j3 < n − 1). A
finite number of such sequences can be formed within the sample and the problem is to

find the one that maximizes the corresponding empirical GAUROC. Similar procedures

apply to any finite smax.

In this section, we have shown how (15) can be solved when the underlying class

5It is easy to conclude from the figure that ̂GAUROC(a1) > 1 − ̂GAUROC(a
1
) so that there is no

need to solve for a
1
.
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H is as general as Condition 1 allows. We use the above derivations to show that the

different sets generated by a rule under Condition 1 forms a “VC class,” after Vapnik

and Chervonenkis (1971), or a “polynomial class,” after Pollard (1984). That is, we show

that the number of classifications of the observations induced by a rule under Condition

1 grows at most at a rate nk (for some finite k) that is much smaller than the maximum

number of classifications, 2n. Clearly, when a ∈ A0, the number of possible classifications
is given by the number of possible thresholds, the n observations. When a ∈ A1, a given
threshold τ 1 = Z(j), j = 1, ..., n − 1 can be combined with at most n − 1 thresholds
τ 2 ∈ {Z(j+1), ..., Z(n)} so that there are at most n2 classifications. It is easy to see that
when a ∈ As, there are at most ns classifications. It follows that the sets generated by
a rule based on a ∈ As is a VC class for any finite s. A complement of a VC class is a
VC class and a finite union of VC classes is a VC class (Pollard (1984)). Hence, the sets

generated by a rule based on a ∈ A = {A0 ∪ A1 ∪ · · · ∪ Asmax} forms a VC class. An
implication is that various function classes that appear in the proofs of Theorems 3, 4

and 5 can be shown to be “Euclidian,” as argued in the proofs.

5 Conclusion

The ROC curve is a standard device for measuring the predictive power of a single con-

tinuous variable for a binary outcome. It is pointed out that the ROC curve assumes a

specific prediction rule that is optimal only if the underlying likelihood ratio is monotone

increasing, or in other words, if larger values of the predictor are always associated with

larger probability of success. Such an assumption may be reasonable in certain applica-

tions, but cannot hold in general. For example, a potential predictor (like blood pressure)

of the health of a patient can indicate lower risk of disease over a middle range of values,

and higher risk when the predictor takes either on a very small or a very large value. For

such and more complicated settings, a variety of alternative prediction rules can poten-

tially improve upon the simple ROC curve rule. The generalized ROC curve of the paper

describes the performance of a given rule and allows one to make comparisons between

alternative rules.
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It is also pointed out that there is always an efficient prediction rule that allows one

to exploit the maximal predictive power of a predictor. Anyone’s interest is to find the

efficient rule as it beats all competing rules no matter how one’s utilities with respect to

different outcomes are configured. Importantly, the paper offers novel procedures that

allow one to estimate the efficient rule under general semiparametric and nonparametric

conditions. The nonparametric conditions entail that the underlying likelihood ratio is

smooth enough and such that it alters between monotone decreasing and increasing seg-

ments. It is plausible that this condition is general enough to capture the efficient rule in

applications.

The proposed estimation procedures call for further development. The nonparametric

estimator for the efficient rule assumes that one knows the maximum number of switches

between increasing and decreasing segments of the likelihood ratio. As such information

may be uncertain in practice, it is desirable to develop procedures for estimating the exact

number of turning points of the likelihood ratio. In particular, it would be useful to have

a test for whether the underlying likelihood ratio is monotone and thereby whether the

popular ROC curve rule is efficient. An example in the paper shows that this problem can

be cumbersome due to potential poor identification of the efficient rule under the null. It

is of interest to extend the present work to situations were there are several predictors.

This is one of extensions that the author is currently working on.

Appendix

Proof of Theorem 3

The result follows from Theorem 2.7 of Neumeyer (2004). Notice that UnXnY (h) is anal-

ogous to “Unm(f)” of Neumeyer (2004). Define the conditional expectations

EX(h)(y) = E(I(h(X) < h(Y ))|Y = y)

EY (h)(x) = E(I(h(X) < h(Y ))|X = x)
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and write these as EX(h) and EY (h), when the value of the conditioning variable is not

fixed. Let

E(h) = E(I(h(X) < h(Y )))

Here EX(h), EY (h), E(h) correspond to the notations Pf , Qf , P ⊗ Q(f) of Neumeyer

(2004). Then, given Theorem 2.7 of Neymeyer, the covariance stated in Theorem 3 is

equal to

1

1− κ
EX [(EY (h1))(EY (h2))] +

1

κ
EY [(EX(h1))(EX(h2))]−

1

(1− κ)κ
E(h1)E(h2)

We have

EY (h)(x) = E(I(h(x) < h(X))) = 1−Gh(h(x))

EX(h)(y) = E(I(h(X) < h(y))) = Fh(h(y))

and hence it is immediate that EX [(EY (h1))(EY (h2))] /(1 − κ) is the same as the first

term in covariance of Theorem 3. Similar arguments show that the two remaining terms

above agree with the ones of the covariance of Theorem 3.

For the conditions of Theorem 2.7 of Neumeyer (2004), it suffices that the class of

functions {I(h(X) < h(Y )), h ∈ H} and the classes defined by the conditional expecta-
tions EX(h) and EY (h) (for h ∈ H) are all “Euclidian,” see Neumeyer (2004, p. 79).
For the required property it suffices that the sets generated by I(h(X) < h(Y )) form a

VC class of sets (Vapnik and Chervonenkis (1971)), or the polynomial class of sets in

the terminology of Pollard (1984). The VC property follows from Condition 1 on the

h-function. For a detailed argument, see the end of Section 4.3.

Illustrating Semiparametric Model under Misspecification

Recall the example of Section 2.6, where X is standard normal and Y follows the extreme

value distribution. The associated efficient h-function is given in (13) and we observe that

no monotone function of it can be represented as a polynomial. To investigate how well

the quadratic rule “approximates” the efficient one in this case, consider

h2(z; θ) = z + θz2
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The maximum value of GAUROC is 0.6694 and is obtained with θ = 0.64. The GAUROC

maximizing value of θ is fairly close to the coefficient (0.5) of z2 in the efficient function

in (13). Figure A1 shows that the quadratic rule results in a good approximation to the

optimal rule in the sense that its GROC curve is very close to the EROC curve. One

can hardly recognize that the GROC curve is below the EROC curve except when α

is close to 0. This is rather surprising given that the efficient rule assumes two “turning

points,” while the quadratic rule has only one turning point. A rule based on a third order

polynomial h3(z; θ) = z + θ1z
2 + θ2z

3, a “cubic rule,” can produce two turning points.

The corresponding GROC curve, with parameter values that maximize GAUROC among

all cubic rules, is shown as a blue line in Figure A1. One can see that the cubic rule is

better than the quadratic rule when α is small. However, as Figure A2 shows, the cubic

rule is not uniformly better than the quadratic rule.

Keeping with the example of Section 2.6, Figure A3 illustrates how the (GAUROC

maximizing) linear (ROC), quadratic and cubic rule track the efficient rule. It is helpful

to note that the different rules can be expressed as

Dα(Z;h) = I(Z < τ 1(α;h)) + I(τ 2(α;h) < Z < τ 3(α;h))

where the nodes τ j(α;h) are specific to h and satisfy τ 1(α;h) ≤ τ 2(α;h) ≤ τ 3(α;h). Let

h = h1, h = h2, h = h3, respectively, for the linear, the quadratic and the cubic rule and

write τ j(α;h
∗) = τ ∗j(α) (for the efficient rule). When α ∈ (0.00181, 0.9993), the “efficient

nodes” τ ∗j(α), j = 1, 2, 3 are all distinct and finite (τ ∗j(0.6) are marked in Figure A3).

When α ∈ (0, 0.00181], τ ∗2(α) = τ ∗3(α), while when α ∈ [0.9993, 1), τ ∗1(α) = τ ∗2(α) = −∞.
The performance of a polynomial rule depends on how well its nodes τ j(α;hi) track the

“efficient nodes” τ ∗j(α). The linear (the negative ROC) and the cubic rules agree with

the efficient rule when α ∈ [0, 0.00181) and also when α ∈ (0.9993, 1] (the linear rule) or
when α ∈ (0.9998, 1] (the cubic rule). The quadratic rule assumes τ 3(α;h2) = ∞ for all

α. Despite the fact that τ 3(α;h2) is “infinitely far” from τ ∗3(α) (for all finite α < 1), the

quadratic rule outperforms the cubic rule over a large set α ∈ [0.5658, 0.9656] (see Figure
A2). This can be explained by observing from Figure A3 that for the underlying values of

α, τ 1(α;h2) and τ 2(α;h2) follow τ ∗1(α) and τ
∗
2(α) much closer than τ 1(α;h3) and τ 2(α;h3)
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do. In particular, τ 1(α;h2) and τ 2(α;h2) are close to the efficient nodes within a range

where Z has a large mass (see Figure 1). It does not matter so much that τ 3(α;h2) is

infinitely far apart from τ ∗3(α), if τ
∗
3(α) is in a region where Z has very little probability

mass (as then it is rare that Z > τ ∗3(α)).

Proof of Theorem 5

Write W = (R,Z). W takes values on the set S = {0, 1} ⊗ R. Denote the underlying
random sample by Wi = (Ri, Zi), i = 1, ..., n.

For each (w1, w2) in S ⊗ S, and each θ in Θ, define the function

ψ(w1, w2, θ) = I(r1 > r2)I(h(z1; θ) > h(z2; θ))

Write the criterion function as

Cn(θ) =
1

n(n− 1)
∑

i6=j

ψ(Wi,Wj, θ)

As was noted earlier, Cn(θ) can be seen as a U-statistic of order two, and the collection

{Cn(θ), θ ∈ Θ} is a U-process of order two. This is as in the framework of Sherman (1993).
We can write the conditional expectation of ψ(W1,W2, θ) given W1 = w = (r, z) as

E [ψ(w,W, θ)] = E [(r > R)I(h(z; θ) > h(Z; θ))]

= Pr(R = 0)I(r > 0)E [I(h(X; θ) < h(z; θ))]

= (1− δ)I(r = 1)Fθ(h(z; θ))

Similarly,

E [ψ(W,w, θ)] = δI(r = 0)(1−Gθ(h(z; θ))

Define the function

τ(w, θ) = (1− δ)I(r = 1)Fθ(h(z; θ)) + δI(r = 0)(1−Gθ(h(z; θ))

We have

E(Cn(θ)) = E [ψ(W1,W2, θ)]

= δ(1− δ)E [h(Y ; θ) > h(X; θ)]

= δ(1− δ)GAUROC(θ) = C(θ)
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and

E(τ(W ; θ)) = (1− δ)δE [Fθ(h(Y ; θ))] + δ(1− δ)E [(1−Gθ(h(X; θ))]

= 2δ(1− δ)GAUROC(θ) = 2C(θ)

Now, applying the “U-statistic decomposition” of Sherman (1993, p. 127), we can

write

Cn(θ) = C(θ) +
1

n

∑

i

υ(Wi, θ) +
1

n(n− 1)
∑

i6=j

e(Wi,Wj, θ)

where

υ(w, θ) = τ(w, θ)− 2C(θ)

and

e(w1, w2, θ) = ψ(w1, w2, θ)− E [ψ(w1,W, θ)]− E [ψ(W,w2, θ)] + C(θ)

Below, we will show that conditions equivalent to those in Assumptions A1-A4 of

Sherman (1993, p. 129) hold. Theorem 5 then follows from Theorem 4 of Sherman (1993,

p. 129). The quantity “∆” of Sherman (1993) is here given by

E

{[
d

dθ
τ(W ; θ∗)

] [
d

dθ
τ(W ; θ∗)

]′}

= (1− δ)2δE

{[
∂

∂θ
Fθ(h(Y ; θ

∗))

] [
∂

∂θ
Fθ(h(Y ; θ

∗))

]′}

+(1− δ)δ2E

{[
∂

∂θ
Gθ(h(X; θ

∗))

] [
∂

∂θ
Gθ(h(X; θ

∗))

]′}
= Q

and the quantity “V ” of Sherman (1993) is here

E

(
∂2

∂θ∂θ′
τ(W, θ∗)

)
/2

= E

[
(1− δ)I(R = 1)

∂2

∂θ∂θ′
Fθ(h(Z; θ

∗)) + δI(R = 0)
∂2

∂θ∂θ′
(1−Gθ(h(Z; θ

∗)))

]
/2

=
∂2

∂θ∂θ′
{(1− δ)E [I(R = 1)Fθ(h(Z; θ

∗))] + δE [I(R = 0)(1−Gθ(h(Z; θ
∗)))]} /2

=
∂2

∂θ∂θ′
{(1− δ)δE [Fθ(h(Y ; θ

∗))] + (1− δ)δE [1−Gθ(h(X; θ
∗))]} /2

= (1− δ)δ
∂2

∂θ∂θ′
GAUROC(θ∗) = V

We have assumed that θ∗ is an interior point of Θ, a compact set. This is as in A1

of Sherman (1993). A2 of Sherman (1993) is implied by the presentation in (23). The
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role of A3 of Sherman (1993) is to ensure that the term “X ′β0” in his paper is absolutely

continuous with respect to Lebesgue measure on R. Here, “X ′β0” is replaced by h(Z; θ
∗),

which is absolutely continuous by conditions we have imposed. Sherman (1993) notes

that the consistency of his MRC estimator was established by Han (1987) and that Han’s

proof used the compactness of Θ, A2 and A3. In the present setting, Theorem 4 implies

that θ̂ is consistent for θ∗, as θ∗ is an interior point of Θ and as θ∗ is a unique maximizer

of GAUROC(θ) (and hence of C(θ)) over Θ. Finally, the conditions of Assumption 3 are

equivalent to those of A4 of Sherman (1993).

References

Han, A. K. (1987) “Non-parametric analysis of a generalized regression model,” Journal

of Econometrics, 35, 303—316.

Hsieh, F., and B. W., Turnbull (1996) “Nonparametric and semiparametric estimation of

the receiver operating characteristic curve,” Annals of Statistics, 24, 25—40.

Lehmann, E. L., and J. P., Romano (2005) “Testing statistical hypotheses (3rd ed.),”

Springer, New York, USA.

Ma, S., and J., Huang (2007) “Combining multiple markers for classification using ROC,”

Biometrics, 63, 751—757.

McIntosh, M. W., and M. S., Pepe (2002) “Combining several screening tests: optimality

of the risk score,” Biometrics, 58, 657—664.

Neyman, J., and E. S. Pearson (1933) “On the problem of the most efficient tests of

statistical hypothesis,” Philosophical Transactions of the Royal Society of London, Series

A, 231, 289—337.

Neumeyer, N. (2004) “A central limit theorem for two-sample U-processes,” Statistics and

Probability Letters, 67, 73—85.

37



Pepe, J. L. (2003) “The statistical evaluation of medical tests for classification and pre-

diction,” Oxford University Press, Oxford, UK.

Pollard, D. (1984) “Convergence of stochastic processes,” Springer, New York, USA.

Rohatgi, V. K. (1976) “An introduction to probability theory and mathematical statis-

tics,” John Wiley & Sons, New York, USA.

Sherman, V. K. (1993) “The limiting distribution of the maximum rank correlation esti-

mator,” Econometrica, 61, 123—137.

Vapnik, V. N., and A. Y. Chervonenkis (1971) “On the uniform convergence of relative

frequencies of events to their probabilities,” Theory of Probability and Its Applications,

16, 264—280.

38



-6 -4 -2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Notes: f and g, respectively, refers to the density function of standard normal and the

extreme value distribution with location parameter and scale parameters equal to 1.
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Notes: The figure applies in situations where there is a strictly monotone increasing

function T such that T (X) (i.e., T (Z)|R = 0) follows standard normal and T (Y ) (i.e.,

T (Z)|R = 1) follows the extreme value distribution with both the location parameter and
the scale parameter equal to 1. Panel (a) plots the efficient h-function. Panel (b) plots

the conditional probability function Pr(R = 1|Z = z) when Pr(R = 1) = 0.3. Panel (c)

plots the function a∗(z) = 1−Fh∗(h∗(z)), where Fh∗ is the distribution function of h∗(X).
The efficient prediction rule is given by D∗

α(Z) = I(a∗(Z) < α), where α = Pr(D∗
α(X) =

1) ∈ [0, 1]. In panels (a) through (c), the blue (the red) line indicates the set Sα such
that, if Z ∈ Sα, then D∗

α(Z) = 1, α = 0.1 (α = 0.5).
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Notes: The figure plots GAUROC as a function θ for the rule D(Z + θZ2), when X

(i.e., Z|R = 0) is standard normal and Y (i.e., Z|R = 1) is normal with mean 1 and

variance σ2. The panels differ by the value of σ2 (or of θ∗ = (σ2 − 1)/2). The blue cross
indicates the efficient parameter θ∗ in each case.
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Notes: The figure plots the function a(z) = 1 − Fh(h(z)) for the efficient rule (the

black solid line) and the ROC curve rule (the green dashed line), when X (i.e., Z|R = 0)
is standard normal and Y (i.e., Z|R = 1) is normal with mean 1 and variance σ2. The

vertical black dashed line indicates the “turning point” of the efficient h-function, h∗(z) =

z+θ∗z2. Recall that Fh is the distribution function of h(X) and that the underlying rules

can be expressed as D(Z) = I(a(Z) < α). The panels differ by the value of σ2 (or of

θ∗ = (σ2 − 1)/2). The red (the blue) line depicts the density of X (of Y ).
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Notes: The figure plots the EROC and the ROC curves, when X (i.e., Z|R = 0) is

standard normal and Y (i.e., Z|R = 1) is normal with mean 1 and variance σ2.
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Notes: The deviations shown in the figure concern the ROC and the EROC curves in

Figure 5.
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Notes: The figure plots the asymptotic standard deviation of θ̂ as a function of θ∗ =

(σ2 − 1)/2, when X is N(0, 1) and Y is N(1, σ2).
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Notes: The figure illustrates the nonparametric estimate of the efficient rule based on

a random sample of n = 100 observations on (R,Z), where X = (Z|R = 0) is N(0, 1),

Y = (Z|R = 1) is N(1, 4), and Pr(R = 1) = 0.6. The ticks at the vertical axes indicate the
different estimates α̂ of α that can be obtained from the sample by using the ruleD(a(Z) <

α), where a(z) = 1 − Fh(h(z)) is first increasing, then decreasing. The dotted line with

circles is the nonparametric estimate of the efficient function a∗(z) = 1−Fh∗(h∗(z)), where
h∗(z) = (z − %)2 and Fh∗ is the noncentral chi-distribution with noncentrality parameter

% = −1
3
. The blue squares (the red crosses) refer to nX = 45 (nY = 55) observations on

X (Y ), while the blue (the red) solid line is the population density of X (Y ). At each tick

mark, we plot only observations that can be used to obtain the corresponding estimate α̂.
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Notes: The black dots indicate all estimates (α̂, β̂) that can be obtained from the

random sample of Figure 8 by using either the rule in (27) or the ROC curve rule. The

red solid line is the EROC curve based on the underlying true population (X standard

normal, Y normal with mean 1 and variance 4). The dots marked by black circles and

the associated black line constitute the empirical GROC curve based on the estimate of

the efficient rule (the black dotted line with circles in Figure 8). The blue line with circles

constitutes the empirical GROC curve based on the true efficient rule. The green line

with circles is the empirical ROC curve.
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Notes: The figure shows the EROC curve along with the GROC curves for a “quadratic

rule” D(Z +0.64Z2) and a “cubic rule” D(Z +0.28Z2− 0.17Z3), when X (i.e., Z|R = 0)
follows standard normal and Y (i.e., Z|R = 1) follows the extreme value distribution with
both the location parameter and the scale parameter equal to 1. The applied quadratic

(cubic) rule yields the maximum GAUROC over all quadratic rules D(Z + θZ2) (cubic

rules D(Z + θ1Z
2 + θ2Z

3)).
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Notes: The lines show the difference GROCh(α)−EROC(α) for the GAUROC max-
imizing quadratic and cubic rules when X (i.e., Z|R = 0) follows standard normal and Y
(i.e., Z|R = 1) follows the extreme value distribution with both the location parameter

and the scale parameter equal to 1.
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Notes: The curves show the function a(z) = 1−Fh(h(z)) for the indicated h-functions
when X (i.e., Z|R = 0) follows standard normal and Y (i.e., Z|R = 1) follows the extreme
value distribution with both the location parameter and the scale parameter equal to 1.

The function a(z) describes the underlying decision rule as is explained in the text and

in the notes of Figure 2 (panel (c)).
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