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1. Introduction

We study non-cooperative link formation games in which players have

to decide how much to invest in relationships with other players. A link be-

tween two players is formed, if and only if both make a positive investment.

The cost of forming a link can be interpreted as the opportunity cost of pri-

vacy. We analyze the existence of pure strategy equilibria and the resulting

network structures with tractable specifications of utility functions. Suffi-

cient conditions for the existence of reciprocal equilibria are given and the

corresponding network structure is analyzed. Pareto optimal and strongly

stable network structures are studied. It turns out that such networks are

often complete.

Each player has a fixed amount of a single resource like time or effort

that he can invest in relationships with other players and/or use for his

own private benefit. The more two players invest in their mutual relation-

ship, the higher is the utility to both players from this relationship. Since

resources are limited, utility from privacy or from other relationships de-

creases, and there is a tradeoff between relationships. Decisions are made

simultaneously and pure strategy Nash equilibria are searched for.

We show that a reciprocal equilibrium with a complete network exists in

many symmetric or anonymous link formation games (Theorems 1 and 2).

In such an equilibrium players i and j invest equal amounts in their mu-

tual relationship. This amount may be different in relationships between

different players.

Network structure in a reciprocal equilibrium depends on players’ val-

uations of privacy. If these valuations are linear functions, then reciprocal

equilibria often exhibit homophily (Theorem 3): links are more likely to be

formed between similar players (Currarini et.al 2009).

Equilibria with a complete network exists under variety of circumstances

when reciprocity is not demanded, for example in semi-symmetric games

with bilateral strategic complements or substitutes (Theorems 4 and 5). In

semi-symmetric link formation games players have common preferences over

other players as friends.
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In the class of models studied in this paper, Pareto optimality of a

network structure implies in many cases that network must be complete

(Propositon 1). Similarly, strongly stable equilibria (Bloch and Dutta 2009)

have often complete networks as well (Proposition 2). Of course , complete-

ness of a network sounds rather extreme if the player set is very large. A

more moderate interpretation of these results would be that networks con-

sist of a few cliques or perhaps of a few completely connected components.

Be this as it may, Bloch and Dutta (2009) get results that efficient or

strongly stable networks are stars. It is therefore necessary to compare the

underlying assumptions of our models.

We assume that players get utility only from private consumption or di-

rect links (relationships) with other players, and that a relationship of two

players gives positive utility only if both players have made a positive in-

vestment. Bloch and Dutta (2009) assume that players get utility also from

indirect connections, i.e. from friends of friends, and that a link between

two players is formed even if only one of the players has made a positive

investment. In our model two linked players may value the relationship

differently, whereas in their model the values are identical.

The model of Bloch and Dutta (2009) may be more natural in situations

where links have instrumental value, like communication networks. Since

direct links are not absolutely necessary for useful connections, complete

networks need not be efficient structures. Our model is perhaps better

suited in cases where links have intrinsic value, like friendships. In such

cases indirect connections may be very poor substitutes for direct links,

and increasing the number of direct links becomes both individually and

socially optimal.

There is a large literature of link formation games where the link strength

can take only two values: either it is 1 (link is formed) or 0 (link is not

formed). Jackson and Wolinsky (1996) is the seminal paper of this strand

of literature (see Jackson and Zenou 2014 for a comprehensive review of

network games). Cabrales et.al (2011) analyze a linear quadratic game

with productive investments and link formation where link strengths can
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be nonnegative real numbers. Rather than choosing each link intensity

separately, a player chooses one real number that describes his socializa-

tion effort. Strengths of individual links are then determined jointly, given

socialization efforts of all players. The resulting network determines the

profitability of productive investments.

In our model players invest in each link separately, and the utility from

equal investments in different links may be different. So the links of a player

may represent very different relationships with other players, although seem-

ingly a player decides only how to share a homogeneous resource among his

friends.

The paper is organized in the following way. The notation is introduced

in Section 2. In Section 3 some simple models with Cobb-Douglas functions

are analyzed. Main results are stated in Section 4.

2. The Model

Given a node set N , the set of all (undirected, unweighted) links between

elements of N is the set g(N) = {{i, j} | i, j ∈ N}.1 Subsets {i, j} we may

be denoted by ij with the understanding that ij = ji. Given g ⊂ g(N), a

tuple W = (N, g) is a network with a node set N and a link set g. If it is

clear what the node set is we may denote a network simply by g. A network

W ′ = (N ′, g′) is a subnetwork of W = (N, g), if N ′ ⊂ N and g′ ⊂ g such

that g′ ⊂ g′(N ′). A network W = (N, g) is complete if g = g(N).

The set of neighbors of node i in a network g is Ni(g) = {j 6= i | ij ∈ g}.

The degree of node i is the number |Ni(g)| of his neighbors (other than

i himself), denoted by ni(g). We adopt the convention that i /∈ Ni(g)

although ii could be a link in g in our models.

1We give the main definitions concerning networks by using a simple undirected,

unweighted network model. The networks actually studied in this paper are weighted,

but the definitions for the simple networks extend naturally to the models analyzed here.

All that is needed is to define link strengths l(ij) > 0 to links ij ∈ g. In directed networks

l(ij) may differ from l(ji).
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Given a network W = (N, g) and i, j ∈ N , there exists a path P between

i and j, if there exists nodes i0, . . . , iK such that i) i0 = i, iK = j; ii)

ikik+1 ∈ g for all k = 0, . . . , K− 1; iii) all nodes are distinct except possibly

i0 and iK . A path P is a cycle if i0 = iK . A cycle is a triad if K = 2.

A network W = (N, g) is connected if there exists a path between any two

nodes i, j ∈ N .

A subset A ⊂ N is a component of a network W = (N, g), if i) there

exists a path between any two nodes i, j ∈ A; ii) there are no links between

A and Ac ≡ N \ A. So a component A is a maximal connected subset

of N . A clique is a subset A ⊂ N such that all distinct nodes i, j ∈ A

are neighbors of each other. If a component is a clique, we may call it a

complete component. If A is a clique then the subnetwork WA = (A, gA) is

a complete network, where gA is the restriction of g on A.

A component A of a network W = (N, g) is a circle, if A forms a cycle

such that each i ∈ A has exactly two neighhbors. A component A of a

network W = (N, g) is a star, if there is i ∈ A such that i is the only

neighbor of any j ∈ A, j 6= i. A network W is a circle or a star, if N is a

circle or a star.

A normal form game G =
(

N, (Si)i∈N , (ui)i∈N
)

specifies a player set N ,

a set of pure strategies Si and a utility function ui : S −→ R for each player

i ∈ N , where S = ΠiSi, the product of strategy sets, is the set of strategy

profiles.

A game G is symmetric, if Si = Sj for all i, j ∈ N , and ui(s) = uj(s
′)

for all i, j ∈ N , for all s, s′ ∈ S such that si = s′j, sj = s′i and sk = s′k for all

k 6= i, j.

A game G is anonymous, Si = Sj for all i, j ∈ N , and ui(s) = ui(s
′) if

the only difference between s and s′ is that sj = s′k and sk = s′j for some

j, k 6= i.

Give s ∈ S, we may denote s = (si, s−i) when we want to emphasize

that i chooses si. A pure strategy Nash equilibrium is a strategy profile

s ∈ S such that

ui(si, s−i) ≥ ui(s
′
i, s−i), ∀i ∈ N, ∀s′i ∈ Si. (1)
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Given a symmetric game G, a strategy profile s is a symmetric equilibrium,

if si = sj for all i, j ∈ N .

We study link formation games of the following type. The set of pure

strategies of player i ∈ N is

Si =
{

si ∈ RN
+ |

∑

j

sij = 1
}

.

An interpretation is that each player i has one unit of time or effort to be

shared with other player j including i himself. The utility function of player

i is

ui(s) =
∑

j 6=i

Uij(sij, sji) + Vi(sii), (2)

where Uij : [0, 1]
2 −→ R+ is a function satisfying Uij(0, sji) = 0 = Ui(sij , 0)

for all sij , sji, and i, j ∈ N . We assume that 1) Uij is strictly concave and

differentiable in sij for any given sji > 0; 2) Uij is strictly increasing and

continuous on (0, 1]× (0, 1].

Since investments sij , sji to the link between i and j could be different,

the networks in this paper are actually directed and weighted. Players i

and j get positive utility from a link if and only if they both make a strictly

positive investment. This may be interpreted either so that there is no link

between i and j unless both make an investment, or that there is a link if

only one player makes an investment but that such a link gives no utility

to either player in such a case.

The function Vi : [0, 1] −→ R+ is concave, strictly increasing, differen-

tiable on (0, 1), and Vi(0) = 0. In anonymous link formation games Uij = Ui

for all i, j ∈ N , and hence ui = Ui + Vi. In symmetric link formation games

ui = U + V for all i ∈ N . [In a link formation game the identity of strate-

gies si = sj is understood so that sii = sjj, sij = sji, and sik = sjk for all

k 6= i, j.]

We say that a link formation game G =
(

N, (Si)i∈N , (ui)i∈N
)

is semi-

symmetric, if there are functions U and V such that

ui(s) =
∑

j 6=i

pjU(sij , sji) + ciV (sii), ∀s ∈ S, (3)
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for some parameters pj > 0, ci > 0, for all i, j ∈ N . So there is a common

ordering of players such that player j is considered as a more valuable friend

than i, if pj > pi. The cost parameters ci reflecting the opportunity cost of

privacy could be player specific.

Next we give some definitions that are needed in the main theorems.

Definition 1 (Bilateral strategic complements). Uij is twice continuously

differentiable on (0, 1)× (0, 1) with ∂2Uij/∂sji∂sij > 0, i 6= j.

Bilateral strategic complements imply ∂2ui/∂sji∂sij = ∂2Uij/∂sji∂sij by

equation 2. However, since sii = 1 −
∑

j 6=i sij the usual strategic comple-

ments condition is not satisfied: if sji increases, a best reply may be such

that that sij increases but sik decreases for some k 6= j.

Analogously, bilateral strategic substitutes means ∂2Uij/∂sji∂sij < 0

holds on (0, 1)× (0, 1), for all players i.

Definition 2 (Increasing derivative on the diagonal). A function Uij :

[0, 1]2 −→ R+ has (strictly) increasing derivative on the diagonal, if

∂Uij(y, y)

∂x1
(<) ≤

∂Uij(z, z)

∂x1
, for all y < z.

If the inequality is reversed, we say that Uij has (strictly) decreasing

derivative on the diagonal. If equality holds for all y < z we say that Uij

has constant derivative on the diagonal.

Note that if Uij is (jointly) concave, then it has a decreasing derivative on

the diagonal. On the other hand the Cobb-Douglas function f(x, y) = xayb

is concave in both arguments separately and has increasing derivative on

the diagonal, if 0 < a, b < 1, and a+ b ≥ 1. If Uij is homogeneous of degree

α ≥ 1 (0 < α ≤ 0), then Uij has increasing (decreasing) derivative on the

diagonal. Homogeneity is clearly a much stronger assumption.

If a game is not symmetric, a symmetric equilibrium need not exist.

However, behavior may be ”nearly symmetric” also in non-symmetric games.

The following is a ”pairwise” or ”bilateral” symmetry condition that seems

natural in the context of friendship networks.
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Definition 3 (Reciprocal equilibrium). An equilibrium s of a link formation

game G =
(

N, (Si)i∈N , (ui)i∈N
)

is reciprocal, if sij = sji for all players

i, j ∈ N, i 6= j.

3. Examples

Let us first analyze some simple examples based on Cobb-Douglas func-

tions Uij .

Example 1. Let G =
(

N, (Si)i∈N , (ui)i∈N
)

be a semi-symmetric game with

bilateral strategic complements such that

ui(s) =
∑

j 6=i

pjs
α
ijs

1−α
ji + ci

(

1−
∑

j 6=i

sij
)

,

where 0 < α < 1, ci, pj > 0. Given the value of α fixed, then for generic

values of parameters ci, pj all equilibria s satisfying sii > 0, ∀i are autarkic.

That is, sii = 1. To see this, suppose that in equilibrium all the values of

s12, s21, s11, and s22 are strictly positive. Then the corresponding first order

conditions for players 1 and 2 satisfy:

αp2s
α−1
12 s1−α

21 = c1 (4)

αp1s
α−1
21 s1−α

12 = c2 (5)

These equations imply

α2p1p2 = c1c2,

which does not hold for generic values of ci, pj, given α ∈ (0, 1). If there

are more than one player with the same parameters pi, ci, then equilibria

typically exhibit homophily : links are formed only between similar players

(Currarini et.al 2009).

On the other hand, an equilibrium need not be interior in order to have

a complete network. As a simple example, consider a three-person game

such that α = 1/2, p1 = 1, p2 = p3 = 2, and ci = 1 for all i. One can verify

that a profile s is an equilibrium, if s12 = s13 = 1/2, s21 = s31 = 1/8, and

s23 = s32 = 7/8.
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The game G has constant derivative on the diagonal and a linear Vi

function. Theorem 2 below shows that if G is an anonymous game and Vi

functions are strictly concave, then an interior reciprocal equilibrium often

exists.

Let us modify the game of Example 1 slightly so that interior equilibria

exist.

Example 2. Let G =
(

N, (Si)i∈N , (ui)i∈N
)

be a game such that

ui(s) =
∑

j 6=i

pjs
α
ijs

β
ji + ci

(

1−
∑

j 6=i

sij
)

,

where 0 < α, β, α + β < 1, and ci, pj > 0, for all i, j ∈ N . Let pij = pj/ci,

and the first order conditions for an interior equilibrium for players i, j are:

αpijs
α−1
ij sβji = 1 (6)

αpjis
α−1
ji sβij = 1 (7)

Solving for sij gives us

sij = α1/[1−α−β]
[

p1−α
ij pβji

]1/[(1−α)2−β2]

, ∀i, j ∈ N. (8)

If pij = p for all i, j, then a symmetric interior equilibrium sij > 0, sii > 0

for all i, j exists if

αp <
[ 1

n− 1

]1−α−β

.

For a nonsymmetric example, let n = 11, α = 1/4, β = 1/2, and p1 = p, p2 =

p2, . . . , pn = pn for some p ∈ (0, 1). If ci = 1 for all i, then an equilibrium

with a complete network is given by

sij = 4−4
[

p2i+3j
]4/5

, (9)

from which we can compute that

sji =
[

pi−j
]4/5

sij, for j < i.

The players who are highly ranked by the society (high pi) invest less in

relationships than ”low types”.
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For another numerical example, assume pj = 1 for all players j, and

c1 = c, c2 = 2c, . . . , cn = nc, for some c > 1/2, and let the other parameters

have the same values as above. Then the following values characterize an

equilibrium with a complete network:

sij = 4−4
[

i−3/4j−1/2c−5/4
]4/5

, (10)

from which we can compute that

sji =
[ i

j

]

sij .

The players with high opportunity cost of privacy invest less in relationships

than players with a low cost.

4. Results

Note first that the existence of a pure strategy equilibrium is not a

problem in our model, since a strategy profile s such that sii = 1 and

sik = 0, k 6= i, for all i ∈ N is trivially an (autarkic) equilibrium, and

also a reciprocal equilibrium. Here is a more interesting existence result for

symmetric games.

Theorem 1. A symmetric link formation game G =
(

N, (Si)i∈N , (ui)i∈N
)

has a nontrivial reciprocal equilibrium with complete components, if and only

if there exists x ∈ (0, 1) such that

∂U(x, x)

∂x1
− V ′(1− x) ≥ 0. (11)

Proof. (⇐) A reciprocal equilibrium s is nontrivial if sij = sji > 0 for

at least two players i, j. Let N1, . . . , Nk be the complete components of

the equilibrium network. If Nt has m ≥ 2 members, then there exists

x = sij, i, j ∈ Nt such that

∂U(x, x)

∂x1

− V ′(1− (m− 1)x) ≥ 0.
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Since V is concave, the inequality 11 holds for this x.

(⇒) Suppose that inequality 11 holds. Let m be the largest number,

m ≤ n, such that

∂U(z, z)

∂x1
− V ′(1− (m− 1)z) ≥ 0

holds for some z ∈ (0, 1/(m − 1)]. Clearly m ≥ 2. Either there exists

z < 1/(m− 1) such that this inequality is actually an equality, or else the

inequality is satisfied by z = 1/(m− 1).

If m = n, then sij = z for all i, j ∈ N , j 6= i, is a reciprocal equilibrium

with a complete network. If m < n, then let k be the largest integer such

that km ≤ n. Choose k disjoint subsets Nt of N such that |Nt| = m for all

t = 1, . . . , k. If the union of these subsets does not cover N , then let Nk+1

be the residual subset.

Define s ∈ S by setting sij = z for all i, j ∈ Nt, j 6= i, t = 1, . . . , k

(and also for i, j ∈ Nk+1 if this subset is nonempty) defines a nontrivial

reciprocal equilibrium such that subsets Nt are complete components of the

equilibrium network.

Theorem 1 has the following corollary.

Corollary 1. Suppose that a link formation game G =
(

N, (Si)i∈N , (ui)i∈N
)

is such that equation 11 is satisfied. Then there exists a reciprocal equilib-

rium such that the corresponding network is a circle.

Reciprocal equilibria may exist also in nonsymmetric games.

Theorem 2. Let G =
(

N, (Si)i∈N , (ui)i∈N
)

be an anonymous link formation

game with the properties 1) constant derivative on the diagonal, 2) Vi is

strictly concave. Assume also that if all players i ∈ N have the same utility

function ui, then the corresponding symmetric game would have a symmetric

equilibrium si such that the resulting network is complete, for any i ∈ N .

Then there exists a reciprocal equilibrium such that the resulting network is

complete.
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Proof. Since G is anonymous, ui = Ui + Vi. By assumption, if all players

have the same utility function ui, there is a symmetric equilibrium si such

that the resulting network is complete. Since ui has constant derivative

on the diagonal and Vi is strictly concave and increasing, the symmetric

equilibrium si is unique. If every si is such that sijk = 1/(n − 1), we are

done. So we may assume that s1 is the equilibrium in which s1ij = x1 takes

the smallest value, i 6= j, and x1 < 1/(n − 1). Note that there may be

another equilibrium sk such that skij = x1.

Construct a reciprocal equilibrium recursively as follows.

Step 1. Let N1 be the subset of players for whom the following first

order condition holds:

∂Ui(x
1, x1)

∂x
= V ′

i

(

1− (n− 1)x1
)

. (12)

By assumption, |N1| ≥ 1. If N1 = N , the recursion ends. If |N1| < n, then

there exists at least one player for whom the left hand side of equation 12

is greater than the right hand side.

Step 2. Let x2 ∈ (0, 1) be the least number such that x1 < x2 and the

following weak inequality is satisfied for at least one player:

∂Ui(x
2, x2)

∂x1

≥ V ′
i

(

1− n1x
1 − (n− n1 − 1)x2

)

. (13)

Since the derivative of Ui is constant on the diagonal and Vi is strictly

concave, such an x2 exists uniquely. Let N2 be the set of players for whom

equation 13 holds. If |N1|+ |N2| = n, the recursion ends, because N1∩N2 =

∅. If |N1| + |N2| < n, continue the recursion to Step 3. Since there are n

players, there is Step k, k > 2, as follows.

Step k. Let xk ∈ (0, 1) be the least number such that xk−1 < xk and the

following weak inequality is satisfied for at least one player:

∂Ui(x
k, xk)

∂x
≥ V ′

i

(

1−
∑

t<k

ntx
t − (nk − 1)xk

)

. (14)

By assumption and the previous Steps, such a number xk exists uniquely.

The subset Nk of players for whom equation 14 holds, satisfies |N1|+ · · ·+

|Nk| = n and {N1, . . . , Nk} is a partition of N .
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Given player i ∈ N , let m be such that i ∈ Nm. Define sij = xt for all

j 6= i such that j ∈ Nt and t < m. For j 6= i such that j ∈ Nt and m ≤ t,

let sij = xm. Let sii = 1−
∑

t<m ntx
t −

[(
∑

m≤t nt

)

− 1
]

xm.

By construction s is a reciprocal equilibrium such that the resulting

network is complete.

Note that if Vi is linear, then Theorem 2 may not hold by Example 1.

Theorem fails if Vi is linear even if Ui is assumed to be strictly concave as

the following result demonstrates.

Theorem 3. Suppose G =
(

N, (Si)i∈N , (ui)i∈N
)

is an anonymous link for-

mation game such that 1) derivative is strictly decreasing on the diagonal;

2) Vi is linear and Ui = U . If there is a reciprocal equilibrium s such that the

equilibrium network has a clique C and sii > 0 for all i ∈ C, then players

i ∈ C have the same utility functions ui = U + Vi.

Proof. By condition 2), Vi(sii) = cisii for some constant ci > 0. For each

i ∈ C, there is at most one xi such that ∂Ui(x
i, xi)/∂x1 = ci by condition

1). For i ∈ C this equality must hold in the reciprocal equilibrium s since

sii > 0. If ci 6= cj , then xi 6= xj because Ui = Uj. Therefore if C is a clique

in an equilibrium network and i, j ∈ C, then ci = cj and hence players in C

have the same utility functions.

Remark 1. Note that Theorem 3 holds also if condition 1) is replaced by the

condition that derivative is strictly increasing on the diagonal. Of course,

marginal utility from link formation may be so large as compared to the

cost parameters ci, that sii = 0 in equilibrium. Then there could exist

reciprocal equilibria with a complete network even if players have different

cost parameters ci.

We show next that if a game has bilateral strategic complements, then

with the same or slightly weaker assumptions as in Theorem 3 there exists

an equilibrium such that the equilibrium network is complete. Of course,

by Theorem 3 this equilibrium cannot be reciprocal.
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Theorem 4. Suppose G =
(

N, (Si)i∈N , (ui)i∈N
)

is a semi-symmetric link

formation game with bilateral strategic complements such that 1) derivative

is strictly decreasing on the diagonal; 2) parameters pj > 0 and ci > 0 of

Equation 3 are taken from compact intervals P and C, respectively; 3) the

function V in Equation 3 is linear. Assume also that if all players i ∈ N

would have the same parameters p ∈ P, c ∈ C, then the corresponding sym-

metric game would have a symmetric equilibrium s such that the resulting

network is complete and sii > 0, for all i ∈ N . Then there exists an equi-

librium with a complete network.

Proof. See Appendix.

Remark 2. Note that Theorem 4 holds also if condition 1) is replaced by the

condition that derivative is strictly increasing on the diagonal. In such a case

an interior equilibrium is not stable in the usual best reply dynamics. The

assumption of Theorem 4 that derivative is strictly decreasing (or strictly

increasing) is critical as demonstrated in Example 1.

For games with bilateral strategic substitutes we have the following.

Theorem 5. Suppose G =
(

N, (Si)i∈N , (ui)i∈N
)

is a semi-symmetric link

formation game with bilateral strategic substitutes such that 1) parameters

pj > 0 and ci > 0 of Equation 3 are taken from compact intervals P and C,

respectively; 2) the function V in Equation 3 is linear. If for each pj and

ci, and for each z ∈ (0, 1/(n − 1)] there exists x ∈ (0, 1/(n− 1)] such that

pj∂U(x, z)/∂x1 − ci = 0, then there exists an equilibrium with a complete

network.

Proof. See Appendix.

4.1. Efficiency and Stability of Equilibria

Given a game G =
(

N, (Si)i∈N , (ui)i∈N
)

, a strategy profile s is Pareto

optimal, if there is no other profile s′ such that ui(s
′) ≥ ui(s) for all i ∈ N

and uj(s
′) > uj(s) for some j ∈ N . A network corresponding to a strategy

profile s is Pareto optimal, if s is a Pareto optimal strategy profile. The
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following result gives some conditions under which a Pareto optimal network

must be complete.

Proposition 1. Suppose a link formation game G =
(

N, (Si)i∈N , (ui)i∈N
)

is such that for each i ∈ N and zi ∈ (0, 1] there exists xi ∈ (0, zi) such that

∂Uij(x
i, xi)

∂x1

> V ′
i (z

i − xi), ∀i, j ∈ N, i 6= j,

and that each Uij is concave. If s ∈ S is Pareto optimal and sii > 0, ∀i ∈ N ,

then sij, sji > 0, ∀i, j ∈ N .

Proof. Suppose to the contrary that s ∈ S is Pareto optimal and sii >

0, ∀i ∈ N , but sij = 0 for some i, j ∈ N . Since Uij(0, sji) = 0 and

Uji(sji, 0) = 0, Pareto optimality of s implies that sji = 0. BY assump-

tion, there exists xi < sii and xj < sjj such that

∂Uij(x
i, xi)

∂x1

> V ′
i (sii − xi),

∂Uji(x
j , xj)

∂x1

> V ′
j (sjj − xj).

Since Uij and Vi are concave functions, these inequalities hold for every

x ∈ (0,min{xi, xj}) as well. Given such an x, consider a strategy profile s′

that is otherwise like the profile s, except that s′ij = s′ji = x, and s′ii = sii−x,

s′jj = sjj − x. Then ui(s
′) > ui(s) and uj(s

′) > uj(s) while uk(s
′) = uk(s)

for all k 6= i, j, and therefore s is not Pareto optimal, a contradiction.

Remark 3. Proposition 1 holds for example when each Uij is a strictly con-

cave Cobb-Douglas function. The functions Vi can then be any concave,

strictly increasing functions. Note that Proposition 1 holds also if functions

Uij have decreasing derivative on the diagonal, which is a weaker assumption

than concavity.

An equilibrium s and the corresponding network are called s is strongly

pairwise stable, if there is no strategy profile s′ such that ui(s
′) > ui(s) and

uj(s
′) > uj(s) for some i, j ∈ N , when sk = s′k for all k ∈ N \ {i, j} (Bloch

and Dutta 2009). The following result states some conditions such that the

network corresponding to a strongly stable equilibrium must be complete.
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Proposition 2. Suppose a link formation game G =
(

N, (Si)i∈N , (ui)i∈N
)

is such that for each i ∈ N and zi ∈ (0, 1] there exists xi ∈ (0, zi) such that

∂Uij(x
i, xi)

∂x1

> V ′
i (z

i − xi), ∀i, j ∈ N, i 6= j,

and that each Uij is concave. If s ∈ S is a strongly pairwise stable equilib-

rium and sii > 0, ∀i ∈ N , then sij, sji > 0, ∀i, j ∈ N, i 6= j.

Proof. The proof of Proposition 1 applies here.

Remark 4. If the functions Vi satisfy limz→0+ V ′
i (z) = +∞, then sii > 0

must hold at any equilibrium.

Remark 5. The main lesson of Propositions 1 and 2 is not that Pareto opti-

mal networks are complete, or that strongly stable equilibria have complete

networks. Utilities from some links may be so low that these links are not

formed either for efficiency or for equilibrium reasons. The lesson of these

propositions is that network structures that have complete components of-

ten appear as efficient solutions or as equilibrium networks of a strongly

pairwise stable equilibrium.

Usually in network literature efficiency is defined by using the utilitarian

welfare function: those strategy profiles that maximize the sum of utilities

are efficient. While such strategy profiles are Pareto optimal, not all Pareto

optimal profiles satisfy this efficiency criterion.

If the functions Uij are concave, then the utility functions ui are concave

on a simplex. In such a case each Pareto optimal strategy profile maximizes

a weighted sum of players’ utilities. The (positive) weights depend on the

profile in question. If also the functions Vi satisfy limz→0+ V ′
i (z) = +∞,

then sii > 0 must hold at every Pareto optimal s, for all i.

5. Appendix

Proof of Theorem 4. Denote the set of ”types” of players by T = P × C.

Given any type t = (p, c) ∈ T , if all players had this type, then by assump-
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tion there exists a symmetric interior equilibrium st satisfying

p

c

∂U(xt, xt)

∂x1

= 1

where stij = xt and stii = 1− (n−1)xt for all i, j ∈ N, j 6= i. Since derivative

is strictly decreasing on the diagonal, these symmetric equilibria can be

ordered so that xt < xt′ iff p/c > p′/c′, where t = (p, c) and t′ = (p′, c′).

Let p̄ and p be the greatest and least elements, respectively, of the

interval P . Define analogously c̄ and c. So the symmetric equilibrium

corresponding to the type t̄ = (p̄, c) has the largest xt, denoted by x̄. The

symmetric equilibrium corresponding to the type t = (p, c̄) has the least xt,

denoted by x.

Suppose that there are k different types t1, . . . , tk ∈ T present in the

player set N . Let Nm consists of all players whose type is tm, m = 1, . . . , k.

Let us construct an equilibrium s with a complete network such that

players in the same subset Nm treat each other reciprocally.

Step 1. Set sii = yt
m

, and sij = xtm , for all i, j ∈ Nm, for all m =

1, . . . , k. Note that the first order conditions of an interior equilibrium are

satisfied by these choices. The values xtm and yt
m

are the same as in the

symmetric equilibrium st
m

.

Step 2. Take any players i ∈ Nm and j ∈ Nh, m 6= h. Consider a

two-person game with strategic complements between i and j. Let tm =

(p, c) and th = (p′c′). Let bt denote the best reply function of type t =

tm, th against opponent’s choices x ∈ [x, x̄]. The best replies for these types

(unique by strict concavity of U(·, x)) satisfy

p′

c

∂U(bt
m

(x), x)

∂x1
= 1 =

p

c′
∂U(bt

h

(x), x)

∂x1
.

If p′/c = p/c′, then best replies are the same. If p′/c < p/c′, then

bt
m

(x) < bt
h

(x). Since p/c̄ ≤ p′/c < p/c′ ≤ p̄/c, we have also x ≤ bt(x) ≤

bt(x̄) ≤ x̄ for both types t = tm, th. This holds since bilateral strategic

complements implies bt(x) ≤ bt(x̄) (increasing best reply function). Strictly
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decreasing derivative on the diagonal imply x ≤ bt(x) and bt(x̄) ≤ x̄, be-

cause bt(xt) = xt. But then by Tarski’s fixed point theorem the mapping

(xm, xh) −→ (bt
m

(xh), b
th(xm)) on [x, x̄]× [x, x̄] has a fixed point (xmh, xhm).

Consider the game between all players in the set Nm ∪ Nh. Then note

that the choices yt
m

, xtm , xmh for players in Nm and the choices yt
h

, xth , xhm

for players in Nh form an equilibrium, since the resource constraints are

satisfies by the definition of the symmetric equilibria st
1

, . . . , st
k

, and the

payoff of any player i is additively separable w.r.t. his opponents.

Since the types tm and th were chosen arbitrarily, we have solved an

equilibrium for the whole game. To see this, take any player i, and assume

that i ∈ Nm. Then his choices satisfy the resource constraint:

yt
m

+ |Nm − 1|xtm +
∑

h 6=m

|Nh|x
mh = 1.

Since the first order conditions for maximum satisfied, we are done.

Proof of Theorem 5. Let the ”type set” be T = P ×C. Suppose that there

are k different types t1, . . . , tk ∈ T . Let Nm consist of all players whose type

is tm, m = 1, . . . , k. We construct an equilibrium s such that players in the

same subset Nim behave reciprocally.

Step 1. Suppose i, j ∈ Nm, so they both have the type tm = (pm, cm).

Let bt
m

(z) denote the unique best reply of either player to z ∈ [0, 1/(n−1)].

By assumption bt
m

(1/(n − 1)) ≤ 1/(n − 1). If equality holds, then xtm =

1/(n− 1) is a reciprocal equilibrium in the game with player set Nm.

Suppose bt
m

(1/(n − 1)) < 1/(n − 1). Let I∗ = {z | bt
m

(y) < y, ∀y ∈

[z, 1/(n−1)]} and x∗ = inf I∗. Note that x∗ exists since 1/(n−1) ∈ I∗. We

want to show that bt
m

(x∗) = x∗.

By bilateral strategic substitutes, bt
m

(1/(n − 1) < bt
m

(z) for all z ∈

I∗, z < 1/(n − 1) and by assumption bt
m

(1/(n− 1)) > 0. By the Theorem

of the maximum, the best reply bt
m

(z) is a continuous function on [xm −

ε, 1/(n−1)], for any ε > 0 such that x∗−ε > 0. By continuity, bt
m

(x∗) ≤ x∗.

Again by continuity and the definition of I∗, this inequality cannot be strict,

so bt
m

(x∗) = x∗. A reciprocal equilibrium in the game with player set Nm

is obtained by setting sij = x∗ ≡ xtm for all i, j ∈ Nm, i 6= j.
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Step 2. Suppose i ∈ Nm and j ∈ Nh, m 6= h. Let tm = (p, c) and

th = (p′, c′). If p′/c = p/c′, then the choices given in Step 1 apply. Given

x ∈ [0, 1/(n− 1)], the best replies satisfy

p′

c

∂U(bt
m

(x), x)

∂x1
= 1 =

p

c′
∂U(bt

h

(x), x)

∂x1
.

Now bt
m

(x) < bt
h

(x) because U(·, x) is strictly concave function, and because

p′/c < p/c′.

Consider the function f(x) = bt
h

(bt
m

(x)) on [bt
m

(1/(n− 1)), 1/(n− 1)].

This function is continuous, and f(x) ≤ 1/(n−1) for all x. At x = bi(1/(n−

1)), f(x) ≥ x, since both best replies are decreasing functions. Hence there

is a fixed point xhm = f(xhm). But then xhm is the best reply of player j

against bt
m

(xhm) = xmh, which in turn is the best reply of player i against

xhm.

Therefore sji = xhm, sij = xmh forms an equilibrium when the player set

is Nm ∪Nh.

Since the types tm and th were chosen arbitrarily, we have solved an

equilibrium for the whole game. To see this, take any player i, and assume

that i ∈ Nm. Then his choices satisfy the resource constraint:

|Nm − 1|xtm +
∑

h 6=m

|Nh|x
mh ≤ 1.

Define sii = yt
m

so that the resource constraint is satisfied as equality. Since

the first order conditions for maximum satisfied, we are done.
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