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ABSTRACT

In  this  paper  we  study  the  number  of  pure  strategy  Nash
equilibria in large finite n-player games. A distinguishing feature
of our study is that we allow general - potentially multivalued -
best reply correspondences. Given the number K of pure strategies
to  each  player,  we  assign  to  each  player  a  distribution  over  the
number of his pure best replies against each strategy profile of his
opponents. If the means of these distributions have a limit i for
each  player  i  as  the  number K of  pure  strategies  goes  to  infinity,
then the limit number of pure equilibria is Poisson distributed
with  a  mean  equal  to  the  product  of  the  limit  means i.  In  the
special case when all best reply mappings are equally likely, the
probability of at least one pure Nash equilibrium approaches one
and the expected number of pure Nash equilibria goes to infinity.
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1 Introduction

To understand how Nash equilibrium behaves as a solution concept, on the
”average”, is one of the foundational questions of game theory. A important
literature has analyzed pure Nash equilibria (PNE) in random games (see
e.g. Stanford 1995a,b, 1996; Powers 1990, Goldberg et al. 1968, Dresher
1970). Of particular interest is the asymptotic distribution of PNEs when
the size of the game becomes large.

It is clear that the the only thing that matters for the distribution of
PNEs in a normal form game is the distribution of the players’ best responses
in the game. A standard assumption in the random games literature has,
however, not to start from best responses but rather to derive best responses
from payoffs that are randomly drawn. Crucially, the set of feasible utili-
tites is conceived to be infinitely times larger than the finite choice set -
an assumption that guarantees that the players are never indifferent, i.e.,
that the best responses are unique. Under this assumption, it is shown that
the limit number of PNEs is Poisson distributed with the mean 1 (see e.g.
Stanford 1995a,b, 1996; Powers 1990, Goldberg et al. 1968, Dresher 1970).

In this paper, we study equilibrium formation in a framework where the
numbers of best responses are drawn independently from a general distribu-
tion. This is an important generalization of the standard analysis since, as
is also suggested by game theory texts, multiple best responses are merely
a norm rather than an exception in applications. In fact, we are not aware
of any theoretical or empirical argument that substantiates the assumption
that the optimal choice is always unique. In our opinion it is also is natural
to think that the number of best responses is at least some degree responsive
to the number of distinct choices.

But allowing general best responses is a theoretically challenging exer-
cise. It is clear that multiplicity of best responses fundamentally changes
the probabilistic structure of the PNEs. What drives the existing results
(e.g Stanford 1995a,b) concerning the distribution of the PNEs is that, at
least in the limit, they can be treated as independent Bernoulli variables. A
driving reason for this is that, with single valued best responses, a row or
a column does not ever contain more than one PNE. Therefore, what one
only needs to show for the result is that a likelihood of a PNE in a row is
independent of a PNE in another row in the limit. But with multiple best
responses, this is no longer sufficient as there may be many PNEs in the
same row or column. This second order effect creates a complicated depen-
dence structure between the PNEs, and it is no longer clear how the limit
distribution of the number of PNEs behaves.

We characterize the limit distribution of the PNEs when the random
game becomes large. By allowing n players and arbitrary random best
response correspondences, our approach considerably generalizes the liter-
ature. Our main result is that if the average number of best responses of
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the players is bounded, then the limit game can still be approximated by a
Poisson distribution: when the game becomes large, the number of PNEs
is Poisson distributed with meanΠiµ̄i, where µ̄i is the limit of the average
number of best responses of a player i = 1, ..., n. In particular, the shape
of the distributions where the best responses are drawn does not affect the
limit distribution of the PNEs as it is only the average numbers that matter.
Thus, if the average numbers of best responses are bounded, then the PNEs
can be treated in the limit as if they are independent random variables no
matter how complicated the limit best response structures may be.

We also argue that if some of the player’s average number of best re-
sponses increases without a bound as the game becomes large, which is the
case if each best response correspondence is equally likely, then the number
PNEs increases without a bound with probability one. Moreover, then the
probability of at least one PNE approaches unity. Note that it is sufficient
that there is only one player with this property.

It is often useful to think that a player’s best responses emerge from
maximization of a utility function. To complete the analysis, we study the
case where randomness concerns the underlying utilities. When the utility
indices are not drawn from an infinite but a finite set, the probability of
multiple best responses is strictly positive. The standard result that the
distribution of pure Nash equilibria converges to the Poisson distribution
with mean 1 (Stanford 1995a,b, 1996; Powers 1990, Goldberg et al. 1968,
Dresher 1970) is derived under the hypothesis that the utility indices are
drawn from a continuum and it does not hold when the utilities are drawn
from a finite set. We let the cardinality of the set of possible utilities of
a player i, mi(K), depend on the size of the game K in such a way that
mi(K)/K approaches real number ri as K becomes large. Then the proba-
bility of multiple best responses does not vanish even in the limit. We show
that in such case the incidence of a PNE with maximal payoffs approaches
Poisson with mean Πiri. We show that the limit distribution of pure Nash
equilibria converges to Poisson with mean Πir

−1
i (1 − e−r−1

i )−1. Since this
number converges to 1 as ri tends to infinity, our result can be taken as a
generalization of the previous literature.

It is important to note that our limit results cover also the case where the
sizes of the choice sets of the players, say K1, ...,Kn, increase with different
speed. The only thing that is that the limit ratiosmi(Ki)/Ki are well defined
for all players. Alternatively, we could draw the utilities from a same set and
vary the sizes of the strategy sets, without affecting the qualitative nature
of the results.

There are important omissions. Our focus is specifically restricted to
pure strategies and independently drawn payoffs. McLennan (1997) allows
mixed strategies and Bade et al. (2007) infinite action sets. Rinott and
Scarsini (2000) study the case where players’ payoffs are dependent.

The paper is organized as follows. The basic set up is specified in Section
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2. The main result is stated and proved in Section 3. Section 4 discusses
two cases, when the average number of best responses is not bounded, and
when the best responses result from maximization of random utilities.

2 Preliminaries

There are players N = {1, ..., n}, playing a Kn matrix game. Two games
with the same players and the same strategy sets are best reply equivalent if
they induce the same best response matrices, one for each player. Since it is
only the best responses that determine players’ (pure strategy) behavior, it
is safe to take the best response matrices as the the primitive of the model.

Denote a typical action of player i by ai ∈ {1, ...,K}, and a typical
action profile of all players by a = (a1, ..., an) ∈ {1, ...,K}n. Also denote by
a−i = (a1, ..., ai−1, ai+1, ..., an) a profile of actions of players all but i. Player
i’s best response matrix is denoted by

xi = [xi(a)]a∈{1,...,K}n

such that

xi(a) ∈ {0, 1}, for all a ∈ {1, ...,K}n,
∑K

ai=1 xi(ai, a−i) ≥ 1, for all a−i ∈ {1, ...,K}n−1.

Denote a profile of all players’ best response matrices by x = (x1, ..., xn) and
a profile of all but i’s best response matrices by x−i = (x1, ..., xi−1, xi+1, ..., xn).

We let x be random. Best responses of an agent are assumed to be inde-
pendent of the best reponses of the other agents as well as the name of the
agent’s choice. The primitive of the model is the agent dependent proba-
bility distrbutions pK1 , ..., pKn on each the choice set {1, ...,K}, reflecting the
probability pKi (k) that agent i has k best responses against an action profile
a−i of the other players in a K−game. That is, for all a−i,

pKi (k) = Pr
{
∑

ai
xi(ai, a−i) = k

}

.

Then the probability that a subset S ⊆ {1, ...,K} with |S| = k of agent i’s
actions comprises the set of best responses against an action profile a−i of
the other players is of the form

(

K

k

)−1

pKi (k).

Denote the expected number of i’s best responses against an action pro-
file of the other players in a K−game by

∑

k

pKi (k) · k = µK
i ,
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and by µ̄i ∈ R+ the limit expected number of best responses, when it exists

µK
i →K µ̄i. (1)

Note that µ̄i is also the limit average number of best responses, by the law
of large numbers.

An action profile a ∈ {1, ...,K}n forms a pure Nash equilibrium (PNE)
if (and only if)

∏

i∈N

xi(a) = 1.

The number of PNEs in a K−game given the best response matrices x =
(x1, ..., xn) is denoted by

π(x) =
∑

a

∏

i

xi(a).

Our main interest is in characterizing the limit properties of the random
variable π when K becomes large.

3 Main result

We now state the main result of the paper. The remainder of the section
provides a proof for it.

Theorem 1 Assume that a bounded limit µ̄i exists for all i ∈ N. Then the
number of PNEs π is Poisson distributed with mean Πiµ̄i as K goes to
infinity.

The content of Theorem 1 is that, in the limit, the number of PNEs
can be computed as if the probability of one action profile being a PNE is
independent of another action profile being a PNE. Our proof strategy is
to show that, with probability one, there are no two PNEs in the same row
(column) of the limit game, and hence the number of PNEs can be computed
on the basis of how many rows (columns) contain a PNE.

Given a best response matrix xi of player i, denote the proportion of the
Kn−1 action profiles of the other players against which i has k distinct best
responses by

p (k : xi) :=

∑

a
−i

I
{
∑

ai
xi(a) = k

}

Kn−1
, for all k = 1, ...,K,

where I{·} is an indicator function. Conversely, denote the proportion of
the K actions of i that are best responses to ℓ distinct action profiles of the
other players by

q (ℓ : xi) :=

∑

ai
I
{

∑

a
−i

xi(a) = ℓ
}

K
, for all ℓ = 0, ...,Kn−1. (2)
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Given xi, the average number of i’s best responses µi(xi) is denoted by

µi(xi) :=

K
∑

k=1

p (k : xi) · k.

Since it does not matter whether one counts the sums of entries of a matrix
on the basis of rows or columns,

Kn−1
K
∑

k=1

p (k : xi) · k = K
Kn−1

∑

ℓ=0

q (ℓ : xi) · ℓ,

and the average number of best responses µi(xi) can also be written

µ(xi) =

∑Kn−1

ℓ=0 q (ℓ : xi) · ℓ

Kn−2
. (3)

Note that
Exi [µ(xi)] = µK

i .

Thus
Exi [µ(xi)] →K µ̄i,

whenever the limit µ̄i exists.
Denote the number of the other players’ action profiles a−i against which

ai is a best response

λ(ai, xi) =
∑

a
−i

xi(ai, a−i).

Also, denote the number of PNEs that an is a component of by

π(ai, x) =
∑

a
−i

∏

j

xj(ai, a−i).

Finally, denote the number of PNEs in the n − 1 player game restricted to
the player set N\{i} when i chooses ai by

π(ai, x−i) =
∑

a
−i

∏

j∈N\{i}

xj(ai, a−i).

Construct a new Bernoulli variable

χ (x : k, ℓ, ai) =

{

1, if λ(ai, xi) = ℓ and π(ai, x) = k,
0, otherwise.

(4)

In other words, for a fixed k and ℓ, χ (x : k, ℓ, ai) = 1 if and only if
the action ai of players i is a component of k PNEs. In the probablistic
sense this is equivalent to say that for ℓ draws without replacement from
a population of size Kn−1 and initial success probability m/Kn−1, where
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m is the random number PNEs in the n − 1 -player game restricted to the
player set N\{i} under i’s choice ai, results in k successes. This means
that, for the given ℓ and m, the probability that an action ai of player
i is a component of k PNEs in the K-game follows the hypergeometric
distribution Hyp

(

· : ℓ,Kn−1,m/Kn−1
)

.1 Noting that the random variable
m is equivalent to π(ai, x−i), the success probability of the Bernoulli variable
(4) can be expressed as the expectation

Ex [χ (x : ℓ, k, ai)] = Ex
−i

[

Hyp

(

k : ℓ,Kn−1,
π(ai, x−i)

Kn−1

)]

. (5)

Moreover, since the players’ best responses are independently drawn,
π(ai, x−i) and π(a′i, x−i) are independent random variables whenever ai 6= a′i.
Thus it follows that χ (· : k, ℓ, ai) is an independent Bernoulli variable with
respect to the defining parameters k, ℓ, and ai. We collect these observations
into the following remark:

Remark 2 χ (· : k, ℓ, ai) is an independent Bernoulli variable with success
probability (5), for all triplets (k, ℓ, ai) .

Given x, the number of PNEs can now be written in the form

π(x) =
∑

k

∑

ℓ

∑

ai

k · χ(x : k, ℓ, ai). (6)

By Remark 2, this sum consists of independent Bernoulli variables with
known success probabilities. Hence we can use the approximation results
from the literature to obtain the limit distribution. Recall the following
classical result (see Billingsley 1985, Theorem 23.2.).

Theorem 3 For i = 0, ...., L, let yi ∈ {0, 1} be an independent Bernoulli
variable with success probability Eyi [yi] = βL

i . If maxi∈{0,...,L} β
L
i →L 0, then

limL
∑L

i=0 yi is Poisson distributed with the mean limL
∑L

i=0 β
L
i .

A complication in using Theorem 3 is that the terms in the sum (6) are
multiplied by factor k. Therefore, a simple summation of distinct trials does
not reflect the desired sum. The next lemma states that this concern is not
warranted in the limit.

1Where Hyp(· : ℓ, T,m/T ) denotes the hypergeometric distribution with number of
draws ℓ, population size T, and the intial success probability m/T , i.e.,

Hyp(k : ℓ,K,
m

T
) =

(

m
k

)(

T−m
ℓ−k

)

(

T
ℓ

) , for all k.
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Given the player set N , denote by π̄N the limit of the expected number
of PNEs

Ex [π(x)] →K π̄N , (7)

whenever the limit exists. Then π̄N\{i} is the limit expected number of the
PNEs in an n− 1 -game restricted to the player set N\{i}.

Before we state our first lemma, recall the following fact concerning the
hypergeometric distribution:

lim
T

T k ·Hyp
(

k : ℓ, T,
m

T

)

= ℓ ·m. (8)

Lemma 4 Let a sequence {qK} of probability distributions on N satisfy

lim
K

∑

ℓ q
K(ℓ) · ℓ

Kn−2
= λ.

Assume that a bounded limit π̄N\{i} exists. Then, for any ai ∈ N,

lim
K

K(k−1)(n−1)+1 ·Ex

[

∑

ℓ

qK(ℓ) · χ(x : k, ℓ, ai)

]

= λ · π̄N\{i}. (9)

Proof. Since the limit π̄N\{i} is well defined, we have, for any ai ∈ N,

lim
K

K(k−1)(n−1)+1 · Ex

[

∑

ℓ

qK(ℓ) · χ(x : k, ℓ, ai)

]

= lim
K

Ex

[

∑

ℓ q
K(ℓ) ·Kk(n−1) ·Hyp

(

k : ℓ,Kn−1, π(ai, x−i)/K
n−1

)

Kn−2

]

= lim
K

(∑

ℓ q
K(ℓ) · ℓ

Kn−2

)

· lim
K

Ex
−i [π(ai, x−i)]

= λ · π̄N\{i},

where the first equality follows from (5) and the second from (8) and the
fact that m = π(ai, x−i) and ℓ in (8) are independently distributed.

Appealing to Theorem 3 and Lemma 4, we now state the key result.

Lemma 5 Assume that bounded limits π̄N\{i} and µ̄i exist. Then the limit
number of PNEs is Poisson distributed with the mean µ̄i · π̄N\{i}.

Proof. The total number of PNEs is

π(x) =
∑

k

∑

ℓ

∑

ai

k · χ (x : k, ℓ, ai)

=
∑

k

k
∑

ai

χ (x : k, λ(ai, xi), ai) . (10)
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By Remark 2, the elements in this sum are independent, each with success
probability Ex [χ (x : k, λ(ai, xi), ai)] .. First we state properties of the limit
distrbution:

Claim 1 : With probability one, the limit number of the PNEs (10) can
be computed as the sum

lim
K

π(x) = lim
K

K
∑

ai=1

χ (x : 1, λ(ai, xi), ai) . (11)

Proof : By (3) and Lemma 4, the expected value of the limit for the sum
starting from k = 2 has the property that

lim
K

∞
∑

k=2

k ·Ex

[

K
∑

ai=1

χ (x : k, λ(ai, xi), ai)

]

= lim
K

∞
∑

k=2

k ·K ·Ex





Kn−1

∑

ℓ=0

q(ℓ : xi) · χ (x : k, ℓ, 1)





= lim
K

∞
∑

k=2

k · µ̄i · π̄N\{i}

K(k−1)(n−1)

= lim
K

K · µ̄i · π̄N\{i}

Kn−1(K − 1)2

= 0.

This ends the proof of Claim 1.
Claim 2 : With probability one, the limit number of the PNEs (10) can

be computed as the sum

lim
K

π(x) = lim
K

K ·
Kn−1

∑

ℓ=0

q(ℓ : xi) · χ (x : 1, ℓ, 1) .

Proof : Recall that q(ℓ : xi) is the proportion of the K actions of i
that are best responses to ℓ distinct action profiles of the other players, and
that λ(ai, xi) is the number of the other players’ action profiles a−i against
which ai is a best response. Then, since (11) consists of independent random
variables for all ais, Claim 1 implies that the number of the PNEs can, with
probability one, be computed as the sum

lim
K

π(x) = lim
K

K
∑

ai=1

χ (x : 1, λ(ai, xi), ai)

= lim
K

K ·
Kn−1

∑

ℓ=0

q(ℓ : xi) · χ (x : 1, ℓ, 1) .

8



This ends the proof of Claim 2.
Claim 3 : With probability one, the limit number of the PNEs (10) can

be computed as the sum

lim
K

π(x) = lim
K

K ·
∑

ℓ≤Kn−3/2

q(ℓ : xi) · χ (x : 1, ℓ, 1) . (12)

Proof : By Claim 2, and since χ is bounded from above by 1, it suffices to
show that

lim
K

Ex





∑

ℓ≥Kn−3/2

q (ℓ : xi)



 = 0. (13)

By (3),

Exi [µ(xi)] = Ex





∑

ℓ≤Kn−1

q (ℓ : xi) ·
ℓ

Kn−2



 →K µ̄i. (14)

On the one hand, Exi [µ(xi)] can decomposed into two nonnegative compo-
nents

Exi [µ(xi)] = Ex





∑

ℓ≤Kn−3/2

q (ℓ : xi) ·
ℓ

Kn−2



+Ex





∑

ℓ≥Kn−3/2

q (ℓ : xi) ·
ℓ

Kn−2



 ,

and, on the other,

lim
K

Ex





∑

ℓ≥Kn−3/2

q (ℓ : xi) ·
ℓ

Kn−2



 ≥ lim
K

Kn−3/2 · Ex





∑

ℓ≥Kn−3/2

q (ℓ : xi)



 .

Thus (13) is implied by (14) whenever n ≥ 2. This ends the proof of Claim
3.

Claim 4 : With probability one, the limit number of the PNEs (10) is
Poisson distributed with the mean µ̄i · π̄N\{i}.

Proof : By Claim 2, it suffices to show that (i) the sum (12) satisfies the
conditions laid down in Theorem 3, and that (ii) the expected value of the
sum (12) is equal to µ̄i · π̄N\{i}.

For (i), it suffices to show that

lim
K

max
ℓ≤Kn−3/2

Ex [χ (x : 1, ℓ, 1)] = lim
K

max
ℓ≤Kn−3/2

Ex
−i

[

Hyp

(

1 : ℓ,Kn−1,
π(ai, x−i)

Kn−1

)]

= lim
K

max
ℓ≤Kn−3/2

ℓ

Kn−1
· lim

K
Ex

−i [π(ai, x−i)]

= lim
K

π̄N\{i}

K1/2

= 0,

9



where the second equality follows from (8) and the fact that m = π(ai, x−i)
and ℓ in (8) are independently distributed.

For (ii), it follows by Lemma 4 that

π̄N = lim
K

K · Ex





Kn−1

∑

ℓ=0

q(ℓ : xi) · χ (x : 1, ℓ, 1)





= µ̄i · π̄N\{i}.

Finally, we argue by induction that π̄{1,...,n} = Πn
i=1µ̄i, for all n. By

Lemma 5, this also proves Theorem 1.

Lemma 6 Assume that the limit µ̄i exists for all i = 1, ..., n. Then π̄{1,...,m} =
Πm

i=1µ̄i, for all m = 1, ..., n.

Proof. The initial step: By the definition of PNE and condition (1), the
statement holds for m = 1.

The inductive step: Let, for any m = 2, ..., π̄{1,...,m−1} = Πn−1
i=1 µ̄i. By

definition, π̄{1,...,m} is the expected number of PNEs in an m−player limit
game. Thus, by Lemma 5, π̄{1,...,m} = Πm

i=1µ̄i.

4 Two cases

4.1 Unbounded average numbers of best responses

In this section we let the average number of best responses of at least one
player increase without a bound as the size of the game becomes large. Such
situation would materialize, for example, when each best response matrix of
a player is equally likely. Note that in the current case, i.e., when the limit
of µK

i is not well defined, the results of the previous section do not apply.

Theorem 7 Let there be i ∈ N such that µK
i →K ∞. Then the probability

that the game possesses at most k = 0, 1, ... PNEs goes to zero as K goes to
infinity.

Proof. For any player j, recall that, given pKj , the symmetric probability

distribution fK
j (S) on 2{1,...,K}\{∅} that induces pKj (k) is defined by

fK
j (S) =

(

K

k

)−1

pKj (k), if |S| = k.
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Let t ∈ N. Construct a new distribution fK,t
j , a truncated version of fK

j , by

fK,t
j (S) =







fK
j (S) + 1

K

∑

ℓ>t p
K
j (ℓ), if |S| = 1,

fK
j (S), if 1 < |S| ≤ t,

0, if t < |S| .

Distributions (fK
1 , ..., fK

n ) and (fK,t
1 , ..., fK,t

n ) induce probability distri-
butions over best response matrices x and, hence, over the number of PNEs
π(x). Denote the latter distributions by gK and gK,t, respectively. Since
xj(a) ≥ x′j(a) for all a and for all j implies π(x) ≥ π(x′), it follows that gK

first order stochastically dominates gK,t for all K, and for all t.
The corresponding distribution pK,t

j (k) on the number of possible best
responses is

pK,t
j (k) =







pKj (1) +
∑

ℓ>t p
K
j (ℓ), if k = 1,

pKj (k), if 1 < k ≤ t,

0, if t < k.

.

Then there is µ̄t
j ∈ R such that µ̄t

j ≤ t and such that

∑

k

pK,t
j (k)k →K µ̄t

j .

By assumption there is a player i such that, when the constraint t is relaxed,

µ̄t
i →t ∞. (15)

Denote
∏

j µ̄
t
j = λ(t).

By (15),
λ(t) →t ∞.

Since gK first order stochastically dominates gK,t, it follows that, for all
k, for all K, and for all t,

∑

ℓ≤k

gK(ℓ) ≤
∑

ℓ≤k

gK,t(ℓ). (16)

By Theorem 1, for all k and for all t,

∑

ℓ≤k

gK,t(ℓ) →K

∑

ℓ≤k

λ(t)ℓe−λ(t)

ℓ!
. (17)

Since λ(t) →t ∞ it follows that

λ(t)ℓe−λ(t)

ℓ!
→t 0.

11



Since (16) and (17) hold for all t,

∑

ℓ≤k

gK(ℓ) →K 0.

We end this section by stating two immediate corollaries of the previous
result. If there is a player whose average number of best responses increases
without a bound when the size of the game becomes large, then:

1. The probability that the game possesses at least one PNE goes to one.

2. The expected number of PNEs goes to infinity.

4.2 Utilities drawn from a finite set

We assume in this section that player i’s payoffs are drawn uniformly from
an m−element set {1/mi(K), ..., (mi(K)−1)/mi(K), 1}, where mi(K) ∈ N.
We assume that, for each i = 1, ..., n, there is a nonnegative real number ri
such that

mi(K)

K
→K ri.

First we observe the following lower bound on the number of pure PNEs
in the limit game. When payoffs for agent i are taken from the set {1/mi(K), ..., (mi(K)−
1)/mi(K), 1}, the best possible PNE is the one with payoffs (1, ..., 1). We
first observe that the distribution of number of such best equilibria is ap-
proximately Poisson with mean 1/Πiri as K becomes large.

Proposition 8 The number of PNE with the maximal payoffs (1, ..., 1) is
Poisson distributed with mean 1/Πiri as K goes to infinity.

Proof. The probability that an action profile (x, y) results in payoffs (1, ..., 1)
gets arbitrarily close to K−nΠiri as K becomes large. The probability of
payoffs (1, ..., 1) for a given action profile is independent of the realization
of the payoffs for other action profiles. Thus the number of action pro-
files with payoffs (1, ..., 1) is binomially distributed with success probability
K−n/Πiri. The number of trials is Kn and so the mean of this distribution
is Kn · (K−n/Πiri) = 1/Πiri. By the well-known approximation result, the
limit distribution is Poisson with mean 1/Πiri.

As a corollary of the proposition follows that the probability of at least
one PNE with payoffs (1, ..., 1) converges to 1−e−1/Πiri as K becomes large.
However, for all K there is also a positive probability that a PNE materi-
alizes with payoffs strictly lower than 1. As long as ri > 0, this probability

12



does not vanish whenK becomes large, and it needs to be taken into account
when evaluating the distribution of PNEs.

The proof of the following result, which states the limit of the expected
number of i’s best responses, is relegated to the appendix.

Lemma 9 For any i,

µK
i →K

1/ri

1− e−1/ri
.

The following corollary is implied by Theorem 1.

Corollary 10 In the limit, the number of PNEs is Poisson distributed with
mean

n
∏

i=1

(

1/ri

1− e−1/ri

)

.

Moreover, since

lim
r→0

1/r

1− e−1/r
= ∞, and

lim
r→∞

1/r

1− e−1/r
= 1,

it follows by Theorem 1 that:

1. When payoffs are drawn from a set that is much (infinitely times) larger
than the set of choices, the number of pure PNE is Poisson distributed
with mean 1 as the set of choices becomes large (cf. Goldberg et al.,
1968; Drescher, 1970; Powers, 1990; Stanford, 1995a,b).

2. When payoffs are drawn from a set that is small relative to the size of
the game the expected number of PNEs approaches infinity and the
probability of at least one PNE approaches one, a result parallel to
Theorem 7.

3. Adding a new player n+ 1 with rn+1 ∈ (0,∞) increases the expected
number of PNEs. If the parameters r1, ..., rn are drawn from a bounded
set, then the number of expected PNEs grows exponentially in n.

Note also that the ratio between Poisson mean 1/Πiri in Proposition 8
- the lower bound of the expected number of equilibria - and the Poisson
mean Πiµ̄i in Theorem 1, i.e. 1/Πi(1−e−1/ri) tends to one when all ris tend
to 0, reflecting the fact that when the set of utility indices is small relative
the size of the game, most of the PNE are with maximal payoffs.
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A note on the limit game The natural limit game when K becomes
large is the one in which all players have N as their strategy sets. If mi(K)
increases without limit as well, for all i, then the uniform distribution over
{1/mi(K), . . . , (mi(K)− 1)/mi(K), 1} weakly converges to the uniform dis-
tribution over [0, 1]. Assume indeed that the strategy sets are N and payoffs
to both players and to each strategy pair are i.i.d. draws from the uniform
distribution over [0, 1]. In this game there are no pure Nash equilibria with
probability 1. To see this, note that player i = 1, ..., n gets utility strictly
less than 1 from every strategy pair with probability 1. Hence a Nash equi-
librium (a1, ..., an) should be such that player, say, i gets equilibrium payoff
y < 1. But with probability one he gets payoff x > y from some other
action a′ 6= ai. This is one reason why the limit results are of interest: if
there were pure Nash equilibria in the limit game, then such an equilibrium
might qualify as an approximate solution to a large but finite matrix game.

A Appendix

Proof of Lemma ??. The probability that the number of action pro-
files a−i against which i has k best responses is the probability that k ac-
tions generate the same payoff v times the probability that all other ac-
tions generate lower payoffs, given v. Since the distribution over the set
{0, 1/mi(K), . . . , (mi(K) − 1)/mi(K), 1} is uniform, we have, under given
K,

Exi [pi (k : xi)] =

mi(K)
∑

v=1

(

K

k

)(

1

mi(K)

)k ( v − 1

mi(K)

)K−k

=

(

K

k

)(

1

mi(K)

)k mi(K)
∑

x=1

(

1−
v

mi(K)

)K−k

,

where the second equality follows by reversing the order of summation. Let-
ting K become large,

lim
K

Exi [pi (k : xi)] = lim
K

1

k!

(

K

mi(K)

)k mi(K)
∑

v=1

(

1−
v

mi(K)

)K−k

=

∑∞
v=1 e

−v/ri

rki k!

=
e−1/ri

(1− e−1/ri)rki k!
,
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where the second equality follows by taking a component wise limit of the
summation. Thus

lim
K

µK
i = lim

K
Ex[µi

(xi)]

= lim
K

Exi





mi(K)
∑

k=1

kpi (k : xi)





= lim
K

mi(K)
∑

k=1

kpi (k : xi)

=
∞
∑

k=1

ke−1/ri

(1− e−1/ri)rki k!

=
e−1/ri/ri

1− e−1/ri

∞
∑

k=1

1

rk−1
i (k − 1)!

=
1/ri

1− e−1/ri
,

where the final equality follows from noting that
∑∞

n=1

[

rn−1
i (n− 1)!

]−1
is

a Taylor expansion of e1/ri .
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