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ABSTRACT

We study iterated formation of mutually best matches (IMB) in college
admissions problems. When IMB produces a maximal individually ra-
tional matching, the matching has many good properties like Pareto
optimality and stability. If preferences satisfy a single peakedness con-
dition, or have a single crossing property, then IMB produces a max-
imal individually rational matching. These properties guarantee also
that the student proposing Deferred Acceptance algorithm (DA) and
the Top Trading Cycles algorithm (TTC) produce the same matching
as IMB. We compare these results with some well-known results about
when DA is Pareto optimal, or when DA and TTC produce the same
matching.

JEL Classification: C70, C71, D82

Keywords: Matching, School choice, College admission



Contact information

Hannu Salonen
Department of Economics
University of Turku
FI-20014, Finland
Email: hannu.salonen (at) utu.fi

Mikko A.A. Salonen
Helsinki Center of Economic Research (HECER)
P.O. Box 17, FI-00014 University of Helsinki, Finland
Email: mikko.salonen (at) helsinki.fi



1. Introduction

Gale and Shapley (1962) introduce the college admissions problem where

no money is used to match agents in two disjoint sets with each other. These

sets consist of students and colleges (or ”schools”) having strict preferences

over the other set. In this paper we describe iterated formation of mutu-

ally best matches (IMB) algorithm as a way to solve the college admission

problem.

When IMB produces a maximal individually rational matching, the

matching has many good properties like Pareto optimality and stability.

Also strategy proofness for students holds at such a matching. A maximal

individually rational matching is such that 1) all matched student - school

pairs are mutually acceptable, and 2) there does not exist a mutually ac-

ceptable student - school pair s, c such that s is unmatched and c has free

capacity.

If preferences satisfy a single peakedness condition, or have a single

crossing property with setwise increasing acceptability relations, then IMB

produces a maximal individually rational matching.1 It follows that in these

cases DA produces the same Pareto optimal matching as IMB. Further,

these properties guarantee that the student proposing DA and TTC produce

the same matching as IMB.

Ergin (2002) shows that a necessary and sufficient condition for DA to be

Pareto optimal is that the priority structure of schools satisfies an acyclicity

condition. Kesten (2006) introduces a slightly different acyclicity condition

and shows that a necessary and sufficient condition for DA and TTC to

produce the same matching is that the priority structure of schools satisfies

his acyclicity condition.

We don’t need acyclicity conditions for our results. The reason is that

our setup is different than that of Ergin or Kesten. Ergin and Kesten fix the

priorities of schools, and ask when DA is Pareto optimal (Ergin) or when

1See Gabszewicz et al. (2012) and Milgrom and Shannon (1994) for versions of single

peakedness and single crossing properties.
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DA = TTC (Kesten), for all possible preferences of students. And they find

that the priority structure must be acyclic.

We assume that single peakedness or single crossing property hold for

both sides of the market. Then if we look at a particular priority structure

of schools, there is only a subset of possible preferences for students such

that single peakedness or single crossing assumptions remain valid.

A third example when IMB produces a maximal individually rational

matching is when one side of the market has identical preferences. In this

case DA = TTC as well. Although this is a very restrictive assumption

from theoretical viewpoint, in some real world applications it may hold

approximatively.

When IMB does not produce a maximal individually rational matching,

one may try to fix it by continuing the matching process with some other

algorithm. We study a variant called IMB* in which one round of TTC

is applied whenever IMB halts without producing a maximal individually

rational matching. After that, IMB is applied again, e.t.c. When schools

have capacity of one (”marriage market”), then IMB* = TTC. It follows

that IMB* is not stable. Moreover, if some schools have larger capacities

IMB* no longer satisfies strategy proofness.

When IMB produces a maximal individually rational matching, it has

practically all the nice properties one may wish for. But when it fails it

seems very difficult to fix it so that at least some of the good properties of

IMB would still hold. Needless to say, we have only explored a small sample

of possible cures for IMB.

The paper is organized in the following way. In Section 2 we introduce

the notation, axioms, and the used matching algorithms. Section 3 contains

the main results. In Section 4 we study the possibilities to fix IMB when

it does not produce a maximal individually rational matching. Section 5

concludes.
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2. Preliminaries

Let us denote by S the nonempty finite set of students and by C the

nonempty finite set of schools. A matching is function µ : S −→ C ∪S such

that µ(s) /∈ C iff µ(s) = s. We denote by µ−1(c) the set of students that

are matched with school c.

Student s ∈ S has a strict preference order ≺s over acceptable schools

c ≺s c
′ means that student s strictly prefers school c′ to school c. Notation

c -s c′ means that c ≺s c′ or c = c′. We may denote preferences by

ordered lists like ≺s= c1c2 · · · cks where c1 is the best school for s and cks
is the worst school s finds acceptable. Student s a) strictly prefers being

unmatched to being matched with an unacceptable school, b) strictly prefers

any acceptable school to being unmatched.

A preference profile (≺s)s specifies a preference relation to each s ∈ S.

Notation (≺′
s,≺−s)s means that student s has preferences ≺′

s while the other

students have the same preferences as in the profile (≺s)s.

School c ∈ C has a strict priority order ≺c over students. Notation

s -c s
′ means that s ≺c s

′ or s = s′. We may denote priorities by ordered

lists like ≺c= s1s2 · · · stc where s1 is the student with top priority in c’s

list, and stc is an acceptable student with the lowest priority. (We call ≺c

priorities in order to distinguish them more clearly from student preferences.

In this paper there is no real difference between schools’ preferences or

priorities.)

Schools order subsets of students as well. We make the common but

strong assumption that priorities are responsive (see Roth and Sotomayor

1992, p. 128). By this assumption we don’t have to represent priorities over

subsets of students explicitly.

A priority profile (≺c)c specifies a priority relation to each c ∈ C. Nota-

tion (≺′
c,≺−c)c means that school c has priorities ≺′

c while the other schools

have the same priorities as in the profile (≺c)c. A school c has capacity

qc > 0 which tells the greatest number of students that a school c can

accept. We denote by q = (qc)c the vector of capacities.

A matching problem is P = {S,C, (≺s)s, (≺c)c, q}. Problems in which
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schools may deem some applicants unacceptable are often called college ad-

mission problems. School choice problems often refer to matching problems

such that all schools have to accept students up to their capacity constraints,

in the order given by their priority lists. We consider both kind of prob-

lems and indicate, when necessary, whether or not schools have to accept

all students.

A mechanism is a rule M that to each school choice problem P =

{S,C, (≺s)s, (≺c)c, q} assigns a matching M(P ) : S −→ C ∪ S. In this

paper mechanisms are sometimes called algorithms, since the mechanisms

studied here are given in algorithmic form.

2.1. Properties of mechanisms and matchings

Given a problem P = {S,C, (≺s)s, (≺c)c, q}, we say that a pair s, c is

mutually acceptable, if s is an acceptable student for school c and c is an

acceptable school for student s. A matching µ is individually rational, if

c = µ(s) implies that s, c is a mutually acceptable pair.

Axiom 1 (Individual rationality). A mechanism M is individually rational,

if M(P ) is individually rational for all matching problems P .

A matching µ is a maximal individually rational matching, if µ is indi-

vidually rational and there does not exists a mutually acceptable pair s, c

such that s is unmatched and c has free capacity.

A matching µ is stable, if 1) µ is a maximal individually rational match-

ing; 2) there does not exist any mutually acceptable pair s, c such that a)

µ(s) 6= c, and b) µ(s) ≺s c and s′ ≺c s for some s′ ∈ µ−1(c). If there exists

a pair s, c satisfying condition 2), then s, c is called a blocking pair.

Axiom 2 (Stability). A mechanism M is stable, if M(P ) is a stable match-

ing for all P = {S,C, (≺s)s, (≺c)c, q}.

Axiom 3 (Strategy proofness). A mechanism M is strategy proof, if for

all P = {S,C, (≺s)s, (≺c)c, q} and P ′ = {S,C, (≺′
s,≺−s)s, (≺c)c, q} it holds

that µ′(s) -s µ(s), where µ = M(P ) and µ′ = M(P ′).
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A matching µ is Pareto optimal, if there does not exist an alternative

matching µ′ such that µ(s) -s µ′(s) for all s ∈ S, and µ(s) ≺s µ′(s) for

some s ∈ S. In this paper we study strategy proofness and efficiency from

the viewpoint of students only.

Axiom 4 (Pareto optimality). A mechanism M is Pareto optimal, if M(P )

is a Pareto optimal matching for all P = {S,C, (≺s)s, (≺c)c, q}.

2.2. School choice mechanisms

If the choice is restricted to subsets S ′ ⊂ S and C ′ ⊂ C, the preference

and priority orders on S ′ and C ′ are the original orders restricted to these

subsets. We may denote by As(C
′) and Ac(S

′) the schools and students

that are acceptable in subsets C ′ and and S ′ for student s and school c,

respectively. Note that As(C
′) = As(C) ∩ C ′ and Ac(S

′) = Ac(S) ∩ S ′. In

school choice problems Ac(S
′) = S ′, for all S ′ ⊂ S.

Student s ∈ S and school c ∈ C are mutually acceptable if s ∈ Ac(S)

and c ∈ As(C). Matching problems without mutually acceptable pairs are

not interesting from the viewpoint of matching theory.

The best known mechanisms are the deferred acceptance algorithm (Gale

and Shapley 1962) and the top trading cycles mechanism (Shapley and Scarf

1974, Abdulcadiroğlu and Sönmez 2003).

The deferred acceptance algorithm (hereafter DA), more precisely a stu-

dent proposing version of it, is defined by the following steps.

Step 1. Any student s names his best school. Any school c tentatively accept

the best qc of those students that named c, and permanently reject

the rest of the students that named c.

Step t. Any student s rejected in the previous step names his best school

among the schools that have not yet rejected him. A student who has

been tentatively accepted cannot name any school. Any school c com-

pares the new applicants to the ones she already has, and tentatively

accepts the best qc of them.
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DA ends when any student who is not tentatively accepted by some

school does not have any acceptable schools left. The students tentatively

accepted by schools are permanently matched with these schools.

The top trading cycle mechanism (hereafter TTC), is defined by the

following steps.

1. Each student s names the best school in C. Each school c names the

best student in S. If there is no cycle, go to step 3. If there are cycles

(s → c → . . . → s), match each student in a cycle permanently with

the school that the student named. Go to step 2.

2. Repeat step 1 with the sets of students S ′ and schools C ′ that are still

in the market.

3. End.

By iterated formation of mutually best matches (IMB) we mean the

following process.

1. All schools c ∈ C tentatively accept those students s ∈ S that find c

acceptable, up to the current free capacity qc of c. Go to 2.

2. Check if there are any students s ∈ S that have been tentatively

accepted by their best school c ∈ C. If yes, then go to 3. If no, then

go to 4.

3. A student s ∈ S who has been tentatively accepted by his best school

c is permanently matched with that school. The capacities of schools

are reduced by the number of matched students. Then permanently

matched students and those schools whose capacity is full leave the

market.

After that, those schools and students leave the market for whom

there are no acceptable students or schools left. If after the removal

of these schools and students new schools or students appear without

acceptable matches, repeat the procedure as many times as needed.

The remaining schools and students are denoted by C ′ and S ′, respec-

tively.
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If both S ′ and C ′ are nonempty, then go to 1, and apply the steps to

S ′ and C ′. Otherwise go to 4.

4. End.

Each round of IMB consists of the steps 1. – 3., and the last round ends

at step 4.

3. Results

The first result says that when IMB produces a maximal individually

rational matching for P = {S,C, (≺s)s, (≺c)c, q}, then the matching is stable

and Pareto optimal, and IMB is strategy proof at P .

Proposition 1. If IMB produces a maximal individually rational matching

µ for the problem P = {S,C, (≺s)s, (≺c)c, q}, then µ is stable and Pareto

optimal. Hence DA produces µ as well. Moreover, IMB is strategy proof at

P .

Proof. Stability. If µ is not stable, then there exists a blocking pair s, c

because µ is a maximal individually rational matching. Since µ is a maximal

individually rational matching, c cannot have free capacity, and s′ ≺c smust

hold for some s′ that is matched with c. Under IMB, it is not possible that

s is matched with some school c′ before or at the same time s′ is matched

with c. This holds since s is above s′ in the priority order of c, so c′ would

then be a better school for s than c, a contradiction. But then it follows that

s will remain a tentatively accepted student for c even after s′ is matched

with c. The worst thing that can happen to s is that he will be eventually

matched with c, a contradiction again. Hence µ is stable.

Pareto optimality. Let Sk be the set of students that are matched in

round k of IMB. Those matched in round 1 are matched with their best

schools. Those matched in round k = 2 are matched with the best schools

still in the market, and so on. So it is impossible to find a Pareto improving

reallocation among the students that are matched with some school. Hence

if µ′ is a Pareto improving matching, µ′ matches all students in subsets
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Sk the same way as µ. Hence µ′ can be different only if some s that was

unmatched under µ is placed in some school under µ′. By the definition of

IMB, any school c that has free capacity under µ finds s unacceptable, or

else c is unacceptable to s. Hence µ is Pareto optimal.

Since the matching µ′ produced by DA Pareto dominates any other

stable matching (Roth and Sotomayor 1992), µ′ = µ.

Strategy proofness. Let Sk be the set of students that are matched in

round k of IMB. If s is matched in round k = 1, then he is matched with

his best school and therefore untruthful reporting of preferences cannot be

beneficial. If k = 2, then untruthful reporting would benefit s only if he

would be matched with some school c′ that is better than c = µ(s), and

that got its capacity filled already in round k = 1. But that is possible only

if s was among the qc′ best students for school c′ in round k = 1. If this

holds, then c′ has still free capacity in round k = 2, a contradiction with the

assumption that s is matched with a worse school c. Apply induction on

k and conclude that no student that is matched with a school can benefit

from misreporting preferences. Finally note that a similar argument holds

also for students that are unmatched under µ.

Let us first show by an example that although IMB produces a Pareto

optimal matching µ such that IMB is strategy proof at µ, TTC may produce

a different matching µ′.

Example 1. Let S = {s1, s2, s3} and C = {c1, c2}. All schools are acceptable

to all students and all students are acceptable to all schools. Preferences are:

≺s1= c2c1, ≺s2= c1c2, ≺s3= c2c1. Priorities are ≺c1= s1s2s3, ≺c2= s2s3s1.

School 1 has capacity of two, the other schools have capacity of one.

IMB and DA both produce a matching µ = {(s1, c1), (s2, c1), (s3, c2)}.

TTC produces a matching µ′ = {(s1, c2), (s2, c1), (s3, c1)}. ✁

Example 1 shows that TTC can produce a different matching than IMB

even when IMB produces a maximal individually rational matching. The

following result shows that TTC is equivalent to IMB when the capacities of

the schools are restricted to one and IMB produces a maximal individually
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rational matching.

Corollary 1. If IMB produces a maximal individually rational matching µ

for the problem P = {S,C, (≺s)s, (≺c)c, q}, and each school has capacity of

one, then IMB generates the same matching as DA and TTC.

Proof. Suppose TTC produces a cycle s → c → . . . → c′ → s. By construc-

tion IMB only has s → c → s cycles. Because each school has capacity of

one, it follows that IMB did not produce a maximal individually rational

matching µ or schools c, c′ did not point to their best students under TTC,

a contradiction.

For the remaining part of this section we concentrate on studying situa-

tions where restricted preference domains allow IMB to produce a maximal

individually rational matching.

Proposition 2. If P = {S,C, (≺s)s, (≺c)c, q} is such that all students have

identical preferences, then IMB produces a maximal individually rational

matching µ for P . This holds also if all schools have identical priorities but

may have different capacities.

Proof. Identical preferences. Index the schools so that the common prefer-

ence of students is ≺s= c1c2 · · · ck, where ck is the last acceptable school.

In the first round of IMB, school c1 gets the top qc1 students according to

its priority ≺c1 or less if c1 has less acceptable students. After that school

c2 gets the top qc2 students according to its priority ≺c2 or less if c2 has

less acceptable students. Continue this way as long as there are acceptable

students for some ct, t ≤ k. Clearly µ is a maximal individually rational

matching.

Identical priorities. Index the students so that the common priority of

schools is ≺c= s1s2 · · · sk, where sk is the last acceptable student. Schools

ct and ch order all acceptable students si, sj the same way if both of these

students accept both schools. At each round r IMB matches student sr with

the best school still in the market, where r = 1, ..., t, and t ≤ k. Note that if

there are no acceptable schools left for a student they are removed from the
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market as well. When IMB ends, it is impossible that there is a mutually

acceptable pair s, c such that s is unmatched and c has free capacity. Hence

µ is a maximal individually rational matching.

Proposition 3. If P = {S,C, (≺s)s, (≺c)c, q} is such that all students have

identical preferences, then IMB generates the same matching as DA and

TTC. This holds also if all schools have identical priorities but may have

different capacities.

Proof. Identical preferences. When TTC is applied, school c1 gets the top

qc1 students according to its priority ≺c1 or less if c1 has less acceptable

students. After that school c2 gets the top qc2 students according to its

priority ≺c2 or less if c2 has less acceptable students, and so on. Hence TTC

produces the same matching µ as IMB. TTC produces a Pareto optimal

matching and IMB produces a stable matching. By Proposition 1, µ is also

produced by DA.

Identical priorities. When TTC is applied, in the first round only s1 is

matched, and he is matched with his best school. By the same argument,

during each round t ≤ k only student st is matched, and he is matched with

the best school still in the market. The resulting allocation is the same as

the one produced by IMB. Hence DA produces the same allocation by the

same argument as in the identical preferences case.

Next we relax the identical preference and priority structure with a sin-

gle peakedness property. To define single peakedness for matching prob-

lems P = {S,C, (≺s)s, (≺c)c, q}, we assume that sets S and C of students

and schools are subsets of some finite dimensional real space R
p which is

equipped with a norm || · ||.2 The following holds for agents s ∈ S, c, c′ ∈ C:

c ≺s c
′ ⇐⇒ ||s− c|| > ||s− c′||, (1)

and similarly for c ∈ C, s, s′ ∈ S:

s ≺c s
′ ⇐⇒ ||c− s|| > ||c− s′||. (2)

2For example, || · || could be the Euclidean norm ||x|| =
√

∑

i
x
2

i , but any norm on

R
p will do.
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Single peaked preferences are based on the notion of distance between

the ideal points s and c of the agents. Since preferences are strict, student

s will have the same preferences as student s′ if s′ is sufficiently close to s,

and similarly for schools.

We define the acceptability relations As of students to be distance con-

sistent, if

c ∈ As(C) and c′ 6∈ As =⇒ ||s− c′|| ≥ ps > ||s− c||, (3)

where ps ≥ 0 is some distance threshold for s. The distance consistent

acceptability relations Ac for school c is defined analogously. Single peaked-

ness guarantees distance consistency but ps may be different for different

agents.

Single peaked preferences and priorities guarantee that IMB produces a

maximal individually rational matching. This is shown in the next propo-

sition.

Proposition 4. If P = {S,C, (≺s)s, (≺c)c, q} is such that preferences and

priorities satisfy the single peakedness property, and the acceptability rela-

tions are distance consistent, then IMB produces a maximal individually

rational matching µ for P .

Proof. Remove all students s (schools c) who have no acceptable schools or

are not acceptable to any schools c′ (students s′). For any school c, search

for student s such that ||c− s|| ≡ m(c) is minimized and s, c is a mutually

acceptable pair. Since preferences and priorities are strict, such an s exists

uniquely. Then go through all schools c and pick the school c′ such that

m(c) is minimized. Such a school exists, and there may be several schools

that minimize m(c). Let s′ be such that m(c′) = ||c′ − s′||. Since the norm

|| · || is symmetric, ||c′ − s′|| = ||s′ − c′||, and school c′ must be the best

school for student s′. Hence s′, c′ is a mutually best match. There may be

many mutually best matches but since preferences are strict, any student

(school) can belong to at most one such pair. Remove all students that are

members of such pairs and schools whose capacity is full.
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If there are any mutually acceptable pairs left, then IMB can be contin-

ued and the step above can be repeated. If there are no mutually acceptable

pairs we are done.

Whenever IMB produces a maximal individually rational matching µ,

by Proposition 1 DA produces matching µ. Our next result shows that

single peaked preferences and priorities guarantee that TTC produces µ as

well regardless of school capacities.

Proposition 5. If P = {S,C, (≺s)s, (≺c)c, q} is such that preferences and

priorities satisfy the single peakedness property, and the acceptability re-

lations are distance consistent, then IMB generates the same matching µ

as DA and TTC. Furthermore, matching µ is stable, Pareto optimal, and

strategy proof at P.

Proof. IMB = DA, stability, Pareto-optimality, and strategy proofness fol-

low from Propositions 4 and 1. By definition, IMB produces only short

cycles s → c → s. For TTC = IMB to hold, we need to show that there are

no cycles of the form s → c → s′ → c′ → s, where s 6= s′. For such cycles

the following inequalities have to hold for s, s′ ∈ S and c, c′ ∈ C :

s : ||s− c′|| > ||s− c||,

c : ||c− s|| > ||c− s′||,

s′ : ||s′ − c|| > ||s′ − c′||,

c′ : ||c′ − s′|| > ||c′ − s||.

It follows that ||s− c|| > ||c− s′|| > ||s′ − c′|| > ||c′ − s|| > ||s− c|| has to

hold by symmetry of || · ||, a contradiction since ||s− c|| 6> ||s− c|| . Same

reasoning can be applied to all cycles s → c → s′ → · · · → c′ → s since the

inequalities ||s− c|| > ||c− s′|| > · · · > ||c′ − s|| > ||s− c|| cannot hold.

Example 2. Let S = {s1, s2, s3, s4} and C = {c1, c2, c3}, all schools are

acceptable to all students and all students are acceptable to all schools. Let

the capacities of the schools be 1 except for school c2 let qc2 = 2. Let the

used norm be the taxicab norm so that for student s1 and school c2 the
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following holds ||s1 − c2|| = |sx1 − cx2 | + |sy1 − cy2| = |0 − 4| + |2 − 4| = 6.

The distances can be easily calculated from Figure 1 where each agent is

represented by coordinates on x− y plane.

Figure 1: Taxicab norm single peaked preferences.

s1 = (0, 2)

s2 = (4, 0)

s3 = (5, 5)

s4 = (7, 2)

c1 = (2, 0)

c2 = (4, 4)

c3 = (7, 0)
(x, y) = (0, 0)

(x, y) = (7, 5)

Now the preferences are as follows: ≺s1= c1c2c3, ≺s2= c1c3c2, ≺s3=

c2c3c1, ≺s4= c3c2c1. Similarly the priorities are: ≺c1= s2s1s4s3, ≺c2=

s3s2s4s1, ≺c3= s4s2s3s1. Clearly the preferences and the priorities are strict

and satisfy single peakedness.

Applying IMB, the first mutually best matches are (s2, c1), (s3, c2), and

(s4, c3). After that, the only mutually best match is (s1, c2). IMB produces

the matching µ = (s1, c2), (s2, c1), (s3, c2), (s4, c3). DA and TTC produce µ

as suggested by Proposition 5.

✁

If students’ preferences and schools’ priorities satisfy the ”single cross-

ing” property, then again IMB produces a maximal individually rational

matching for the problem.

Let us assume that the single crossing property holds at a problem P =

{S,C, (≺s)s, (≺c)c, q}. Then the students S = {s1, . . . , sn} and schools C =

{c1, . . . , cm} can be thought as being real numbers and indexed so that si <
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si+1 and ck < ck+1. Further, the following holds for si, sj ∈ S, ck, cp ∈ C:

ck ≺si cp and ck < cp =⇒ ck ≺sj cp, if si < sj (4)

si ≺ck sj and si < sj =⇒ si ≺cp sj, if ck < cp. (5)

If all students would accept the same schools and all schools would ac-

cept all students, then single crossing alone would be sufficient for IMB to

generate a maximal individually rational matching. We give next a condi-

tion that allows us to prove a more general result.

Acceptability relation As(C) for student s is an interval, if c, c′ ∈ As(C),

c ≤ c′, implies c′′ ∈ As(C), for all schools c′′ such that c ≤ c′′ ≤ c′. Interval

acceptability relation for a school c is defined in the same manner.

Given a nonempty subset A of S, we denote by maxA and minA the

greatest and least elements of A, respectively. Notation maxB and minB

is defined analogously for nonempty subsets B of C.

Acceptability relations As and Ac are setwise increasing intervals, if

s < s′ =⇒ minAs(C) ≤ minAs′(C), and maxAs(C) ≤ maxAs′(C) (6)

c < c′ =⇒ minAc(S) ≤ minAc′(S), and maxAc(S) ≤ maxAc′(S). (7)

Constant relations As(C) = As′(C), Ac(S) = Ac′(S) for all s, s
′ and c, c′

are special cases of setwise increasing relations.

Given s ∈ S, let us denote by A−1

C (s) the subset of schools that find s

acceptable. If C ′ ⊂ C is a nonempty subset, then let A−1

C′ (s) ≡ A−1

C (s) ∩C ′

denote the schools in C ′ that find s acceptable. Inverse relations A−1

S (c) and

A−1

S′ (c) are defined analogously for schools c and nonempty subsets S ′ ⊂ S.

We have the following simple result.

Lemma 1. If acceptability relations are setwise increasing intervals, then

their inverses are also setwise increasing intervals.

Proof. Take any s, s′ such that A−1

C (s) and A−1

C (s′) are nonempty and s < s′.

If c, c′ ∈ A−1

C (s) and c < c′, then by definition s ∈ Ac(S) ∩ Ac′(S). If c′′

is such that c ≤ c′′ ≤ c′, then s ∈ Ac′′(S), since acceptability relations are

increasing intervals. Hence A−1

C (s) is an interval because c′′ ∈ A−1

C (s).
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Take any c ∈ A−1

C (s). We want to show that there exists c′ ≥ c such

that c′ ∈ A−1

C (s′). Apply equation 6 to the acceptability relations of schools:

there must exist some c′, c ≤ c′ such that s′ ∈ Ac′(S). Hence c′ ∈ A−1

C (s′),

and inverse relations for schools are setwise increasing. The proof for stu-

dents’ inverse acceptability relations is the same up to notation.

Corollary 2. Suppose P = {S,C, (≺s)s, (≺c)c, q} is such that for every

student s there is some school c such that s, c is a mutually acceptable pair,

and for every school c there is some student s such that s, c is a mutually

acceptable pair. Then the relations As(C)∩A−1

C (s) for students and Ac(S)∩

A−1

S (c) for schools are nonempty setwise increasing intervals.

Proof. By assumption As(C)∩A−1

C (s) is nonempty for every student s. It is

an interval as an intersection of two intervals. Since both As(C) an A−1

C (s)

are setwise increasing, their intersection is also setwise increasing. The proof

for schools’ relations is similar.

The following lemma is a version of some well-known results from the

literature of strategic complements (see e.g. Milgrom and Shannon 1994),

but we give a proof here for the sake of completeness. For any s ∈ S that has

acceptable schools, let c(s) denote the best school for s among the schools

that accept s. That is, c(s) is the best school in the set As(C)∩A−1

C (s). For

any c ∈ C that has acceptable students, let s(c) denote the best student for

c among the students that accept c.

Lemma 2. Suppose that the single crossing property holds at a problem

P = {S,C, (≺s)s, (≺c)c, q} and that the acceptability relations of schools

and students are setwise increasing intervals.

Then s < s′ implies c(s) ≤ c(s′) and c < c′ implies s(c) ≤ s(c′).

Proof. It suffices to prove the lemma for students only because the proof

for schools is identical.

Take any s, s′ ∈ S such that s < s′ and both c(s) and c(s′) exist.

We want to show c(s) ≤ c(s′). If this does not hold then c(s′) < c(s).

Since acceptability relations are setwise increasing intervals, we have that
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c(s′), c(s) ∈ As(C) ∩ As′(C) because s < s′. But then single crossing

property implies that student s′ strictly prefers c(s) to c(s′), since s < s′,

c(s′) < c(s), and c(s′) ≺s c(s). A contradiction with the definition of c(s′).

Hence c(s) ≤ c(s′).

When acceptability relations Ac(S) and As(C) on S and C are setwise

increasing intervals, then their restrictions Ac(S
′) and As(C

′) to subsets

S ′, C ′ are also setwise increasing intervals. The same holds also for the

inverse acceptability relations by Lemma 1. The next lemma states that

when acceptability relations are setwise increasing intervals, the single cross-

ing property is also a ”hereditary property” in the sense that it holds for

subsets of S and C.

Lemma 3. Suppose that the single crossing property holds at a problem

P = {S,C, (≺s)s, (≺c)c, q}, all acceptability relations are setwise increas-

ing intervals, and S ′ ⊂ S and C ′ ⊂ C are nonempty subsets. Then the

preferences restricted to C ′ and priorities restricted to S ′ satisfy the single

crossing property, and nonempty acceptability relations are setwise increas-

ing intervals of S ′ and C ′. In particular, Lemma 2 holds for preferences and

priorities restricted to C ′ and S ′.

Proof. It suffices to give a proof for students only. Let S ′ ⊂ S and C ′ ⊂ C

be nonempty subsets.

Preferences and priorities restricted to subsets C ′ and S ′ satisfy the

single crossing property since they have this property on C and S. Accept-

ability relations need not be setwise increasing intervals for this result.

Take any s, s′ ∈ S such that s < s′. Since As(C) is an interval of C, also

As(C
′) = C ′ ∩ As(C) is an interval (possibly empty) of C ′. If both As(C

′)

and As′(C
′) are nonempty, then it follows immediately that these relations

are setwise increasing, and so are their inverses.

If As(C
′) contains a school that accepts s, i.e. As(C

′)∩A−1

C′ (s) 6= ∅, then

As(C
′) ∩ A−1

C′ (s) contains a school c′(s) that is best school in C ′ for s that

accepts s. Denote also by c′(s′) the best school in C ′ for s′ that accepts s′,

when As′(C
′) ∩ A−1

C′ (s′) 6= ∅.
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If c′(s) ≤ c′(s′) does not hold, then c′(s′) < c′(s) must hold. Now

As(C
′) ∩ A−1

C′ (s) and As′(C
′) ∩ A−1

C′ (s′) are nonempty intervals containing

c′(s) and c′(s′), respectively. Since acceptability relations and their inverses

are setwise increasing intervals we have that c′(s′) ∈ As(C
′) ∩ A−1

C′ (s) and

c(s′) ∈ As′(C
′)∩A−1

C′ (s′). But then the single crossing property implies that

c′(s′) ≺s′ c(s′) because c′(s′) < c(s′) and c′(s′) ≺s c(s′), a contradiction.

Hence Lemma 2 holds for preferences and priorities restricted to C ′ and

S ′.

We have the following.

Proposition 6. If P = {S,C, (≺s)s, (≺c)c, q} is such that preferences and

priorities satisfy the single crossing property, and the acceptability relations

are setwise increasing intervals, then IMB produces a maximal individually

rational matching µ for P .

Proof. We may assume that each s ∈ S has at least one c ∈ C such that

s, c is a mutually acceptable, and similarly for all schools c ∈ C. This is so

because if s has no school c such that s, c is a mutually acceptable pair, we

can delete s from S (C) without affecting the matching generated by IMB,

and similarly for all schools c ∈ C.

Round 1 of IMB. Form a sequence s1, s2, . . . of students and a sequence

c1, c2, . . . of schools by the following rule: s1 = sn, and c1 = c(sn), given st,

let ct = c(st) and st+1 = s(ct). In words, we start from the highest indexed

student sn, and choose the best school c1 for him. Then we choose the best

student s2 for school c1, and after that the best school c2 for s2, and so on.

Since S and C are nonempty and finite, the choices s(ct) and c(st) can

always be made by Corollary 1. By Lemma 2. sequences {st} and {ct} are

decreasing. By finiteness of S and C, these sequence have limits s∗ and c∗.

The limits satisfy c∗ = c(s∗) and s∗ = s(c∗), so s∗, c∗ is a mutually best pair.

Match all mutually best pairs, remove matched students from S, and

remove those schools from C whose capacity is full. If the remaining sets

of students and schools contain at least one mutually acceptable pair, then
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remove those students and schools for whom there exist no mutually accept-

able matches. Update preferences, priorities and capacities of the remaining

students and schools, and move to Round 2. If there are no mutually ac-

ceptable pairs, then the process ends.

Round k of IMB. Apply Round 1 to those students S ′ and schools C ′

that are still in the market, starting the process from the highest indexed

student s1 = maxS ′. Since there exists a mutually acceptable pair, at least

one mutually best pair can be found and matched by Lemma 3.

There must be some round t ≥ 1 such that after mutually best matches

are formed, there are no mutually acceptable pairs left. But then the match-

ing µ produced by IMB is a maximal individually rational matching.

In fact, when single crossing property holds, the IMB produces the same

matching as TTC. It follows that DA also produces this matching.

Proposition 7. If P = {S,C, (≺s)s, (≺c)c, q} is such that preferences and

priorities satisfy the single crossing property, and the acceptability rela-

tions are setwise increasing intervals, then IMB and TTC produce the same

matching µ for P . It follows that the student proposing DA also produces µ

for P .

Proof. When single crossing property holds, it is impossible that TTC gen-

erates a cycle that contains at least two students and schools. To see this,

assume that there is cycle s → c → s′ → c′ → s. If s < s′, then c ≤ c′ by

single crossing property, and c = c′ would imply that s = s′. Hence c < c′,

and therefore s′ ≤ s a contradiction. In the same manner all longer cycles

are impossible under TTC.

Therefore under TTC only cycles s → c → s will be formed. In each

round of IMB, there is at least one cycle s → c → s and s will be matched

with c. Every cycle s → c → s and s that is formed during the first round

of IMB, will be formed also under TTC, so at least these matchings are the

same. In the first round of IMB, there could also be matchings s, c such that

c is the best school for s, and s is among the best qc students for c although

not the best one. Under each round of TTC, c is either matched with the
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best student for c, or c gets no students at all during this round. This

implies that s will eventually be matched with c also under TTC. Hence

all students that are matched in the first round of IMB will eventually be

matched with the same schools under TTC as well.

Continuing this way we can conclude that any match s, c that is formed

during round k of IMB will eventually be formed under TTC as well. Since

IMB produces a maximal individually rational matching µ, TTC must pro-

duce this matching as well.

By Proposition 1, µ is a stable matching. Since TTC produces µ, it is

also Pareto optimal. The matching µ′ produced by the student proposing

DA Pareto dominates all other stable matchings. Hence µ = µ′.

In the next example a matching problem is presented that satisfies the

single crossing property. However, the acyclicity conditions of Ergin (2002)

and Kesten (2006) are violated. We show that DA produces a Pareto opti-

mal matching although Ergin’s condition is violated and that DA = TTC

at this example although Kesten’s condition is violated. A similar situation

for single peaked preferences was shown in Example 2.

As explained in the Introduction, this is due to the fact that our setup

is different than theirs. They seek a condition for a fixed priority structure

such that DA is Pareto optimal or TTC = DA, no matter what the students’

preferences are. In our setup, preferences cannot vary totally independently

of priorities when the single crossing property has to hold.

Example 3. Let S = {s1, s2, s3, s4} and C = {c1, c2, c3}, all schools are

acceptable to all students and all students are acceptable to all schools. Each

school has capacity of one. Let the preferences be as follows: ≺s1= c1c2c3,

≺s2= c1c3c2, ≺s3= c3c1c2, ≺s4= c3c2c1. Let the priorities be as follows:

≺c1= s1s2s3s4, ≺c2= s3s4s1s2, ≺c3= s4s3s2s1. Now all agents have different

preferences and priorities.

Order students in the order given by their indices: s1 < s2 < s3 < s4.

Order schools in the order given by their indices: c1 < c2 < c3. Student

s3 prefers c1 to c2, and so do also students s2 and s1. On the other hand

student s2 prefers c3 to c2, and so do also students s3 and s4.
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School c2 orders s3 and s4 higher than s1 and s2, and so does school c3

who is on top in the linear order of schools. On the other hand, c2 ranks s3

higher than s4 and s1 higher than s2, and so does c1 who is the least school

in the linear order of schools.

In this way one can check that single crossing property holds for prefer-

ences and priorities.

Applying IMB, the first mutually best matches are (s1, c1) and (s4, c3).

After that, the only mutually best match is (s3, c2), and student s2 is left

unmatched. Hence the matching is µ = {(s1, c1), (s3, c2), (s4, c2)} and s2 is

left unmatched. By Proposition 7 DA and TTC also produce this Pareto

optimal matching.

Both Ergin’s and Kesten’s acyclicity conditions are violated, since s3 ≺c1

s2 ≺c1 s1 and s1 ≺c3 s2 ≺c3 s3, and the Scarcity condition of both author’s

is satisfied since all schools have capacity of one (for details, see Ergin 2002

and Kesten 2006). ✁

Single crossing works nicely for IMB when the student and school sets

are totally ordered, or ”one dimensional”. If student and school sets have

more complicated lattice structure then IMB may fail as shown in the next

example.

Example 4. Consider the subset {(0, 0), (0, 1), (1, 0), (1, 1)} of R2. When

equipped with the usual order of R2 this set becomes a lattice. Let S =

{s00, s01, s10, s11} and C = {c00, c01, c10, c11} and order the students and

schools by their indices. So s00 ≤ s01, s10 ≤ s11, and s01 and s10 are incom-

parable, and analogously for schools. All schools have capacity of one.

Preferences: ≺s00= c00c10c01c11, ≺s10= c11c01c10c00, ≺s01= c11c10c01c00,

≺s11= c11c01c10c00. All schools are acceptable to all students.

Priorities: ≺c00= s00s01s10c11, ≺c10= s11s10s01s00, ≺c01= s11s01s10s00,

≺c11= s11s10s01c00. All students are acceptable to all schools.

Note that preferences and priorities satisfy the single crossing property.

They satisfy also a condition called ”quasi supermodularity”. This condition

says for student s00 that c00 must be better than c10 because c01 is better

than c11 (for details, see Milgrom and Shannon 1994).
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IMB matches first s00 with c00 and s11 with c11. But then IMB halts:

s10 prefers c01 to c10, but c01 has tentatively accepted only s01. Further, s01

prefers c10 to c01, but c10 has tentatively accepted only s10. ✁

4. Fixing IMB?

IMB may halt before it has generated a maximal individually rational

matching. Sometimes it may fail to match any pairs of students and schools.

In this section we look at possibilities to modify IMB in such a way that it

always produces a maximal individually rational matching.

The first modification is called IMB*. The definition is simple: if IMB

halts and the matching is not maximal individually rational, then apply

one round of TTC to the sets of students S ′ and C ′ still in the market.

There must be at least one cycle. Remove the matched students from S ′.

Remove the schools whose capacity is full from C ′. Update the preferences,

priorities and capacities of the remaining students S ′′ and schools C ′′, and

try to apply the usual IMB again. And so on. It is clear that the outcome

will be a maximal individually rational matching.

The next result states that in marriage markets IMB* is actually TTC.

Proposition 8. If each school has capacity one, then IMB* = TTC.

Proof. Let P = {S,C, (≺s)s, (≺c)c, q} be a matching problem such that

all schools have capacity of one. If IMB produces a maximal individually

matching for P , then IMB*(P ) = IMB(P ), and TTC(P ) = IMB*(P ) by

Corollary 1.

Suppose then that IMB does not produce a maximal individually ratio-

nal matching for P , and that it takes k ≥ 0 rounds before IMB halts the

first time.

If k = 0 then IMB cannot make any matches. In such a case IMB* and

TTC produce exactly the same cycles and matches during the first round.

If k > 0, then look at all cycles containing at least two students that

could be formed under IMB in rounds 1, . . . , k−1 if TTC had been applied.

Such cycles are disjoint. The schools and students in these cycles cannot
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be matched under IMB. But all these students and schools are matched in

round k of IMB*, because then TTC is applied once. In addition, there is at

least one mutually best match that is formed in each round t = 1, . . . , k− 1

of IMB. Let µ1 be the set of all matches that IMB* is able to form during

the rounds t = 1, . . . , k.

TTC would produce exactly the same matchings µ1 during rounds t =

1, . . . , k. The only difference with IMB* is that when a cycle containing

at least two students is formed under TTC, the students and schools in

that cycle are matched immediately. All mutually best matches that can

be during periods t = 1, . . . , k − 1 are formed by both TTC and IMB*.

If there are still mutually acceptable pairs left after the matches in round

k have been formed, then let S ′ and C ′ be the sets of agents that are still

in the market. Let P ′ = {S ′, C ′, (≺′
s)s, (≺

′
c)c, q

′} be the remaining matching

problem. Then repeat the steps above, and note that IMB* and TTC

produce the matchings up to and including the point when IMB halts the

first time.

It follows from Proposition 8 that IMB* is not stable. However IMB* is

Pareto optimal.

Proposition 9. IMB* is Pareto optimal.

Proof. Let IMB* generate a matching µ for problem P . Then µ is a maximal

individually rational matching. Suppose that µ is not Pareto optimal, and

that µ′ Pareto dominates it.

When IMB* is applied to P , let k be the first round such that some

student gets a better match than in µ. Now k = 1 is impossible since all

students matched in the first round of IMB* get their best match in P .

Hence the students matched in the first round are matched with the same

schools in µ and in µ′.

Let S ′, C ′ be the sets of agents left in the beginning of the second round,

and update capacities, preferences, and priorities. Let P 1 be the problem

corresponding to this situation. Then it must still hold that IMB* applied

to P 1 generates a matching µ1 that is Pareto dominated by a matching µ′1.
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Again, it holds that students matched in the first round are matched the

same way in µ1 and µ′1. Hence k = 2 is impossible.

The proof is completed by applying induction on k.

A drawback of IMB* as compared to ordinary TTC is that it is not

strategy proof. The following is a slightly modified Example 4 in Morrill

(2015), we have only changed the notation and specified some preferences

in more detail. This example reveals also that IMB* may match a larger

number of students with schools than TTC.

Example 5. S = {s1, . . . , s5}, C = {c1, . . . , c4}. School c1 has capacity of

two, the other schools have capacity of one. All students find all schools

acceptable. Preferences are as follows, unlisted schools could be in any order

after the top schools: ≺s1= c3c2c1, ≺s2= c1, ≺s3= c2c1, ≺s4= c4c1c3, ≺s5=

c3. All schools find all students acceptable. Priorities are as follows, unlisted

students could be in any order after the top students: ≺c1= s1s4s2s3, ≺c2=

s2s3s1, ≺c3= s4s5, ≺c4= s5s4.

There are no mutually best matches to eliminate. By the definition of

IMB* we must apply one round of TTC to S and C. The only cycle is

s4 → c4 → s5 → c3 → s4. So the first matches are (s4, c4), (s5, c3) and these

agents are removed. In the second round (s2, c1) is a mutually best match.

In the third round (s3, c2) is a mutually best match. In the fourth round

(s1, c1) is a mutually best match. So the matching µ generated by IMB* is

µ∗ = {(s1, c1), (s2, c1), (s3, c2), (s4, c4), (s5, c3)}.

Suppose s1 reports that c2 is his best school. Applying IMB*, we get

first a cycle s1 → c2 → s2 → c1 → s1. Hence s1 will be matched with c2,

and therefore IMB* is not strategy proof.

Note that the ordinary TTC with true preferences generates the same

matching µ′ as IMB* with the false reporting by s1:

µ′ = {(s1, c2), (s2, c1), (s3, c1), (s4, c4), (s5, c3)}.

Now change the preferences of student s3 so that he accepts only c2.

That will not change the matching µ∗ produced by IMB* when all students
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report true preferences. But TTC will now produce the matching

µ′ = {(s1, c2), (s2, c1), (s4, c4), (s5, c3)}.

Hence in this case IMB* matches more students with schools than TTC. ✁

We saw from the last example that IMB* might produce a different

matching compared to TTC when capacities of the schools are larger than

one. However, we can guarantee that TTC = IMB* in all college admissions

problems when we transform it to a related marriage market (see Roth and

Sotomayor 1992, p 131). That is, whenever a school c has a capacity larger

than one we create |qc| copies of the school, each copy maintaining the

preferences of the original c with capacity one, and replace c by the string

c1, . . . c|qc| on preferences of the students. We assume that student s strictly

prefers lower number indexed copies of school c to higher indexed copies.

Thus for student s with preferences ≺s: cc
′ we form new cloned preferences

as ≺s: c
1 . . . cic′1 . . . c′j, where |qc| = i, |qc′ | = j, and i, j ≥ 1. We can now

present our final result.

Corollary 3. For every college admissions problem P = {S,C, (≺s)s, (≺c

)c, q} transformed to a related marriage market, we have IMB*=TTC.

Proof. As a related marriage market only requires us to make assumptions

about preferences of the students and now for all schools we have a quota

of one, it immediately follows from Proposition 8 that IMB* = TTC.

There are of course many ways to solve the deadlock when IMB termi-

nates without producing a maximal individually rational matching. One

possibility is to temporarily increase schools’ capacities by one, and check

if there are any mutually best matches now. If there are no mutually best

matches, then increase the capacities by one again, and so on. Eventually

at least one mutually best match will be found. Then make these matches,

return the true capacities of schools and try the usual IMB with the remain-

ing students and schools. This mechanism produces a maximal individually

rational matching.
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This mechanism is not strategy proof. Look at Example 5. Expand the

capacities of schools temporarily by one, and note that then there are three

mutually best matches: (s3, c2), (s4, c4), and (s5, c3). After that, the usual

IMB makes matches (s1, c1) and (s2, c1). But this is the same matching

µ∗ that IMB* produced in Example 5. and therefore strategy proofness is

violated.

The mechanism is not stable either. Look again at Example 5, and set

qc1 = 1 so all schools have capacity of one. Again, the first matches will

be (s3, c2), (s4, c4), and (s5, c3). After that the usual IMB makes the match

(s1, c1) and so s2 is left unmatched. But since s2 is acceptable to c2, and c2

prefers s2 to s3, stability is violated.

Still another mechanism that we may consider when IMB halts is the

following. There are no mutually best pairs, but take the second best school

c of any student s, and check if s is among the qc best students in school c. If

this holds then make these matches, and return to the usual IMB. But if no

matches are found then look at the third best schools c′ of any student, and

check whether s is among the qc′ students of c
′. Continuing this way down

the preference lists of students, eventually at least one match can be made.

After that, try the usual IMB with the remaining students and schools.

This mechanism produces a maximal individually rational matching.

However, this mechanism does not satisfy strategy proofness, stability,

or Pareto optimality. We leave the proofs for interested readers.

5. Conclusions

In this paper we have concentrated on college admission problems with

tractable restrictions on preferences. We introduced an algorithm based on

iterative formation of mutually best matches (IMB) and compared it to the

deferred acceptance (DA) algorithm and top trading cycles (TTC). It turns

out that in many cases it makes little difference which matching algorithm

is used. Most notably if the preferences and priorities are single peaked

or satisfy the single crossing property, IMB generates the same maximal

individually rational matching as DA and TTC.
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Future research is needed on modified version of IMB and other situa-

tions with realistic preference restrictions.
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