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ABSTRACT

An undirected connected bimodal network has two Bonacich measures
quantifying the centrality of the nodes. We show that the product of
Bonacich measures of an undirected bimodal network may be viewed
as a product measure that is nearest (w.r.t. Euclidean norm) to the ma-
trix representing the network. A directed bimodal network has four
Bonacich measures, two inflow and two outflow measures. Given di-
rected strongly connected bimodal network and its Bonacich inflow (or
outflow) measures, there is undirected bimodal network with the same
Bonacich measures. So Bonacich measures of directed bimodal network
can also be viewed as minimum norm solutions.
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1. Introduction

An undirected connected bimodal network has two Bonacich measures quantifying the
centrality of the nodes. We show that the product of Bonacich measures of an undirected
bimodal network may be viewed as a product measure that is nearest (w.r.t. Euclidean
norm) to the matrix representing the network. A directed bimodal network has four Bonacich
measures, two inflow and two outflow measures. Given directed strongly connected bimodal
network and its Bonacich inflow (or outflow) measures, there is undirected bimodal network
with the same Bonacich measures. So Bonacich measures of directed bimodal network can
also be viewed as minimum norm solutions.

The node set of a bimodal network is partitioned into two disjoint subsets, and all the
links are between these subsets. Bonacich (1991) introduced measures that can be used to
quantify the importance of agents in a bimodal network. A canonical interpretation of the
model is that there are n individuals and m clubs, and each individual is a member of at
least one club. The strength of a link between individual i and club j tells how strong is the
connection between i and j.

Bonacich studied explicitly undirected and unweighted bimodal networks. In such a
case, a m × n matrix whose elements are zeroes and ones fully represents the network.
His analysis extends directly to weighted networks. Such networks are representable by
nonnegative m× n matrices.

From a bimodal network it is possible to construct two unimodal networks with individ-
uals and clubs as nodes, respectively (details in the next section). The eigenvector centrality
measures (see e.g. Jackson and Zenou 2014) of these networks are actually the Bonacich
measures of the original bimodal network.

A directed bimodal network may be represented by two m × n matrices. One of the
matrices gives the strenghts of links from the individual to clubs, and the other matrix
gives the strenghts of links to the opposite direction. Again, the analysis and definition of
Bonacich measures follows the ideas given in Bonacich (1991). Salonen (2015) shows that
in this case these measures can be interpreted as Nash equilibria of certain noncooperative
games.

Notation and definitions are given in Section 2. The main results are stated and proven
in Section 3.

2. Preliminaries

Let G be a bimodal undirected network with vertex set V1 ∪ V2 such that V1 and V2 are
disjoint and |V1| = m, |V2| = n. Such a network can be represented by a nonnegative m× n
matrix A, whose element aij gives the strength of the link between i ∈ V1 and j ∈ V2. If
aij = 0 then there is no link between i and j. There exists a path between nodes i, j ∈ V1∪V2,
if there exists a sequence of strictly positive links connecting i and j.

Network G is connected, if a path exist between all i, j ∈ V1 ∪ V2, i 6= j. In such a case
both matrices ATA and AAT are irreducible: for any i, j ∈ V1 (respectively i, j ∈ V2) there
is some natural number k > 0 such that the ij -element of (ATA)k (respectively (AAT )k)
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is strictly positive. Note that ATA represents a unimodal network on the node set V1, and
AAT represents a unimodal network on the node set V2.

Bimodal networks are assumed to be connected in in this paper. Then there exist strictly
positive α, β such that

Ay = αx (1)

xTA = βyT , (2)

for some strictly positive vectors x and y which are called the Bonacich measures of the
bimodal network (see Bonacich 1991). Vector x is a column vector, and xT is its transpose.
Inserting x from equation (1) in equation (2), and then y back into equation (1) we get:

AATx = αβx (3)

ATAy = αβy. (4)

The eigenvalue αβ is the largest eigenvalue of these symmetric matrices, and x and y are
strictly positive vectors.

Let ‖·‖ be the Euclidean norm. The spectral norm of a matrix M is defined by

‖M‖s = max ‖Ax‖, s.t. ‖x‖ ≤ 1.

By equation (3), ‖A‖s =
√
αβ.

Let G↑ be a directed bimodal network on the node set V1 ∪ V2. Such a network can be
represented by nonnegative m × n matrices A and B (see Salonen 2015). The element aij
gives the strength of the link from node i ∈ V1 to node j ∈ V2, and element bij gives the
strength of the link from node j ∈ V2 to node i ∈ V1. Network G↑ is strongly connected if
for any distinct nodes i and j, there is a path leading from i to j and vice versa. This means
that both matrices ABT and BTA are irreducible.

Note that ABT represents a unimodal directed network on the node set V1. The strength
of the link from i ∈ V1 to j ∈ V1 is given by

∑

k∈V2
aikbjk. Similarly, BTA represents a

unimodal directed network on the node set V2. The strength of the link from i ∈ V2 to
j ∈ V2 is given by

∑

k∈V1
bikakj.

The left eigenvectors y of BTA and x of ABT are related in the following way. Consider
the equations.

By = αx (5)

xTA = βyT , (6)

for some α, β > 0. Now By = αx means that yTBT = αxT . Hence xT = (1/α)yTBT ,
and therefore from equation (6) we get that (1/α)yTBTA = βyT . On the other hand, from
equation (6) we get that y = (1/β)ATx, and then equation (5) implies BATx = αβx. We
have the following equations

yTBTA = αβyT (7)

xTABT = αβxT . (8)
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The number yj (xi) measures the importance of the node j ∈ V2 (i ∈ V1) in terms of
inflow. The right eigenvectors of BTA and ABT would give corresponding measures in terms
of outflow. These are the four Bonacich measures of a directed bimodal network (see Salonen
2015).

3. Results

Let A be a nonnegative m× n matrix representing a connected bimodal network G. We
want to find vectors p = (p1, . . . , pm) and q = (q1, . . . , qn) such that the tensor product pqT

solves the following norm minimization problem:

min
p,q

1

2

m
∑

i=1

n
∑

j=1

(piqj − aij)
2, (9)

where aij is the ij’th cell of A. Note that since p and q can be interpreted as being nonneg-
ative measures, the matrix pqT can be thought as representing their product measure p× q.
The norm in problem (9) is sometimes called the Frobenius norm. But if we view matrices
as ”long vectors” then it is actually the usual Euclidean norm.

The first order conditions are the following

pi
∑

j

q2j −
∑

j

aijqj = 0, i = 1, . . . ,m (10)

qj
∑

i

p2i −
∑

i

aijpi = 0, j = 1, . . . , n. (11)

In matrix form the first order condition can be written a

(qT q)p− Aq = 0 (12)

(pTp)q − ATp = 0, (13)

where 0 is a vector of zeros. From these equations we get the following.

AATp = (pTp)(qT q)p, (14)

ATAq = (pTp)(qT q)q. (15)

Now take the eigenvalue αβ of the matrix AAT , and choose the eigenvector x of AAT

such that xTx = β. Similarly, take the eigenvalue αβ of the matrix ATA, and choose the
eigenvector y of ATA such that yTy = α. Then these eigenvectors satisfy the first order
conditions (12) and (13).

Note that any pair of eigenvectors x and y satisfies these first order conditions as long as
they satisfy (xTx)(yTy) = αβ. In other words, their norms ‖x‖ =

√
β′ and ‖y‖ =

√
α′ must

satisfy
√
α′
√
β′ =

√
αβ, where

√
αβ is the spectral norm of the matrices A and AT . Note

also that such eigenvectors x and y together with numbers β′ and α′ will satisfy equations (1)
and (2).

We have the following.
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Theorem 1. Let A be a nonnegative m×n matrix representing a connected bimodal network
G, and let x and y be a pair of Bonacich measures of this network. The product measure
x×y minimizes the Euclidean norm ‖p×q−A‖ among all strictly positive product measures
p × q, if and only if the product ‖x‖‖y‖ of their norms is the spectral norm ‖A‖s of the
matrix A.

Given a matrix A that represents a bimodal network, the Bonacich measures x and y
can be rescaled by multiplying by positive constants t and t′, and the numbers t, t′ > 0
may be chosen independently of each other. If x and y are chosen in such a way that their
product minimizes a norm like in Theorem 1, then the numbers t and t′ must satisfy tt′ = 1,
or t′ = 1/t. Otherwise the condition between the norms of the Bonacich measures and the
norm of the matrix A does not hold.

The norm condition given in Theorem (1) may be inconsistent with both x and y being
probability measures. However, the Bonacich measures of a bimodal network are scale
invariant in the sense that the Bonacich measures will not change if the matrix A representing
the network is multiplied by a positive constant t > 0. The norm ‖A‖s will of course be
changed by the same scalar, and hence the eigenvalues of AAT and ATA will be changed to
t2αβ.

We have the following.

Theorem 2. Let A be a nonnegative m×n matrix representing a connected bimodal network
G, and let x and y be a pair of Bonacich measures of this network such that

∑

i xi = 1 and
∑

j yj = 1. Let t > 0 be a such that ‖tA‖s = ‖x‖‖y‖. Then the product probability measure
x×y minimizes the Euclidean norm ‖p×q−tA‖ among all strictly positive product probability
measures p× q.

Let now A and B be m×n matrices representing a directed strongly connected bimodal
network G↑. The element aij gives the strength of the link from node i ∈ V1 to node j ∈ V2,
and element bij gives the strength of the link from node j ∈ V2 to node i ∈ V1. The left
and right eigenvectors of BTA and ABT give the four Bonacich measures of this network as
explained in Section 2.

We will assume that α = β = 1 in equations (7) and (8), so that the greatest eigenvalues
of both matrices BTA and ABT are equal to 1. This can be achieved by multiplying matrices
A and B by suitable positive numbers, since BTA has at least one strictly positive eigenvalue.
Note that such a normalization does not change the Bonacich measures of the network.

Suppose now that BTA has r strictly positive eigenvalues 1 = γ1 ≥ · · · ≥ γr > 0. Recall
that ABT has these same strictly positive eigenvalues.

Consider an m× n matrix C whose singular value decomposition is

C = XΓY T , (16)

where Γ is an r × r matrix with diagonal elements Γ11 =
√
γ1 = 1, . . . ,Γrr =

√
γr, X is

an m × r matrix whose columns are the left eigenvectors xi of AB
T corresponding to the

eigenvalues γi, and Y is an n × r matrix whose columns yi are the left eigenvectors yi of
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BTA corresponding to the eigenvalues γi. These eigenvectors are assumed w.l.o.g. to be
orthogonal: xT

i xi = 1 and xT
i xj = 0, for all i, j = 1, . . . , r, i 6= j, and analogously for yj.

Now CTC = Y Γ2Y T , and CTCyi = γiyi, i = 1, . . . , r. Similarly, CCT = XΓ2XT , and
CCTxi = γixi, i = 1, . . . , r. Since CTC is positive semidefinite, all its eigenvalues are non-
negative, and therefore it has the same positive eigenvalues and corresponding eigenvectors
as BTA. Similarly, CCT and ABT have the same positive eigenvalues and corresponding
eigenvectors.

Consider the following minimization problem.

min
p,q

1

2

m
∑

i=1

n
∑

j=1

(piqj − cij)
2, (17)

where cij is the ij -element of the matrix C. This problem is formally equivalent to
problem (9), and hence the first order conditions will be similar as well. The solutions p and
q must therefore satisfy the following equations

CCTp = (pTp)(qT q)p, (18)

CTCq = (pTp)(qT q)q. (19)

But we have just shown that the left eigenvectors p = x1 and q = y1 of ABT and BTA,
respectively, satisfy these equations since xT

1 x1 = 1 and yT1 y1 = 1.
The matrix C can be thought as representing an undirected bimodal network G with

node sets V1 and V2. Then CCT and CTC would represent undirected unimodal networks
on the node sets V1 and V2, respectively. We may interpret C as the best approximation of
the pair (A,B), among all m×n matrices that represent undirected bimodal networks with
node sets V1 and V2.

We have the following result.

Theorem 3. Let x and y be the Bonacich measures of a bimodal directed and strongly con-
nected network G↑ on the node set V1∪V2, represented by matrices A and B in equations (7)
and (8) with α = β = 1. Then there is an undirected bimodal network G on the same node
set, represented by a matrix C of equation (16), such that x and y are the Bonacich measures
of G.

If the directed network G↑ is such that matrices BTA and ABT are symmetric, then the
undirected network G represented by the matrix C approximates G↑ in a very precise sense
as we shall see now. Consider the following norm minimization problem:

min
M

1

2

n
∑

i=1

n
∑

j=1

(Mij −Dij)
2, (20)

where Mij is a typical element of a symmetric positive semidefinite n×n matrix M , and
D is any real n × n matrix. In words, we try to find a symmetric positive definite matrix
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M that minimizes the Frobenius norm ‖M − D‖. Higham (1988) shows that the solution
to problem (20) is

M = ZΛ+Z
T , (21)

where Z is an orthgonal matrix and Λ+ is a diagonal matrix. More concretely, note thatD
can be written as an average of its symmetric and skew-symmetric parts: D = (D+DT )/2+
(D − DT )/2. The symmetric part has the spectral decomposition (D + DT )/2 = ZΛZT ,
where Λ is the diagonal matrix whose diagonal elements are the eigenvalues of D, and
Z is the matrix whose columns are the corresponding eigenvectors that are chosen to be
orthogonal. Let Λ+ be the diagonal matrix that is otherwise the same as Λ except that
negative eigenvalues have been replaced by zeros.

Proposition 1. Suppose A and B are such that BTA and ABT are symmetric. If D = BTA
in the problem (20), then the minimizer M in equation (21) is the matrix CTC where C is
given by equation (16). Similarly, if D = ABT , then M = CCT .

Proof. Let D = BTA, and compare matrices M and CTC. Recall that CTC = Y Γ2Y T ,
where Γ2 is an r × r diagonal matrix whose diagonal elements are the strictly positive
eigenvalues ofBTA, and Y is an n×r matrix whose columns are the corresponding orthogonal
left eigenvectors of BTA. Then Γ2 is formed from Λ+ by deleting the n−r rows and columns
consisting only zeros. Since BTA is symmetric, its right eigenvectors are the same as the
left eigenvectors. The r columns of Y and the firs t r columns of Z corresponding to
strictly positive eigenvalues are the same. The remaining n − r columns of Z vanish in
the multiplication since the corresponding n − r rows and columns of Λ+ are zero. Hence
M = CTC.

In the same way we get that M = CCT if D = ABT .

4. Examples

In this section we compute in simple examples the Bonacich measures and matrices C
and M of equations (16) and (21), respectively.

Example 1. Let A and B be given by

A =

[

1/4 3/4
0 1

]

, B =

[

0 1
1 0

]

(22)

Then BTA and ABT are the following (row) stochastic matrices

BTA =

[

0 1
1/4 3/4

]

, ABT =

[

3/4 1/4
1 0

]

(23)

The greatest eigenvalue λ1 of these matrices is 1, and the corresponding left eigenvec-
tors (with norm 1, and as row vectors) are y1 = (1/

√
17, 4/

√
17) (matrix BTA) and

x1 = (4/
√
17, 1/

√
17) (matrix ABT ). These are the (inflow) Bonacich measures of the di-

rected bimodal network. The right eigenvectors corresponding to λ1 = 1 are (
√
2/2,

√
2/2)

for both matrices, and these would be the outflow Bonacich measures.
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The second eigenvalue of BTA and ABT is λ2 = −1/4. The left eigenvector of BTA
corresponding to λ2 = −1/4 is y2 = (−

√
2/2,

√
2/2), and the left eigenvector of ABT

is x2 = (
√
2/2,−

√
2/2). The right eigenvector of BTA corresponding to λ2 = −1/4 is

(−4/
√
17, 1/

√
17), and the right eigenvectors of ABT is (1/

√
17,−4/

√
17).

Equation (16) becomes

C =

(

4/
√
17

1/
√
17

)

· 1 ·
(

1/
√
17, 4/

√
17
)

=
1

17

[

4 16
1 4

]

(24)

Hence we have

CTC =
1

17

[

1 4
4 16

]

, CCT =
1

17

[

16 4
4 1

]

(25)

The symmetric part of BTA is

1

2

(

BTA+ ATB
)

=
1

8

[

0 5
5 6

]

(26)

The greatest eigenvalue of this matrix is µ = (3 + 4
√
2)/8, and the corresponding eigen-

vector (with norm one, and as a row vector) is z1. Denote the eigenvector orthogonal to z1

by z2. These vectors can be written as

z1 =
1

√

6(11 + 4
√
2)

(

5, 3 + 4
√
2
)

, z2 =
1

√

6(11 + 4
√
2)

(

3 + 4
√
2,−5

)

.

When D = BTA, we can express the matrix M in equation (21) by

M =
1

6(11 + 4
√
2)

[

5 3 + 4
√
2

3 + 4
√
2 −5

] [

3+4
√
2

8
0

0 0

] [

5 3 + 4
√
2

3 + 4
√
2 −5

]

(27)

Let τ = 8µ = 3 + 4
√
2, and equation (27) simplifies to

M =
τ

48(8 + τ)

[

25 5τ
5τ τ 2

]

(28)

Example 2. Let A and B be given by

A =

[

1/4 3/4
0 1

]

, B =

[

3/4 1/4
1 0

]

(29)

Then BTA and ABT are the following matrices

BTA =
1

16

[

3 25
1 3

]

, ABT =
1

16

[

6 4
4 0

]

(30)

The greatest eigenvalue of both BTA and ABT is λ1 = 1/2, and the corresponding left
eigenvectors (with norm 1, and as row vectors) are y1 = (1/

√
82, 9/

√
82) (matrix BTA) and
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x1 = (2/
√
5, 1/

√
5) (matrix ABT ). These are the (inflow) Bonacich measures of the directed

bimodal network. The right eigenvectors corresponding to λ1 = 1 are (5/
√
26, 1/

√
26) for

BTA, and the right eigenvector of ABT is x1 = (2/
√
5, 1/

√
5). These vectors are the outflow

Bonacich measures.
The second eigenvalue of BTA and ABT is λ2 = −1/8. The left eigenvector of BTA cor-

responding to λ2 = −1/8 is y2 = (−1/
√
26, 5/

√
26), and the left eigenvector of ABT is x2 =

(−1, 0). The right eigenvector of BTA corresponding to λ2 = −1/8 is (5/
√
26,−11/

√
26),

and the right eigenvectors of ABT is x2 = (−1, 0).
Equation (16) becomes

C =

(

2/
√
5

1/
√
5

)

·
√
2

2
·
(

1/
√
82, 9/

√
82
)

=

√
820

820

[

2 18
1 9

]

(31)

Hence we have

CTC =
1

164

[

1 9
9 81

]

, CCT =
1

67240

[

4 2
2 1

]

(32)

The symmetric part of BTA is

1

2

(

BTA+ ATB
)

=
1

16

[

3 13
13 3

]

(33)

The greatest eigenvalue of this doubly stochastic matrix is µ = 1, and the corresponding
eigenvector is z1 = (

√
2,
√
2)/2. The eigenvector orthogonal to z1 is z2 = (

√
2,−

√
2)/2.

When D = BTA, we can express the matrix M in equation (21) by

M =
1

4

[√
2

√
2√

2 −
√
2

] [

1 0
0 0

] [√
2

√
2√

2 −
√
2

]

=
1

2

[

1 1
1 1

]

(34)
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