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ABSTRACT

Equilibrium payoffs corresponding to subgame perfect equilibria in
pure strategies are characterized for infinitely repeated games with dis-
counted payoffs. The equilibrium payoff set of a game is a fixed-point
of set-valued operators introduced in the paper. The new operator for-
malism is utilized in showing the folk theorem for repeated games with
unequal but constant discount rates. When the players become more
patient, the equilibrium payoff set converges to a particular fixed-point
of an asymptotic operator. The limit sets for constant discount rates
can be used in analyzing the outer limit of equilibrium payoffs when
the discount factors increase but discount rates are not fixed.
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1. Introduction

The most important theoretical findings for repeated games are the folk
theorem for equal discount factors [2, 8] and the fixed-point characterization
of equilibrium payoffs [3, 4, 7]. The folk theorem for repeated games tells
that any feasible payoff vector that is individually rational is obtained as a
subgame perfect equilibrium outcome of a repeated game when the players’
have an equal and sufficiently large discount factor. It is well-known that
the result changes when the players have unequal discount factors [12]. In
general, the limit payoff set is larger when the players have unequal discount
factors. The limit set of payoffs for repeated games with unequal discount
factors but constant discount rates is characterized in this paper.

The equilibrium payoffs of infinitely repeated games are the largest fixed-
point of a set valued operator defined by the players’ incentive compatibility
constraints, for repeated games with perfect monitoring see [7], for repeated
games with imperfect monitoring see [4], and for generalizations to stochastic
games see [9, 11]. This characterization result is basically the only one that
describes the equilibrium payoffs of repeated games under all circumstances.

In this paper the operator approach is generalized to a family of operators
or iterated function systems: there is not only one operator that characterizes
the equilibrium payoffs, but infinitely many. The main motivation for these
operators comes from the observation that for games with unequal discount
factors but constant discount rates, it is possible to define an asymptotic
operator, which captures the limiting behavior when the discount factors go
to one. The limit payoff set is the smallest fixed-point of the asymptotic
operator.

One interpretation of having constant discount rates, while allowing the
discount factors to converge to one, is that the time lag between observing
the actions and reacting to them vanishes. This would suggest that the
limit set equals the set of equilibrium payoffs in a continuous-time repeated
game. This is indeed the case for a class of switching strategies defined for
continuous-time repeated games when in the limit all action profiles can be
played. Switching strategies are studied in [10] and some of the results for
the payoffs of these strategies are utilized in this work.

This paper focuses on the pure strategy equilibria under perfect monitor-
ing, i.e., players observe perfectly each others’ actions. For the folk theorem
type of results it is assumed that if a player would gain from deviating from
the minimax action-profile of another player, then the player’s own minimax
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outcome is less than what he would get by minimaxing the other player. The
assumption guarantees that for large discount factors the least equilibrium
payoffs are the players’ minimax payoffs.

It is shown in [6] that in equilibrium it is possible to obtain any payoff
corresponding to a path having discounted payoffs arbitrarily little above the
minimax level at all time instants, when the discount factors go to one and
discount rates remain constant. In essence, the set of payoffs corresponding
to the paths that yield payoffs above the minimax levels is given a fixed-point
characterization in this paper. Another characterization, given in terms of
a fixed-point of a particular operator (different from the asymptotic oper-
ator defined in this work) is provided in [15] for the games with imperfect
monitoring and correlated strategies.

The case of constant discount rates is useful in analyzing the limit payoffs
in the general case of unequal discount factors. An immediate observation
on the limit sets for constant discount rates is that in general there is no
limit when the discount factors converge to one but the players do not have
constant discount rates. This motivates the study of the outer limit set
of payoffs when discount factors go to one. This is the limit set obtained
by taking the accumulation points of all sequences of equilibrium payoffs in
which the players discount factors go to one, i.e., the player become arbitrarily
patient but the rates at which their discount factors go to one may differ. It
is shown that the outer limit is obtained as the union of the limit sets for
constant discount rates, when the ratios of these rates are allowed to become
arbitrarily large.

The paper is structured as follows. Section 2 goes through the main
concepts used in the paper. The operator formalism for equilibrium payoffs
is introduced in Section 3. This formalism is modified to the case of constant
discount rates in Section 4. In Section 5 the results for these operators are
utilized in showing folk theorem type of results for constant discount rates and
the more general case of unequal discount factors. Conclusions are discussed
in Section 6.

2. Notations and Preliminaries

2.1. Repeated games and subgame perfection

There are n players, and N = {1, . . . , n} denotes the set of players. The
set of actions available for player i ∈ N in the stage game is Ai. Each player is
assumed to have finitely many actions. The set of action profiles is denoted
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as A = ×iAi. As usual, a−i stands for the action profile of other players
than player i, and the corresponding set of action profiles is A−i = ×j 6=iAj .
Function u : A 7→ R

n gives the vector of payoffs that the players receive in
the stage game when a given action profile a is played; if a ∈ A is played,
player i receives payoff ui(a).

The stage game is repeated infinitely many times, and the players discount
the future payoffs with discount factors δi, i ∈ N . The matrix T will denote
the diagonal matrix that has the discount factors δ1, . . . , δn on its diagonal.
In Sections 4 and 5 the attention will be on games where δi = e−ri∆, i ∈ N ,
where ri > 0, i ∈ N , are the players discount rates and ∆ is a positive
time-step.

Players are assumed to observe the action profile played at the end of each
period. A history contains the path of action profiles that have previously
been played. The set of length k histories or paths is denoted as Ak = ×kA.
The empty path is ∅, i.e., A0 = {∅}. The set of infinitely long paths is
denoted by A∞. The set of paths beginning with a given action profile a are
Ak(a).

A strategy for player i in the infinitely repeated game (or the supergame)
is a sequence of mappings σ0

i , σ
1
i , . . ., where σk

i : Ak 7→ Ai. The set of
strategies for player i is Σi. The strategy profile consisting of σ1, . . . , σn is
denoted by σ. Given a strategy profile σ and a path p ∈ Ak, k ≥ 0, the
restriction of the strategy profile after p is is σ|p.

The discounted average payoff for player i corresponding to strategy pro-
file σ is

Ui(σ) = (1− δi)
∞
∑

k=0

δki ui

(

ak(σ)
)

, (1)

where ak(σ) is the action profile in stage k when σ is followed. The strategy
profile σ is a subgame perfect equilibrium (SPE) of the supergame if

Ui (σ|p) ≥ Ui (σ
′
i, σ−i|p) for all i ∈ N, p ∈ Ak, k ≥ 0, and σ′

i ∈ Σi.

A path that the players can follow in an equilibrium is an induced equi-
librium path. An important class of strategies for repeated games are the
simple strategies [1].

Definition 1. A strategy is simple if it is composed of an initial path p ∈ A∞

that is followed until some of the players unilaterally deviates from it. After
the deviation is observed the game switches to path pi ∈ A∞, where i ∈ N
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corresponds to the deviator. All subsequent deviations lead to paths pi,
i ∈ N , corresponding to the deviating player.

The collection of paths followed after deviations, i.e., {pi : i ∈ N}, is
called a penal code. The penal code is subgame perfect if the simple strategies
derived from it are subgame perfect. These strategies are the ones where the
initial path is any of the paths pi, i ∈ N . A penal code is extremal if it
is subgame perfect and it leads to the players smallest equilibrium payoffs,
i.e., the payoff for player i corresponding to pi is the smallest SPE payoff in
the game. The following result from [1] provides a necessary and sufficient
condition for an induced equilibrium path.

Proposition 1. A path p ∈ A∞ is an induced equilibrium path if and only if
it is supported by an extremal penal code.

The minimax payoff of player i gives the lower bound of possible payoffs
for i in the repeated game. This payoff is denoted as

v−i = min
a−i∈A−i

max
ai∈Ai

ui (ai, a−i) .

Moreover, v− denotes the vector composed of players’ minimax payoffs. To
shorten the notation let us denote

di(a) = max
a′
i
∈Ai

ui(a
′
i, a−i).

The vector d(a) is the vector composed of di(a), i ∈ N , i.e., d(a) contains the
largest payoffs corresponding to players’ unilateral deviations from a ∈ A.

The following assumption is utilized in the analysis of the limit payoffs
when the players become more patient.

Definition 2. The game has the profitable minimaxing property if there are
ai ∈ A, i ∈ N , such that

1. ui(a
i) = v−i and ui(a

i) = di(a
i),

2. for any j 6= i; if dj(a
i) > uj(a

i), then uj(a
i) > v−j .

The profitable minimaxing property means that the players who would
like to deviate from ai get more than their minimax payoffs. This property
guarantees that there is no incentive to deviate from ai when the punishment
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yields the minimax payoff and the deviating player’s discount factor is large
enough.1

Let ai correspond to minimax payoffs for player i ∈ N . The penal code
in which pi = aiai · · · is called a minimax penal code.

Proposition 2. There are δ̄i, i ∈ N , such that the minimax penal code
is subgame perfect for all δi ≥ δ̄i, i ∈ N , if and only if the game has the
profitable minimaxing property.

Proof. Assume that the profitable minimaxing property holds, and let ai

be as in the definition of the profitable minimaxing property. There are
no profitable one-shot deviations from the minimax penal code for player i
who is minimaxed under the first condition in the definition of the profitable
minimaxing property.

Consider players other than i. The incentive compatibility condition for
player j who is not minimaxed is

uj(a
i) ≥ (1− δj)dj(a

i) + δjv
−
j . (2)

If dj(a
i) = uj(a

i), then player j cannot gain by deviating. Consequently,
dj(a

i) is either the minimax payoff of player j or yields payoff above the min-
imax level, i.e., dj(a

i) ≥ v−j . This is equivalent to the incentive compatibility
condition of player j given that i is minimaxed, and it holds for all δj ∈ (0, 1).

If dj(a
i) > uj(a

i), then uj(a
i) > v−j by the profitable minimaxing prop-

erty. It follows that dj(a
i) − v−j > uj(a

i) − v−j > 0, and the incentive com-
patibility condition (2) holds if and only if

δi ≥ δ̄i =
dj(a

i)− uj(a
i)

dj(ai)− v−j
.

Note that δ̄i is a number smaller than one. Hence, the profitable minimaxing
property guarantees that the minimax penal code is subgame perfect for δi,
i ∈ N , large enough.

If on the other hand, the second condition fails, i.e., uj(a
i) ≤ v−j , and

the minimax penal code still was SPE, the incentive compatibility condition
would give (1 − δj)dj(a

i) + δjv
−
j ≤ v−j , which implies that dj(a

j) ≤ v−j . To

1The profitable minimaxing property is also sufficient for the weak NEU condition [2],
and hence implies the folk theorem for equal discount factors.
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gather, we would then have uj(a
i) < dj(a

i) ≤ v−j . In particular, uj(a
i) 6= v−j .

This would contradict the subgame perfection of the minimax penal code,
because it becomes optimal for player j to deviate and then get the minimax
payoff. This proves that if the minimax penal coded is subgame perfect, then
it has the profitable minimaxing property.

Take T ′ (a diagonal matrix of discount factors) such that all of its diagonal
components are no less than those of T , i.e., T ′ ≥ T , and the discount factors
of T are at least δ̄i, i ∈ N . It holds that if p ∈ A∞ is an equilibrium path
for T , then it is also an equilibrium path for T ′, see [5]. In other words,
monotone comparative statics holds for equilibrium paths.

Corollary 1. Under the profitable minimaxing property the monotone com-
parative statics hold for induced equilibrium paths when δi ≥ δ̄i for all i ∈ N .

The monotone comparative statics of equilibrium paths implies monotone
comparative statics for action profiles that can be played in equilibria. Let
A(T ) denote the set of such action profiles, i.e., A(T ) contains all a ∈ A
such that a is on an induced equilibrium path for discount factors T . The
monotone comparative statics of A means hat A(T ) ⊆ A(T ′) when T ′ ≥ T
and the discount factors of T are at least δ̄i, i ∈ N .

Corollary 2. Under the profitable minimaxing property it holds that A(T ) ⊆
A(T ′) when T ′ ≥ T and the discount factors corresponding to T ′ and T are
no less than δ̄i for all i ∈ N .

Monotone comparative statics for equilibrium actions will be utilized
when analyzing the limit of equilibrium payoffs sets for constant discount
rates. It follows also from Proposition 2 that when considering the equilib-
ria for constant discount rates, there is ∆̄ such that δi = e−ri∆ ≤ δ̄i for all
∆ ≤ ∆̄. The upper bound ∆̄ denotes this upper bound for ∆ throughout
this paper.

2.2. Orbits, trajectories, and feasible payoffs

To understand the limit properties of the payoff set for constant discount
rates some elementary concepts related to the dynamic systems determined
by affine mappings are needed. Taking the discounted average utility corre-
sponding to u(a), a ∈ A, and v ∈ R

n can be formulated as the operation
DUa(v) = (I − T )u(a) + Tv, where I is the n × n identity matrix. The
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discounted average of playing a twice and then giving the players the contin-
uation vector v is

DU2
a (v) = DUa(DUa(v)) = (I − T 2)u(a) + T 2v.

It follows by induction that

DUk
a (v) = (I − T k)u(a) + T kv for all k ≥ 1.

The sequence vk = DUk
a (v), k = 1, 2, . . ., is the trajectory of v under DUa.

Because the limit of this trajectory is u(a), the vector u(a) is included in the
trajectory as well.

For the remainder of this section it is assumed that δi = e−r1∆, i ∈ N ,
where r1, . . . , rn,∆ > 0. Let e−∆rk denote the matrix that has e−∆rik, i ∈ N ,
on its diagonal; T k = e−∆rk. The trajectories of v lie in the (forward) orbit of
v. The orbit is the set of all points to which v can be mapped for some choice
of ∆. The orbits, as described above, can be viewed as trajectories of the
continuous time dynamical system, flow of which is DU t

a(v) = (I−T t)u(a)+
T tv. We shall return to the case of continuous time later on. The attention
is on the limit of equilibrium payoffs as ∆ goes to zero and r = (r1, . . . , rn)
are fixed.

The set V (∆) denotes the equilibrium payoffs for discount factors corre-
sponding to discount rates r and a given ∆.

Example 1. To clarify the above concepts, let us consider the case of two
action-profiles and two players. Let a and b stand for the action-profiles.
The vector of players’ payoffs are u(a) and u(b). For simplicity, assume that
u(a) = (0, 0) and u(b) = (1, 1). The players’ discount factors are δ1 = e−r1∆

and δ2 = e−r2∆. The 2×2 matrix T has these discount factors on its diagonal.
For the payoff stream in which the payoffs are u(a) for the first k periods

and u(b) from stage k onwards, the normalized present value is T ku(b), this
is the trajectory of u(a). It can be seen that these values are on the orbit

φ0
ab that passes through the origin and u(b); the orbit is given by x2 = x

r2/r1
1 .

When choosing any point v from this set and taking the operation DUav =
(I−T )u(a)+Tv, the outcome is on the same set. Hence, this set is invariant
under DUa. In the same way it is possible to describe the orbit φ0

ba for the
operator DUb; x2 = 1− (1− x1)

r2/r1 .
The first observation on orbits is that all the possible payoff vectors that

the players can obtain in this simple decision model lie between the two orbits
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φ0
ab

φ0
ba

b
a

b b

× × × ×

×

k = 1

k = 100

Figure 1: Orbits (solid lines) and points in the trajectory φ0.01

ba
(marked with ×’s) for

r1 = 20, r2 = 1, i.e., player 2 is more patient than player 1.

φ0
ab and φ0

ba. In particular, when ∆ goes to zero, the region between the two
orbits is filled, and in the limit any payoff vector in that region is possible.
This idea will be used in showing the folk theorem.

When the question is on an infinitely repeated game, the setup is of
course more complicated than in this simple example. However, the main
characteristics of the situation remain the same: the possible payoffs are
within the region defined by certain orbits and the incentive compatibility
constraints.

Next assume that there are m possible stage-game payoffs in the stage-
game. It will be seen that the set of all possible payoffs is obtained by taking
all orbits that can be created from the stage-game payoff vectors.

Definition 3. The orbit of v under DUa is

φ0
av = cl

{

(I − e−rt)u(a) + e−rtv : t ≥ 0
}

.

Because t can take any value, it does not matter what is ∆. Hence, the
orbit is independent of ∆. Moreover, we are only interested in the part of the
orbit that is between a and b. Hence, it can be assumed that t ≥ 0. Observe
that as t goes to infinity, the point in φ0

av goes to a. By taking the closure
this point gets included in the orbit.

Definition 4. The trajectory of v under DUa is

φ∆
av = cl{wk : wk = (I − e−∆rk)u(a) + e−∆rkv, k = 1, 2, . . .}.
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Observe that φ∆
av ⊆ φ0

av. For example, Figure 1 illustrates the first five
points in the trajectories φ∆

ab and φ∆
ba. Note that when v = u(b) the orbit φ0

av

is denoted as φ0
ab, and the corresponding trajectory as φ∆

ab.
An important observation related to orbits and trajectories is that the

distance between two consecutive points in the trajectory is bounded by a
term that is proportional to maxi(1− e−ri∆).

Remark 1. The distance between two consecutive points in the trajectory
φ∆
av is at most maxi(1− e−ri∆)maxi |ui(a)− vi|.

It follows from the above observation that the Hausdorff distance of an
orbit φ0

av to a trajectory φ∆
av is at most maxi(1 − e−ri∆)maxi |ui(a) − vi|/2.

Note that the Hausdorff distance dH between φ0
av and φ∆

av when φ∆
av ⊆ π0

av is

dH
(

φ0
av, φ

∆
av

)

= sup
x∈φ0

av

inf
v′∈φ∆

av

‖x− v′‖.

The distance between an orbit and a trajectory is the largest when the
distance between vk (k’th point in the trajectory) and vk+1 takes its largest
value. Distance to the trajectory takes its largest value for the point in the
middle of vk and vk+1. It follows from this observation that a trajectory can
be made arbitrarily close to an orbit by choosing ∆ > 0 small enough. This
will be an important ingredient in showing the folk theorem.

This far we have only considered orbits of single points v. However, the
notion of orbit can be further generalized to orbits of sets. In particular, it is
possible to first take the orbit of v under DUa, then take all the orbits from
points of this set under DUb, and so on. Let φ0

c , c = am · · · a1 ∈ Am, denote
the orbits obtained recursively by taking first φ0

a2a1 , then all the orbits from
this set under DUa3 , i.e., φ

0
a3a2a1 , and so on.

The set of feasible points of the game consists of all the payoffs that are
possible in the game. This set is evidently given by taking all the possible
orbits recursively as described above

FP = cl
⋃

c∈Am,m∈N

φ0
c .

It can be seen that the feasible set is compact.

Lemma 1. FP is a compact set.
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Proof. FP is clearly bounded. Hence, it remains to be shown that FP is
closed. For this purpose observe that FP is obtained by iterating the operator
which takes all the orbits from a given set. To be specific, it is possible to
define an operator B̂ by setting

B̂(S) = {φ0
ac : a ∈ A, c ∈ S}

for a closed set S. Iterating B̂ for S0 = ∪{u(a) : a ∈ A} gives a sequence
of sets Sk such that Sk ⊆ Sk+1 for all k = 0, 1, . . .. The sequence has a
limit which equals FP and is obtained as a closure of the union of sets Sk,
k = 0, 1, . . ., (see, e.g., exercise 4.3 in [13]).

The convex hull of stage-game payoffs is denoted by FP 0 = conv{u(a) :
a ∈ A}, and as usual, IR denotes the set of individually rational payoffs:

IR = {v ∈ R
n : v ≥ v−}.

Evidently, subgame perfect equilibrium payoffs are feasible and individually
rational; they belong to FP ∩ IR.

In case of equal discount rates, it is well known that when the common
discount factor goes to one, the set of equilibrium payoffs converges to FP ∩
IR, when the least equilibrium payoffs are either equal to the minimax payoffs
or they converge to the minimax payoffs. The latter is guaranteed by either
full dimensionality or the NEU condition. As will be seen, if discount rates are
different the limit set need not be FP ∩ IR even when for constant discount
rates this would be true.2 The set of feasible and individually rational payoffs
for the case of constant discount rates is denoted as FP 0 ∩ IR.

In the following example the set FP is illustrated in the prisoners’ dilemma
game for unequal discount rates

Example 2. Consider the payoffs of the prisoners’ dilemma game.

L R
T 3, 3 0, 4
B 4, 0 1, 1

2For equal discount factors, profitable minimaxing implies the usual folk theorem, and
is therefore sufficient condition for the weak NEU condition which is both necessary and
sufficient for the folk theorem when discount factors are equal, see [2].
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The set of feasible payoffs is the set enclosed by the dark curves in Figure
2. The payoff vectors in the figure are labeled such that a = u(B,R), b =
u(T, L), c = u(T,R), and d = u(B,L). The payoffs in the gray areas are
obtained by taking ’higher order’ orbits, e.g., taking φ0

cad, and so on.

φ0
ad

φ0
da

φ0
ac

φ0
ca

φ0
bc

φ0
cb

φ0
bd

φ0
db

φ0
dc

φ0
cd

b b

b
a

bc

b

d

Figure 2: Orbits in the prisoners’ dilemma game for r1 = 20, r2 = 1.

3. Equilibrium Payoffs

In this section it is shown that SPE payoffs are fixed-point of a class
of set-valued monotone operators. The well-known fixed-point theorem of
Cronshaw and Luenberger (and Abreu, Pearce, and Stacchetti) [3, 4, 7] is a
special case.

3.1. Notations

For any compact set of payoffs W ⊂ R
n, the smallest payoff for player i

in W is
v−i (W ) = min {vi : v ∈ W} .

Moreover, v−(W ) is the vector composed of v−i (W ), i ∈ N .
The payoffs v−i (W ), i ∈ N , will be taken as punishment payoffs that the

players get after deviating. It is now possible to test whether the players
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rather take the actions ai, i ∈ N , at most k times and get v after that
than deviate in the first place. The payoff vector corresponding to playing
a exactly j times and getting v after that is (I − T j)u(a) + T jv. Deviating
gives at most (1− δi)di(a) + δiv

−
i (W ) to player i ∈ N .

Definition 5. Let k be a number in 1, 2, . . . and let W ⊂ R
n be a compact

set. A pair (a, v) of an action profile a ∈ A and a continuation payoff v ∈ W
is k-step admissible with respect to W if for all j ≤ k it holds that

(I − T j)u(a) + T jv ≥ (I − T )d(a) + Tv−(W ). (3)

Furthermore, (a, v) is ∞-step admissible if (3) holds for all j = 1, 2, . . ..

The particular case of k-step admissibility when k = 1 will be referred to
as admissibility. Note that k-step admissibility implies (k − 1)-step admissi-
bility, and so on. The incentive compatibility constraint (3) says that player
i rather takes action ai at most k times and then gets the payoffs vi, than
deviates at any of the k stages and then obtains v−i (W ). Note that the left
hand side of (3) is DU j

a(v) in the notation introduced in Section 2.2.
For a given compact set W let us define a point to set mapping Bk

a , a ∈ A,
from R

n to the subsets of Rn as

Bk
a(v;W ) =

{

DU j
a(v) : (a, v) is j-step admissible w.r.t. W, j ≤ k

}

,

and for k = ∞

B∞
a (v;W ) = cl

{

DU j
a(v) : (a, v) is j-step admissible w.r.t. W, j ∈ N

}

.

By taking the closure, the limit point of (I−T k)u(a)+T kv, k = 1, 2, . . ., i.e.,
u(a) is included into B∞

a (v;W ) if (a, u(a)) is admissible. Note that Bk
a(v;W )

contains the first j∗ points on the trajectory of v under DUa, where j∗ is
the largest number j ≤ k for which (a, v) is j-step admissible. The mapping
B∞

a (v;W ) contains the maximal number of points on the trajectory of v under
DUa such that each point is of the form DU j

a(v) for a j-step admissible pair
(a, v) and j ∈ N.

For a set of payoffs W , the operator Bk
a(W ) is the union of Bk

a(v;W ) over
v ∈ W . The k-step operator for a payoff set W is

Bk(W ) =
⋃

a∈A

Bk
a(W ).

12



It is worth observing that Bk
a(W ) can be an empty set, which only means

that a cannot be played if the continuations are from the set W . Hence, the
union over A in the definition ofBk could be taken instead A over those action
profiles for which there are v ∈ W such that (a, v) are 1-step admissible.

Note that k in the definition ofBk is allowed to be infinitely large, in which
case we get the operator B∞. As will be seen, this operator is particularly
important in the analysis of equilibrium payoffs, when the time-step ∆ goes
to zero while the discount rates are fixed.

3.2. Results for k-step operators

The first observation on Bk is that it is monotone and preserves compact-
ness.

Lemma 2. For any k ≥ 1, Bk is monotone, Bk(W 1) ⊆ Bk(W 2) if W 1 ⊆
W 2, and preserves compactness.

Proof. It can be seen that each Bk
a , a ∈ A, preserves compactness. Hence, Bk

preserve compactness, too. Moreover, each Bk
a , a ∈ A, is monotone, which

implies that Bk is monotone, too.

An important result that will be utilized in this paper is that any set that
generates itself under Bk is a subset of equilibrium payoffs. This result is a
generalization of the self-generation result for B1, see [3, 4, 7].

Proposition 3. If W ⊆ Bk(W ), then W belongs to the set of subgame
perfect equilibrium payoffs V .

Proof. The result follows by showing that W ⊆ Bk(W ) implies that for any
v ∈ W it is possible to create a path such that there are no one shot deviations
from it at any stage given that deviations are punished with paths that yield
v−i (W ) for the deviating player i ∈ N . In particular, this construction can be
made for the payoff vector v corresponding to v−i (W ). Due to the one-shot
deviation principle the resulting path is an equilibrium.

Let us go through the construction of the path. Because v ∈ Bk(W )
(k = 1, 2 . . . or k = ∞), there are a1 ∈ A and v1 ∈ W such that a can
be played at most k times, let us say k1 ≤ k times such that no player is
willing to deviate given that they get the continuation v1 after k1 periods.
Let (ai)k denote a path in which ai is played k times. The same argument
can be repeated for v1 ∈ W and so on ad infinitum, which gives a path
(a1)k1(a2)k2(a3)k3 · · · . No player has an incentive to deviate from this path

13



at any stage given that the deviations are punished with a path that yields
v−i (W ) for the deviating player i ∈ N . In particular this construction can be
done for v ∈ W with vi = v−i (W ) for some i ∈ N . Hence, the payoffs in W
correspond to subgame perfect equilibria.

The next result tells that the set of equilibrium payoffs corresponding to
given discount factors corresponding to T is the largest fixed-point of any
of the operators Bk. Here, the largest fixed-point refers to the largest set in
terms of set inclusion. In mathematical terms, it could be said that SPE pay-
offs are the largest fixed-point of the iterated function system corresponding
to Bk

a , a ∈ A, and the incentive compatibility constraints.

Proposition 4. For any k ≥ 1 or k = ∞, the set of subgame perfect equilib-
rium payoffs V is the largest fixed-point of Bk in the class of compact sets.

Proof. The result follows directly from Proposition 3 and the monotonicity
of Bk. Namely, any v ∈ V is supported by an extremal penal code, which
implies that v ∈ Bk(V ). Hence, V is a fixed-point ofBk. By the monotonicity
it has to be largest fixed-point in the set inclusion.

The following result tells that the fixed-point iteration converges V when
the initial set is sufficiently large. The convergence of W k to V refers to
Painlevé-Kuratowski convergence, which in the case of compact sets is equiv-
alent to the convergence in the Hausdorff metric, see, e.g., [13].

Proposition 5. The fixed-point iteration

W j+1 = Bk(W j), j = 0, 1, . . . , (4)

converges to V when W 0 is a compact set that contains V .

Proof. First, observe that V ⊆ Bk(W T ) for all T = 0, 1, . . . because Bk

is monotone and V ⊆ W 0. Moreover, it holds that Bk(W 0) ⊆ W 0, i.e.,
W 1 ⊆ W 0. The monotonicity of Bk implies that W 2 = Bk(W 1) ⊆ W 1. By
inductionW j+1 ⊆ W j for all j = 0, 1, . . .. Note that the setsW j, j = 0, 1, . . .,
are compact (Lemma 2). The limit of the iteration is V ∗ = ∩jW

j. The set V ∗

is a fixed-point of Bk, because V ∗ ⊆ Bk(V j) for all j = 0, 1, . . .. In particular
V ∗ ⊆ Bk(V ∗) which implies that V ∗ is a subset of V . On the other hand, V
is contained in Bk(V k) for all j, which implies that V ∗ contains V . Hence,
V = V ∗.
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Because FP is a compact set by Lemma 1, the iteration (4) converges
when the initial sets is the set of all feasible payoffs.

Corollary 3. The iteration (4) converges to V when the initial set is FP .

4. Games with Constant Discount Rates

In this section the focus is on the pure strategy equilibria under constant
discount rates and on the relevant operators for the analysis of equilibrium
payoffs of such games.

4.1. Operator formalism for constant discount rates

The operator formalism as such does not require any assumption on the
stage game. However, because the focus is on the limit of equilibrium payoffs
when ∆ goes to zero, let us assume the profitable minimaxing property at
this point. Corresponding to the discount factors δ̄i, i ∈ N , above which
there is a minimax penal code, it is possible to find ∆̄ such that the discount
factors δi = e−ri∆ are at least δ̄i for all i ∈ N . The operators will be defined
assuming that ∆ ≤ ∆̄, which means that the players smallest equilibrium
payoffs are the minimax payoffs v−i , i ∈ N . Recall that V (∆) denotes the set
of equilibrium payoffs as a function of ∆ when the discount rates are fixed.

Let B∆
a denote the operator B∞

a for δi = e−∆ri. Because B∆
a (v) ∈ φ∆

av

and v−(V (∆)) = v− for ∆ ≤ ∆̄, there is another expression for B∆
a .

Remark 2. When ∆ ≤ ∆̄, it holds that

B∆
a (W ) = {w ∈ φ∆

av : v ∈ W, and w ≥ (I − T )d(a) + Tv−}. (5)

Note that there is a minor difference in the definition of Bk
a and B∆

a ;
the payoff v−(W ) in the admissibility condition (3) is replaced with the
vector of minimax payoffs. Moreover, the incentive compatibility condi-
tion in expression (5) means that wi = (I − e−ri∆k)ui(a) + e−ri∆kvi ≥
(I − e−ri∆)di(a) + e−ri∆v−i for all i ∈ N , i.e., (a, v) is k-step admissible.
Recall that k-step admissibility implies that (a, v) is also j-step admissible
for all j ≤ k.

For any ∆ > 0 the operator B∆ is defined as the union of B∆
a ;

B∆(V ) =
⋃

a∈A

B∆
a (V ).
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It can be seen that B∆ has the same properties as Bk. In particular, it
is monotone.

By the definition of B∆, the set V (∆) contains points that are feasible.
Moreover, the payoffs are also individually rational due to the incentive com-
patibility constraint in the definition of the operator. As will be seen later,
for unequal discount rates it may happen that some feasible and individually
rational payoffs are not reached even when ∆ goes to zero.

4.2. The asymptotic operator

Before considering asymptotic operator, the operator obtained when ∆
goes to zero, let us first make some observations on the set of action profiles
that can be played in equilibria. The set A(∆) denotes the set of possible
action profiles A(T ) when δi = e−ri∆, i ∈ N . To be specific;

A(∆) = {a ∈ A : (a, v) is admissible w.r.t. V (∆) for some v ∈ V (∆)}.

It can immediately be observed that A(∆) is monotone for ∆ small enough.
Note that ∆̄ is the upper bound for ∆ corresponding to the discount factors
above which the minimax penal code is an equilibrium

Remark 3. A (∆1) ⊆ A (∆2) when ∆2 ≤ ∆1 ≤ ∆̄.

In important implication of the monotonicity is that A(∆) converges when
∆ goes to zero. This limit set is denoted by A∗. Note that A in the definition
of B∆ can be replaced with A∗.

In the limit when ∆ goes to zero, the trajectory φ∆
av goes to the orbit

φ0
av in the Hausdorff metric. Hence, for the case of ∆ = 0, the asymptotic

operator is defined by replacing φ∆ in the definition of B∆ with φ0. Moreover,
in the continuous time limit the incentive compatibility condition becomes
simply v ≥ v−. It can also be observed that if (I − e−rt)u(a) + e−rtv ≥ v−

for v ≥ v−, then (I − e−rτ )u(a) + e−rτv ≥ v− for all 0 ≤ τ ≤ t. Recall that
the profitable minimaxing property guarantees that the minimax payoffs are
attained for ∆ small enough. Hence, the ”limit” of B∆

a , for a ∈ A∗, when ∆
goes to zero can be defined as

B0
a(W ) = {w ∈ φ0

av; w ≥ v−, v ∈ W},

and by taking the union over A∗ we get the asymptotic operator

B0(W ) =
⋃

a∈A∗

B0
a(W ).
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Because the payoff vectors corresponding to the minimax payoffs are equilib-
ria for small enough ∆, it is convenient to set

B0(∅) = {u(ai) : ai is as in Definition 2, i ∈ N}.

The intuition behind the asymptotic operator is that it defines payoff
obtained when a ∈ A∗ are played as long as possible when given the contin-
uation payoffs w ∈ W . The resulting payoffs belong to φ0

aw for a ∈ A∗ and
w ∈ W .

Unlike B∆, the operator B0 has the property that W ⊆ B0(W ) for any
W such that v ≥ v− for all v ∈ W . This is simply because setting t = 0
gives DU t

a(v) = v for any v ∈ IR. Consequently, B0 does not have a largest
fixed-point. However, there is a particular fixed-point that is of interest. To
define this fixed-point set some additional definitions are needed.

First, for an action profile to be relevant in generating any new payoffs
from a compact set W there should be v ∈ W and t > 0 such that DU τ

a (v) ≥
v− for all τ ∈ [0, t]. The maximal sets of relevant action profiles in terms
of set inclusion are of interest. Related to such a set A′ ⊆ A we can define
the space of closed sets from which the continuations can be taken. Formally
this space is as defined below, see also [10].

Definition 6. A compact set S ⊆ IR belongs to C(A′), A′ ⊆ A, if for any
a ∈ A′ there is v ∈ S and t > 0 such that DU τ

a (v) ≥ v− for all τ ∈ [0, t].

The fixed-point set of B0 that will be shown to equal the limit of repeated
game payoffs is V (0) and is defined below.

Definition 7. V (0) is the smallest fixed-point of B0 such that V (0) ∈ C(A∗).

The existence of V (0) follows from the monotonicity of B0 and the prof-
itable minimaxing property, see [10], where V (0) is related to the equilibria
of continuous-time repeated games.

5. Limit Results for Unequal Discount Factors

5.1. Folk theorem for constant discount rates

Because the operator B0 can be seen as the limit of B∆ when ∆ goes
to zero, we can expect the set V (∆) to converge to V (0). This is shown in
the following result, which can be interpreted as a folk theorem for games
that satisfy the profitable minimaxing property. The proof is presented in
the Appendix.
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Proposition 6. Under the profitable minimaxing property V (∆) converges
to V (0), when ∆ goes to zero.

In general the set V (∆) differs from V (0) for all ∆ > 0. To see the reason
for this, consider Example 1. No matter how small ∆ > 0 is chosen, the
trajectory φ∆

ab is never exactly equal to the orbit φ0
ab. In particular, for any

two points from φ∆
ab, there will be a gap between them along φ0

ab. These gaps
do not disappear when iterating the operator B∆.

Another observation related to V (0) is that it is not necessarily equal
to the set of feasible and individually rational payoffs. In Figure 5.1 this is
demonstrated for the prisoners’ dilemma game.

b b

b
a

bc

b

d

Figure 3: Limit set V (0) in the prisoners’ dilemma game for r1 = 20, r2 = 1.

In addition to characterizing the limit payoffs it is possible to characterize
the action profiles that can be played in equilibrium, i.e., the set A∗. What is
important in the following result is that A∗ is determined without referring
to V (0). For the proof see Lemma 8 in the Appendix.

Proposition 7. Let N ′ be the set of players i ∈ N for whom v−i is the only
payoff in FP 0 ∩ IR. Under the profitable minimaxing property A∗ = A if
N ′ = ∅ and otherwise

A∗ = {a ∈ A : ui(a) = di(a) = v−i for all i ∈ N ′}.
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An important imlication of the above result is that the limit of repeated
game payoffs is the same as the equilibrium payoffs in continuous-time re-
peated game when A∗ = A, i.e., N ′ = ∅. If N ′ 6= ∅ there can be more payoffs
in the continuous-time game. The following example demonstrates this.

Example 3. In this game there are three players. However, the third player
has only one action.

L R
T 0, 0, 1 −1, 1, 1
B 1,−1, 1 0, 0, 0

The minimax payoffs are attained at a = (B,R) and v− = (0, 0, 0). The
only action profile that can be taken is a. Note in particular that b = (T, L)
cannot be played because both player 1 (the row player) and player 1 (the
column player) prefer deviating from it. However, in the continuous-time
game with immediate reactions to deviations neither of the two players would
gain by deviating from b. Hence, in a continuous-time repeated game b can
be played. Because u3(b) = 1, the payoffs in the continuous-time game would
be anything between 0 and 1 for the third player.

The limit results are presented for games where the players’ smallest
equilibrium payoffs are the minimax payoffs due to profitable minimaxing
property. However, if the least equilibrium payoffs converge when ∆ goes
to zero, then all the results directly extend to such games with v−i , i ∈ N ,
replaced with the limits of players’ smallest payoffs. In general, these limit
payoffs may differ from the minimax payoffs, see, e.g., [16].

5.2. The outer folk theorem

In this section the focus is on the outer limit of equilibrium payoffs when
the discount factors converge to one but are allowed to be different. Re-
call that T denotes the diagonal matrix of discount factors. Moreover, let
V (T ) denote the set of equilibrium payoffs for constant discount factors cor-
responding to T . The outer limit refers to the set that is obtained by letting
T converge to the identity matrix I from below and taking all limit points of
sequences in which payoffs belong to V (T ) for different T , see, e.g., [13] for
the definition of the outer limit (or the upper limit). This is the set

V ∗ = lim sup{V (T ) : T →− I}.
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The interior of the outer limit set gives all the possible limit point that can
be obtained when the players become more patient, but the rates at which
they become more patient are allowed to differ.

In the following V (0; r) denotes the limit of equilibrium payoffs for given
vector r > 0, i.e., ri > 0 for all i ∈ N , discount rates. The results for
constant discount rates are crucial for understanding the limiting behavior
when the discount rates converge to one. The first observation is that there
need not be a limit set for V (T ) when T converges to I from below, because
V (0; r) may differ for different vectors of discount rates; corresponding to
different discount rates the limit set is different, which means that there is
no limit in the sense of usual set convergence. However, the set V ∗ is always
well-defined.

The outer limit can be obtained by considering the payoffs for constant
discount rates. To be specific, all points in V ∗ are obtained by considering
the case when the ratios of the discount rates converge.

Lemma 3. Any v ∈ V ∗ corresponds to a sequence of payoffs {vk}k for which
either log(δki )/ log(δ

k
j ) or log(δkj )/ log(δ

k
i ) has limit for all i 6= j, i, j ∈ N .

Proof. Take a sequence {vk}k with vk ∈ V (T k), k = 1, 2, . . ., such that the
sequence converges to v. Pick a subsequence such that either log(δki )/ log(δ

k
j )

or log(δj)/ log(δi) has a limit for each pair of players i and j, i 6= j. Namely, if
log(δki )/ log(δ

k
j ) is not bounded then log(δj)/ log(δi) has one limit point equal

to zero. The payoff corresponding to the limit of this subsequence is v.

To understand what happens for the payoffs for different discount rates,
let us consider the comparative statics of V (0; r) for r. The first result relies
on the fact that an orbit φav is the same whenever the ratios of the discount
rates remain the same. Hence, Ba(·; r), only depends on the ratios of the
discount rates. For the proof see [10].

Lemma 4. V (0; r) is homogenous of degree zero as a function of r; V (0;λr) =
V (0; r) for all λ > 0 and r > 0.

As is stated in the following lemma (see [10]), the set of equilibrium payoffs
increases when the ratios of the discount rates increase. In the following
π = i1πi

2
π · · · i

n
π denotes a permutation of players and R(π) vectors of discount

rates such that rijπ ≥ rij+1
π

> 0 for all j = 1, . . . , n. Moreover, Π(N) stands
for the set of all permutations of players.
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Lemma 5. If r and q are vectors of discount rates belonging to R(π) such
that rijπ/rij+1

π
> qijπ/qij+1

π
for all j = 1, . . . , n− 1, then V (0; q) ⊂ V (0; r).

As a corollary of the above result, it follows that the set of feasible and
individually rational payoffs belong to V (0; r) for all discount rates r. Recall
that FP 0 ∩ IR contains all the points obtained by randomizing over {u(a) :
a ∈ A} that satisfy v ≥ v−. By the usual folk theorem, FP 0∩IR is obtained
in the limit when the discount factors are equal and converge to one.

Corollary 4. FP 0 ∩ IR ⊆ V (0; r) for all vectors of discount rates r.

The following result tells that the outer limit V ∗ can be obtained by
taking the union of all the limit sets for fixed discount rates.

Proposition 8. Under the profitable minimaxing property it holds that

V ∗ =
⋃

π∈Π(N)

lim

{

V (0; r) : r ∈ R(π),
rijπ
rij+1

π

→ ∞ for all j = 1, . . . , n− 1

}

.

Proof. Lemma 3 implies that V ∗ is obtained by taking the union all the limits
of payoffs when the ratios log(δki )/ log(δ

k
j ), i 6= j converge. For fixed ratios,

i.e., fixed discount rates r1, . . . , rn the limits are obtained by considering
the limits of V (0; r), i.e., the equilibrium payoffs in the continuous time
case for discount rates r. It follows from lemmas 4 and 5 that it is enough
to consider the limits of these set for all possible permutations of players,
when the ratios of the discount rates become arbitrarily large. Moreover, the
monotone comparative statics of V (0; r) for r, i.e., Lemma 5, implies that
limV (0; r) exists when rijπ/rij+1

π
→ ∞ for all j = 1, . . . , n− 1.

Example 4. Consider the prisoners’ dilemma game of Example 2. The outer
limit in this game is the union of boxes [1, 4]× [1, 11/3] and [1, 11/3]× [1, 4]
that is illustrated in Figure 4. Note that the orbit φdv converges to the
set that is composed of lines from u(d) to (u1(d), v2) and from (u1(d), v2)
to v, when r1/r2 goes to infinity. As a consequence, the limit of V (0; r) is
[1, 4] × [1, 11/3] when r1/r2 goes to infinity. It can be seen in this example
that the usual conclusion of the folk theorem for equal discount factors does
not hold even for the outer limit of the equilibrium payoffs. In this example
the outer limit of all feasible payoffs is [0, 4]× [4, 0] (region inside the dotted
lines in the figure), the intersection of this set with the individually rational
payoffs is [1, 4]× [1, 4], which is not equal to the union of [1, 4]× [1, 11/3] and
[1, 11/3]× [1, 4].
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Figure 4: The feasible and individually rational points for equal discount factors (gray
area), the limit set V ∗ (light gray area), and the outer limit of all feasible points (region
inside the dotted square) in the prisoners’ dilemma game.

6. Conclusions

The main contribution of this paper is a new operator formalism for
analyzing repeated games with discounted payoffs. The formalism enables
both the computation of equilibria and the analysis of the equilibrium payoffs
when the players discount factors converge to one. In particular, it possible
to obtain a folk theorem type of limit result for games with unequal discount
factors.

A central concept for games with constant discount rates is the asymptotic
operator: the equilibrium payoffs converge to a fixed-point of the asymptotic
operator, when the players become more patient and have constant discount
rates. This set is typically smaller than the set of all feasible and individually
rational payoffs in the game.

The limit set of a game with fixed discount rates is the set of equilibrium
payoffs in a continuous-time game with no time-lags [10]. This gives another
interpretation for the folk theorem: the limit set is obtained when the time-
lag between observing deviations and reacting to them becomes arbitrarily
small.

The case of constant discount rates is useful in analyzing the general case
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of unequal discount factors. For such games the payoffs may not converge,
while there always exists an outer limit for the equilibrium payoffs. This limit
can be interpreted as the set of all possible payoffs that can be obtained, when
the discount factors converge to one in an arbitrary manner. The outer limit
differs considerably from the set of feasible and individually rational payoffs
in the case of equal discount factors. The outer limit is the union of all limit
sets corresponding to different cases of fixed discount rates. This set contains
the set of feasible and individually rational payoffs of a repeated game with
constant discount factors.

Appendix A. Proof of the main result

The following results are utilized in the proof of Proposition 6. The first
shows that the set V (0) is found by fixed-point iteration. The second shows
that the limit set A is the same regardless of discount rates. The last one
characterizes A∗ and shows that there is a path p with payoff v(p,∆) for
time step ∆ such that (a, v(p,∆)) is admissible for any a ∈ A∗, and v(p,∆)
converges when ∆ goes to zero.

Lemma 6. The fixed-point iteration

W k+1 = B0(W k). (A.1)

converges to V (0) when W 0 ∈ C(A∗) and W 0 ⊆ V (0).

Proof. The result follows by observing that for any W 0 ∈ C(A∗) such that
W 0 ⊆ V (0), the iteration is bounded above by the smallest fixed-point of B
in C(A∗). Due to monotonicity of B0 it holds that W k ⊆ W k+1, which means
that the limit of the iteration in the space C(A∗) is the closure of the union
of W k, k ≥ 0. This set is a fixed-point of B0 and hence equals V (0).

Lemma 7. The limit set A∗ is the same for all discount rates.

Proof. Let r∗ stand for the smallest discount rate mini ri. By the comparative
statics of equilibrium paths (Corollary 1), if a can be played in a game where
the discount factors are e−r∗∆, it can also be played in the game where the
discount factors are e−ri∆, i ∈ N , and the time step is ∆. On the other
hand, if a ∈ A can be played for discount rates r and time step ∆, then
it can also be played when the discount rate is r∗ for all players and time
step is ∆∗ = maxi∈N ri∆/r. Hence, the limit of A(∆) is the same as the one
obtained for constant discount rates. In particular, it is the same regardless
of discount rates.
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The following result shows that there is a path of action profiles p that
gives a payoff vector v(p,∆) such that (a, v(p,∆)) is admissible for each
a ∈ A∗. The latter property is utilized when choosing the initial set W 0 for
the iteration (A.1) in the proof of Proposition 6. Moreover, the set A∗ is
characterized. In the following N ′ is the set of players i ∈ N for whom v−i is
the only payoff in FP 0 ∩ IR.

Lemma 8. Under the profitable minimaxing property A∗ = A if N ′ = ∅ and
otherwise

A∗ = {a ∈ A : ui(a) = di(a) = v−i for all i ∈ N ′}.

For ∆ small enough there is an SPE path p such that (a, v(p,∆)) is admissible
for any a ∈ A∗, and v(p,∆) converges when ∆ goes to zero.

Proof. Let Â be the A if N ′ = ∅ and otherwise

{a ∈ A : ui(a) = di(a) = v−i for all i ∈ N ′}.

Let us also set S = conv{u(a) : a ∈ Â} ∩ IR. If this set is a singleton,
all the action profiles in S the same payoff vector. Otherwise it has a non-
empty relative interior. In the first case, the unique payoff v in S is such that
vi = ui(a) = di(a) = v−i for all i ∈ N and for some a ∈ A. Assume the latter
case and that v is in the relative interior of S and corresponds to a convex
combination

∑

λju(a
j),

∑

j λj = 1 and λj ≥ 0, j = 1, . . . , k.
It is possible to get arbitrarily close to values λj , j = 0, . . . , k, by choosing

K large enough and weights λ̂j = nj/K,
∑

nj = K. In particular, for K

large enough the resulting vector
∑

j λ̂ju(a
j) is in the relative interior of S.

Consider the sequence p(K) in which a1 is played n1 times, after which a2

is played n2 times and so on until ak is played nk times. Assume that this
sequence is repeated, let p∞(K) denote the resulting path of action profiles.
The path p∞(K) corresponds to an infinite sequence of payoffs that has a
Césaro limit; the limit of means of the resulting payoff sequence is

vK =
1

K

∑

j

nju(aj).

It follows from a Tauberian theorem (see, e.g., Appendix A.4 in [14]) that the
limits of payoffs corresponding to p∞(K) exist for all players when ∆ goes
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to zero, and these limits are the elements of the vector vK . Moreover, this
vector is the limit no matter at which stage of the path the game is started.

Let vK,j(∆), j = 0, . . . , K, denote the discounted payoff vectors corre-
sponding to the path p∞(K) when starting from stage j = 0, . . . , K. Because
p∞(K) corresponds to infinite repetition of p(K), these are all the discounted
payoffs there are along the sequence p∞(K). By choosing ∆ close enough to
zero all these vectors can be made arbitrarily close to vK . In particular, we
can first choose K large enough such that vK is on the relative interior of S
and then ∆ small enough such that vK,j(∆), j = 0, . . . , K, are also on the
relative interior of S, and

(I − e−r∆)u(aj) + e−r∆vK,j+1 ≥ (I − er∆)d(a) + e−r∆v−,

where vK,K+1 = vK,0. Hence, for ∆ small enough p∞(K) can be played in
equilibrium.

Because vK,j, j = 1, . . . , K, are in the relative interior of S, it follows that
any pair (a, vK,j), a ∈ Â, j = 0, . . . , K becomes admissible when ∆ is close
enough to one, i.e., for any a ∈ Â and j = 0, . . . , K it holds that

(I − e−r∆)u(a) + e−r∆vN,j ≥ (I − er∆)d(a) + e−r∆v−,

for ∆ small enough. Hence, p∞(K) is suitable path p for which (a, v(p,∆)),
a ∈ A are admissible and v(p,∆) converges to a vector v when ∆ goes to
zero. This proves the last claim of the lemma.

Note that for equal discount rates S = FP 0 ∩ IR. Hence, all action
profiles in Â can be played in the limit when players have equal discount
rates. If the players have equal discount rates, and for some player i the
only payoff in FP 0 ∩ IR is v−i , then the only action profiles that this player
can accept are the ones that satisfy ui(a) = di(a) = v−i . It follows that an
action profile a /∈ Â cannot be played, which assures that the limit of A(∆)
for equal discount rates is Â. Lemma 7 implies that Â = A∗.

Proof of Proposition 6. The proof relies on showing that for any finite num-
ber of iterations of operator B∆ it is possible to get an arbitrarily close ap-
proximation of V (0), when the initial set in the iteration consists of v(p,∆)
as in Lemma 8 and ∆ is small enough.

Let us set W 0(∆) = {v(p,∆)}, where v(p,∆) is as in Lemma 8. The
set W k,∆(∆′) denotes the set obtained in the k’th step of the iteration (4)
for B∆, when the iteration is started with W 0(∆′). The set W k(0) denotes
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the set obtained in the k’th iteration of (A.1) for B0, when the iteration is
started with {v}, where v is the limit of v(p,∆), when ∆ goes to zero.

First, note that W k,∆(∆) ⊆ V (∆) and W k(0) ⊆ V (0), because W 0(∆)
are equilibrium payoffs. Now consider the Hausdorff distance between V (∆)
and V (0). It follows from the triangular inequality that

dH (V (∆), V (0)) ≤dH
(

W k,∆(∆), V (0)
)

≤dH
(

W k,∆(∆),W k(0)
)

+ dH
(

W k(0), V (0)
)

.

Applying the triangular inequality to the term dH
(

W k,∆(∆),W k(0)
)

gives

dH
(

W k,∆(∆),W k(0)
)

≤dH
(

W k,∆(∆),W k,∆(0)
)

+ dH
(

W k,∆(0),W k(0)
)

.

Altogether, it holds that

dH (V (∆), V (0)) ≤dH
(

W k,∆(∆),W k,∆(0)
)

+ dH
(

W k,∆(0),W k(0)
)

+ dH
(

W k(0), V (0)
)

.
(A.2)

Let us next consider the first term on the right hand side of (A.2). Because
the mappings (I − e−r∆)u(a) + e−r∆v, a ∈ A, are continuous as functions of
v, by choosing ∆ small enough the trajectories φ∆

av and φ∆
av1 for v1 = v(p,∆),

become arbitrarily close to each other. Notice that some of the points on
φ∆
av and φ∆

av1 may not be incentive compatible if ui(a) < v−i for i ∈ N ′ ⊆
N . However, choosing ∆ small enough both of these trajectories have some
incentive compatible points arbitrarily close to the set

{

v ∈ FP : (1− e−ri∆)ui(a) + e−ri∆vi = (1− e−ri∆)di(a) + e−ri∆v−i , i ∈ N ′
}

.

Hence, it follows thatW 1,∆(0) = B∆(v) andW 1,∆(∆) = B∆(v1) can be made
arbitrarily close to each other by choosing ∆ small enough. The argument
can be repeated for any pair of points inW 1,∆(0) andW 1,∆(∆), which implies
that W 2,∆(0) and W 2,∆(∆) become arbitrarily close to each other when ∆ is
small enough. By repeating the argument, the result holds for W k,∆(0) and
W k,∆(∆) for any k. Hence, the first term in (A.2) can be made arbitrarily
small for any k.

Let us next turn to the second term on the right hand side of (A.2).
Recall that the distance between two consecutive points in a trajectory is
at most maxi(1 − eri∆)maxi |ui(a) − vi|, see Remark 1. Because the term
maxi |ui(a)− vi| is bounded, the distance is bounded by a function ρ(∆) for
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any a and v, and this function ρ(∆) is proportional to maxi(1− e−ri∆). The
distance between the orbit φ0

av an the trajectory φ∆
av is at most the same as

the distance between two consecutive points in the trajectory. It follows that
the Hausdorff distance between B0(W ) and B∆(W ) is bounded by ρ(∆) for
any compact set W . Hence, dH

(

W k,∆(0),W∆(0)
)

can be made arbitrarily
small by choosing ∆ small enough.

Finally, let us consider the third term on the right hand side of (A.2).
The convergence of the fixed-point iteration (Lemma 6) implies that for any
ε > 0 it is possible to choose k such that

dH
(

W k(0), V (0)
)

< ε/3,

and, as argued above, corresponding to this k it is possible to choose ∆ε

small enough such that

dH
(

W k,∆(∆),W k,∆(0)
)

, dH
(

W k,∆(0),W k(0)
)

< ε/3.

for all 0 < ∆ < ∆ε. The inequality (A.2) implies that for any ε > 0 there is
∆ε > 0 such that dH (V (∆), V (0)) < ε for all 0 < ∆ < ∆ε.
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