
Berg, Kimmo; Kitti, Mitri

Working Paper

Equilibrium Paths in Discounted Supergames

Discussion paper, No. 96

Provided in Cooperation with:
Aboa Centre for Economics (ACE), Turku

Suggested Citation: Berg, Kimmo; Kitti, Mitri (2014) : Equilibrium Paths in Discounted Supergames,
Discussion paper, No. 96, Aboa Centre for Economics (ACE), Turku

This Version is available at:
https://hdl.handle.net/10419/233312

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/233312
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Kimmo Berg and Mitri Kitti

Equilibrium Paths in Discounted

Supergames

Aboa Centre for Economics
Discussion paper No. 96

Turku 2016

The Aboa Centre for Economics is a joint initiative of the
economics departments of the University of Turku and

Åbo Akademi University.



Copyright c© Author(s)

ISSN 1796-3133

Printed in Uniprint
Turku 2016



Kimmo Berg and Mitri Kitti

Equilibrium Paths in Discounted Supergames

Aboa Centre for Economics

Discussion paper No. 96
March 2016 (first draft November 2014)

ABSTRACT

This paper examines the subgame-perfect pure-strategy equilibria in
discounted supergames with perfect monitoring. It is shown that all
the equilibrium paths are composed of fragments called elementary
subpaths. This characterization result makes it possible to compute
and analyze the equilibrium paths and payoffs by using a collection of
elementary subpaths. It is also shown that all the equilibrium paths can
be compactly represented by a directed graph when there are finitely
many elementary subpaths. In general, there may be infinitely many el-
ementary subpaths, but it is always possible to construct finite approx-
imations. When the subpaths are allowed to be approximatively incen-
tive compatible, it is possible to compute in a finite number of steps
a graph that represents all the equilibrium paths. The directed graphs
can be used in analyzing the complexity of equilibrium outcomes. In
particular, it is shown that the size and the density of the equilibrium
set can be measured by the asymptotic growth rate of equilibrium paths
and the Hausdorff dimension of the payoff set.
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1. Introduction

Repeated games provide the most elementary setting for analyzing dynamic
interactions among self-interested agents. We consider the case where a stage
game is repeated infinitely many times, players discount the future payoffs, ob-
serve perfectly each others’ actions, and use pure strategies. These games have
usually enormously rich sets of equilibrium strategies, which is generally thought
to imply that the outcomes are hard to predict. Contrary to this intuition, it
is shown that all the equilibrium paths are generated from a collection of sub-
paths called elementary subpaths. By equilibrium paths, we mean the infinite
sequences of players’ actions that are induced by the subgame-perfect equilib-
rium strategies. The elementary subpaths offer new tools for examining the
internal structure of equilibria. In particular, they can be used in analyzing the
complexity of equilibria and in computing the equilibrium paths and payoffs.

Abreu [1, 2] has shown that all the equilibrium outcomes can be obtained in
simple strategies. This means that it is enough to consider equilibrium paths,
which are characterized by the property that none of the players has an incen-
tive to deviate at any stage when the deviations lead to the paths that provide
the smallest equilibrium payoff to the deviator. This idea of most severe pun-
ishments can also be utilized in characterizing the equilibrium payoffs with a
set-valued fixed-point equation, see Abreu et al. [3, 4] for the case of imper-
fect monitoring and Cronshaw and Luenberger [18] for perfect monitoring, and
Kitti [29, 30] for generalizations to stochastic games. These results entail that
in equilibrium the players take actions that are incentive compatible given the
future payoffs of the strategy and the threat of receiving the smallest equilibrium
payoffs after deviations.

We derive a novel characterization for the equilibrium paths from the players’
incentive-compatibility conditions. As shown in the paper, all the equilibrium
paths are constructed from a collection of sequences of players’ actions, which are
called the elementary subpaths. The main motivation for introducing elemen-
tary subpaths is methodological; they offer new ways to compute and analyze
the equilibria. To get an idea of the concept, consider the prisoner’s dilemma
game of Figure 1. The action profiles are denoted by letters a to d. Playing b
and then c, i.e., bc, is an elementary subpath, because it is possible to play the
action profile b whenever is followed by c and then continued by any elementary
subpath that starts with c. For example, it is possible to combine the elementary
subpaths bc and cb to get an equilibrium path bcbcbc . . . = (bc)∞. On the other
hand, combining bc, ca and aa leads to an equilibrium path bcaaaa . . . = bca∞.
All paths produced in this manner are the induced outcomes of subgame-perfect
equilibrium strategies.

We present an algorithm for computing the elementary subpaths and show
that the equilibrium paths can be compactly represented by a directed graph.
The graph in Figure 1 shows all the equilibrium paths in the game for the dis-
count factors between 1/3 and 0.46. The graph offers a simple way to produce
the equilibrium paths and payoffs, and analyze them. Unlike in the literature
on combinatorial games [24], where graphs are commonly used to present the
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L R
T 3, 3 (a) 0, 4 (b)
B 4, 0 (c) 1, 1 (d)

Elementary subpaths:
d, aa, ba, bc, ca, cb

∅

a b

d c

Figure 1: Elementary subpaths and a graph of all the equilibrium paths.

players’ available moves at different positions, we use graphs to describe the
variety of equilibrium behavior. Moreover, we emphasize that this character-
ization concerns all the equilibrium paths simultaneously rather than gives a
condition for individual paths as in [1, 2].

We propose two complexity measures to analyze the equilibrium paths and
payoffs based on the graph presentation. The first one is the asymptotic growth
rate of the equilibrium paths. This measure tells us the rate at which the number
of finitely long equilibrium paths grows when their length is increased. Because
the paths of action profiles are given by strategies, the growth rate reflects the
size of the equilibrium set and the increase of strategies producing the finitely
long equilibrium paths.

The second complexity measure is the Hausdorff dimension of the payoff
set. This measure reflects the density of the equilibrium payoff set, which is
a fractal in general [10]. The phenomenon that the payoff set behaves in a
rather complex manner, as fractals do, is not completely new, see [31] and [34].
We offer a more comprehensive view to the structure of equilibria: when the
discount factors vary, the elementary subpaths change, which affects the graph
that generates the payoffs. The proposed complexity measures make it possible,
e.g., to compare different repeated games in terms of equilibrium behavior.

Our approach to the complexity of repeated game equilibria is new, and it
differs from the previous literature on strategic complexity [15, 28] and compu-
tational complexity [16, 21]. We analyze the complexity of all the equilibrium
outcomes without relying on the complexity of individual strategies nor their
computation. It has been shown that computing even an approximate equilib-
rium in a stage game is difficult [20], and the task is not any easier in repeated
games [13, 33]. However, there are efficient algorithms that work for a class of
repeated games when the assumption of subgame perfection is relaxed [6].

The graph presentation of elementary subpaths can be applied in producing
the set of equilibrium payoffs or its approximation. The technique is applied to
the systematic analysis of symmetric 2× 2 games in [9]. The earlier algorithms
for finding the equilibrium payoffs are based on the set-valued fixed-point iter-
ation [5, 14, 17, 27], and they assume equal discount factors. Apart from [14],
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these algorithms produce the equilibrium payoffs corresponding to correlated
strategies. It should be noted that our method allows the players to have un-
equal discount factors, and we do not require a public correlation device. The
method also produces the exact set of equilibrium payoffs when all the elemen-
tary subpaths are known.

The paper is structured as follows. In Section 2, it is shown that the equi-
librium paths consist of elementary subpaths. The properties of collections of
elementary subpaths are analyzed in Section 3. Section 4 deals with the com-
putation and approximation of the elementary sets. The graph presentation
and the complexity of equilibrium paths are studied in Section 5. Illustrative
examples of the main ideas and the computational methods are presented in
Section 6. Conclusions are given in Section 7.

2. Equilibrium paths and subpaths

2.1. Notation and definitions

We assume that there are n players and N = {1, . . . , n} denotes the set
of players. The set of actions available for player i in the stage game is Ai.
Each player is assumed to have finitely many actions. The set of action profiles
is denoted by A = ×iAi. Moreover, a−i denotes the action profile of players
other than player i. The corresponding set of action profiles is A−i = ×j 6=iAj .
Function u : A 7→ R

n gives the vector of payoffs that the players receive in the
stage game when a given action profile is played, i.e., when a ∈ A is played,
player i receives ui(a).

In the supergame, the stage game is repeated infinitely many times and the
players discount the future payoffs with discount factors δi ∈ [0, 1), i ∈ N . We
assume perfect monitoring: all players observe the action profile played at the
end of each period. A history contains the path of action profiles that have
previously been played. The set of k-length histories or paths is denoted by
Ak = ×kA. The empty path is ∅, i.e., A0 = {∅}. Infinitely long paths are
denoted by A∞. When referring to the set of paths beginning with a given
action profile a, we use Ak(a) and A∞(a) for k-length paths and infinitely long
paths, respectively. Moreover, A is the set of all paths, finite or infinite, and
A(a) is the set of all paths that start with a, i.e., union of Ak(a), k = 1, 2, . . . and
A∞(a). We denote the action profiles by letters a to z, and (bc)∞ = bcbcbc . . .
denotes that bc is infinitely repeated.

The length of path p is denoted by |p|. Furthermore, i(p) is the initial
and f(p) is the final element of p. If p is infinitely long, in brief an infinite
subpath, then f(p) = ∅. If p and p′ are two paths then pp′ is the path obtained
by juxtaposing the terms of p and p′. For p ∈ A, we let pj denote the path
that starts from the element j + 1 of p. Respectively, pk is the path of first
k elements of p. More specifically, when p = a0a1 · · · , we have p1 = a1a2 · · · ,
pk = a0 · · · ak−1, and pkj = aj · · · aj+k−1.

A strategy of player i in the supergame is a sequence of mappings σ0
i , σ

1
i , . . .

where σk
i : Ak 7→ Ai. The set of strategies for player i is Σi. The strategy
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profile composed of σ1, . . . , σn is denoted by σ. Given a strategy profile σ and
a path p, the restriction of the strategy profile after p is σ|p. The outcome path
induced by σ is (a0(σ), a1(σ), . . .) ∈ A∞, where ak(σ) = σk(a0(σ) · · · ak−1(σ))
for all k. It should be noted that a strategy usually induces different paths after
different histories of past play (i.e., the strategies σ|p, p ∈ Ak, k = 0, 1, . . ., may
all induce different paths from period k + 1 onwards). This is clarified in the
following example.

Example 1. Consider the prisoner’s dilemma game with payoffs given below.

L R
T 3, 3 0, 4
B 4, 0 1, 1

In this game, the action sets are A1 = {T,B} and A2 = {L,R}. The four action
profiles can be named as a = (T, L), b = (T,R), c = (B,L), and d = (B,R).

Consider now a variant of so called getting-even strategy. Player 1 chooses
T if the number of times player 2 has chosen R is greater than the number of
times player 1 has chosen T , and otherwise player 1 chooses B. Player 2 chooses
R if the number of times that player 1 has chosen B is larger than the number
of times player 2 has chosen R, and otherwise player 2 chooses L. In the first
round and in any round in which the players have played equally many times B
and R, player 1 chooses T and player 2 chooses R. If the players do not deviate
in the first round, the strategy leads to the path p = (bc)∞ = bcbc · · · . For a
history in which either of the players has deviated, the game will continue by
the players’ following either the path (bc)∞ or (cb)∞. Hence, these are the paths
induced by this strategy.

The average discounted payoff of player i corresponding to a strategy profile
σ is

Ui(σ) = (1− δi)
∞
∑

k=0

δki ui(a
k(σ)). (1)

The vector of average discounted payoffs corresponding to path p is denoted by
v(p). Subgame perfection is defined in the usual way; σ is a subgame-perfect
equilibrium (SPE) of the supergame if

Ui(σ|p) ≥ Ui(σ
′
i, σ−i|p) ∀i ∈ N, p ∈ Ak, 0 ≤ k < ∞, and σ′

i ∈ Σi.

This paper focuses on SPE paths and subpaths defined as below.

Definition 1. A path p ∈ A∞ is a subgame-perfect equilibrium path (SPEP)
if there is an SPE strategy profile that induces it.

Recall that a strategy may induce different paths after different histories of
past play, including histories involving non-equilibrium behavior. A subgame-
perfect equilibrium paths may be induced by a strategy after such a history.

Definition 2. A path p′ ∈ A(a) is an SPE subpath if there is an SPE path
p ∈ A∞(a) such that p|p

′| = p′.
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Equilibrium strategies lead to paths of play from which no player wants to
deviate given that all the other players follow their equilibrium strategies. All
such paths can be implemented in simple strategies [2]. These strategies are
defined by n+ 1 paths: an initial path that the play follows and a punishment
path for each player that gives the smallest equilibrium payoff to the player.
The players follow the actions given by the current path unless some player
makes a unilateral deviation from the path. If this happens, the play switches
to the punishment path of the deviator. If more than one player deviates at the
same time, the play remains on the current path and there is no punishment.
Because we examine a non-cooperative game, we need not consider simultaneous
deviations by multiple players.

In essence the characterization of equilibrium paths (i.e., outcomes of equilib-
rium behavior) in terms of simple strategies means that all we need in analyzing
the equilibrium outcomes, either paths or payoffs, are the most severe punish-
ments. What happens off the equilibrium paths has only the role of providing
the incentives for the players not to deviate from the equilibrium play. These
incentives can usually be provided in several ways, one of which is given by the
most severe threats used in simple strategies. Hence, the strategy space of a
game is more complicated than the set of equilibrium paths or payoffs: There
are more equilibrium strategies than only the simple strategies that lead to the
same equilibrium outcomes. However, any equilibrium path can be turned into
a simple strategy. Hence, simple strategies are sufficient in characterizing the
equilibrium outcomes.

Knowing all the equilibrium paths of a supergame tells everything on how
strategic interaction affects the actions that can be taken in the equilibria: What
can happen in the future if we have observed certain play and what are the
possible histories of actions if we see certain sequences played in the future.
This information contains all the restrictions for the sequences of play that come
from the basic assumption that no player should be willing to deviate from the
ongoing path given that the other players follow their equilibrium strategies.

We shall derive a characterization for the equilibrium subpaths by assuming
that the players’ smallest equilibrium payoffs are known. Finding these payoffs
is discussed in Section 4.1, see also [7, 11] on the computation of the smallest
equilibrium payoffs.

In the following, V denotes the set of equilibrium payoffs. It is assumed
that V is non-empty, in which case it will also be a compact subset of R

n

[18]. Non-emptiness follows when the stage game has a Nash equilibrium in
pure strategies; [26] examines the computational complexity of pure-strategy
equilibria. It should be noted that V may be non-empty even if the stage game
does not have a pure-strategy Nash equilibrium. The smallest equilibrium payoff
for player i is denoted by v−i = v−i (V ) = min {vi : v ∈ V } and the corresponding
payoff vector is v−(V ) = (v−1 (V ), . . . , v−n (V )). Similarly, the highest equilibrium
payoff for player i is v+i = max {vi : v ∈ V }, and the maximum deviation payoff
from action profile a is u∗

i (a) = maxa′
i
∈Ai

ui(a
′
i, a−i). Let Q be a compact set in

R
n. A pair (a, v) of an action profile a ∈ A and a continuation payoff v ∈ Q is
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admissible with respect to Q if it satisfies the incentive-compatibility conditions

(1 − δi)ui(a) + δivi ≥ (1− δi)u
∗
i (a) + δiv

−
i (Q), ∀i ∈ N. (2)

According to this constraint, it is better for player i ∈ N to take the action ai
and get the payoffs vi than to deviate and then obtain v−i (Q).

In the following, Ca(Q) denotes the set of payoffs for which the pair (a, v)
is admissible with respect to Q. Note that the vector of the smallest payoffs
con(a) that make (a, v) admissible can be found from the incentive-compatibility
conditions:

(1− δi)ui(a) + δiconi(a) = (1− δi)u
∗
i (a) + δiv

−
i (Q), i ∈ N.

Now, we have Ca(Q) = {v ∈ Q : v ≥ con(a)}, where the inequality means that
vi ≥ coni(a) for all i ∈ N .

The affine mapping Ba : Rn 7→ R
n corresponding to an action profile a ∈ A

is defined by setting
Ba(v) = (I − T )u(a) + Tv,

where I is an n × n identity matrix and T is an n × n diagonal matrix with
discount factors δ1, . . . , δn on the diagonal. Note that these mappings are con-
tractions because the discount factors are less than one. The image of a compact
set of payoffs Q ⊆ R

n under Ba is denoted by Ba(Q).

2.2. Elementary subpaths

The purpose is to define a set of subpaths that represent all SPE paths in
the sense that all SPEPs are obtained from these subpaths. Let us first discuss
how a collection of subpaths can be used to create a set of infinitely long paths.
Assume that S ⊆ A is a collection of subpaths some of which are possibly
infinitely long. A path p can be obtained from S if for all j = 0, 1, . . . there is

kj ∈ N or kj = ∞ such that p
kj

j ∈ S. In other words, at any stage k, there is a
subpath in S that corresponds to a fragment of p beginning from the stage k.
For example, if S = {ab, ba}, then p = abab · · · = (ab)∞ is a path obtained from
S; for j = 0, 2, 4, . . . it holds that p2j = ab and for j odd it holds that p2j = ba.

We denote the largest possible set of paths obtained from S ⊆ A by paths(S).
The largest refers to the largest set in set inclusion.

Definition 3. The set of paths corresponding to S ⊆ A, denoted by paths(S) ⊆
A∞, is the largest set of paths S′ ⊆ A∞ in set inclusion with the property that

p ∈ S′ if and only if for all j there is kj ∈ N or kj = ∞ such that p
kj

j ∈ S.

The main idea of this paper is to define the set S of elementary subpaths such
that paths(S) is exactly the set of SPE paths, i.e., S represents all SPEPs. The
elementary subpaths are based on the idea of considering the possible payoffs
at the time when an action profile is played given that it is followed by a path
of equilibrium actions. To clarify this idea, suppose that a0 ∈ A starts an SPE
path a0a1a2 · · · , aj ∈ A for j = 1, 2, . . .. Corresponding to a0, we can search for
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an action profile aj in p ∈ S with the property that a0 is incentive compatible
(satisfies (2) with respect to V ) given that it is followed by the sequence of
action profiles a1 · · · aj and aj is followed by any continuation payoff v that
makes (aj , v) admissible at stage j. The resulting subpath p = a0 · · · aj is
an elementary subpath. The same construction can be repeated by choosing
any initial action profile ak, k = 0, 1, 2 on the original path a0a1a2 · · · , which
produces a whole set of elementary subpaths.

In the rest of the paper, Bp denotes the composite mappingBi(p)Bi(p1) · · ·Bf(p).
For an infinitely long p taking Bp(v) means taking an infinite sequence of affine
mappings. Hence, for an infinitely long path the mapping Bp(Q) becomes a
singleton set containing the discounted average payoff vector of p regardless of
the choice of the compact set Q. This is because

(I − T )

K−1
∑

k=0

T ku(ak) + TKv → Bp(v) = (I − T )

∞
∑

k=0

T ku(ak)

when K → ∞, p = a0a1 · · · , and v ∈ Q.
The property that the first element i(p) of p becomes incentive compatible

when the last element f(p) is followed by a continuation payoff v ∈ V that
makes (f(p), v) admissible can be written as

Bp1

(

Cf(p)(V )
)

⊆ Ci(p)(V ). (3)

The set Ci(p)(V ) contains the possible continuation payoffs of i(p), while the set
Bp1

(Cf(p)(V )) is obtained from the possible continuation payoffs of f(p) when
playing the action profiles in p1, i.e., all other action profiles of p except for the
first one. Hence, the condition (3) means that the first action profile i(p) of
p can be played, or becomes incentive compatible, when the last action profile
f(p) of p is followed by any SPE payoff that is a possible continuation after
f(p).

We are now ready to give a precise definition for the set of elementary
subpaths—briefly the elementary set.

Definition 4. The set of elementary subpath S(T ) of the game for discount
factors corresponding to T is the largest set of subpaths with the properties that
for any p ∈ S(T )

1. p satisfies (3) and there is no k < |p| such that pk satisfies (3),

2. for any j = 1, 2, . . . , |p| − 1 there is q ∈ S(T ) such that either pkj = qk for
some k = 1, 2, . . . , |q| or pj = q.

Note that the first assumption in the definition of the elementary set incor-
porates minimality with respect to the path length; S(T ) contains the shortest
subpaths that satisfy (3). Hence, if p ∈ S(T ) satisfies (3) no shorter fragment
of it can satisfy (3).

It is worth observing that individual elementary subpaths can be derived
from SPEPs. For a given SPEP p and any j = 0, 1, . . ., either there is a smallest
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number kj ∈ N such that p(j) = p
kj

j satisfies (3) or condition (3) holds only for
p(j) = pj, in which case we denote kj = ∞. All the subpaths p(j), j = 0, 1, . . .,
obtained this way are elementary subpaths; by construction, for each p(j) and
any k = 1, . . . , |p(j)|− 1 either p(j)lk = p(j+ k)l for some l = 1, 2, . . . , |p(j+ k)|,
or p(j)k = p(j + k). In other words, some fragment in the beginning of p(j)k
is certainly found in the beginning of p(j + k). In particular, if both p(j) and
p(j + k) are infinitely long, then this holds for p(j)k = p(j + k). Hence, we can
alternatively define elementary subpaths as the shortest fragments of SPEPs
that satisfy (3).

Remark 1. If p is an SPEP and kj , j = 0, 1, . . ., is the smallest number such

that p
kj

j satisfies (3), then p
kj

j ∈ S(T ).

Our main result is that the elementary subpaths represent the whole set of
SPE paths.

Proposition 1. The set paths(S(T )) equals the set of subgame-perfect pure-

strategy equilibrium paths.

Proof. Take any path p ∈ paths(S(T )). By the definition of paths(S(T )), for

any j ∈ N there is kj ∈ N or kj = ∞ such that p
kj

j ∈ S(T ). On the other hand,

having p
kj

j ∈ S(T ) means that there is no profitable one-shot deviation from
i(pj) for any j by the first requirement of the definition of S(T ). Hence, p is an
SPEP.

On the other hand, take any SPEP p. As observed in Remark 1, for any
j ∈ N, there is an elementary subpath p(j) corresponding to i(pj). Hence, any
SPEP p corresponds to a collection of subpaths S(p) = {p(j) : j = 0, 1, . . .} that
satisfies (3) and is minimal in path length. Hence, the set of all SPEPs corre-
sponds to a collection S = ∪{S(p) : p is an SPEP} that satisfies the two proper-
ties in the definition of S(T ), i.e., S ⊆ S(T ) because S(T ) is assumed to be the
largest of such sets. Note that S ⊆ S(T ) implies paths(S) ⊆ paths(S(T )). More-
over, paths(S) is the set of all SPEPs by construction. Because, paths(S(T ))
are SPEPs as shown before, it follows that paths(S) = paths(S(T )).

The above result means that any subgame-perfect equilibrium path follows
a ’syntax’, in which for each action profile on the path there is an elementary
subpath that begins with that action profile. In particular, if an outside observer
has seen a certain path of past play, the observer can deduce the possible future
paths, when the elementary subpaths are known. However, the players need
not care about the elementary subpaths; all they have to do is to follow their
equilibrium strategies, which leads to a realization that follows the syntax given
by the elementary subpaths. The game may switch to another equilibrium path
only if some of the players makes a unilateral deviation from the ongoing path.

It is worth noticing that the elementary set S(T ) is defined with respect to
the set of equilibrium payoffs V , which cannot be derived through the notion
of elementary paths. However, as observed in Section 4, the only information
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of V that is needed in order to obtain S(T ) are the players’ least equilibrium
payoffs. Finding the least equilibrium payoffs is discussed in Section 4.1

The following example demonstrates how the equilibrium paths can be formed
from the elementary subpaths. The elementary subpaths of different length and
different initial action profiles are denoted by P k(a), where k is the path length
and a is the initial action profile. The set of all elementary subpaths of length
k is P k. The set Sk(T ) denotes the set of elementary subpaths that are at most
of length k and the discount factors are determined by the diagonal elements of
T .

Example 2. Consider the prisoner’s dilemma game of Example 1 and recall
that there are four action profiles; A = {a, b, c, d}. Let the sets P k(a), k = 1, 2,
a ∈ A, be as in Table 1. These elementary subpaths correspond to the prisoner’s
dilemma game for δ1 = δ2 = δ where δ is at least 1/3 and at most δ ≈ 0.46.
This game is further analyzed in Section 6.1. Here, the elementary subpaths are
taken as given. The algorithm for finding them is presented in Section 4.

Observe in particular that for any p listed in Table 1 and any j = 1, . . . , |p|−1,
there is an elementary subpath q such that pkj = qk for some k = 1, 2, . . . , |q| as
required in the definition of the elementary set. For example, corresponding to
p = aa a suitable q is aa, and for p = bc the path q can be chosen to be either
cb or ca.

Because P 2(a) = {aa}, i.e., aa is the only subpaths that starts with a, on
any equilibrium path a is followed by another a, and the rest of the action
profiles are also a’s. Moreover, aa is elementary because the second a requires a
continuation payoff v such that (I − T )u(a) + Tv ≥ con(a), which implies that
the first a can be played whenever the second is followed by any equilibrium
path beginning with a.

In this example, the action profile b can be followed by the two action profiles
a and c because P 2(b) = {ba, bc}. When b is followed either by a or c, it does not
matter what comes after these action profiles as long as the payoffs are in Ca(V )
and Cc(V ), respectively. For the action profile c, the situation is symmetric to
that of b.

Finally, since d ∈ P 1(d), it can be followed by any equilibrium path. For
example, we can form SPE paths like ddbcbcba∞, d9(cb)∞, d∞, and a∞ from
these elementary subpaths. The relevant information on how to create all the
paths from the elementary subpaths of this example is condensed in the graph
of Figure 1 in the Introduction.

Table 1: An example of sets P 1(a) and P 2(a).

a b c d
P 1 ∅ ∅ ∅ {d}
P 2 {aa} {ba, bc} {ca, cb} ∅

9



In general, a singleton action profile is an elementary subpath if and only if it
is a Nash equilibrium. Thus, the one-length elementary subpaths are exactly the
Nash equilibria of the stage game. In the above example, the Nash equilibrium
action profile d is a singleton elementary subpath. Also, a constant sequence of
action profiles such as a · · ·a can be an elementary subpath only if it consists of
exactly two elements, i.e., aa.

3. Properties of elementary subpaths

The main questions on elementary sets are whether they are finite, and what
happens to them when the discount factors increase. These issues are considered
in this section.

In general, S(T ) may contain infinitely many subpaths. The set Sk(T ), on
the other hand, contains finitely many subpaths because P k(a) are finite for
all k and a ∈ A. However, it can be shown that S(T ) is a finite set when the
discount factors are small enough. Note, in particular that in such cases the set
of infinitely long elementary subpaths is also finite. The finiteness of elementary
subpaths is revisited in Section 4.2, where it is shown that S(T ) may become
finite when the payoffs corresponding to equilibrium paths are bounded away
from the sets of payoffs for which the players incentive-compatibility constraints
are binding. Moreover, Proposition 6 shows that for any ε > 0, it is possible to
find a finite graph representation for all the equilibrium paths if the subpaths
are allowed to be ε-incentive compatible.

Proposition 2. The set S(T ) is finite when δi, i ∈ N , are small enough.

Proof. Let NE ⊆ A stand for the pure-strategy Nash equilibria of the stage
game. If a /∈ NE, then the deviation payoffs satisfy u∗

i (a) > ui(a) for some
i ∈ N . Let N ′(a) denote the set of players for which this inequality holds for
a /∈ NE.

Assume that the punishment payoffs v−i ≤ max{ui(a) : a ∈ A}, i ∈ N , are
exogenously given. Let us define δi(a, v

−) for any a /∈ NE and i ∈ N ′(a) as the
discount factor δi that solves

(1 − δi)ui(a) + δimax
a∈A

ui(a) = (1− δi)u
∗
i (a) + δiv

−
i .

Note that max{ui(a) : a ∈ A} is an upper bound for the continuation payoff of
player i ∈ N . Moreover, δi(a, v

−) ∈ (0, 1] is well-defined when u∗
i (a) > ui(a),

i.e., i ∈ N ′(a).
Let us set

δ0(v
−) = min

a/∈NE
max

i∈N ′(a)
δi(a, v

−).

If δi < δ0(v
−) for all i ∈ N , then no action profile a /∈ NE can be played when

the punishment payoffs are v−, because for any a /∈ NE there is some player
i ∈ N whose incentive-compatibility condition (2) fails to hold for any vi such
that v−i ≤ vi ≤ max{ui(a) : a ∈ A}.

10



If NE = ∅, we can set v−i , i ∈ N , to the player’s minimax payoff, i.e., v−i is
the lower bound for the value of the least equilibrium payoff for player i ∈ N .
It follows that no action profile can be played when δi < δ0(v

−) for all i ∈ N ,
in which case V = ∅ and S(T ) = ∅. Hence, S(T ) is finite.

If NE 6= ∅, then v−i , i ∈ N , can be chosen as the player’s smallest Nash
equilibrium payoff in the stage game. When δi < δ0(v

−) for all i ∈ N , only
the Nash equilibrium action profiles can be played. Hence, S(T ) is finite for
discount factors small enough.

Let us now consider the comparative statics of S(T ) with respect to T . Let
T1 and T2 be two matrices corresponding to two different sets of discount factors.
We denote T1 ≪ T2 if the discount factors on the diagonal corresponding to T2

are at least those of T1. With a slight abuse of notation, we denote p ∈ S(T )
when either p ∈ P k(a) or p ∈ P∞(a) for some a ∈ A and k ≥ 1.

The first result, which is of importance itself, tells that if the punishment
payoffs are non-increasing for two set of discount factors T1 and T2 such that
T1 ≪ T2, then any equilibrium path for T1 is also an equilibrium path when
the discount factors are increased to T2. The payoff sets corresponding to T1

and T2 are denoted by V (T1) and V (T2), respectively. The punishment payoffs
are v−(V (T1)) and v−(V (T2)). Complementing the following result, it is shown
in [7] that the equilibrium paths may not be monotone in the discount factor
if the punishment payoffs increase. Note also that the monotonicity of paths
holds even though the equilibrium payoffs may fail to satisfy the monotone
comparative statics.

Proposition 3. If T1 ≪ T2 and v−(V (T1)) ≥ v−(V (T2)), then paths(S(T1)) ⊆
paths(S(T2)).

Proof. To suppress the notation let uk denote the vector of payoffs in period
k ≥ 0, i.e., uk = u(ak) and dk = u∗(ak) denote the vector of deviation payoffs.
Moreover, vi stands for the vector v−(V (Ti)), i = 1, 2.

Because uk, k = 0, 1, . . ., is a payoff stream corresponding to an equilibrium
path, the incentive-compatibility condition (2) implies that for all k ≥ 0 we have

(I − T1)u
k + T1



(I − T1)

∞
∑

j=0

T j
1u

k+j+1



 ≥ (I − T1)d
k + T1v

1.

By rearranging and observing that (I − T1)
−1v1 =

∑∞
j=0 T

j
1 v

1, we get

Sk
1

.
= uk − dk + T1

∞
∑

j=0

T j
1

(

uk+j+1 − v1
)

≥ 0, ∀k = 0, 1, . . . .

Similar expression as for Sk
1 can be derived for Sk

2 with T2. The purpose of
the proof is to show that Sk

2 ≥ 0, k ≥ 0, which means that the incentive-
compatibility condition holds for T2 along the SPEP path for T1.
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It can be seen that Sk
i satisfies the recursion

Sk
i = uk − dk + Ti

(

dk+1 − vi + Sk+1
i

)

, ∀k ≥ 0 and i = 1, 2. (4)

Observe that the term uk − dk is a vector with non-positive components, which
implies that the components of dk+1 − v1 + Sk+1

1 , k ≥ 0, are non-negative,
because Sk

1 ≥ 0, k ≥ 0, by the incentive compatibility.
Assume that for the first K +1 periods, i.e., for periods k = 0, 1, . . . ,K, the

discount factors are given by T2 and the smallest payoffs are v2 and after that
the discount factors correspond to T1 and the smallest payoffs are v1. It holds
that T2 = T1 + ε, where ε stands for the diagonal matrix T2 − T1 ≫ 0.

The recursion (4) gives

SK
2 = uK − dK + T1

(

dK+1 − v1 + SK+1
1

)

+ ε
(

dK+1 − v1 + SK+1
1

)

= SK
1 + ε

(

dK+1 − v1 + SK+1
1

)

Recall that the components of the vector dK+1 − v1 + SK+1
1 are non-negative.

Hence, we get SK
2 ≥ SK

1 ≥ 0. It can now be seen from the recursion (4) and the
inequalities T 2 ≫ T 1, dj − v2 ≥ dj − v1, j ≤ K, that Sj

2 ≥ Sj
1 ≥ 0 for all j ≤ K.

Letting K go to infinity we obtain the incentive-compatibility condition for all
k ≥ 0, when the discount factors are given by T2. Hence, the result follows. ✷

We can now consider the comparative statics of elementary subpaths.

Proposition 4. If T1 ≪ T2 and v−(V (T1)) ≥ v−(V (T2)), then p ∈ S(T1)
implies that there is k ≤ |p| such that pk ∈ S(T2).

Proof. Let us first show that any payoffBp1
(v(q)) is an equilibrium payoff when

p ∈ S(T ) and q is an SPEP such that v(q) ∈ Cf(p)(V ). If p is infinitely long, so
is p1. In particular, p1 is an SPEP, i.e., Bp1

(Cf(p)(V )) is a singleton SPE payoff
corresponding to p1. Hence, the claim holds for infinitely long subpaths. Next,
assume that p is finitely long.

Take an SPEP q with the corresponding payoff v(q) ∈ Cf(p)(V ). Any payoff
in Bf(p)(Cf(p)(V )) is an equilibrium payoff by definition. Hence, f(p)q is an
SPEP. If |p| ≥ 2, then by Proposition 1, there are r ∈ S(T ), j, and k such that
rj = (p|p|−2q)

k. Hence, there are no profitable one-shot deviations when playing
the second last action profile p1|p|−2 of p, i.e., Bp|p|−2

(v(q)) is an SPE payoff. By

repeating the argument, it follows that Bp1
(v(q)) is an equilibrium payoff that

corresponds to an equilibrium path p1q. Hence, the claim holds.
In the following P k(a;Ti) denotes the set of k-length elementary subpaths

corresponding to Ti, C
i
a(V (Ti)) is the set of continuation payoffs for Ti, v

i(pk)
is the payoff vector corresponding to pk and Ti, and Bi

p is the operator Bp

corresponding to Ti.
The above deduction implies that B1

p1
(v1(q)) is an SPE payoff for an SPE

path q such that v1(q) ∈ C1
f(p)(V

1). By Proposition 3 the same holds for

B2
p1
(v2(q)). Moreover, if (i(p), v1(p1q)) is admissible for T1, so is (i(p), v2(p1q))

for T2, i.e., pq is an SPEP for both T1 and T2. Because q can be any equilibrium
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path such that v1(q) ∈ C1
f(p)(V (T1)), this means that the condition (3) for T1

implies that it holds also for T2. Hence, either p is an elementary subpath or
there is k < |p| such that pk is an elementary subpath. ✷

When the discount factors increase, all the subpaths that satisfy (3) still
satisfy this condition if the smallest equilibrium payoffs do not increase. Note
that the number of elementary subpaths and their lengths do not directly reflect
the number of equilibrium paths. For example, if abcd, abdc ∈ S(T1) it may
happen that ab ∈ S(T2) for T2 ≫ T1, i.e., corresponding to two elementary
subpaths starting with ab there is only one when the discount factors increase.
Consequently, ab may be followed by other subpaths than cd or dc.

4. Computation and approximation of elementary sets

An algorithm for finding the elementary sets of supergames is presented in
this section. The algorithm produces all the elementary subpaths if it terminates
in a finite number of steps. Otherwise, the set obtained from the algorithm can
be used as an approximation. The approximations obtained this way are related
to the approximate equilibria of the supergame.

The algorithm presented in this section may produce subpaths that contain
non-equilibrium parts. However, these subpaths can be removed easily as is
explained in Section 5.

4.1. Algorithm for finding the elementary subpaths

First, we introduce a recursive way of computing the continuation payoff
requirements. To illustrate the main idea let us consider a subpath abc. The
vector of the smallest payoffs con(ab) that the players should get after ab to
make the first element a incentive compatible are found by solving

(I − T )u(b) + T con(ab) = con(a).

If it happens that coni(ab) would be below v−i then we simply set coni(ab) =
v−i . Given that con(ab) is known, we can now find the smallest payoff that is
required after abc to make a incentive compatible as the first action profile. This
continuation payoff con(abc) is found by solving

(I − T )u(c) + T con(abc) = con(ab).

Again, we set the continuation to v−i if it would be below that value. If
con(abc) ≤ con(c), then any equilibrium path starting from c is an admissi-
ble continuation for abc at the time when a is played. Note that the same idea
appears in condition (3).

In general, we can define con(p) for any p ∈ Ak, k ≥ 2, as above. When
con(pk−1) is known and p = pk−1ak, we set

coni(p) = max
{[

coni(p
k−1)− (1− δi)ui(a

k)
]

/δi, v
−
i

}

.
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Now, con(p) is simply the continuation payoff vector that is required after f(p)
to make the first action profile of p incentive compatible. The following observa-
tions are immediate. Note that the first observation relates the smallest payoffs
con(p) to condition (3): con(p) ≤ con(a) is a sufficient for (3). On the other
hand, if it happens that coni(p) > v+i for some i ∈ N , then con(p) is certainly
outside of Ci(p)(V ) and p cannot be an elementary subpath.

Remark 2. Condition (3) holds for p ∈ Ak with f(p) = a if con(p) ≤ con(a). If
coni(pj) > v+i for some j = 0, . . . , |p|−1 and i ∈ N , then p is not an elementary
subpath.

The above properties are efficiently utilized in the following algorithm that
computes the elementary subpaths. The algorithm first generates sets P̂ k that
may contain subpaths that contain non-equilibrium parts, which can be subse-
quently removed. The removal of these subpaths will be explained in Section
5.1. The algorithm is demonstrated in Section 6. Let P k

∗ (a) denote the working
set of the algorithm containing the subpaths of length k starting with a.

1. For all a ∈ A, include a ∈ P̂ 1(a) if coni(a) ≤ v−i for all i ∈ N . If
v−i ≤ coni(a) ≤ v+i for all i ∈ N , and the first inequality is strict for some
i ∈ N , then include a in P 1

∗ (a). Set k = 2 and go to Step 2.

2. For each a, b ∈ A, p ∈ P k−1
∗ (a), compute con(q) for q = pb.

(a) If con(q) ≤ con(b) and

qj ∈ P k−j
∗ (i(qj)) or q

l
j ∈ P̂ l(i(qj)), for some 1 ≤ l ≤ k − j,

∀j = 1, . . . , k − 1,
(5)

then include q in P̂ k(a).
(b) Otherwise, if coni(q) ≤ v+i for all i ∈ N and q satisfies Eq. (5), then

include q in P k
∗ (a).

If P k
∗ (a) = ∅ for all a ∈ A stop. Otherwise, increase k by one and repeat

Step 2.

3. Remove the subpaths with non-equilibrium parts from P̂ k to obtain P k.
This will be explained in Section 5.1.

The test in Step 2.(b) tells whether it is possible that q = pb is part of an
elementary subpath. First, the required continuations should not exceed the
upper bounds v+i , i ∈ N . Second, all parts of the subpath must satisfy the con-
dition (3). This means that for each j = 1, . . . , k − 1, there is either a shorter
elementary subpath starting with i(qj) or there is possibly some elementary sub-

path starting with i(qj), i.e., subpath in P j
∗ (i(qj)). If all P

k
∗ become empty sets

the algorithm can be terminated because there cannot be any more elementary
subpaths that have not yet been found. Moreover, in that case the elementary
set is finite.

Remark 3. If there is k such that P k
∗ (a) = ∅ for all a ∈ A, then S(T ) contains

finitely many subpaths.
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If the algorithm is terminated after k steps and some of the sets P k
∗ (a), a ∈ A,

are non-empty, it is possible to find the infinitely long elementary subpaths that
are of the form p = qb∞ for some b ∈ A.

Remark 4. If the algorithm is terminated after k steps and P k
∗ (a) 6= ∅ for some

a ∈ A, then for each p ∈ P k
∗ (a) the path q = pb∞ belongs to P∞(a) if bj ∈ P j(b)

for some j ≤ k, b ∈ A, and u(b) ≥ con(p).

The above observation is useful, because it means that if all the infinitely
long elementary subpaths are of the form p = qb∞, b ∈ A, where |q| ≤ k and
b ∈ A, then they can be found when terminating the algorithm after k steps and
going through the possible combinations of q ∈ P k

∗ (a) and bj ∈ P j(b) for j ≤ k.
In [9], it is found that the elementary set is finite for up to δ ≈ 0.6 for the

repeated prisoner’s dilemma, chicken, and stag hunt games, and up to δ ≈ 0.9
for the repeated leader game; see Table 1 in [9] and the entries without ∗ and
∗∗ therein. For these supergames, the algorithm terminates after finitely many
steps even for reasonably large discount factors.

When the discount factors are close to one, there is no guarantee that the
algorithm would terminate after finitely many steps, because there may be ele-
mentary subpaths that lead to payoffs arbitrarily close to the boundary of some
of the players’ incentive-compatibility conditions. Consequently, there may be
arbitrarily long elementary subpaths.

The algorithm can be terminated while there still are elements in P k
∗ , in

which case a subset of the elementary set is obtained, because some of the
elementary subpaths may not have been found. As Proposition 5 in the following
section tells, the missing subpaths give payoffs close to the boundary of some of
the players’ incentive-compatibility conditions. When terminating the algorithm
while P k

∗ is nonempty, it is possible to obtain approximate equilibria. This topic
is further discussed in Section 4.2.

The algorithm for computing the elementary set uses the smallest and the
highest equilibrium payoffs v−i and v+i , i ∈ N . However, these payoffs are
typically not known in advance. The highest payoffs v+i , i ∈ N , need not be
the highest equilibrium payoffs; they can be replaced by the highest stage game
payoffs. These values affect how fast the algorithm finds the non-elementary
subpaths and thus how fast it converges. The punishment payoffs v−i , i ∈ N ,
are easily determined for many games. However, if they are not known the
following algorithm [7, 11] can be used in finding them. This method is the
first that has been proposed for finding the smallest equilibrium payoffs. Hence,
there is potential for further development of algorithms for computing the most
severe punishments.

Initialize the lower bounds

li = min
a−i∈A−i

max
ai∈Ai

ui(a).

While the punishment paths are not found do
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1. Find the elementary subpaths corresponding to the punishment pay-
offs li, i ∈ N .

2. Find the smallest payoffs mi, i ∈ N , from the equilibrium paths
constructed from the subpaths found in Step 1.

If mi > li for some i ∈ N then update li = mi.

Otherwise the payoffs v−i , i ∈ N , are found.

The algorithm sets the minimax values as the smallest payoffs and updates
these lower bounds until the correct values are found. The elementary subpaths,
or a subset of the elementary set corresponding to the current punishment pay-
offs li, i ∈ N , are computed in Step 1, as if li, i ∈ N , were the punishment
payoffs. In Step 2, the new punishment payoffs are searched from the resulting
paths. For this purpose, it is possible to utilize the graph presentation of ele-
mentary subpath, see [7, 11] for more details. Forming the graph is presented
in Section 5.1.

4.2. Approximating the elementary set and approximate equilibria

As mentioned, the algorithm for finding the elementary subpaths can be
terminated while there still are elements in P k

∗ , in which case we get a subset
of the elementary set, because some of the elementary subpaths may not have
been found. As shown in the following result, the missing subpaths give payoffs
close to the boundary of some of the players’ incentive-compatibility conditions.

Proposition 5. For any ε > 0, there is k such that pl ∈ P l(i(p)) for some

l ≤ k when p ∈ A∞(a) is an SPE path, a ∈ A, and

vi(p1) ≥ coni(a) + ε, ∀i ∈ N. (6)

Proof. Let Q stand for the set

×i∈N [v−i ,max
a∈A

ui(a)].

Because A is finite and Ba, a ∈ A, are contractions, for any ρ > 0, there is
k such that the diameter of the set that is obtained by taking the image of Q
under a sequence Ba0 , . . . , Bak−1 , aj ∈ A for j = 0, . . . , k − 1, has diameter less
than ρ. Because V ⊆ Q, it follows that the diameter of the set Bpk

1

(Cf(pk
1
)(V ))

is less than ρ for any p. This together with condition (6) implies that when
choosing ρ small enough and k large enough we have

(1− δi)
k−1
∑

j=0

δji ui(i(pj+1)) + δki vi ≥ coni(i(p)),

for all i ∈ N and v ∈ Cf(pk
1
)(V ). Gathering the components of the left hand

side of the above equation for i ∈ N into a vector, it reads as Bpk
1

(v). Hence, ρ
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can be chosen such that for any a ∈ A and p ∈ A∞(a) for which (6) holds we
have

Bpk
1

(

Cf(pk
1
)(V )

)

⊆ Ci(p)(V ).

By Remark 1 either pk+1 is an elementary subpath or a shorter fragment of it
is elementary. ✷

The above result means that if Eq. (6) holds for all the equilibrium paths
then there is a bound to the maximum length of elementary subpaths, which
implies that the elementary set is finite. It also tells that an elementary subpath
p ∈ A(a) that is not found when the algorithm is terminated with non-empty
P k
∗ and large k, is such that vi is close to coni(a) for some i ∈ N and any payoff

v ∈ Bp1
(V ) ∩ Ca(V ). Hence, by taking k large enough we should be able to

obtain a good approximation of the elementary set when the final set of subpaths
is obtained either by removing or including P k

∗ into the set of subpaths.
Let us first consider the outer approximation for the elementary set that is

obtained by including the remaining P k
∗ 6= ∅ into P̂ k. In this case, the final

set contains subpaths that produce all the SPE paths of the game but there
may also be subpaths that do not satisfy the players’ incentive-compatibility
conditions at all stages.

Definition 5. The k-step outer approximation Sk
O(T ) of S(T ) is the set of

subpaths obtained by including P j
∗ (a), a ∈ A, j ≤ k, produced by the algorithm

into P̂ j(a), a ∈ A, j ≤ k, and then removing the non-equilibrium parts.

The paths obtained from Sk
O(T ) contain all the SPEPs. Hence, it is reason-

able to call Sk
O(T ) an outer approximation. The outer approximation is related

to approximate equilibria of the supergame. We say that a strategy profile σ
is an ε-incentive-compatible equilibrium if no player has a one-shot deviation
from σ that would benefit the deviating player by at most ε. A one-shot de-
viation from a strategy profile σ means that a player i chooses σ′

i that differs
from σ only for one history of past play; there is exactly one period k in which
the action prescribed by σ′ is different from the action prescribed by σi. The
usual notion of ε-equilibria would allow for more general deviations that do not
benefit any player by more than ε. In other words, σ is an ε-equilibrium if

Ui(σ|p) ≥ Ui(σ
′
i, σ−i|p)− ε, ∀i ∈ N, p ∈ Ak, 0 ≤ k < ∞, and σ′

i ∈ Σi.

Hence, ε-incentive-compatible equilibria are a subset of ε-equilibria. A path
that is induced by an ε-incentive-compatible equilibrium strategy profile is an
ε-incentive-compatible equilibrium path.

As stated below, Sk
O(T ) may give ε-incentive-compatible equilibrium paths

of the supergame. However, not all of the ε-incentive-compatible equilibrium
paths are necessarily obtained, because the punishment payoffs corresponding
to ε-incentive-compatible equilibria may be lower than v−i , i ∈ N , used in the
algorithm. Since Sk

O(T ) contains all the equilibrium paths, Proposition 6 implies
that for any ε > 0, it is possible to compute in a finite number of steps a graph
representation for the the equilibrium paths if we allow the subpaths to be
ε-incentive compatible.
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Proposition 6. For any ε > 0, there is k such that paths
(

Sk
O(T )

)

are ε-
incentive-compatible equilibrium paths.

Proof. The purpose is to show that choosing k large enough, the violation of
the incentive compatibility condition can be made arbitrarily small for any p ∈
paths

(

Sk
O(T )

)

, which implies that p is ε-incentive compatible equilibrium path
for any ε > 0 when k is large enough.

Take a path p = a0a1 · · · ∈ paths
(

Sk
O(T )

)

and let u∗(a0) denote the vector
of deviation payoffs as before. Moreover, wk

i denotes player i’s smallest payoff
corresponding to paths

(

Sk
O(T )

)

, and the player’s smallest stage game payoff is

u−
i . The corresponding payoff vectors are wk and u−, respectively. Note that

u−
i ≤ wk

i for all i ∈ N .
By the definition of con(pk), we have

(I − T )
k

∑

j=0

T ju(aj) + T k+1con(pk) = (I − T )u∗(a0) + Tv−. (7)

Moreover, the step 2 (b) of the algorithm assures that con(pk) ≤ v+.
The largest possible violation of the incentive-compatibility condition at the

time when a0 is played and is followed by p1, is obtained when the players’
payoffs after p are wk

i , i ∈ N . It follows from (7) that

(I − T )
k

∑

j=0

T ju(aj) + T k+1wk
i = (I − T )u∗(a0) + Tv− − T k+1

[

con(pk)− wk
]

≥ (I − T )u∗(a0) + Tv− − T k+1
(

v+ − wk
)

≥ (I − T )u∗(a0) + Tv− − T k+1
(

v+ − u−
)

.

The components of T k+1(v+ − u−) ≥ 0 can be made arbitrarily small by
choosing k large enough. Hence, (a, v) becomes ε-admissible for v = (I −
T )

∑k
j=0 T

ju(aj+1) + T k+1wk, when k is large enough. To be specific, it holds
that

(1− δi)ui(a
0) + δivi ≥ (1− δi)u

∗
i (a

0) + δiv̂
−
i − ε, ∀i ∈ N,

where v̂−i ≤ wk
i ≤ v−i is the smallest ε-incentive-compatible equilibrium payoff

for player i ∈ N . The same deduction holds for any action profile a belonging
to any subpath of Sk

O(T ). Hence, for any ε > 0, it is possible to find k large
enough such that any p ∈ paths(Sk

O(T )) is an ε-incentive-compatible equilibrium
path.

In addition to forming an outer approximation of S(T ) it is possible to form
an inner approximation by removing the paths belonging to P∗ from P̂ . The
set of subpaths obtained this way can be used in obtaining a subset of SPEPs.

Definition 6. The k-step inner approximation is the set Sk
I (T ) obtained when

terminating the iteration after k steps and excluding P j
∗ (a), a ∈ A, j ≤ k, from

P̂ j(a), a ∈ A, j ≤ k.
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The inner approximation is related to ε-strict incentive-compatible equilib-
ria in an analogous manner as the outer approximation is related to ε-incentive-
compatible equilibria. A strategy profile σ is called an ε-strict incentive-compatible
equilibrium if all one-shot deviations from σ for any player lead to payoffs that
are worse than the deviating player’s original payoff by at least ε. Note that
the more common notion of ε-strict equilibrium means that a strategy profile σ
satisfies

Ui(σ|p) ≥ Ui(σ
′
i, σ−i|p) + ε, ∀i ∈ N, p ∈ Ak, 0 ≤ k < ∞, and σ′

i ∈ Σi.

These strategies would allow for more general deviations than only one-shot
deviations provided that they lead to payoffs that are worse than the original
payoff by at least ε. Any strategy that is not ε-strict incentive-compatible
equilibrium cannot be ε-strict equilibrium either. Hence, ε-strict equilibria are
a subset of ε-strict incentive-compatible equilibria.

An ε-strict incentive-compatible equilibrium path is a path of action profiles
induced by an ε-strict incentive-compatible equilibrium strategy. The inner
approximation can be used in producing all these paths. However, the set of
paths obtained from Sk

I (T ) may also contain other SPEPs.

Proposition 7. For any ε > 0 there is k such that all ε-strict incentive-

compatible equilibrium paths are included in the set paths
(

Sk
I (T )

)

.

Proof. For a path p = a0a1 · · · ∈ paths
(

Sk
I (T )

)

and for any j = 0, 1, . . . there is
l1 ≤ k such that

(I − T )

l1
∑

j=0

T ju(aj) + T l1+1con
(

f(pl1j )
)

≥ (I − T )u∗(a0) + Tv−.

On the other hand, the same holds for aj+l1+1 and some l2 ≥ k. Hence, for any
aj , we can choose k′ = l1 + · · ·+ lr ≥ k, where r is the smallest number greater
than k for which l1 + · · ·+ lr ≥ k, and it holds that

(I − T )

k′
∑

j=0

T ju(a0) + T k′+1v(pk′+1) ≥(I − T )u∗(a0) + Tv−

+ T k′+1 [v(pk′+1)− con(f(pk′)] .

Because

0 ≤ T k′+1 [v(pk′+1)− con(f(pk′))] ≤ T k+1 [v(pk+1)− con(f(pk′))] ,

and k can be chosen large enough such that

T k+1 [v(pk+1)− con(f(pk′ ))] ≤ (ε, . . . , ε),

it is possible to create all paths p = a0a1 · · · for which it holds that

(I − T )u(a0) + Tv(p1) ≥(I − T )u∗(a0) + Tv− + (ε, . . . , ε) (8)
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from the paths of Sk
I (T ).

A path p = a0a1 · · · that is an ε-strict incentive compatible satisfies

(I − T )u(aj) + Tv(pj+1) ≥ (I − T )u∗(aj) + T v̂− + (ε, . . . , ε)

≥ (I − T )u∗(aj) + Tv− + (ε, . . . , ε), ∀j = 0, 1, . . . ,

where v̂− ≥ v− is the vector of least ε-strict incentive-compatible equilibrium
payoffs. Hence, the paths that satisfy the condition (8) contain all ε-strict
incentive-compatible equilibrium paths.

5. Graph presentation and the complexity of equilibria

The algorithm presented in the previous section may produce subpaths,
whose incentive compatibility relies on sets P k

∗ . These sets do not necessarily
form any elementary subpaths when the algorithm is terminated. This means
that the subpaths in P̂ k may contain non-equilibrium parts. However, remov-
ing these subpaths from the sets P̂ k can be done using the subpaths that have
already been found and with the same effort as forming a graph for all the equi-
librium paths when there are finitely many subpaths. This section describes
how to form the graph presentation. The graph is useful for producing the
equilibrium paths and payoffs and in analyzing the complexity of equilibrium
outcomes.

5.1. Forming the graph presentation

The algorithm for forming the graph is presented below.

1. Form a tree of the subpaths in the sets P̂ k. The root node is the empty
history ∅.

2. Transform the tree into a graph. Each node in the tree corresponds to a
node in the graph. Form the arcs between the nodes by going through
them and determine the destinations for each one.

(a) The destinations of an inner node in the tree, i.e., node with children,
are its children. Set an arc to each destination node.

(b) The destinations of a leaf node, i.e., node with no children, which is
connected to the root node ∅ are all the child nodes of ∅.

(c) For the other leaf nodes, i.e., for subpaths p ∈ P̂ k, find the smallest
i ≥ 1 such that pi is found in the tree. If pi is found and it is an inner
node, then remove node p and connect node p|p|−1 to the node pi.
If pi is not found and the longest common path with the tree is an
inner node, then a part of p cannot appear on an equilibrium path
and the node is removed from the graph.

3. Insert arcs and nodes for infinitely long subpaths. For each of these sub-
paths find largest i such that pi is a node. Insert an arc with the label pi

from this node to a dummy node corresponding to the path.
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Example 3. Assume that the subpaths in P̂ k are c, aa, ab, bb, bab and bac; the
corresponding tree is shown in the left of Figure 2. We note that subpath bac
contains a non-equilibrium part, because there are no elementary subpaths that
start with ac. Thus, subpath bac cannot be part of an equilibrium path and we
see how the node is removed from the graph during the algorithm. The graph
that generates all the equilibrium paths is basically formed by going through
the sets P̂ k. According to Step 2.(b), node c connects to nodes a, b and c.
According to Step 2.(c), node aa connects to a and node ab to b, because p1 = a
and p1 = b are in the tree. Thus, we loop a to itself and connect node a to b.
Similarly, node bb connects to b and b loops to itself. For bab, we search p1 = ab
in the tree and it is a leaf node. Thus, we search p2 = b and since it is an inner
node in the tree, we connect node ba to p2 = b. For bac, we search p1 = ac but
it is not found. The longest common path with ac in the tree is an inner node
a and node bac is removed from the graph. The resulting graph is shown in the
right of Figure 2. The last action in the node label gives the action profile that
is played when the node is visited. For example, a is played in node ba.

∅

a

aa ab

c b

ba

bab bac

bb

∅

c b

a ba

(a) Tree (b) Graph

Figure 2: An example of elementary subpaths as a tree and a graph.

It is straightforward to get the equilibrium paths and payoffs from the graph.
The only trick is to combine the finite paths with the infinite cycles from the
graph; see Section 3.3 in [9]. This is the way to generate infinite sequences
from the graph. Moreover, the graph construction leads directly to the result
that the finite elementary sets can be represented by a graph and the payoff
set can be identified as a particular fractal set, i.e., graph-directed self-affine set
[10, 32]. Proposition 2 guarantees that the graph presentation is possible when
the discount factors are small enough and the stage game has pure-strategy
Nash equilibria.

Proposition 8. When S(T ) contains finitely many subpaths, then all SPE paths

can be represented by a graph.
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Corollary 1. The SPE paths given by Sk(T ) can be represented by a graph.

Corollary 2. When S(T ) contains finitely many subpaths, the payoff set V (T )
is a graph-directed self-affine set.

Corollary 3. When the discount factors δi, i ∈ N , are small enough, S(T ) can
be represented by a graph, and the payoff set V (T ) is a graph-directed self-affine

set.

5.2. Complexity of equilibrium outcomes

The complexity of equilibrium paths and payoffs can be analyzed with the
graph presentation of the elementary subpaths. We emphasize that this ap-
proach to the complexity of equilibria differs fundamentally from previous liter-
ature on the topic, where the focus has been on computational complexity [22]
or the complexity of individual strategies [28, 15]. Here, complexity refers to
the complexity of the set of all possible equilibrium paths.

Assume that the elementary subpaths (or their approximation) is turned into
a graph. A graph is represented by its m×m adjacency matrix D, where m is
the number of nodes in the graph and Dij = 1 if there is an arc from node i to
j and otherwise Dij = 0. The eigenvalues of the graph can be used in counting
the number of walks in the graph [19], where a walk means any sequence of

nodes using the arcs of the graph. The element d
(k)
ij of the matrix Dk is equal

to the number of walks of length k from node i to j. Here, we are interested in
the walks originating from the root node, which is given index 1 and the rest of
the nodes are indexed with j = 2, . . . ,m. The number of k-length equilibrium
paths is

y(k) =

m
∑

j=2

Dk
1j .

Asymptotically, the number of equilibrium paths satisfies

y(k) ≈ y0ρ
k(D), (9)

where y0 is a constant and ρ(D) is the largest eigenvalue of D; see, e.g., Theorem
2.2.2 in [19]. Hence, ρ(D) is the asymptotic growth rate. This measure tells how
large the set of equilibrium paths is and it can be used for comparing different
games.

It is also possible to measure the complexity of the payoff set using the graph.
One of the fractal measures is the Hausdorff dimension, which tells intuitively
how the equilibrium payoffs fill the space. The Hausdorff dimension s can be
estimated from the graph by solving1 [32]

ρ(δsD) = 1,

1The exact dimension can be defined when so called open set condition holds, which means
that the payoffs that are mapped in the graph do not overlap. This condition holds when the
discount factor is less than 1/2. In general, there are techniques for estimating lower and
upper bounds for the dimension [23].
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assuming that the players have a common discount factor δ. The Hausdorff
dimension corresponds to the value s for which the largest eigenvalue of matrix
δsD is one. Thus, we can analyze the payoff set with the eigenvalues of the
weighted adjacency matrix. In [10], it is shown how to estimate the Hausdorff
dimension when the players have different discount factors.

Example 4. Consider the graph of Figure 2. The adjacency matrix is

D =













0 1 1 1 0
0 1 1 1 0
0 0 1 1 0
0 0 0 1 1
0 0 0 1 0













(10)

with the largest eigenvalue ϕ = (1 +
√
5)/2 ≈ 1.618, which is the golden ra-

tio. The asymptotic growth rate of equilibrium paths is ρ(D) = ϕ. When the
discount factor is δ = 1/2, the Hausdorff dimension is s = log2 ϕ ≈ 0.694.

6. Examples

6.1. Prisoner’s dilemma game

In this section, it is demonstrated how the algorithm finds the elementary
subpaths, how the graph is constructed, and how to analyze the equilibria with
the graph. Consider the prisoner’s dilemma game with a common discount
factor δ = 1/2 and the stage game payoffs are as in Example 1. The payoff sets
of the repeated prisoner’s dilemma have previously been studied in [35], [36] and
[31]. Here, we show the exact paths that can be played in the game and analyze
what happens when the discount factor increases.

In this game, the punishment path is the infinite repetition of d, which is
denoted by d∞. The corresponding payoffs are v−i = 1, i = 1, 2. Let us now find
the elementary set for this game. For this purpose, finite paths are classified
into elementary and non-elementary sets, and those which belong to P k

∗ . We
neglect the sets P̂ k and use P k instead, because in this example there are no
subpaths with non-equilibrium parts. In Step 1 of algorithm in Section 4.1, we
calculate con(p) for one-length paths p. For example, con(d) = (1, 1) and d is
an elementary subpath because coni(d) ≤ v−i , i = 1, 2. For paths a, b and c, we
have v− ≤ con(p) ≤ v+ and P 1

∗ = {a, b, c}. Table 2 gives the payoff requirements
for one and two-length paths. The elementary subpaths are denoted by +, the
non-elementary by −, and those that belong to P k

∗ (a), k = 1, 2, a ∈ A, by ∗.
In the first run of Step 2, we examine con(pb) for all b ∈ A and p ∈ P 1

∗ , and
these are the two-length paths in Table 2. For instance, for con(ab) we need
con(a) = (2, 2) and u(b) = (0, 4), and get

con1(ab) = max

{[

2−
(

1− 1

2

)

· 0
]/

1

2
, v−1

}

= max {4, 1} = 4,

con2(ab) = max

{[

2−
(

1− 1

2

)

· 4
]/

1

2
, v−2

}

= max {0, 1} = 1.
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Table 2: Finding elementary subpaths with |p| ≤ 2.

path con(path) path con(path) path con(path)
a (2, 2)∗ b (2, 1)∗ c (1, 2)∗

aa (1, 1)+ ba (1, 1)+ ca (1, 1)+

ab (4, 1)− bb (4, 1)− cb (2, 1)+

ac (1, 4)− bc (1, 2)+ cc (1, 4)−

ad (3, 3)∗ bd (3, 1)∗ cd (1, 3)∗

At this point aa, ba, bc, ca and cb are found to be elementary, but because
ad, bd, and cd belong to P 2

∗ , all the elementary subpaths are not yet found. It
can be observed that ad is incentive compatible only when it is followed by an
infinite repetition of a, i.e., P∞(a) = {ada∞}, because no other action profile
gives the required payoff (3, 3). Thus, we need not consider other subpaths
starting with ad and it is removed from the set P 2

∗ , which is a minor deviation
from the algorithm. Note that this way to deduce infinitely long elementary
subpaths corresponds to the observation made in Remark 4. On the other
hand, it could be tested whether a subpath belonging to P k

∗ , k ≥ 2, could be
part of an equilibrium path only when it is followed by a continuation payoff
produced by paths belonging to P j (or P̂ j), j < k. This would provide another
way to remove ad from P 2

∗ in this example. To simplify the exposition, this step
is excluded from the algorithm presented in Section 4.1.

Due to the symmetry of the game, only the paths beginning with either b or
c need to be analyzed. Consider the three and four-length paths beginning with
cd in Table 3. For example, cdb belongs to P 3

∗ (c) because coni(cdb) ≤ 3, for all
i ∈ N , d ∈ P 1(d) and b ∈ P 1

∗ (b).

Table 3: Finding elementary subpaths with 3 ≤ |p| ≤ 4.

path con(path) path con(path)
cda (1, 3)∗ cdba (1, 1)+

cdb (2, 2)∗ cdbb (4, 1)−

cdc (1, 6)− cdbc (1, 4)−

cdd (1, 5)− cdbd (3, 3)∗

Now, it can be seen that the only possible paths starting with cd are cda
and cdb. The only continuation to cda is aa, because the only elementary sub-
paths starting with a are aa and ad, and ad gives lower payoff than the required
(1, 3). Thus, cda∞ ∈ P∞(c) and we need not consider other subpaths start-
ing with cda. From four-length paths, we can observe that P 4(c) = {cdba}
and P∞(c) = {cdbda∞, cda∞}. As earlier, cdbd can only be followed by a∞

and no other subpaths starting with cdbd need to be considered. Hence, there
are no longer paths to be searched for and the elementary set has been found:
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{d, aa, ba, bc, ca, cb, cdba, bdca, ada∞, bda∞, cda∞, bdcda∞, cdbda∞}. It is possi-
ble to create all the SPE paths with these elementary subpaths. For example,
the SPE paths dkada∞, dkbda∞, dkcda∞, dkbdcda∞, dkcdba∞, and d∞, are
all obtained by combining the elementary subpaths. In particular, these paths
cannot themselves be elementary.

The tree of finite elementary subpaths is presented in Figure 3. The des-
tinations of leaf nodes are indicated next to them. Using the graph algorithm
without Step 3, we get the directed graph composed of solid arcs in Figure 3.
Each node denotes what is played when the node is visited.

∅

a aa

b

ba

bc

bd bdc bdca

c

ca

cb

cd cdb cdba

a

a

c

a
a

b
a

a, b, c, d

d

∅

a b

d c

a∗

dc

d

b

d

d

c

d

b

(a) Tree (b) Graph

Figure 3: Tree of finite elementary subpaths and a graph of all the equilibrium paths.

To get all the SPE paths of the game, we add nodes and arcs corresponding
to the infinitely long elementary subpaths to the graph:

P∞ = {ada∞, bda∞, cda∞, bdcda∞, cdbda∞} .

We need another node to distinguish whether d is played after a, b, or c or not.
For example, if ad is played then a∞ must follow and ad cannot be played any
more. This extra node is denoted by a∗ and after adding the new nodes and
arcs we get the graph of Figure 3 in which the dashed arcs are also included.

An approximation of the payoff set is shown in the left of Figure 4. The
payoff set consists of similar patterns in different scales, which shows the fractal
nature of equilibrium payoffs. The set is constructed by combining finite paths
from the graph to the infinite cycles starting from the final nodes of the paths.
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The dashed and solid lines represent the payoff requirements of the right-hand
side of the incentive-compatibility condition (2) for the first and second columns
of the game, respectively. We can see that there are payoff points on these lines
and these correspond to the paths in P∞, such as ada∞, bda∞ and cda∞. This
is the role of the infinitely long elementary subpaths; some part of the path gives
exactly the payoff requirement.

1 1.5 2 2.5 3 3.5 4

1

1.5
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2.5
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3.5
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a
∞

ba
∞
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∞
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cda
∞
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∞

v1

v
2
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3
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4
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2

Figure 4: The payoff sets for δ = 0.5 and δ = 0.58.

The payoff set is sparse and the Hausdorff dimension is zero. The largest
eigenvalue of the adjacency matrix is one and the number of k-length paths
increases subexponentially in k. In fact, the value of δ = 1/2 is exactly the
limit when the Hausdorff dimension changes from zero and the growth rate
becomes exponential. For example, when δ = 0.51, a subpath adaaaa becomes
elementary and it is possible to play d repeatedly as long as at least four a’s are
played after it. In this case, the dimension is s ≈ 0.42 and the growth rate is
ρ ≈ 1.32.

When the discount factor increases, there will be more and more equilibrium
and elementary subpaths, and the graph grows larger. When δ = 0.58 the graph
has over one hundred nodes and the payoff set is shown in Figure 4. The payoff
set is much more complex, the estimate of the Hausdorff dimension is s ≈ 1.37
and the paths increase at rate ρ ≈ 2.09. With higher discount factor values,
the sets P k

∗ do not become empty for reasonable k, because there are always
elementary subpaths in the proximity of the payoff requirement values as the
payoff set becomes dense.

6.2. Sierpinski game

In this example, we demonstrate an interesting feature of equilibrium payoffs,
which is captured by the Hausdorff dimension. The payoff set becomes more
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complex when the discount factor is increased, even though the elementary set
remains the same. The following game is called the Sierpinski game because the
payoff set is the celebrated Sierpinski triangle. The payoffs are given below and
δ = 1/2. We also denote a = (T, L), b = (C,M), and c = (B,R).

L M R
T 2−

√
3, 1 −1,−1 −1,−1

C −1,−1 1, 2−
√
3 −1,−1

B −1,−1 −1,−1 0, 0

In this game, there are three pure-strategy Nash equilibria that are the
corner points of the payoff set, which is illustrated in Figure 5. The equilibrium
paths are all combinations of these three points and the graph consists of all
transitions between the three nodes. Here, the dummy node ∅ is omitted as
redundant. The action profiles that correspond to the payoff vector (−1,−1)
cannot be played because there is no payoff vector v for which the incentive-
compatibility conditions (2) would hold. For instance, if we take a = (B,L), the
incentive-compatibility condition becomes (1 − δ)(−1,−1) + δv ≥ (1 − δ)(2 −√
3, 0) + δ(0, 0). Because vi ≤ 1, i = 1, 2, this condition cannot hold unless δ is

at least (3−
√
3)/(4−

√
3) > 1/2.

In this example, the payoff set is the Sierpinski triangle. Its Hausdorff di-
mension is s = log 3/ log 2 ≈ 1.585. The dimension tells that the set does not
quite fill the two dimensional space but it is more complex than one-dimensional
set.

0 0.5 1
0

0.5

1

v1

v
2

a b

c

(a) Payoff set—the Sierpinski triangle (b) Graph

Figure 5: Sierpinski triangle as the payoff set and the graph presentation of SPE paths.
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When the discount factor is increased a little from δ = 1/2, the elementary
set does not change. However, the payoff set becomes more complex. Eventually,
the payoff set fills the triangle defined by the three Nash equilibria. This happens
when δ > 2/3 and then the Hausdorff dimension becomes two. This happens
even if the set of elementary subpaths remains the same when the discount factor
increases. For example, we can replace minus ones by a small enough number to
guarantee that there will be no more equilibrium paths when δ increases. This
observation gives an important insight into the folk theorem [25]. One reason
for the fact that any feasible payoff above minimax levels can be achieved as an
equilibrium outcome is that the payoffs are less contracted under the mappings
Ba, a ∈ A, when the discount factor increases. Moreover, the payoff set may
enlarge even when the set of equilibrium paths and strategies remains the same.

6.3. Three-player game

In this example, there are three players: the row player, the column player,
and the matrix player. The third player chooses from the three alternatives α,
β and γ, while the other two players have two actions from which to choose.
Altogether, there are twelve action profiles and the payoffs are listed below.

L R
T 3, 3, 0 ε, 3 + ε,−10
B 3, 3, 3 0, 3, 0

α

L R
T 3, 3, 0 0, 3 + ε,−10
B 3, ε,−10 3, 0, 0

β

L R
T 0, 0, 0 3,−10, 0
B −10, 0, 3 −10,−10, 0

γ

The parameter ε is assumed to be non-negative. Its choice affects the
incentive-compatibility conditions: the larger the parameter, the larger the con-
tinuation payoff requirement for the action profiles involving ε in the payoff
vector.

It can be seen that each player’s minimax payoff is zero. This is because
(T, L, γ) is a Nash equilibrium and each player can guarantee at least zero
payoff by playing T , L, or γ. When ε > 0, the game has two pure-strategy
Nash equilibria; (B,L, α) and (T, L, γ). For ε = 0, all action profiles in which
the least payoff for the players is larger than −10 are Nash equilibria.

When the discount factors are small enough, the action profiles in which at
least one of the players gets the payoff −10 cannot be played no matter what
the continuation payoffs are. This is simply because the largest continuation
payoff is only 3: a player gets a negative total payoff by first receiving −10 and
then 3 given that the discount factor is small enough. In particular, this is the
case when we choose δ1 = δ2 = δ3 = 1/3. For these discount factors, there
are six action profiles that can be played (T, L, α) (B,L, α), (B,R, α), (T, L, β),
(B,R, β), and (T, L, γ). Hence, the upper bound for the asymptotic growth rate
is 6 (this corresponds to ε = 0).
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In this example, the equilibrium payoff set lies in the cube [0, 3]×[0, 3]×[0, 3].
See Figure 6 for the payoff set when ε = 0.1 and δi = 1/3 for all i ∈ N . The
Hausdorff dimension of the payoff set is approximately 1.61, which is a little
below 1.63 corresponding to ε = 0. Indeed, one way to obtain an upper bound
for the asymptotic growth rate and the Hausdorff dimension is to assume that
all the six action profiles can be played in any order, i.e., assume ρ(D) = 6 and
calculate s = − log ρ(D)/ log δ ≈ 1.63.
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Figure 6: Payoff set for ε = 0.1 and δ1 = δ2 = δ3 = 1/3.

7. Conclusions

The main result of this work is that the pure-strategy equilibrium paths of
repeated games are composed of sequences of action profiles, which are called the
elementary subpaths. This means that there is a set of fragments of equilibrium
paths which can be used in producing all the equilibrium paths. The elementary
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subpaths are of particular interest because they can be used in analyzing the
complexity of equilibrium outcomes for different games and in constructing all
the equilibrium paths and the corresponding payoffs [9].

The elementary subpaths are defined relative to the set of equilibrium pay-
offs: a subpath is elementary if its first action profile can be played when the
last action profile of the subpath is followed by any possible continuation payoff
at that stage, and all the action profiles in the subpath correspond to some
elementary subpaths. However, we present an algorithm for finding the ele-
mentary subpaths that requires knowing only the smallest equilibrium payoffs.
When there are finitely many elementary subpaths, the algorithm produces the
whole set of elementary subpaths, the elementary set, in a finite number of
steps. It is shown that the elementary set of a repeated game is finite at least
when the discount factors are small enough. Moreover, the set of equilibrium
paths increases monotonically, when the players’ discount factors increase, and
the smallest equilibrium payoffs do not increase.

The algorithm can also be used in computing approximate equilibrium paths.
When the algorithm is terminated such that not all the elementary subpaths
have been found, the missing elementary subpaths lead to equilibrium payoffs
for which some of the players’ incentive-compatibility conditions are close to be
binding. In such cases, it is possible to form finite inner and outer approxima-
tions of the elementary set: approximations that give either a subset of all the
equilibrium paths or both equilibrium paths and some approximate equilibria.
In particular, for any ε > 0, it is possible to compute in a finite number of steps
a graph that represents all the equilibrium paths of the repeated game when the
subpaths are allowed to be ε-incentive compatible.

The final step of the algorithm for finding the elementary set transforms the
found subpaths into a directed graph, which is a compact representation of all
the equilibrium paths. The graph can be used in generating the equilibrium out-
comes and analyzing their complexity. We provide two complexity measures: the
asymptotic growth rate and the Hausdorff dimension. The asymptotic growth
rate measures how fast the number of paths increases as they become longer.
The higher the rate, the faster the number of possible finitely long equilibrium
paths grows as the stage game is repeated. The Hausdorff dimension, on the
other hand, measures how the payoff set fills the space and hence serves as a
measure for the complexity of the equilibrium payoff set. This paper lays foun-
dations for further research, e.g., on extending the methodology to stochastic
games [8] or mixed strategies [12], on designing algorithms for computing equi-
libria and minimum payoffs [9, 11], and on the analyses of the fractal properties
of payoff sets [10].
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