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ABSTRACT

We study a Baron-Ferejohn (1989) type of bargaining model to which
we append an investment stage. As long as no agreement is reached,
a new proposer is selected randomly from the player set. A proposal
is accepted if at least q players accept it. Prior to the bargaining stage,
players may make investments to increase their recognition probabili-
ties in the bargaining game. The investment stage is modeled in the
standard way, first suggested by Tullock (1980). When investment costs
are the same for all players, no symmetric stationary subgame perfect
equilibria in pure investment strategies may exist if unanimity is not
needed to reach an agreement. An asymmetric pure stationary equi-
librium in a symmetric three-person game exists however when the
discount factor is sufficiently high. An equilibrium with symmetric
mixed investment strategies exists although payoff functions are not
everywhere continuous with respect to investments.
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1. Introduction

We study a modified Baron-Ferejohn type of n -person bargaining model
to which we append an investment stage (Baron and Ferejohn 1989). As long
as no agreement is reached, a new proposer is selected randomly from the
player set, according to the recognition probabilities of the players. A pro-
posal is accepted if at least q players accept it. Prior to the bargaining stage,
players may make investments to increase their recognition probabilities in
the bargaining game. The investment stage is modeled in the standard way,
first suggested by Tullock (1980). The recognition probability of a player is
simply the fraction between his investments and the sum of all investments.
Players can have different investment costs. We study the existence of sta-
tionary subgame perfect equilibria (SSPE ), and how the equilibrium depends
on the decision rule of the bargaining game.

When unanimity is required in the bargaining stage (i.e. q = n), there
is a unique SSPE, when investment costs exhibit constant returns to scale.
Hillman and Riley (1989) analyzed first the case when players have the same
costs. Stein (2002) solved explicitly investment levels of a pure strategy equi-
librium. Matros (2006) proved that this equilibrium is unique. Szidarovszky
and Okuguchi (1997) have shown uniqueness of equilibrium when players
have strictly convex investment costs.

We solve explicitly the equilibrium payoffs, when a q -majority is required
in the bargaining stage. We utilize the results of Eraslan (2002) who shows
the while there may be several SSPE in the Baron-Ferejohn model, the equi-
librium payoffs of player i are the same in all equilibria, for all players i.
Eraslan doesn’t give equilibrium payoffs in explicit form.

After that we study the existence of an SSPE in pure strategies. When
investment costs are the same for all players, no symmetric stationary sub-
game perfect equilibria with pure investment strategies may exist if unanim-
ity is not needed to reach an agreement. This has been discovered indepen-
dently also by Querou and Soubeyran (2011). We show that an equilibrium
with symmetric mixed investment strategies exists always despite that in our
model payoffs have discontinuities.

The paper is organized in the following way. The notation is given in
Section 2 and there we also review some known results about equilibria when
unanimity is needed in the bargaining game. In Section 3 we study the q
-majority case. We show that no symmetric equilibrium exists with pure in-
vestment strategies. An asymmetric equilibrium with pure investment strate-
gies is shown to exist in a three person game with a simple majority rule. A
symmetric equilibrium with mixed investment strategies exists when players
have the same investment cost.
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2. The unanimity model

We analyze a two-stage game such that players make first investments to
improve their position in the bargaining game that is played in the second
stage. Before bargaining starts players the first period investments become
common knowledge. This is called the unanimity model since in the bargain-
ing game any agreement made must be unanimously accepted. We seek for
subgame perfect equilibria and study the properties of such equilibria.

2.1. The bargaining game

There are n players indexed by i ∈ N = {1, . . . , n} who can divide the
cake of size 1 if an agreement x = (x1, . . . , xn) is reached how to divide
the cake. Player i’s utility from an agreement x is simply xi, i = 1, . . . , n,
the size of his share. If no agreement is reached, each player gets utility
0. Agreements x must satisfy xi ≥ 0 (individual rationality) and

∑

i xi = 1
(efficiency). Time periods are indexed by natural numbers t ∈ N = {0, 1, . . .}.

The game starts in period 0 in which a proposer i ∈ N is selected. Each
player i has a probability pi ≥ 0 of being selected. The selected player
i offers an agreement xi, and the other players, the responders, announce
simultaneously and independently Y es or No. If all say Y es, the game ends
with an agreement xi. If at least one player says No, then the game moves
to the next period and the proposer is selected randomly with probabilities
pi, i = 1, . . . , n. If no agreement is reached in periods t = 1, . . . , T , then
in period T + 1 the proposer is again selected randomly with probabilities
pi, i = 1, . . . , n. If an agreement x is reached in period t, then player i′s
utility is δtxi, i ∈ N , where δ is the common discount factor, 0 < δ < 1.

We assume that at each period t, all past choices of all players are common
knowledge. Then if no agreement has been reached before period t, a new
subgame starts at t.

A strategy si = {(xi,t, (xj,t)j 6=i)}t of player i is a plan that specifies (1)
what is his proposal xi,t if he is the proposer in period t, and (2) which offers
xj,t he accepts from player j 6= i if he is one of the responders in period t,
t = 0, 1, . . .. A strategy is stationary, if these proposals do not depend on t,
and in this case we don’t have to index the choices by t.

A profile s = (s1, . . . , sn) is a Nash equilibrium, if si maximizes player
i’s utility when he believes that that other players j choose sj. A Nash
equilibrium s is subgame perfect, if it is a Nash equilibrium in every subgame
of a bargaining game. A subgame perfect equilibrium s is stationary if every
strategy si is stationary.

Here is a well-known existence and uniqueness result for stationary equi-
libria (the proof is available from the authors at request).
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Proposition 1. Given the discount factor δ, 0 < δ < 1, and recognition

probabilities p = (p1, . . . , pn), there is a unique SSPE, s. In this equilibrium

player i offers xi where he gets xi
i = 1 − δ + δpi and player j gets xi

j = δpj,
i, j ∈ N, i 6= j. Player i accepts any offer not smaller than δpi.

Remark 1. In equilibrium the proposer’s payoff decreases in δ whereas
responders’ payoffs increase in δ. As δ goes to 1, payoffs converge to recog-
nition probabilities. Player i’s payoff increases in his recognition probability
pi independently of his role.

Remark 2. Player i’s ex ante expected equilibrium payoff is simply his
recognition probability: pi = pi[1− δ + δpi] + (1− pi)δpi.

2.2. The investment game

Before the bargaining game starts, players may make investments that
increase their recognition probabilities. Denote by ei ≥ 0 the amount (money,
effort etc.) invested by player i. We assume that pi depends on investments
e = (e1, . . . , en) in the following simple way:

pi(e) =
ei

∑

j∈N ej
, i ∈ N (1)

Any player i has strictly positive probability as being selected the proposer
iff his investment ei is strictly positive. If no one invests, every player has
the same probability 1/n to be selected as the proposer.

We assume that players’ investment costs are linear: investing an amount
ei costs ciei, where 0 < ci < 1 for all i ∈ N . We may assume w.l.o.g. that
c1 ≤ c2 ≤ · · · ≤ cn.

The expected payoff Ui(e) of player from investment choices e in the
whole game (investment stage and the bargaining stage) is hence, taking
into account Remark 2.

Ui(e) = pi(e)− ciei, i ∈ N, (2)

where pi(e) is given in equation (1).
We seek for an SSPE of this two-stage game, and assume that invest-

ment levels become common knowledge before the bargaining game begins.
A strategy for player i is σi = (ei, si) specifying an investment level ei and
a strategy si for the bargaining game that might depend on the invest-
ments. The assumption of subgame perfection is already built in the payoffs
in (2), since there it is assumed that the (unique) SSPE is played in the
bargaining stage no matter happened in the investment stage. Denote by
σ = (σ1, . . . , σn) a strategy profile in this two stage game. Hillman and Riley
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(1989) analyze this game when players have the same cost function. Stein
(2002) solves the equilibrium investment levels when costs could be different
and Matros (2006) proves that the equilibrium is unique. We collect these
results in the following proposition.

Proposition 2. There exist a unique SSPE σ in the two-stage game. Players

i = 1, . . . , k invest strictly positive amounts and players i > k invest nothing

where the value of k ≥ 1 is given by

∑k+1
j=1 cj

k
≤ ck+1.

The equilibrium investment level of player i = 1, . . . , k is given by

ei =
k − 1

∑k

j=1 cj
−

(k − 1)2

[
∑k

j=1 cj]
2
ci

The recognition probability of player i = 1, . . . , k is

pi(e) = 1−
(k − 1)ci
∑k

j=1 cj
,

and his equilibrium payoff is

Ui(e) =

[

1−
(k − 1)ci
∑k

j=1 cj

]2

= pi(e)
2.

3. The q -majority model

In this section we analyze the case where a proposal in the bargaining
stage is implemented if at least q players accept it, n/2 < q < n. Otherwise
the model is as before and the existence and properties of stationary subgame
perfect equilibria are studied.

Baron and Ferejohn (1989) study explicitly the bargaining game with odd
n and q = (n+1)/2, i.e. simple majority. They find that an SSPE is unique
when recognition probabilities are the same. They also demonstrate that
with unequal recognition probabilities stationary equilibrium need not be
unique. Eraslan (2002) shows that even in this case the equilibrium payoffs
are unique.

We can utilize these results. Since equilibrium payoffs in the bargaining
stage are unique, it suffices to find one stationary subgame perfect equilibrium
for the bargaining game, compute the corresponding payoffs and study what
are the equilibrium investments.
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3.1. The bargaining game

Let p = (p1, . . . , pn) be a vector of recognition probabilities, and assume
w.l.o.g. that p1 ≥ · · · ≥ pn. Fix the voting rule q ∈ N, n/2 < q < n. It is
intuitively clear that equilibrium payoffs at this stage must be increasing in
the recognition probabilities (Eraslan 2002, p. 21, shows this formally).

Another property that is quite intuitive is that a minimal winning coali-
tion will form and share the unit cake among its members (Eraslan 2002,
p.16). That is, at most q players can get strictly positive payoffs. It may
be less obvious that generally this minimal winning coalition is formed ran-
domly: the proposer in each period makes a serious offer only to q − 1 other
players, and usually at least some of these players are chosen randomly.

A player with a low recognition probability has greater chances to be
selected in the winning coalition than a player with higher recognition prob-
ability (this follows from Theorem 4, p. 20 in Eraslan 2002). This again is
intuitive: players with low recognition accept lower offers. We need to prove
some additional properties of equilibria that to our knowlegde have not been
shown earlier in the literature.

Let |{k, . . . , n}| = q, so {k, . . . , n} is the minimal winning coalition whose
members have the lowest recognition probabilities. Note that k = n− q + 1,
and call player k the critical player.

Given an SSPE in this bargaining game, denote by yi = xj
i the offer that

player j makes to i. Now yi = δvi must hold in equilibrium, where vi is the
continuation value for player i, and hence yi does not depend on the identity
of the proposer.

Denote by xi = xi
i the amount that player i reserves for himself when he

makes an offer. Then xi = 1−
∑

i∈M yi, where M is the subset of players to
whom i makes an offer, |M | = q − 1.

Let K = {j | xj = xk}, so K consists of all those players who reserve to
themselves the same amount as the critical player k. Note that it holds that
i, j ∈ K, i < j, implies h ∈ K for all h such that i ≤ h ≤ j.

Let ri be the invitation probability, the probability that player i gets an
offer when he himself is not the proposer. Let H ≡ {j > k | j /∈ K}, so H
consists of those players j who keep to themselves an amount xj < xk when
they make an offer. Let L = {j < k | j /∈ K}, so L consists of those players
j who keep to themselves an amount xj > xk when they make an offer. (It
is possible that L and/or H is empty.) We have the following result.

Lemma 1. If ri satisfies 0 < ri < 1, then i ∈ K. If i ∈ H, then ri = 1. If

i ∈ L, then ri = 0.

Proof. Note that the cheapest way to form a minimal winning coalition is to
use players in K ∪ H. (Of course any proposer outside K ∪ H belongs to
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minimal winning coalition as well.) This follows since i ∈ L means xk < xi

and since pi > pk, i also rejects more offers than k. Hence k is a more
reasonable partner in a minimal winning coalition and so ri = 0 for i ∈ L.

If i ∈ H, then xi < xk. Since |H| < q, any least cost minimal winning
coalition always contains i as a member. Therefore ri = 1. It follows that
0 < rj < 1 implies j ∈ K.

The continuation value vi of player i ∈ K satisfies

yk = δ[pi(a+ yk) + (1− pi)riyk] = δvi (3)

where a+ yk = xk is the amount player reserves for himself, a > 0. It follows
of course that vi = vk for all i ∈ K since players in K behave the same way
and are treated the same way by the other players.

It is clear that when player k selects his partners into a minimal winning
coalition, the players j = k+1, . . . , n can be included with the minimal cost.
This implies that

a+ yk +
∑

i>k

yi = 1. (4)

It follows immediately that when player i ∈ H makes an offer, the least
cost minimal winning coalition for him is {k, . . . , n} \ {i}. Hence by (4)
players i ∈ H get xi = a+ yi when they make an offer.

For players i ∈ L we get from (4) that xi = xk = a + yk. These players
take the place of the critical player k and hence get the same xk as k. A
player i ∈ L is never invited in a minimal winning coalition. However in the
beginning of every period he has probability pi of becoming the proposer.
Therefore his expected equilibrium value vi satisfies

pi(a+ yk) = vi (5)

The continuation value vi for player i ∈ H satisfies

yi = δ(pi(a+ yi) + (1− pi)yi) = δvi (6)

since i ∈ H is invited in every minimal winning coalition with probability
one. We can solve yi from (6) as a function of a:

yi =
piaδ

1− δ
. (7)

The equilibrium values of a and yk are given in the proposition below. With
these numbers we get the equilibrium offers and value functions from equa-
tions (3) - (7).
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Proposition 3. In an SSPE the numbers a and yk are given by

yk =
δ(1− δ)p(K)

D
(8)

a =
(1− δ)(|K| − δ(q − |H| − p(L)))

D
(9)

where p(A) =
∑

i∈A pi, for each A ⊂ {1, . . . , n} and

D = (δp(L) + |K|)
[

1− δ + δp(H)
]

− δ(q − |H|)
[

(1− δ)p(L) + p(H)
]

.

Proof. Note that a minimal winning coalition must contain q−|H| members
from K, when the proposer is i ∈ K ∪H. If the proposer is i ∈ L, then the
minimal winning coalition contains the proposer i and q − 1− |H| members
from K as well as the set H. It follows that the minimal offers yi that players
in K ∪H are willing to accept must satisfy

a+ (q − |H|)yk +
∑

i∈H

yi = 1. (10)

By (7) this is equivalent to

a+ (q − |H|)yk +
aδ

1− δ

∑

i∈H

pi = 1. (11)

The value vi of any player i satisfies

pi(yi + a) + (1− pi)riyi = vi. (12)

Each period a unit cake is divided among the players. The division may be
random, but each realization z is a nonnegative n -dimensional vector whose
components add up to 1. Players have common beliefs about what is the
probability of each such z. Since each vi is just the expected value of the
shares zi player i gets, it follows that

∑

i vi = 1. By equations (3) and (5) -
(7) this is equivalent to

p(L)(a+ yk) +
|K|yk
δ

+
ap(H)

1− δ
= 1. (13)

Equations (11) and (13) form a linear 2 × 2 linear system with variables a
and yk. The unique solution of this system is given by (8) and (9).

We can now solve for players’ value functions vi.
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Corollary 1. The value functions in an SSPE are the following:

vi =











pi{|K| − δ(q − |H| − p(L))}/D i ∈ H

(1− δ)p(K)/D i ∈ K

pi(1− δ){|K| − δ(q − |H| − p(L)− p(K))}/D i ∈ L

(14)

where D is given by Prop. 6.

Proof. The numbers a and yk given by (8) and (9) are inserted into the value
functions in equations (3), (5) and (6).

3.2. On the existence of a pure SSPE

Let us first analyze the possibility that all players belong to K in equi-
librium. It turns out that this is impossible. Suppose however that such an
equilibrium exists. Then every player accepts any offer that is not below yk
and every player keeps to himself the amount a+yk when he is the proposer.
The values of these numbers are given by (8) and (9) when H = L = ∅ and
K = {1, . . . , n}:

yk =
δ

n
, and a = 1−

qδ

n
. (15)

The expected value from bargaining is vk = 1/n. Since everybody gets the
same from the bargaining game, the investments must also be the same. Let
us denote by h the equilibrium investment level of any player.

As before let the cost levels satisfy 0 < c1 ≤ · · · ≤ cn < 1. If i has
an incentive to invest less than h then naturally also player n has such an
incentive. Note that if n invests e < h then either 1) n ∈ H or 2) n ∈ K
in the new equilibrium of the bargaining game. But if case 2) holds then n
will deviate for sure since his expected payoff from bargaining is still 1/n by
(14) but his investment cost is lower. Hence case 1) must hold and we should
show that deviation to h < e is not profitable.

Case 1. The new recognition probabilities are

pn =
e

(n− 1)h+ e
, and pi =

h

(n− 1)h+ e
, for i < n. (16)

Inserting the values H = {n}, K = {1, . . . , n − 1} in the formula of vn
in equation (14) of Cor. 2, we get that the value from bargaining v̂n after
deviation is

v̂n =
pn[n− 1− δ(q − 1)]

pn[δ(n− 1)− δ(q − 1)] + (n− 1)(1− δ)
. (17)
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The value v̂k for other players i < n is found in the same way:

v̂k =
(1− δ)(1− pn)

pn[δ(n− 1)− δ(q − 1)] + (n− 1)(1− δ)
. (18)

It follows from Eraslan (2002, p. 21) that H = {n} implies v̂k ≥ v̂n. By
using (17) and (18) this is seen to be equivalent to

pn <
1− δ

n− δq
. (19)

It is straightforward to check that in (19), (1− δ)/(n− δq) < 1/n, hence the
probability pn is bound away from 1/n. But this means that investing only
slightly less than h player n will stay in the group K also in the new bar-
gaining equilibrium, and hence case 2) holds after all. We have the following
result.

Proposition 4. When q < n, there exists no pure SSPE such that K =
{1, . . . , n}, that is, no such pure equilibria that all players invest the same

amount in publicity.

Independently from us, Querou and Soubeyran (2011) have reached this
same result.

However, there might exist asymmetric pure strategy equilibria. We
demonstrate this for three person games.

Proposition 5. If N = {1, 2, 3}, q = 2 and ci = c > 0 for every i ∈ N ,

then let he investment level of player 1 be h1 = (2− δ)/c(3− δ)2, and let the

investment levels of players 2 and 3 satisfy h2 + h3 = (2− δ)/2c(3− δ)2 and

1/8 < h3/h2 < 1/5. Then there exists a δ̄ < 1 such that for δ > δ̄, there exists
an SSPE with investment levels h = (h1, h2, h3). The equilibrium recognition

probability p1 of player 1 is 2/3. The recognition probabilities of players 2 and

3 satisfy p2 + p3 = 1/3 and 5/18 < p2 < 8/27 and 1/27 < p3 < 1/18.

Proof. See the Appendix.

3.3. On the existence of a symmetric mixed SSPE

Although there are no symmetric SSPE with pure investment strategies,
there exists a symmetric SSPE with mixed investment strategies, when play-
ers have equal costs c > 0. After we have shown this, we provide a numerical
example for a three person majority voting case.

First note that investment levels ei > 1/c are strictly dominated by zero
investment. Hence we need only consider mixed investment strategies over

9



[0, 1/c]. Denote by ∆ the compact metric space of all probability measures
over [0, 1/c], equipped with the weak convergence topology (Prohorov met-
ric). That is, p ≤s q iff

∫

f(x)dp ≤
∫

f(x)dq, for all bounded measurable
nondecreasing functions f : [0, 1] → R. Denote by ∆n the set of mixed strat-
egy profiles with product topology. We say that profile p is symmetric, if
pi = p1 for all players i.

Let Bi(q) be the set of all mixed best replies of player i against a mixed
profile q, and denote by Bi the best reply correspondence of i. The product
correspondence is denoted by B. As usual, pure strategies x ∈ [0, 1/c] are
viewed as degenerate mixed strategies, and with a slight abuse of notation
we may denote x ∈ Bi(q) or x ∈ ∆.

Proposition 6. If players have the same investment cost c, then there exists

an SSPE in which all players use the same mixed investment strategy q1.
Moreover, q1({0}) = 0, that is, only strictly positive investment levels get

positive probability.

Proof. See the Appendix.
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APPENDIX

Proof of Proposition 5. The value functions vi(h) (gross of investment costs)
from investments h = (h1, h2, h3) are (Proposition 3 and Corollary 1) the
following.

v1(h) =
(2− δ)h1

(2− δ)h1 + 2(h2 + h3)

vi(h) =
h2 + h3

(2− δ)h1 + 2(h2 + h3)
, i = 2, 3. (20)

At an interior equilibrium h the following first order condition should be
satisfied.

∂v1(y)

∂e1
− c =

2(2− δ)(h2 + h3)

[(2− δ)h1 + 2(h2 + h3)]2
− c = 0

∂vi(y)

∂ei
− c =

h1(2− δ)

[(2− δ)h1 + 2(h2 + h3)]2
− c = 0, i = 2, 3. (21)

It must be true that h1 = 2(h2 + h3), and the investments satisfy:

h1 =
2− δ

c(3− δ)2

h2 + h3 =
2− δ

2c(3− δ)2
(22)

We must show that equations (22) constitute an equilibrium. First, note that
there cannot be a profitable deviation for any player such that the equilibrium
configuration remains L = {1} and K = {2, 3}. Hence for example for player
1, a deviation can be profitable only if it results e.g. in a configuration
K = {1, 2, 3}, or K = {2, 3}, H = {1}, and so on. Similarly, player 2 or 3
can have only such profitable deviations that a new configuration emerges.
For example K = {1, 2}, H = {3} could in principle result from a deviation
of player 2. However, using the value functions in Corollary 1, one can
show that none of these possible deviations is profitable in the limit when δ
approaches 1. Moreover, in the limit the restrictions for investment levels hi

hold as claimed. We will now complete the proof.
We have several distinct cases depending upon the values of investment

level of each player i. Suppose that at least one player invests a positive
amount.

Noting that K cannot be empty and |H|, |L| < 2, we have cases with
|K| = 3, |H| = 2 and either |L| = 1 or |H| = 1, and |H| = |K| = |L| = 1.
We denote these cases respectively KKK,LKK,KKH, and LKH.
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When one of those patterns is the equilibrium configuration, the equilib-
rium payoffs (net of investment cost) are given by the following (we assume
p1 ≥ p2 ≥ p3, to avoid duplication).

player 1 player 2 player 3
KKK 1/3 1/3 1/3

LKK
(2−δ)p1
2−δp1

(1−p1)
2−δp1

(1−p1)
2−δp1

KKH
(1−δ)(1−p3)
2(1−δ)+δp3

(1−δ)(1−p3)
2(1−δ)+δp3

(2−δ)p3
2(1−δ)+δp3

LKH
p1(1−δ)(1−δp3)
1−δ+δ2p1p3

(1−δ)p2
1−δ+δ2p1p3

p3(1−δ+δp1)
1−δ+δ2p1p3

Table 1. Equilibrium payoffs

The possibility of each configuration XY Z is determined by the values of
the invitation probabilities ri ∈ [0, 1]. The conditions are

the configuration XY Z =























KKK if p1 ≤
1

3−δ
, and p3 ≥

1−δ
3−2δ

LKK if p1 ≥
1

3−δ
, and p3 ≥

(1−δ)(1−p1)
2(1−δ)+δp1

KKH if p3 ≤ min{ 1−δ
3−2δ

, 1−2p1
1−δp1

}

LKH if 1−2p1
1−δp1

≤ p3 ≤
(1−δ)(1−p1)
2(1−δ)+δp1

These exhaust all cases and at the boudary of each case, payoffs are equal.
We shall refer to the configuration LKK with L = {i} as iLKK, and the

configuration LKH = {i}{j}{k} as iLKHk. We may also refer to KKH
with H = {i} as KKHi.

Given these data, we confirm that the investment levels shown in the
proposition (h1, h2, h3) comprise an equilibrium by showing that each invest-
ment level is a best response.

Given investments (e1, e2, e3), denote equilibrium payoffs from the bar-
gaining subgame by Vi(e1, e2, e3) for i = 1, 2, 3. Resulting net payoff is given
by Vi(e1, e2, e3)− cei.

These subgame payoffs V1 for player 1 are determined as function of e1
as follows, given other players’ investment levels h2, h3:

V1(e1, h2, h3) =























(2−δ)e1
(2−δ)e1+2(h2+h3)

, e1 ≥
h2+h3

2−δ
, (1LKK)

1/3, (2− δ)h2 − h3 ≤ e1 ≤
h2+h3

2−δ
, (KKK)

e1+h3

2(e1+h3)+(2−δ)h2

, e0 ≤ e1 ≤ (2− δ)h2 − h3, (2LKK)
e1(1−δ+δh2)

(1−δ)(e1+h2+h3)2+δ2e1h3

, 0 ≤ e1 ≤ e0, (2LKH1)
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where at e0 satisfies

e0

e0 + h2 + h3

=
(1− δ)(1− h2

e0+h2+h3

)

2(1− δ) + δ( h2

e0+h2+h3

)
<

1− δ

3− 2δ

and e0 tends to 0 as δ tends to 1. Also note that given the values in the
proposition, for δ sufficiently large, recognition probabilities never enter the
regions corresponding to KKH.

Define

f1(e1;h2, h3) =
(2− δ)e1

(2− δ)e1 + 2(h2 + h3)
.

Then f1 is a nonnegative, concave, and increasing function of e1. Also
note that df1

de1
(h1;h2, h3) = c. Similarly define

f2(e1;h2, h3) =
e1 + h3

2(e1 + h3) + (2− δ)h2

f3(e1;h2, h3) =
e1(1− δ + δh2)

(1− δ)(e1 + h2 + h3)2 + δ2e1h3

.

Then f2 is a positive, concave, and increasing function of e1 while f3 is a
nonnegative increasing function of e1. Define

g2(e1;h2, h3) = max{f2(e1;h2, h3), f2(e
0;h2, h3)}.

If we can show that h1 is the best response for the modified payoff
function based on the modified subgame payoff function V ∗

1 (e1, h2, h3) =
max{f1,min{1/3, g2}}, then h1 is the best response for the original payoff
function. Since e0 tends to 0, we essentially compare the best payoff in the
2LKK region with the equilibrium payoff.

Since f1 and f2 are both concave, a sufficient condition is

df2
de1

((2− δ)h2 − h3;h2, h3) ≤
df1
de1

(h1;h2, h3) = c, and

f2((2− δ)h2 − h3;h2, h3)− c((2− δ)h2 − h3) ≤ f1(h1;h2, h3)− ch1.

Now

df2
de1

((2− δ)h2 − h3;h2, h3) =
(2− δ)h2

[2(((2− δ)h2 − h3) + h3) + (2− δ)h2]2

=
1

9(2− δ)h2

.

For h2 and h3 satisfying 1/8 < h3/h2, there is δ sufficiently close to 1 so
that 2(3− δ)2(h2 + h3) ≤ 9(2− δ)2h2 holds and hence 1

9(2−δ)h2

≤ c.

13



We know that f2((2 − δ)h2 − h3;h2, h3) = 1/3 and f1(h1;h2, h3) =
2−δ
3−δ

.
Thus, given 1/5 > h3/h2, by choosing δ sufficiently close to 1, we have

2−δ
3−δ

− 1
3

2(h2 + h3)− [(2− δ)h2 − h3]
=

3− 2δ

3(3− δ)(δh2 + 3h3)
≥ c.

Hence h1 is the best response for player 1.
The subgame payoff V2 for player 2 is given by the following formula,

given h1, h3:

V2(h1, e2, h3) =



















f1(e2;h1, h3), e2 ≥
h1+h3

2−δ
, (2LKK)

1/3, (2− δ)h1 − h3 ≤ e2 ≤
h1+h3

2−δ
, (KKK)

f2(e2;h1, h3), e00 ≤ e2 ≤ (2− δ)h1 − h3, (1LKK)

f3(e2;h1, h3), 0 ≤ e2 ≤ e00, (1LKH2)

where e00 satisfies

e2
h1 + e00 + h3

=
(1− δ)(1− h1

e00+h1+h3

)

2(1− δ) + δ( h1

e00+h1+h3

)
<

1− δ

3− 2δ
,

and e00 tends to 0 as δ tends to 1.
Again we can define the modified payoff function V ∗

2 and confirm that h2

is the best response for it. A sufficient condition for h2 being a best response
is

df1
de1

(

h1 + h3

2− δ
;h1, h3

)

≤ c =
df2
de1

(h2;h1, h3) .

This holds because

c =
(2− δ)h1

[(2− δ)h1 + 2(h2 + h3)]2
=

2− δ

(3− δ)2h1

>
2(2− δ)

9(h1 + h3)

for δ large enough.
Argument for player 3 is similar to the case of player 2.

Proof of Proposition 6. Note that Bi(q) is nonempty, convex and compact for
every q ∈ ∆n such that qj({0}) < 1 for at least some player j 6= i. However,
payoff functions are discontinuous at investment levels ei = 0, i = 1, . . . , n.
Therefore, consider first games G(m) such that every players investment must
be at least 1/mn,m = 1, . . .. Denote the mixed strategies over [1/mn, 1/c]
by ∆m and the set of corresponding profiles by ∆n

m. Then the best reply
correspondences in G(m) are upper hemicontinuous with nonempty convex

14



values. By the Fan-Glicksberg theorem, in the game G(m) there exists an
SSPE with mixed investment strategies q = (q1, . . . , qn). We show first (Step
1.) that in the game G(m) there also exists a symmetric equilibrium, q1 =
· · · = qn, and after that we show (Step 2.) that this holds also in the original
game where also zero investments are allowed.

Step 1. Denote the best reply correspondences in the game G(m) by
Bm

i (p). Take a symmetric profile p ∈ ∆n
m, and note that Bm

1 (p) = · · · =
Bm

n (p). Then the correspondence bm1 on ∆m defined by bm1 (p1) = Bm
1 (p) is an

upper hemicontinous correspondence, and b1 has nonempty convex values.
Hence by the Fan-Glicksberg theorem, bm1 has a fixed point qm1 ∈ ∆m. By
construction the profile qm = (qm1 , . . . , q

m
1 ) is a symmetric profile of mixed

investment strategies in an SSPE of the game in which investment levels
must be at least 1/mn.

Step 2. Let m go to infinity. Choose a symmetric mixed equilibrium
profile qm from each game G(m). Then the sequence {qm}m has a convergent
subsequence {qmk)}k. Note that the limit of such a sequence is a symmetric
profile. There are two possible cases: A) for some convergent subsequence,
the limit q = (q1, . . . , q1) is such that q1({0}) < 1; B) for all convergent
subsequences, the only limit q = (q1, . . . , q1) is such that q1({0}) = 1.

Case A. By continuity of payoff function at strictly positive investment
levels, the limit q is a symmetric equilibrium if q1({0}) = 0. Recall that we did
not define payoffs if all players choose zero investments. However, we could

define that the recognition probability is 1/n for all players in such a case.
Nevertheless, even then payoffs would be discontinuous at zero investments,
and then the Fan-Glicksberg theorem does not apply (this does not mean
that a mixed profile with an atom at 0 could not be an equilibrium). We will
rule out the possibility that q1({0}) > 0.

Assume q1({0}) > 0. We may assume w.l.o.g. that the sequence {qm}m
itself converges to q. By convergence, the strategy qm1 must have an atom
at some xm near 1/nm for large values of m, such that xm −→ 0 (by taking
a subsequence of {xm}m if necessary) and qm1 ({xm}) −→ q1({0}). The ex-
pected payoff from bargaining (excluding the investment cost) must be 1/n
for every player in each game G(m) (note that this holds also in the limit,
given that zero investments lead to equal recognition probabilities). This is
so because unit cake is shared in every game, and investment strategies and
payoff functions are symmetric.

Consider a small investment level ε > 0. Suppose that player i deviates in
such a way that he puts all the probability mass q1([0, ε]) on ε, but otherwise
the strategy is left unchanged. Then player i’s expected payoff from bargain-
ing is almost one, conditional that other players investment is zero and he
invests ε, because in such a case his recognition probability is almost one.
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The probability of such and event is roughly q1({0})
n if q1 has no atoms in

(0, ε), and it is larger than q1({0})
n if q1 has an atom in (0, ε). His investment

cost has increased by at most cε. Hence a deviation can be made profitable
by choosing a sufficiently small ε. But then qm cannot be an equilibrium
investment profile in G(m), a contradiction. So the claim holds in Case A.

Case B. If all convergent subsequences of {qm}m have a limit q such that
q1({0}) = 1, then the sequence itself converges to q. The expected payoff
from bargaining is 1/n, and the expected cost of investment goes to zero.
Hence the expected equilibrium payoff is almost 1/n for every player for
large m. By convergence, for each ε ∈ (0, 1), and each δ ∈ (0, 1), there is M
such that qm1 ([0, ε]) > 1 − δ when m > M . Consider a deviation by player
i such that he puts the probability mass q1([0, ε]) on ε, and otherwise keeps
the strategy as it was. By the similar argument that was used in Case A,
one can show that such a deviation can be made profitable. Therefore q(m)
cannot be an equilibrium investment profile in G(m) for large m. Hence Case
B is impossible.
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