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1. Introduction

We investigate the cases when the Bonacich measures of strongly con-

nected directed bipartite networks can be interpreted as a Nash equilibrium

of a non-cooperative game. One such case is a two-person game such that

the utility functions are bilinear, the matrices of these bilinear forms repre-

sent the network, and strategies have norm at most one. Another example

is a two-person game with quadratic utility functions. A third example is

an m+n person game with quadratic utilitity functions, where the matrices

representing the network have dimension m× n. For connected directed bi-

partite networks we show that the Bonacich measures are unique and give a

recursion formula for the computation of the measures. The Bonacich mea-

sures of such networks can be interpreted as a subgame perfect equilibrium

path of an extensive form game with almost perfect information.

In social networks nodes are agents who are connected to other agents via

links. Links could have a weight that indicates how important the connection

is. Links could also be directed if two agents are not symmetrically related

to each other.

In network theory so called centrality measures attempt to quantify the

importance or influence of an agent in a social network. Centrality measures

resemble solution concepts of cooperative game theory. The Shapley value,

for example, has been applied in both theories (Shapley 1953).

There is large literature about connections between solutions concepts of

cooperative game theory and equilibrium concepts of noncooperative game

theory. The ”Nash programme” was initiated already by John Nash, who

thought that noncooperative game theory is more fundamental than the co-

operative theory (Nash 1950, Nash 1953). In this view, ”reasonable solu-

tions” of cooperative games should be equilibrium outcomes of some (equally

reasonable) noncooperative game (see also Binmore 1987, Rubinstein 1982).

In network theory there are now some papers where centrality measures

are shown to be equilibria of noncooperative games. Representative pa-

pers are Ballester et.al (2006) and Cabrales et.al (2011), who show that
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the Katz-Bonacich centrality measure is a Nash equilibrium (see also Katz

1953, Bonacich 1987, Bonacich and Lloyd 2001, Jackson and Zenou 2014). In

their models agents choose a real number that indicates how much an agent

invests in network activities. An adjacecncy matrix gives the link structure

of the network, and payoff functions are quadratic.

Salonen (2014) studies noncooperative link formation games in which

agents decide how much to invest in relations with every other agent. Strat-

egy sets are standard simplices and payoff functions are of Cobb-Douglas

type. Players have a common popularity ordering over their opponents: it

tells how valuable it is to be in contact with other players.

The equilibrium strategies are computed as well as the values of some

standard centrality measures from the resulting equilibrium networks. The

measures analyzed are the eigenvector centrality, indegree, the Katz-Bonacich

measure, and the PageRank measure (see Bonacich 1972, Brin and Page

1998, Freeman 1979). Depending on assumptions of the parameters of payoff

functions, the centrality measures give the same or the opposite ordering of

the players as the common popularity ordering.

To my knowledge the present paper is the first one in which equilibria

and centrality measures of bipartite directed networks are compared. In a

bipartite network the node set consist of two separate sets of nodes, say V1

and V2, and there cannot be any links within V1 or V2, but all links are

between these groups.

Bonacich (1991) initiated the study of such networks in social sciences.

In his paper, networks are unweighted and undirected and in this case each

connected bipartite network has two Bonacich measures. These measures are

defined in the same way for weighted undirected bipartite networks. However,

if a bipartite network is directed and strongly connected, then the network

has four Bonacich measures, although they are defined in the similar manner

as in Bonacich (1991).

The paper is organized as follows. In Section 2 basic definitions and

notation are given. In subsection 2.1 we take a closer look at the bipartite
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networks, Bonacich measures, and their potential applications. In Section 3

main results are stated and proven.

2. Preliminaries

A network G = (V,E) consists of a finite set V of nodes, and a finite set

E of links between nodes. A network is directed, if links are represented by

a set of ordered pairs E = {(i, j) | i, j ∈ V }. We may also denote i → j if

there is a link from i to j.

A network G can be represented by a matrix A whose rows and columns

are indexed by the nodes i ∈ V . A network is weighted, if entries aij can

take any nonnegative values, representing the strength or intensity of the link

from i to j. If aij = 0 then there is no link from i to j. In this paper the

networks will be directed and weighted.

A network is bipartite (sometimes called a bimodal or an affiliation net-

work), if the node set V is partitioned into two nonempty subsets V1 and V2

such that if two nodes are connected then they cannot be elements of the

same partition member Vi. A bipartite network can be represented by an

m× n matrix A, where m = |V1| and n = |V2|.

A weighted directed bipartite network G may be represented by a pair

(A,B), where A and B are both m × n nonnegative matrices. An entry aij

of A would give the weight of the link from i ∈ V1 to j ∈ V2, and bij would

give the the weight of the link from j ∈ V2 to i ∈ V1.

A path from a node i ∈ V to node j ∈ V is a subset of nodes i0, . . . , ik

such that i = i0, ik = j, ij → ij+1 for all j = 0, . . . , k − 1, and in 6= im for all

n,m < k, n 6= m. A path is a cycle, if i = j.

A subset C of nodes V of a directed network is connected, if for every

i, j ∈ C there is a path from i to j or a path from j to i. A connected subset

C is strongly connected, if for every i, j ∈ C there is a path from i to j and

a path from j to i.

A (strongly) connected subset C is a (strongly) connected component if

no proper superset of C is (strongly) connected. That is, C is a maximal
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(strongly) connected subset of V .

If any node i ∈ V of a directed network belongs to a strongly connected

component, then the node set V can be partitioned into disjoint strongly

connected components. If there are some nodes that do not belong to any

strongly connected component, then V has a partition such that partition

members are either strongly connected components or singletons.

A collection C of strongly connected components is connected, if the

members of the collection can be indexed by numbers i such that C =

{V 1, . . . , V t}, and there is a link from V j to V j−1, j = 2, . . . , t. Note that

there cannot be any links from V k to V j, if j > k. Therefore we may say

that {V 1, . . . , V t} is an ordered collection.

The node set V of a directed network can not always be partitioned into

connected components.

Example 1. Let V = {1, 2, 3, 4, 5, 6}, and let {1, 2}, {3, 4}, and {5, 6} be the

strongly connected components of a directed network. Assume that there

are only two other links: 5 → 1 and 6 → 3. Then {1, 2, 5, 6} and {3, 4, 5, 6}

are the only connected components, but they do not partition V .

2.1. Bonacich measures and applications

Let G = (V1∪V2, E) be a weighted directed bipartite network represented

by a pair (A,B) of m×n matrices. We may call rows of the matrices agents

who are members of some clubs that are represented by the columns. For

example, aij could be the value agent i gets from club j, and bij could measure

the contribution agent i makes to club j.

A typical entry aij of A (bij of B) gives the strength of the link from agent

i to club j (from club j to agent i). If aij = 0 (bij = 0), we interpret that

there is no link from i to j (from j to i).

For example, rows could be researchers and and columns could be jour-

nals. Value aij of a link from i ∈ V1 to j ∈ V2 could give the number of times

author i cites an article in journal j. Value bij could be number of times

author i’s paper has been cited in journal j
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As another potential application, let V1 and V2 be subsets of teachers

and students, respectively, of some university. Entry aij could be the grade

(quality of teaching) student i gives to teacher j, and bij could be the grade

(of an exam) teacher j gives to student i.

Given a pair (A,B) of matrices representing a bipartite network with a

node set V1 ∪ V2, we can form unimodal networks G1 and G2 with node sets

V1 and V2 as follows.

Consider the product matrix ABT . A typical entry (ABT )ij of AB
T (an

m×m matrix) is of the form
∑

k aikbkj: it is the sum of products aikbkj over

k, where this product gives the strength of the directed path i → k → j from

agent i to agent j via club k. We will denote by G1 the directed network of

agents (nodes in V1) represented by ABT .

Product matrix BTA (an n × n matrix) would give directed network

between clubs. Typical entry (BTA)ij is of the form
∑

k bkiakj, where bkiakj

is the strength of the path i → k → j from club i to club j via agent k. We

will denote by G2 the directed network of clubs (nodes in V2) represented by

BTA.

The left and right eigenvectors yTBTA = λyT and BTAx = λx (corre-

sponding to the largest eigenvector λ of BTA) measure different things. The

left eigenvector yi measures the importance of club i in terms of outgoing

links, and xi measures the importance of club i in terms of incoming links.

Let’s put these into equation

yTBTA = λyT (1)

BTAx = λx. (2)

The eigenvectors y and x are called the Bonacich measures of a directed

network G2 represented by BTA. Bonacich (1991) originally defined these

measures for unweighted undirected bipartite networks. Kleinberg (1999)

has proposed a measure called HITS for unweighted directed networks that

can be represented by square matrices. HITS is calculated in the same way

as the Bonacich measure.
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Wemay sometimes call y the (Bonacich) row measure, and x the (Bonacich)

column measure. Bonacich measures for the network G1 are similarly defined

as the eigenvectors of ABT . Note that the left (right) eigenvectors of ABT

are the right (left) eigenvectors of BAT , the transpose of ABT .

By the Perron-Frobenius theorem the eigenvectors of BTA are unique (up

to multiplication by positive constants), if the nonnegative square matrix

BTA is irreducible. That is, for any i, j there exists a strictly positive integer

t(i, j) such that the (i, j) entry of (BTA)t(i,j) is strictly positive, where X t

denotes the t’th power of matrix X. This means that the directed network

G2 represented by BTA is strongly connected.

Note that BTA may be irreducible although ABT is not irreducible. But

if both of these matrices are irreducible, then a directed bipartite network G

that is represented by (A,B) is strongly connected. In this case G has four

Bonacich measures associated with it, since both BTA and ABT have two

eigenvectors each.

We give next another way of getting all four Bonacich measures of a

directed bipartite network (this method was used already by Bonacich 1991).

Consider the system of equations

Bp = αq (3)

qTA = βpT . (4)

Now Bp = αq means that pTBT = αqT . Hence qT = (1/α)pTBT , and

therefore from equation (4) we get that (1/α)pTBTA = βpT . On the other

hand, form equation (4) we get that p = (1/β)AT q, and then equation (3)

implies BAT q = αβq. We have the following equations

pTBTA = αβpT (5)

BAT q = αβq. (6)

If the networks G1 and G2 are strongly connected, the left eigenvectors y

and p of BTA in equations (1) and (5) are the same.
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As an example, row i of A could consist of the grades student i gives

to schools, and column j of B could consist of the grades school j gives to

students. Then vector p consists of the weights of schools as evaluators, and

vector q consists of the weights of students as evaluators. Student i gets a

high grade as an evaluator, if he has given a high score to those schools that

have received high scores from other students on the average.

If we reformulate equations (3) and (4) and look solutions of

zTB = α′wT (7)

Aw = β′z (8)

we get that

zTBAT = α′β′zT (9)

BTAw = α′β′w (10)

If both G1 and G2 are strongly connected, then the following relations

hold. The vector z in equation (9) is the left eigenvector of BAT , and q

in equation (6) is it’s right eigenvector. The right eigenvector w of BTA in

equation (10) is the same as x in equation (2). The left eigenvector p of BTA

is the same as y in equation (1).

By irreducibility of BAT and BTA, the eigenvalues λ of equations (1) and

(2), αβ of equations (5) and (6), and α′β′ of equations (9) and (10) are the

same. (It holds in general that if X is an m × n matrix and Y is an n ×m

matrix, then the non-zero eigenvalues of XY and Y X are the same.)

We can interpret equations (7) and (8) in the example where students

and teachers are grading each other. In this case, row i of A consists of the

grades student i gets from schools, and column j of B consists of the grades

school j gets from the students. Vector z gives the values of students as

their ”weighted grade point averages” from schools, and vector w is a similar

measure for schools.

So if we look at the eigenvectors y and x of BTA in equations (1) and

(2), we note that the left eigenvector y = p gives a measure of schools as
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evaluators, and the right eigenvector x = w measures the quality of schools

in the eyes of students. The left and right eigenvectors q and z of ABT are

corresponding measures of students.

3. Results

Throughout this section (A,B) is a pair of nonnegative m × n matrices

representing a directed bipartite network G. We assume also w.l.o.g. that

each node v ∈ V1 ∪ V2 has at least one link.

Let ‖·‖ denote the Euclidean norm. Let Bk = {x ∈ R
k | ‖x‖ ≤ 1} be the

unit ball of Rk, and let Bk
+ = Bk ∩ R

k
+ be the intersection of the unit ball

with the nonnegative orthant of Rk.

Given a directed bipartite network G, let G∗ denote the following two-

person normal form game associated with G. The strategy set of player 1

(”row player”) is S1 = Bm
+ , and the strategy set of player 2 (’column player”)

is S2 = Bn
+. The utility function of player 1 is u1(x, y) = xTAy, and the utility

function of player 2 is u2(x, y) = xTBy, where x ∈ S1, y ∈ S2.

Proposition 1. Let (A,B) be a pair of nonnegative m × n matrices rep-

resenting a strongly connected directed bipartite network G. Let G∗ be the

two-person normal form game associated with G. If z ∈ S1 and w ∈ S2 are

the eigenvectors given by equations (9) and (10) such that ‖z‖ = ‖w‖ = 1,

then (z, w) is a Nash equilibrium of G∗. If (z, w) 6= (0, 0) is a Nash equilib-

rium of G∗, then z and w are the eigenvectors given by equations (9) and (10)

such that ‖z‖ = ‖w‖ = 1.

Proof. Let (z, w) ∈ S1×S2 satisfy equations (9) and (10), and assume ‖z‖ =

‖w‖ = 1. Equation (8) implies that u1(x, w) = β′xT z. Hence the best reply

for player 1 against w is z. Similarly, equation (7) implies that u2(z, y) =

α′wTy. Hence the best reply for player 2 against z is w. Therefore (z, w) is

a Nash equilibrium of G∗.

Let (z, w) 6= (0, 0) be a Nash equilibrium of G∗. The first order condition

8



for zi > 0 of player 1 is

∑

j

aijwj =
β′zi

√
∑

k z
2
k

,

where β′ is the Lagrangian multiplier of the constraint ‖z‖ ≤ 1. Now zi > 0

implies β′ > 0 and hence ‖z‖ =
√

∑

k z
2
k = 1. Therefore the first order

conditions corresponding to zi > 0 of player 1 satisfy the equations

Aw = β′z.

By the same reasoning, the first order conditions corresponding to wj > 0 of

player 2 satisfy

zTB = α′wT .

But these first order conditions are the same as equations (7) and (8), and

we are done.

The strategy spaces of the players in game G∗ are nonnegative vectors

having norm at most one. Let us see what kind of relations there are between

Nash equilibria and Bonacich measures if the strategy sets are standard sim-

plices.

Denote by G∆ a two-person normal form game such that the strategy set

for players 1 and 2 are ∆m = {x ∈ R
m
+ |

∑

i xi = 1} and ∆n = {y ∈ R
n
+ |

∑

i yi = 1}, respectively. The utility functions of players are u1(x, y) = xTAy

and u2(x, y) = xTBy.

Proposition 2. Let z, w be the Bonacich measures of a strongly connected

directed bipartite network G represented by (A,B). Let G∆ the two-person

normal form game associated with G. Then (z, w) 6= (0, 0) is a Nash equilib-

rium of G∆, iff z and w are uniform distributions.

Proof. First note that we can normalize Bonacich measures z and w so that

z ∈ ∆m and w ∈ ∆n (that may change eigenvalues but not eigenvector

spaces). Since G is strongly connected, both z and w are strictly positive.
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Strategy z is a best reply against w, if and only if all elements of the vector

Aw are the same. But then z = (1/m, . . . , 1/m) by equation (8). By the

same argument w = (1/n, . . . , 1/n)

Example 2. Let A andB be the following row and column stochastic matrices,

respectively

A =
1

3







1 2 0

2 0 1

1 1 1






, B =

1

3







0 1 2

1 1 0

2 1 1







Then the matrices ABT and BTA are the following row stochastic matrices

ABT =
1

9







2 3 4

2 2 5

3 2 4






, BTA =

1

9







4 2 3

4 3 2

3 5 1







The right eigenvector of both ABT and BTA is (1/3, 1/3, 1/3). The left

eigenvector of ABT is (24/91, 23/91, 43/91), and the left eigenvector of BTA

is (38/91, 31/91, 22/91).

As a third game consider a two-person game Gc such that player 1’s

strategies are vectors x ∈ R
m
+ and player 2’s strategies are vectors y ∈ R

n
+.

Player 1 has utility function u1(x, y) = xTAy − (c1/2)(
∑

i x
2
i ) and player 2

has utility function u2(x, y) = xTBy − (c2/2)(
∑

j y
2
j ), where c1, c2 > 0 are

constants.

Proposition 3. Let G be a strongly connected directed bipartite network

represented by (A,B). A strategy pair (x, y) 6= (0, 0) is a Nash equilibrium

of Gc, iff x and y are the Bonacich measures of G.

Proof. Given x′ ∈ R
m
+ and y′ ∈ R

n
+, the best replies x and y for players 1 and

2 satisfy the first order conditions

Ay′ = c1x

x′TB = c2y
T .
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These equations resemble equations (7) and (8). A vector (x, y) is a Nash

equilibrium iff x = x′ and y = y′. Multiplying the first equation by β′/c1

and the second equation by α′/c2 does not change the equilibria. But then

these equations are like equations (7) and (8), except that the matrices are

the same up to a positive constant. But such a change in matrices does not

change the eigenvector spaces although eigenvalues may change. Hence the

Nash equilibria are also Bonacich measures.

The proof to the other direction follows the same logic.

Finally, let us study a m + n player game Gm,n defined as follows. The

player set is {1, . . . ,m,m + 1, . . . ,m + n}. The strategy set of each player

i is R+. Let us denote by x = (x1, . . . , xm) the strategy profile of the

first m players and by y = (ym+1, . . . , ym+n) the strategy profile of the re-

maining players. The utility function of a player i ≤ m is ui(xi, x−i, y) =

(xi, x−i)
TAy− (c1/2)x

2
i , where c1 > 0. The utility function of a player i > m

is ui(x, yi, y−i) = xTB(yi, y−i)− (c2/2)y
2
i , where c2 > 0.

Proposition 4. Let G be a strongly connected directed bipartite network

represented by (A,B). A strategy profile (x, y) 6= (0, 0) is a Nash equilibrium

of Gm,n, iff x and y are the Bonacich measures of G.

Proof. The first order conditions of players i ≤ m and j > m are

∑

k

aikyk = c1xi, i = 1, . . . ,m

∑

t

btjxt = c2yj, j = m+ 1, . . . ,m+ n.

The rest of the proof is similar to the proof of Proposition 3.

A possible interpretation of Proposition 4 is that the choice variable xi of

”row agent” i gives the amount of resources agent i invests in network activ-

ities. The i’th row of A says how much utility aij each unit invested returns

from activity j. Column agents’ choices yj and utilities are interpreted in the

same way.
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3.1. A recursive construction of Bonacich measures for connected networks

Suppose (A,B) represents a connected directed bipartite network with

a node set V = V1 ∪ V2 such that any node is a member of a strongly

connected component. Let C = {V 1, . . . , V k} be the partition of V into

strongly connected components. Since C necessarily is an ordered collection

we may choose the indices i ∈ {1, . . . , k} in such a way that for all j < k

there exist v ∈ V j and v′ ∈ V j+1 such that v′ → v. Note that if j < t, there

cannot be any links from V j to V t, since V j and V t are strongly connected

components.

Each V i ∈ C is of the form V i = V i
1 ∪ V i

2 , where V i
1 ⊂ V1 and V i

2 ⊂ V2.

Since by assumption each V i contains at least two nodes, V i
1 and V i

2 are

nonempty subsets for all i. We will index nodes in such a way that each

V i
1 consists of consecutive natural numbers from the set {1, . . . ,m}, so that

V 1
1 = {1, . . . ,m1}, V 2

1 = {m1 + 1, . . . ,m2}, and so on. Nodes in V2 are

indexed analogously.

We will construct Bonacich row measure z and column measure w for the

network G by starting from the first component V 1, and solving recursively

the measures for components V j, j > 1.

The first member of the collection C is V 1, and V 1 has no links that

extend out of V 1. That is, if v ∈ V 1 and v → y, then y ∈ V 1. The nodes

in V 1
1 correspond to the rows 1, . . . ,m1 of matrices A and B, and nodes in

V 1
2 correspond to the columns 1, . . . , n1 of matrices A and B. Let A(1) and

B(1) be the matrices corresponding to these blocks of A and B, respectively.

For any i ∈ V 1
1 (any j ∈ V 1

2 ), the entry aij (bij) of A (B) is strictly

positive only if j ≤ n1 (i ≤ m1). On the other hand, the matrices A(1)BT (1)

and BT (1)A(1) are irreducible. Hence the left and right eigenvectors for

these matrices exist uniquely. So there exist unique z(1) and w(1) satisfying

equations (9) and (10), where these vectors have the dimensions m1 and n1,

respectively. The coordinates of z(1) and w(1) are all strictly positive, and

‖z(1)‖ = ‖w(1)‖ = 1 w.l.o.g.

Let the rows m1 + 1, . . . ,m2 correspond to the nodes in V 2
1 , and let the
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columns n1+1, . . . , n2 correspond to the nodes in V 2
2 . Let A(2) be the matrix

consisting of the first m2 rows of A and the first n2 columns of A. Let B(2)

be the matrix consisting of the first m2 rows of B and the first n2 columns

of B.

Consider the following equations, analogous to equations (7) and (8):

zTB(2) = αwT (11)

A(2)w = βz (12)

where z is a nonnegative m2 dimensional vector who’s first m1 coordinates

are given by the vector z(1), and w is a nonnegative n2 dimensional vector

who’s first n1 coordinates are given by the vector w(1).

Note that both A(2)BT (2) and BT (2)A(2) cannot be irreducible, since

the node set V 1∪V 2 is not strongly connected. However, there exists unique

vectors z(2) and w(2) satisfying these equations, for some α, β > 0. Let us

prove this claim next.

First note the matrices A(2) and B(2) have the following block form

A(2) =

[

A11 A12

A21 A22

]

, B(2) =

[

B11 B12

B21 B22

]

Pairs (A11, B11) = (A(1), B(1)) and (A22, B22) correspond to the strongly

connecetd components V 1 and V 2

For any i ∈ V 2
1 , all the entries aij such that i ≤ m1 and j > n1 are zero.

For any j ∈ V 2
2 , all the entries bij of B such that i > m1 and j ≤ n1 are zero.

These constraints hold because there cannot be a link from v to v′ if v ∈ V 1

and v′ ∈ V 2. Therefore A12 and B21 are null matrices.

Equations (11) and (12) can then be rewritten as

z(1)TB12 + z(2)TB22 = βw(2)T (13)

A21w(1) + A22w(2) = αz(2) (14)

where z(2) has dimension m2 − m1 and z(2) has dimension n2 − n1. Vec-

tors z(1) and w(1) are the normalised Bonacich measures of the strongly

connected component V 1 satisfying equations (9) and 10.
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Solve for w(2) from equation (13) and insert it into equation (14). Solve

also for z(2) from equation (14) and insert it into equation (13). We get the

following

A22
(

B22
)T

z(2) = αβz(2)− βA21w(1)− A22
(

B12
)T

z(1) (15)

w(2)T
(

A22
)T

B22 = αβw(2)T − αz(1)TB12 − w(1)T
(

A21
)T

B22 (16)

The following Lemma states that these equations have a unique solution

z(2), w(2) and that these vectors are strictly positive.

Notation. Given two vectors x = (x1, . . . , xt) and y = (yt+1, . . . , ym), we

denote by xay the concatenation of x and y: xay = (x1, . . . , xt, yt+1, . . . , ym).

Concatenation x(1)a · · ·a x(k) over several vectors x(1), . . . , x(k) is defined

analogously. We may denote by ~x(k) the concatenation of vectors x(1), . . . , x(k):

~x(k) = x(1)a · · ·a x(k).

Lemma 1. Let z(1) and w(1) be the unique eigenvectors having norm 1

and satisfying equations (9) and (10) for the pair (A11, B11) representing a

strongly connected network on a node set V 1. Then equations (15) and (16)

have unique solutions z(2), w(2), and these vectors are strictly positive.

Proof. There exists at least one solution z(2), w(2) to equations (15) and (16),

for some α, β > 0. To see this, add ε > 0 to the entries of matrices A(2)

and B(2) in equations (11) and 12. Then these matrices would correspond

a strongly connected bipartite network with node set V 1 ∪ V 2. Using these

matrices in equations (11) and (12), strictly positive solutions zε, wε will

exist. These vectors can be chosen to have norm 1. With this normalization,

zε and wε are unique solutions, for any given ε > 0.

Letting ε approach zero, all cluster points of {(zε, wε)}ε↓0 are nonnegative,

and they are solutions of the original equations (11) and (12). Such cluster

points exist because the subset of vectors z, w having norm 1 is a compact

set. Note also that while α and β may depend on ε, all values of α and β

stay in a bounded set because zε and wε have norm 1.

14



Equations (15) and (16) must hold approximatively for zε and wε when

ε is small, and the approximation must get better and better as ε goes to 0.

This holds since matrices A12 and B21 approach null matrices as ε goes to 0

Let (z∗, w∗) be an arbitrary cluster point of {(zε, wε)}ε↓0. Note that

(z∗, w∗) solves also equations (15) and (16), because the first m1 and n1 coor-

dinates of z∗ and w∗ must be proportional to vectors z(1) and w(1). Further,

since values of α and β stay in a bounded set, at least some coordinates z∗i
and w∗

j , for i > m1, j > n1, must be strictly positive by equations (15) and

(16). We show now that z∗ and w∗ are both strictly positive.

From equations (15) and (16) we get the following vector inequalities:

A22
(

B22
)T

z∗(2) ≤ αβz∗(2) (17)

w∗(2)T
(

A22
)T

B22 ≤ αβw∗(2)T (18)

where z∗(2) = (z∗m1+1, . . . , z
∗
m2

) and w∗(2) = (w∗
n1+1, . . . , w

∗
n2
). From inequal-

ity (17) we get that there exists α′β′ > 0 such that (17) holds as equality.

But then z∗(2) is the eigenvector corresponding to the largest eigenvalue

α′β′ > 0 of A22
(

B22
)T

, and hence z∗(2) is strictly positive. Then w∗(2) in

equation (18) must be the left eigenvector of
(

A22
)T

B22 corresponding to

α′β′ > 0, because z∗(2), w∗(2) solves equations (9) and (10). Hence w∗(2)

must also be strictly positive.

But then (z∗, w∗) is the unique cluster point of {(zε, wε)}ε↓0. Choose a >

and b > 0 such that a(z∗1 , . . . , z
∗
m1

) = z(1) and b(w∗
1, . . . , z

∗
n1
) = w(1), and

let z(2) = a(z∗m1+1, . . . , z
∗
m2

) and w(2) = b(w∗
n1+1, . . . , w

∗
n2
). Then z(1)az(2)

and w(1)aw(2) are Bonacich measures of the connected network with node

set V 1 ∪ V 2, because they are the unique solutions of equations (11) and

(12).

We can use equations (15) and (16) to solve w(2) and z(2) as functions

15



of w(1) and z(1).

z(2) =
β2A

21w(1) + A22
(

B12
)T

z(1)

α2β2 − α′
2β

′
2

(19)

w(2) =
α2

(

B12
)T

z(1) +
(

B22
)T

A21w(1)

α2β2 − α′
2β

′
2

(20)

where A22
(

B22
)T

z(2) = α′
2β

′
2z(2) and

(

B22
)T

A22w(2) = α′
2β

′
2w(2).

The eigenvalues obtained at the first and second step of recursion are dif-

ferent. To make this point explicit we have indicated the eigenvalues obtained

at the second step by subscripts: α2, β2. Note also that α2β2 > α′
2β

′
2.

We can apply one-to-one the methods used in in the proof of Lemma

1 to construct Bonacich measures for the connected bipartite network with

a node set V = V 1 ∪ · · · ∪ V k. Suppose Bonacich measures ~z(m − 1) =

z(1)a · · ·a z(m − 1) and ~w(m − 1) = w(1)a · · ·a w(m − 1) of the connected

network with node set V 1 ∪ · · · ∪ V m−1 have been found, 1 < m ≤ k.

Replace A(1) and B(1) by the matrices A(m − 1) and B(m − 1) whose

rows correspond to nodes in V 1
1 ∪ · · · ∪ V m−1

1 and columns correspond to

nodes in V 1
2 ∪ · · · ∪ V m−1

2 . Replace the Bonacich measures z(1) and w(1)

by the Bonacich measures ~z(m − 1) = z(1)a · · ·a z(m − 1) and ~w(m − 1) =

w(1)a · · ·a w(m− 1). Replace A(2) and B(2) by the blocks A(m) and B(m)

of matrices A and B corresponding to the strongly connected component

V m. These matrices have the following block form:

A(m) =

[

Am−1,m−1 Am−1,m

Am,m−1 Am,m

]

, B(m) =

[

Bm−1,m−1 Bm−1,m

Bm,m−1 Bm,m

]

(21)

where Am−1,m and Bm,m−1 are null matrices.

Proposition 5. Let z(1) and w(1) be the normalized Bonacich measures of

the strongly connected network with nodes set V 1. Bonacich measures z(m)

and w(m) of the strongly connected network with node set V m satisfy the
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following recursions, for 1 < m ≤ k:

z(m) =
βmA

m,m−1 ~w(m− 1) + Am,m
(

Bm−1,m
)T
~z(m− 1)

αmβm − α′
mβ

′
m

(22)

w(m) =
αm

(

Bm−1,m
)T
~z(m− 1) +

(

Bm,m
)T

Am,m−1 ~w(m− 1)

αmβm − α′
mβ

′
m

(23)

The Bonacich measures of the connected network with the node set V =

V 1∪· · ·∪V k are given by ~z(k) = z(1)a · · ·a z(k) and ~w(k) = w(1)a · · ·a w(k).

Proof. Apply the proof of Lemma 1.

The eigenvalues αm, βm and constants α′
m, β

′
m are different at different

steps of recursion, and therefore these variables have subscripts corresponding

to the recursion step.

3.2. Bonacich measures as subgame perfect equilibrium paths

Let G be a directed and connected bipartite network that has an ordered

collection C = {V 1, . . . , V k} of strongly connected components V m ⊂ V ,

m = 1, . . . , k. We assume that each V m contains at least two nodes. Consider

the following extensive form game Γ associated with G.

The player set isN = {11, 12, . . . , k1, k2}. The game has k stages. At stage

m players m1 (row player) and m2 (column player) play a two-person game

by choosing simultaneously nonnegative vectors zm and wm. First players 11

and 12 choose their strategies. Players m1 and m2 observe all the choices

made by players i1, i2, for i < m, and then they choose their strategies zm

and wm simultaneously.

Vector zm (wm) has the same number of coordinates as the matrix Am,m

and Bm,m in equation (21) has rows (columns). Strategies z1 and w1 must

satisfy the norm bounds ‖z1‖ ≤ 1 and ‖w1‖ ≤ 1. Strategies zm and wm of
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players m1 and m2 must satisfy the following norm bounds for m > 1:

‖zm‖ ≤

∥

∥

∥

∥

βAm,m−1 ~wm−1 + Am,m
(

Bm−1,m
)T
~zm−1

αβ − α′β′

∥

∥

∥

∥

(24)

‖wm‖ ≤

∥

∥

∥

∥

α
(

Bm−1,m
)T
~zm−1 +

(

Bm,m
)T

Am,m−1 ~wm−1

αβ − α′β′

∥

∥

∥

∥

(25)

The strategy sets of players at stage m depend on the choices made at earlier

stages in the game. If constraints (24) and (25) cannot be satisfied at some

stage then we interpret that the game has ended after the last stage t such

that the strategy sets were still nonempty.

The payoff functions um
1 and um

2 of players m1 and m2 are given by

um
1 (~zk, ~wk) = ~zTmA(m)~wm, and um

2 (~zk, ~wk) = ~zTmB(m)~wm, (26)

where matrices A(m) and B(m) are given by equation (21) for m > 1, and

A(1) = A1,1, B(1) = B1,1 in equation (21).

The Bonacich measures z(1)a · · ·a z(t+ 1) and w(1)a · · ·a w(t+ 1) of the

connected network with node set V 1 ∪ · · · ∪ V t+1 is then found by the same

way as the above.

Proposition 6. Extensive game Γ has a unique subgame perfect equilibrium

path such that the equilibrium strategies of players 11 and 12 are nonzero vec-

tors. The equilibrium path is
(

(z(1), w(1)), . . . , (z(k), w(k)
)

given by Propo-

sition 5.

Proof. Take any subgame perfect equilibrium such that the equilibrium strate-

gies of players 11 and 12 are nonzero vectors. Then in every subgame perfect

equilibrium the actions chosen at stage 1 are equal to the Bonacich measures

z(1) and w(1) by Proposition 1 since the payoffs of players 11 and 12 do not

depend on actions that will be chosen at stages m > 1.

At stage m > 1 the payoffs of players do not depend on actions that will

be chosen at stages t > m. Consider the row player m1, assume that at

stages t < m actions z(t) and w(t) given by Proposition (1). Suppose that
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player m1 expects that player m2 chooses w(m). By equation (26) the payoff

from action zm to player m1 is

K + zTmA
m,m−1 ~w(m− 1) + zTmA

m,mw(m) = K + βzTmz(m), (27)

where β > 0. In this equation we have replaced the matrix A(2) in equa-

tion (12) by the matrix A(m) in equation (21). The constant K is given by

K = ~z(m − 1)Am−1,m−1 ~w(m − 1). Feasible actions zm for player m1 must

satisfy ‖zm‖ ≤ ‖z(m)‖. Hence the best reply is z(m).
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