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ABSTRACT

Various papers indicate that the yield-curve has superior
predictive power for U.S. recessions. However, there is
controversial evidence on the stability of the predictive
relationship and it has remained unclear how the persistence of
the underlying binary recession indicator should be taken into
account. We show that a yield-curve based probit model treating
the binary recession series as a nonhomogeneous first-order
Markov chain sufficiently captures the persistence of the U.S.
business cycles and produces recession probability forecasts that
outperform those based on a conventional static model. We obtain
evidence for instability in the predictive content of the yield-curve
that centers on a structural change in the early 1980s. We conclude
that the simple dynamic model with parameters estimated using
data after the breakpoint is likely to provide useful probability
forecasts of U.S. recessions in the future.
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1 Introduction

Predicting recessions is an important task for business and policy makers that condition

their decisions on their assessment of the future state of the economy. A number of papers

suggest that a simple probit model using predictive information from the yield-curve, the

spread between long and short-term interest rates, provides useful probability forecasts of

U.S. recessions, at least up to one-year horizon.1 However, there is controversial evidence

on the stability of the predictive relationship. Using Bayesian techniques, Chauvet and

Potter (2002, 2005) find evidence of instability and suggest structural breaks may explain

why standard yield-curve based probit forecasts have given somewhat weak signals of

specific recessions. The evidence is mixed by the analysis of Estrella, Rodrigues and

Schich (2003) whose breakpoint tests (of classical statistics) indicate no instability in

the predictive relationship. Also, while a few papers suggest that recession forecasts

should take the serial dependence of the business cycle into account,2 it is still common

to obtain recessions forecasts based on static model specifications.3 This paper provides

new evidence on the question of stability and attempts to clarify the role of dynamics for

yield-curve based forecasts of U.S. recessions.

The starting point of the paper is to incorporate dynamics to the standard yield-curve

based probit model by adding as a regressor a lagged value of the underlying binary

recession indicator. Thus, effectively, the state of the economy is modeled by a nonhomo-

geneous Markov chain of order one, with transition probabilities changing by the value

of the yield-curve. We also examine a larger class of probit models with richer forms of

dynamics, and introduce a model extension that has not been considered in the previ-

ous literature. However, due to the simplicity of the observed dynamics in the binary

recession series, we find no reliable evidence in favor of models with high-order dynamic

dependencies. Hence, we conclude that the simple dynamic specification is suffi cient for

capturing the persistence of the U.S. business cycles. The simple dynamic model is then

chosen as the main target for more detailed analysis of parameter stability.

1E.g., Estrella and Hardouvelis (1991), Estrella and Mishkin (1998), and Estrella, Rodrigues and
Schich (2003).

2E.g., Chauvet and Potter (2005) and Kauppi and Saikkonen (2008).
3E.g., Rudebusch and Williams (2009).

1



The stability analysis starts with tests for breakpoints at known and unknown dates.

Unlike previous breakpoint tests that examine the case of ‘pure’structural change, the

present analysis conducts also ‘partial’breakpoint tests that allow only a subset of the

model parameters to change under the alternative hypothesis. Altogether, the applied

breakpoint tests suggests that especially the coeffi cient of the yield-curve has changed,

while there is no evidence of instability of the remaining parameters. Furthermore, vari-

ous test results suggest that a structural break has occurred in the early 1980s, which is

consistent with apriori expectations. We then examine the performance of model variants

assuming specific types of parameter changes. We find clear differences in parameter esti-

mates between samples before and after the estimated breakpoint in the early 1980s. On

the other hand, models that allow parameter changes at specific business cycles indicate

that the predictive content of the yield-curve may have experienced a temporal structural

change in conjunction with exceptionally short recession and expansion periods around

1980. Further evaluation of the stability of the predictive content of the yield-curve is

conducted in the context of an analysis of out-of-sample forecasts.

The first part of the analysis of out-of-sample forecasts illustrates issues in the workings

of recession probability forecasts and demonstrates what kind of forecasts are likely to be

useful in practice. We show how the static model may yield misleading or implausible

recession probability forecasts due to the fact that it neglects the serial dependence of the

business cycle phases of the economy. In particular, the static model tends to exaggerate

the predictive content of the yield-curve so as to produce too prompt and too frequent

recession signals. By contrast, it is shown that the simple dynamic probit model produces

probability forecasts that are in line with the actual uncertainty that surround specific

recessions.

The second part of the analysis of out-of-sample forecasts is concerned with different

assumptions on structural changes in the predictive content of the yield-curve. It shows

that over the last 25 years the performance of recession probability forecasts at one-year

horizon depends on the estimation sample. The forecast performance is better the more

recent data are applied in the estimation of the model. Altogether, the analysis supports

the view that there has been a structural break in the early 1980s, but such a break does
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no longer cause practical harm to the forecast performance. We conclude that the simple

dynamic model that is estimated using data after the breakpoint is likely to provide apt

probability forecasts for U.S. recessions in the future.

The rest of the paper is organized as follows. Section 2 lays out the empirical setting

and introduces the applied models and forecast procedures. Appendix shows how the

models are estimated by maximum likelihood and how robust standard errors are obtained.

Section 3 reports estimation results for baseline models and a few alternative dynamic

specifications. Stability analyses are conducted in Section 4. Section 5 examines out-of-

sample forecasts under alternative settings. Section 6 concludes.

2 Statistical Framework and Methodology

2.1 The Starting Point

We seek to forecast values of the binary time series yt that indicates the presence (yt = 1)

or absence (yt = 0) of a recession in the U.S. at month t. As is common in the literature,

we define yt by using the NBER business cycle turning points. Hence, a recession period

starts from an NBER ‘trough’month and lasts until the month preceding the subsequent

NBER ‘peak’month.4 All those months that are not included in a recession period are

classified as expansion months.

The key predictor is the yield-curve, xt, the spread between long- and short-term

interest rates. We apply the most common choices: the ten year Treasury bond rate

(constant maturity) for the long and the three month Treasury bill rate (secondary market)

for the short rate.5 Estrella and Trubin (2006) find that this definition of the yield-curve

is superior in comparison with various alternative long- and short-term interest rates for

forecasting recessions.

Figure 1 depicts the data over the sample period from January 1955 through February

2009. The dashed area indicate recession months (with yt = 1), while the solid line is

the yield-curve, xt. It is seen that the yield-curve tends to decline in advance to recession

periods. This indicates that the yield-curve has predictive content for future recessions.

4For the dates of the peaks and troughs see http://www.nber.org/cycles/.
5The raw data are available at http://www.federalreserve.gov/releases/h15/data.htm.
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Various papers give (theoretical) explanations for the predictive relationship (see Estrella

et al. (2003) and Estrella (2003)). It is customary to apply a probit model to translate the

yield-curve into recession forecasts. The next section discusses a class of candidate model

specifications, while the section after that derives corresponding forecast procedures.

2.2 Models

Let Ft = {(yt, xt), (yt−1, xt−1), ...} denote the past values of (ys, xs) up to month t. We

assume that conditional on Ft−1, yt has the probability function

P (yt|Ft−1) = Φ(zt)
yt(1− Φ(zt))

1−yt , yt ∈ {0, 1} (1)

where Φ(·) is a cumulative distribution function and zt is a function of variables in Ft−1.

As in probit models, we assume Φ(·) is the cumulative standard normal distribution. The

corresponding density function is denoted by φ(·).

We consider forecast models that differ by the specification of the series zt in (1). The

standard static yield-curve based probit model assumes

zt = α + βxt−k (2)

where k, the lag of the regressor, is typically set equal to the forecast horizon h. A

number of papers have applied the specification in (2) for forecasting U.S. recessions a

year ahead (the most cited papers are Estrella and Hardouvelis (1991) and Estrella and

Mishkin (1998)).

The specification in (2) has the potential weakness that it does not take the apparent

serial dependence of the recession series into account. The simplest possible dynamic

extension to (2) is given by

zt = α + βxt−k + γyt−1 (3)

This specification is analogous to one applied by Kauppi and Saikkonen (2008) for fore-

casting U.S. recessions at the quarterly frequency.6 It is easy to see that under (3), the

binary series yt is governed by a first-order Markov chain, with transition probabilities

6Kauppi and Saikkonen (2008) suggest that it may be sometimes beneficial to set k > h rather than
assume k = h.
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varying as a function of the regressor xt−k, the lagged yield-curve. The model (3) is

regarded as the baseline dynamic probit model in what follows.

It is of course possible to consider more complicated dynamic dependencies than is

captured by the specification in (3). One possibility is to add more lags of the binary

series on the right hand side of (3). Such extensions result in higher order Markov chains.

For example, the specification

zt = α + βxt−k + γ1yt−1 + γ2yt−2 + γ3yt−1yt−2 (4)

leads to a nonhomogeneous Markov chain of order two.7 Interestingly, it turns out that

there is not enough variation in the present data for reliable estimation of the specification

in (4). Due to the strong persistence of the U.S. recession series yt, the regressors yt−1, yt−2

and yt−1yt−2 are highly correlated, hence, attempts to estimate (4) collapse to numerical

diffi culties, with specific matrices being singular to working precision.8 The problem does

not disappear even if one of the coeffi cients γj is set to zero. An alternative strategy for

increasing the order of the process is to add lags of the series zt on the right hand side of

(3) (see Kauppi and Saikkonen (2008) and Rydberg and Shephard (2003)). Although such

models can break the Markov property in a parsimonious manner, they are nevertheless

rich enough in dynamics in that their estimation faces similar problems as the case of

the second order Markov specification. Thus, we do not consider such extensions in this

paper.

In stead, we consider a new model formulation given by

zt = α + γyt−1 + υt (5)

where

υt = λ1υt−1 + ...+ λpυt−p + βxt−k. (6)

Suppose υt = 0 for t ≤ 0. Then it is easy to see that (5) and (6) yield

zt = α +
t∑

s=1

ρsβxt−k+1−s + γyt−1, for t ≥ 1, (7)

7Here the interaction term yt−1yt−2 is needed to obtain a fully saturated Markov chain.
8Due to the strong persistence of yt, the regressors yt−1 and yt−2 take almost always the same value,

that is, we have either (yt−1, yt−2) = (0, 0) or (yt−1, yt−2) = (1, 1) (See Figure 1). To capture the second-
order Markov structure, we should observe the values (yt−1, yt−2) = (1, 0) and (yt−1, yt−2) = (0, 1) more
frequently.
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where ρj = λ1ρj−1 + ... + λpρj−p, for j > 1, ρ1 = 1, and ρj = 0 for j < 1.9 In this

specification, the dynamic impact of the regressor xt−k is modeled in the fashion of an

autoregressive distributed lag model. The specification allows a parsimonious modeling

of the dynamic impact of xt−k, while it maintains the simple first-order Markov property

of the underlying binary series.

2.3 Forecast Procedures

Consider forecasting the value of yt given that observations until date t−h, i.e., Ft−h, are

available.10

An optimal forecast of yt in the mean square sense is the conditional expectation of

yt given Ft−h:

E(yt|Ft−h) = P (yt = 1|Ft−h) (8)

Clearly, when h = 1, we obtain (8) by setting yt = 1 in (1).

Multiperiod ahead forecasts with h ≥ 2 call for additional illustration. Define the

vector notation

ytt−m = (yt−m, yt−m+1, ..., yt) for m = 0, 1, 2, ... (9)

and the Cartesian product Bm = {1, 0}m for m = 1, 2, ... That is, the set Bm contains all

possible 2m values that the m-vector ytt−m can take. Assume k ≥ h so that the value of

the regressor xt−k is known at the time of forecasting (xt−k ∈ Ft−h). Then, conditional

on Ft−h, the probability of the sequence yt−h+n
t−h+1 is

P (yt−h+n
t−h+1 |Ft−h) =

n∏
j=1

P (yt−h+j|Ft−h, yt−h+j−1
t−h ), n = 1, 2, ... (10)

where P (yt−h+j|Ft−h, yt−ht−h) = P (yt−h+j|Ft−h), as yt−ht−h = yt−h ∈ Ft−h. Notice that the

conditional probabilities P (yt−h+j|Ft−h, yt−h+j−1
t−h ) in (10) are readily obtained from (1)

for a given specification of zt. We have

P (yt|Ft−h) =
∑

yt−1t−h+1∈Bh−1

P (yt−1
t−h+1|Ft−h)P (yt|Ft−h, yt−1

t−h+1), for h ≥ 2 (11)

9To ensure that the coeffi cients ρj in (6) decay to zero, as j →∞, one must assume that λ1, ..., λp in
(6) are such that the roots of the characteristic equation 1− λ1r − ...− λprp lie outside the unit circle.
10In practice, NBER business cycle turning points are announced with delay so that one is uncertain

about whether the economy is currently in recession or not. This problem is discussed in Section 5.1.
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Now, the optimal h-period ahead forecast in (8) is obtained by setting yt = 1 in (11).

The formula in (11) expresses P (yt|Ft−h) as a probability weighted sum of conditional

probabilities, each of which is conditional on a specific sequence of values yt−h+1, ..., yt−1

that can realize between periods t−h and t. In the case of the dynamic specification in (3),

the conditional probabilities P (yt|Ft−h, yt−1
t−h+1) vary by yt−1, that is, P (yt|Ft−h, yt−1

t−h+1) =

P (yt|Ft−h, yt−1), while the weights P (yt−1
t−h+1|Ft−h) depend on the whole sequence yt−h+1, ..., yt−1.

Thus, to obtain the optimal h-period ahead forecast for yt one must compute the con-

ditional probabilities P (yt−1
t−h+1|Ft−h) for all possible sequences (or paths) of yt−h+1, ..., yt−1.

In the case of the static specification in (2) this is not needed, because we have P (yt|Ft−h, yt−1
t−h+1) =

P (yt|Ft−h), and thus, the optimal forecast is obtained directly (assuming k ≥ h) as

P (yt = 1|Ft−h) = Φ(α + βxt−k)

Hence the formula for computing multiperiod ahead forecasts differs rather much between

the dynamic and the static model. However, we will show below that the dynamics of

the model need not matter that much for the actual empirical performance of this kind

of multiperiod ahead forecasts. We will demonstrate that the dynamics of the model

play a more significant role when the underlying multiperiod ahead forecast involves

several future periods at the same time. Forecasts of the latter type are likely to be more

interesting in practice.

For example, an investor or a policy maker may wish to forecast whether the current

expansion will continue the following 12 months, say, rather than just forecast whether

the economy is in a recession in a specific period in the future. Define the indicator ett−h

such that ett−h = 1, if an expansion ongoing at time t − h continues the next h periods

(i.e., periods t− h+ 1, ..., t), and ett−h = 0, otherwise. At time t− h, the optimal forecast

of ett−h is the conditional probability that the variables yt−h+1, ..., yt are all zeros, that is,

P (ett−h = 1|Ft−h) = P (ytt−h+1 = (0, ..., 0)|Ft−h) (12)

where we assume yt−h = 0. The probability in (12) is easily computed by using the formula

in (10). If the binary series is serially dependent, as it is in the present application, it

makes a large difference for the forecast in (12) whether the applied forecast model is

static or dynamic. This is illustrated in the empirical analysis below.
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3 Baseline Estimation Results

This section reports estimation results for the baseline models and a few extensions. As in

various previous papers, we focus on the situation where one wishes to forecast recessions

at a one-year horizon. Accordingly, we apply the yield-curve xt−k with k = 12 in our

estimations. This choice of the lag of the yield-curve ensures that the one-year ahead

forecast for yt can be computed conditional on the yield-curve data observed until month

t− 12.

Estimation results for the model in (3) with k = 12 are given in Table 1. The results

here and below are obtained by using the maximum likelihood estimation procedures

described in the appendix. The estimates of column (1) of Table 1 are for the static

model that assumes (3) with the restriction γ = 0, while the results of column (2) are for

the dynamic model without such restriction. In both columns, the parameter estimates are

significantly different from zero at standard confidence levels.11 A decrease in the yield-

curve at month t− 12 increases the likelihood of a recession at month t. The estimation

results of the dynamic probit model indicate positive serial dependence in the recession

series: the likelihood of a recession at month t is much larger when the economy was in a

recession at the previous month than it is otherwise. The pseudo R2 reported in the table

is a measure of the over-all fit of the model.12 As the R2 in an OLS regression, it lies

between 0 and 1. According to the pseudo R2, the dynamic probit yields more accurate

in-sample predictions than the static model.

Figure 2 plots the estimated in-sample probabilities that the economy is in a recession

state in a particular month from January 1955 to February 2009, for the models in columns

(1) and (2) of Table 1. These are probabilities of recessions at t conditional on the value

of the yield-curve at t − 12 and whether the economy is in recession or not at t − 1

(dynamic probit). Clearly, the figure shows that the dynamic probit model captures the

11The applied standard errors are robust to misspecification (see the appendix). The results are not sen-
sitive to different choices of the kernel function and the bandwidth parameter applied in the computation
of the covariance matrix estimator in (22).
12Denote by Lu the unconstrained maximum value of the likelihood function L and by Lc the corre-

sponding maximum value under the constraint that all coeffi cients are zero except for the constant. The
pseudo R2 measure is defined as pseudo R2 = 1 − (log(Lu)/ log(Lc))−2 log(Lc)/T , where T denotes the
sample size (Estrella 1998).
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recession series more accurately than the static probit model. However, it must be noted

that Figure 2 does not yet illustrate how the models perform out-of-sample. In particular,

multiperiod ahead forecasts based on the dynamic probit model cannot condition on the

recession state at month t − 1, and thus, the iterative forecast formulae of Section 2.3

must be applied. The performance of out-of-sample forecasts is analyzed in Section 5.

The above analysis shows that the simple dynamic model in (3) provides better in-

sample performance than the standard static probit model. It is reasonable to ask whether

alternative and more general dynamic specifications might yield even better in-sample per-

formance than the simple first-order Markov chain specification. In the previous section,

we noted that various model extensions that imply more complicated serial dependencies

in the binary series than the simple first-order Markov structure cannot be estimated

reliably (if at all) from the present data. This conclusion is supported by simulation

experiments that indicate the applied estimation procedures produce reliable estimation

results for more complicated models when the data are truly generated by models with

higher order dynamics. To save space we do not report these results; they are available

upon request.

To this end, we consider the in-sample performance of models where the dynamic

impact of the yield-curve is formulated in an autoregressive manner (see equations (5) and

(6)), as these types of models allow parsimonious modeling of the impact of the regressor,

but simultaneously can maintain the simple first-order Markov dynamics in the binary

series. Table 2 reports estimation results for a model that assumes (5) with γ = 0 and

(6) with p = 1. The estimate of the autoregressive parameter is positive and statistically

significant. This fact and the values of the Schwarz (1978) Bayesian information criterion

(BIC) suggest that the model of column (1) of Table 2 may be a useful alternative to

the baseline static model of column (1) of Table 1. However, in terms of the pseudo R2,

the two models do not differ a lot. Column (2) of Table 2 reports estimation results for

a model that assumes (5) with γ = 0 and (6) with p = 2. Now, the coeffi cient of the

second order autoregressive term is significant, while the first order term is not. Again,

the in-sample fit is not markedly different from that of the baseline static model in column

(1) of Table 1.

9



It is of interest to see whether the autoregressive formulation plays any role when the

lagged recession series is allowed in (5). Columns (3) and (4) of Table 2 show estimation

results for models that specify (6) with p = 1 and p = 2, respectively. In both cases, the

autoregressive coeffi cients are no longer statistically significant. Otherwise, the remaining

coeffi cient estimates are similar to the corresponding ones in Table 1. These observations

indicate that the autoregressive terms do not improve the performance of the baseline

dynamic model. The significant autoregressive terms that appear in the models of columns

(1) and (2) of Table 2 may reflect the fact that these specifications do not have the lagged

response yt−1 as a regressor. We conclude that the simple dynamic baseline model is

superior in terms of its in-sample performance compared with a large number of alternative

dynamic specifications. We will consider its out-of-sample performance later on, but now

turn to examining its stability over time.

4 Stability Analysis

Various recent papers address the question whether the predictive content of the yield-

curve for U.S. recessions has been stable over time. The parameter stability of the simple

static probit model considered above is examined by Chauvet and Potter (2002), using

Bayesian techniques, and Estrella, Rodrigues and Schich (2003), using classical statistical

techniques. The former paper finds evidence for breakpoints, while the latter paper does

not find evidence for parameter instability. Chauvet and Potter (2005) consider a dynamic

probit model formulated through an autoregressive latent variable with business cycle

specific error variances. Using Bayesian techniques, they find that the predictive content of

the yield-curve for U.S. recessions is subject to structural breaks. This section contributes

to these studies by examining the stability of the simple dynamic model of the previous

section and by conducting breakpoint tests that help to see whether structural changes

concern only a subset of parameters. We start by breakpoint tests.
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4.1 Breakpoint Tests

We consider breakpoint tests for pure and partial structural change. The former case

assumes that all parameters may change, while the latter case assumes that only a subset

of the parameters may change.

To set up our tests, decompose the vector of parameters of the model as θ = (δ′, η′)′,

where δ may be subject to a structural change, while η is regarded as unchanged through-

out. Under this setting, the null hypothesis is

H0: δ = δ0 for all t ≥ 1 (13)

and the alternative hypothesis of a one-time structural change is

H1(π): δ =

 δ1 for t = 1, ..., τ

δ2 for t = τ + 1, ...

where π ∈ (0, 1) is related to the breakpoint τ by π = τ/T . In the case of pure structural

change, we have θ = δ and there is no η.

Following techniques developed by Andrews (1993), our breakpoint tests are based on

the Lagrange multiplier (LM) type test statistic (see equation (4.4) in Andrews (1993))

LM(π) =
T

π(1− π)
d
′
πŜ
−1Ûθδ

(
ÛδθŜ

−1Ûθδ

)−1

ÛδθŜ
−1dπ (14)

where π = τ/T indicates the proportion of the data before the breakpoint. Here, the

matrix Ŝ is given in (22) in the appendix, while

dπ =
1

T

πT∑
t=1

∂lt(θ̂)

∂θ

Ûθδ =
1

T

T∑
t=1

∂2lt(θ̂)

∂θ∂δ′
, Ûδθ = Û ′θδ

where the derivatives ∂lt(θ̂)/∂θ and ∂2lt(θ̂)/∂θ∂δ
′, respectively, are obtained from (17)

and (18) in the appendix with θ replaced by the (full sample) ML estimator θ̂.13 The

statistic in (14) is convenient in that it only entails computing the full sample estimate

of θ.
13Notice that ∂2lt(θ)/∂θ∂δ

′ is found from (18) by choosing the columns that correspond to the para-
meters in δ.
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The LM statistics in (14) can be used to test whether a structural break has occurred

at a known date. By the general results of Andrews and Fair (1998), it has asymptotic

chi-squared distribution for fixed π, with degrees of freedom equal to the number of

parameters in δ. To test for a break when the break date is unknown one can apply the

sup of LM(π):

sup
π∈Π

LM(π) (15)

where the sup is taken over an interior portion of the full sample that excludes observations

(a nonzero fraction of the total observations) at each end (that is, Π is chosen with closure

in (0, 1)). The theory of Andrews (1993) shows that under the null hypothesis in (13) the

statistic in (15) converges in distribution to the square of a standardized tied-down Bessel

process. Critical values for this distribution can be obtained by simulation as in Andrews

(1993), or by methods of Estrella (2003). In what follows, p-values are computed by the

simulation procedure in Andrews (1993).

We turn to applying the above defined breakpoint tests to examine the stability of

the parameters of the baseline models. In particular, we seek to examine whether the

predictive content of the yield-curve has changed over time. Thus, testing the stability of

the coeffi cient of the yield-curve is of particular interest. On the other hand, we note that

potential changes in the predictive content of the yield-curve can well result in structural

changes in other parameters as well. Hence, to gain as many insight as possible, we

consider tests on (13) for all possible choices of δ, including the case of pure structural

change δ = θ.

We report test results for known and unknown breakpoints. As to known breakpoint

dates, we refer to Estrella et al. (2003) who argue that October 1979 and October 1982,

both associated with specific shifts in the Federal Reserve’s monetary policy practices,

are plausible candidates for breakpoints in a yield-curve based forecasting model for U.S.

recessions. The test results under different settings are given in Table 3. Panel (a) of the

table is concerned with the static model, while panel (b) is concerned with the dynamic

model. The rows vary by the composition of δ. In both panels, the first row reports

results on tests for a pure structural change, while the remaining rows consider different

types of partial structural change.
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The results of Table 3 yield at least four interesting observations. First, all those tests

that reject the null hypothesis of stability at 10% percent level involve the coeffi cient on

the yield-curve. In other words, no test rejects the null hypothesis unless the coeffi cient

on the yield-curve is allowed to change under the alternative hypothesis. Second, the

strongest rejections (tests with the lowest p-values) occur in cases where the coeffi cient of

the yield-curve alone can change under the alternative hypothesis. Third, the LM tests

for the known breakpoint date of October 1982 tend to reject the null of stability, while

the implied breakpoint date associated with the sup LM tests is usually very close to this

date, in most cases November 1982. These observations suggest that the coeffi cient of

the yield-curve may have changed, while the remaining parameters may have been stable.

Also, the results support the idea that there is a single breakpoint in the early 1980s

which is consistent with apriori expectations.

The next section tries to obtain a more detailed picture of the possible break in the

predictive content of the yield-curve.

4.2 Models with Shifts in Parameters

In this section, we try to examine whether the baseline models could be extended to

account for potential structural changes in the parameters. We start by considering

models that are most closely in line with the above test results on a one-time change in

the coeffi cient of the yield-curve. However, it must be noted that even if the applied test

procedures are designed for detecting a one-time change, they have power against various

other forms of structural changes. In particular, the sup LM statistic can be regarded

as a general model stability test, as it has power against gradual or temporal changes in

the parameters as well as structural changes at multiple breakpoints, which can locate

at any date of the full sample (see Andrews (1993)). Given that at least theoretically

our test outcomes might result from various types of breaks, we will also consider model

extensions consistent with alternative forms of structural changes.

Table 4 reports estimation results for the baseline models based on two subsamples

obtained by cutting the full sample in December 1982, the breakpoint date implied by
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the sub LM test statistic of the previous section.14 Clearly, the coeffi cient estimate of

the yield-curve is larger (in absolute value) in the second subsample, while the other

parameter estimates are more or less similar in size across the two subsamples. It is

interesting that the coeffi cient estimate of the yield-curve is not statistically significant in

the model of column (3). This suggests that the predictive content of the yield-curve for

recessions prior to early 1980s is rather weak, at least when twelve-month-ahead forecasts

are considered. The fact that the yield-curve coeffi cient is significant in the static model

(in column (1)) may reflect the lack of dynamics in the model.

As was noted above, the breakpoint tests of the previous section tend to have power

against various forms of parameter changes. If there are multiple breakpoints, one pos-

sibility is that they are associated with business cycles as in the model of Chauvet and

Potter (2005). A business cycle starts at the first month of an expansion period and lasts

until the final month of the subsequent recession period. Following this definition, let Dct

denote business cycle specific indicator functions such that Dct = 1 for the months of the

business cycle c and Dct = 0 otherwise. Table 5 reports the actual dates of the business

cycles of the sample. Using the corresponding dummies we can augment the baseline

models with interaction terms that allow specific coeffi cients to change by business cycle.

Given the results from the above breakpoint tests, we focus on examining business cycle

specific shifts in the coeffi cient of the yield-curve.

Table 6 reports estimation results for specifications where the coeffi cient of the yield-

curve is allowed to change at one business cycle at the time. The estimate of the coeffi cient

of the interaction term xt−12 · Dct is not significant except for the business cycle from

August 1980 to November 1982. We note that the final month of this particular business

cycle is precisely the breakpoint month implied by the results on the sup LM test of

the previous section. Also, the known breakpoint of October 1982 is within this business

cycle. Recall again that even if the above applied breakpoint tests are designed for testing

parameter stability against a one-time (permanent) change in parameters, they have power

against temporal parameter changes. Hence the estimation results of Table 6 and the

above breakpoint tests are in agreement.

14We obtain qualitatively similar results with alternative breakpoints that are close to December 1982.
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The estimates in column (6) of Table 6 suggest that the coeffi cient of the yield-curve

is positive during the business cycle from August 1980 to November 1982. This reverse

sign of the estimated coeffi cient calls for an explanation. Notice that the business cycle

in question is associated with an expansion period of only twelve months, the shortest

one in the sample. Moreover, the preceding recession period (of the previous business

cycle) happens to last only six months, and is also the shortest in the sample. Consider a

twelve-month-ahead recession forecast made for August 1980, the first (expansion) month

of the 1980-82 business cycle. This forecast is conditional on the value of the yield-curve

in August 1979, which is only six months in advance to the previous recession starting in

February 1980. Figure 1 shows that the yield-curve is at a low level in August 1979, so that

it signals the recession in early 1980. But, given that the recession in 1980 lasts only until

July 1980, the signal is wrong for August 1980, which is an expansion month. Altogether,

a close inspection of the data (or Figure 1) indicates that during the business cycle 1980-

82 the state of the economy at month t is often theoretically in disagreement with the

value of the yield-curve at month t−12. These observations explain the estimation result

in column (6) of Table 6.

The above notes brought up the fact that both the recession in early 1980 and the

subsequent expansion were exceptionally short lived. It must be recalled that these reces-

sion and expansion periods are determined by the NBER business cycle committee. The

short expansion period in 1980 appears to be controversial. The following quote from the

general statement of the NBER business cycle committee is illustrative:15

“The Committee applies its judgment .. and has no fixed rule to deter-

mine whether a contraction is only a short interruption of an expansion, or

an expansion is only a short interruption of a contraction. The most recent

example of such a judgment that was less than obvious was in 1980-1982, when

the Committee determined that the contraction that began in 1981 was not a

continuation of the one that began in 1980, but rather a separate full reces-

sion.”
15Source: http://www.nber.org/cycles/general_statement.html
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Given this statement it is likely that at least some of the contemporary market partic-

ipants have had mixed assertions as to whether the U.S. economy experienced the short

expansion period in 1980-81 or whether the period was a part of long recession. Such a

confusion may also explain why the observed association between the lagged yield-curve

and the NBER dated recession dummy is reversed in the early 1980s. These points suggest

that the above breakpoint test results might derive from a temporary break rather than

a permanent change in the predictive relationship between the yield-curve and the U.S.

economy. We suspect that there may be both a temporary and a permanent structural

break around early 1980s.

5 Forecast Performance

This section illustrates the forecast performance of the baseline models and models that

assume breakpoints. We start by discussing issues that arise when recession forecasts are

made out-of-sample.

5.1 Out-of-sample Forecasts in Practice

An issue with recession forecasting has to do with the fact that recession dating from

NBER is typically available with a lag of six months or more. This means that one

may be uncertain whether the economy is currently in an expansion or not. To illustrate

different situations, suppose one wishes to predict whether the economy is turning into a

recession at any month from t− h− d to t− d (d ≥ 0, h > 0) conditional on yield-curve

data through month t−h and knowing the state of the economy through month t−h−d.

Here t−h may be regarded as the month where the forecast is made, d as the information

lag in recession dating, and h as the forecast horizon.

In practice, the forecast is made under an assumption about d. For example, in Feb-

ruary 5, 2008, in a discussion at Econbrowser, Michael Dueker (from Federal Reserve)

says that one can be reasonably certain that the NBER will not classify the fourth quar-

ter of 2007 as a recessionary period and thus one can condition out-of-sample forecasts
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accordingly.16 In this case, d = 2 (for monthly data). Later, it turned out that Michael

Dueker was (just) right, as the NBER business cycle committee declared in December

2008 that the expansion period ended in December 2007, that is, the first (full) recession

month was January 2008. Chauvet and Potter (2005) consider simulated out-of-sample

forecasts made in advance to the recession that started in April 2001. For one of their

cases, they argue that in March 2000 the public was certain that the economy was still

in an expansion in December 1999, while there was lots of uncertainty about the state

of the economy from January 2000 on. They then analyzed various forecasts under the

assumption that d = 3 and h = 15.

The above examples indicate that the actual “information lag”of the forecaster tends

to be shorter than the “publication lag”of the NBER business cycle dating. The NBER

business cycle committee determines the business cycle turning points on the basis of

various economic indicators. To avoid later revisions of the business cycle turning points,

the committee tends to delay its decisions until the final figures of the most relevant

economic indicators become available. By contrast, market participants make judgements

about the current state of the economy using preliminary figures of various economic

indicators. While the preliminary figures may be subject to later revisions, the forecasters

may be rather successful in determining the state of the economy in real time. The risk

that the forecaster makes a wrong judgement about the current state of the economy varies

over time. In what follows, we abstract from this uncertainty and assume a situation where

the forecaster knows the state of the economy at the time of forecasting (i.e., d = 0). The

analysis is not sensitive to this assumption in that similar results hold under reasonable

alternative settings such as d = 3.

5.2 Baseline Forecasts

This section considers forecasts based on the baseline models under the assumption that

the model parameters are stable. We first illustrate the performance of standard one-

year-ahead recession probability forecasts.

Figure 3 depicts twelve-month-ahead probability forecasts based on the dynamic model

16See http://www.econbrowser.com/archives/2008/02/predicting_rece.html.
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(panel (a)) and the static model (panel (b)). These are “simulated”out-of-sample fore-

casts. That is, a recession forecast for month t is made conditional on observations on

the yield-curve and the binary recession indicator through month t− 12. Hence, for each

month t, the applied forecast model is estimated using data through month t− 12. Then,

given the estimated model, the recession forecast for month t is computed by using the

formula in (11) with h = 12. These simulated twelve-month-ahead forecasts are made for

the last 25 years (January 1985 through February 2009) of the full sample. This period

covers the three most recent recessions.

The predicted recession probabilities in Figure 3 are all below 0.5 for both models.

Some of the predicted recession probabilities for actual recession months are smaller than

those for some expansion months. The figure illustrates the fact that the yield-curve

based twelve-month-ahead recession probability forecasts tend to be diffi cult to apply for

making very sharp forecasts of the timing of a coming recession. This is not surprising

given that the yield-curve evolves smoothly rather than in a discrete manner (See Figure

1). It is natural to assume that the yield-curve carries predictive power for the overall

risk that the economy is turning into a recession, while it cannot pinpoint the precise

date at which a recession realizes. Another interesting observation from Figure 3 is that

the twelve-month-ahead recession probability forecasts are pretty similar across the two

models. This observation might suggest that it is not so important to take the serial

dependence of the binary series into account, but such conclusion is wrong. To see this,

one must look at forecasts that involve several future periods at the same time.

One possibility is to forecast the probability that an expansion continues twelve months

(by applying the formula in (12)). This type of forecast is likely to be more useful in

practice than the month-by-month forecasts considered above (c.f., Chauvet and Potter

(2005)). Figure 4 plots such probabilities over the period that is considered in Figure 3.

At each month t in Figure 4, the line indicates the probability that the economy stays

in an expansion from month t + 1 to month t + 12 conditional on being in an expansion

at month t. The forecasts in Figure 4 differ clearly between the dynamic model (panel

(a)) and the static model (panel (b)). The static model tends to produce very sharp

recession calls years in advance to actual recessions, while the dynamic model produces
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more moderate forecasts. Consider the period in advance to the 2001 recession. Based

on the static model (panel (b)), the predicted probability of continued expansion next

twelve months is close to 0.1 already in early 1996 and again about 0.05 in 1998. Such

forecasts are likely to prompt false or too early calls of recessions and may therefore give

rise to adverse economic decisions. The dynamic model produces more moderate recession

forecasts prior to the 2001 recession and seems to reflect the fact that at that time there

was considerable uncertainty as to the future state of the economy. Indeed, various authors

argue that the 2001 recession was very diffi cult to anticipate well in advance. Similar notes

apply to the period in advance to the 1990-1991 recession. The static probit produces

very sharp recession calls already in early 1987, while the forecast of the dynamic model is

more moderate. The dynamic forecast is again consistent with the fact that the 1990-1991

recession is commonly regarded as diffi cult to forecast early in advance. The case of the

most recent recession is also interesting. Both of the models seem to give stronger signals

for this recession than they did for the preceding two recessions. Again, the static model

gives its warning a year too early, while the signal of the dynamic model is more in line

with the actual timing of the recession.

The above comparisons suggest that forecasts based on the dynamic model are superior

to those based on the static model. However, one must recall that the considered forecasts

are conditional probabilities. Basically, it is not clear how the underlying probability

forecasts should be translated into actual zero-one recession forecasts. One can figure out

various threshold rules that determine whether a given probability forecast is 1 or 0, but

such thresholds are arbitrary. Thus, comparing probability forecasts based on such rules is

problematic. In stead, it is common to assess probability forecasts by applying specialized

measures. The most common one is the (half) Brier’s (1950) quadratic probability score

QPS =
1

P

∑
(pt − rt)2

where rt is the realized value of an underlying binary series, pt is the probability forecast

for the event rt = 1 and the summation is over P forecasts. The QPS varies between 0 and

1, with 0 implying perfect accuracy. The QPS is the probability-forecast analog of mean

square error (MSE). It is motivated here, because the considered probability forecasts are
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derived so as to approximate the conditional probability that minimizes the population

MSE.

In the case of the probability for continued expansion next twelve months, we have

rt = et+12
t (see section 2.3) and pt is given by the formula in (12). For the forecasts

considered in Figure 4, the QPS is 0.09 for the dynamic and 0.21 for the static model.

Hence, the dynamic model performs better in terms of the QPS. It is of interest to note

that the corresponding QPS for the month-by-month (point) forecasts in Figure 3 is 0.077

for the dynamic model and 0.071 for the static model. Hence, the dynamic and the static

model are essentially equal in accuracy when month-by-month forecasts are considered,

the slight difference in favor of the static model is due to the jumps of the dynamic

forecasts right after recessions (see Figure 3). Nevertheless, these measures illustrate

that the dynamic model outperforms the static model when the probability of continued

expansion is considered. Hence it matters that the serial dependence of the binary series

is taken properly into account.

5.3 Forecasts Based on Different Estimation Samples

Above, in section 4, we obtained evidence that the predictive content of the yield-curve

may have changed in the early 1980s. Specifically, various breakpoint tests suggest that

the coeffi cient of the yield-curve may have changed in December 1982. Table 4 shows

that it indeed makes a difference for the coeffi cient estimate of the yield-curve whether

the model is estimated with data before or after the breakpoint in December 1982. Here

we consider forecasts based on these different model estimates. We focus on forecasts

for the probability of continued expansion next twelve months, and make these for the

period from January 1985 to February 2009, as in Figure 4. Figure 5 shows forecasts

based on models in columns (1) and (2) of Table 4, while Figure 6 shows forecasts based

on models in columns (3) and (4) of Table 4. While the forecasts in Figure 6 are not

actual out-of-sample forecasts, they help to assess whether the estimation sample matters

for the forecast performance.

First, compare forecasts based on the static model (panel (b) in Figures 4, 5 and

6). The forecasts in Figures 4 and 5 are fairly similar, while the forecast in Figure 6
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seem to be somewhat sharper than the two ones. This is consistent with the fact that

the estimated coeffi cient of the yield-curve is larger in absolute value in column (2) than

in column (1) of Table 4. In terms of the breakpoint tests above, this difference is not

statistically significant. We do not make further analysis of the stability of the static

model in this paper, because the model has been analyzed elsewhere and it nevertheless

has the weakness that it does not account for serial dependence in the recession series.

Next, consider forecasts based on the dynamic model (panel (a) in Figures 4, 5 and

6). Now, there are larger differences between the forecasts, which is consistent with the

breakpoint test results and the estimation results in Table 4. The forecasts in Figure 5

seem to be inferior to those in Figures 4 and 6. In particular, the forecasts in Figure 5

give rather low probabilities of continued expansion for periods where there should be no

marked risk of a recession. This observation is not surprising given that the coeffi cient

estimate of the yield-curve in column (3) of Table 4 is rather small (in absolute value)

and is not statistically significant. For the dynamic forecasts, the QPS is 0.11 in Figure 5

and 0.06 in Figure 6. Hence, the dynamic forecasts in Figure 4 (with QPS 0.09) are less

accurate that those in Figure 6, but more accurate than those in Figure 5. This suggests

that the standard out-of-sample forecasting procedure in which the forecast model is

estimated using data until the last available observation may reduce a part of potential

forecast error deriving from changes in the predictive content of the yield-curve. To allow

for more flexibility, one can drop observations in the distant past and apply estimation

samples with a fixed number of the most recent observations. Using this ‘rolling sample’

approach to generate simulated out-of-sample forecasts that correspond to those in Figure

4 one obtains a QPS value of 0.08 and 0.07 when the sample size is fixed to 200 and 150,

respectively. This suggests that rather simple procedures may deliver recession forecasts

that adapt to potential changes in the strength of the predictive content of the yield-curve.

The above considerations support the view that the predictive content of the yield-

curve has experienced a one-time change in the early 1980s. Looking at Figure 1, it seems

plausible that the predictive content of the yield-curve has remained stable over the last

25 years. If this view holds, then the simple dynamic model estimated using the last 25

years’data should be useful for making probability forecasts for U.S. recessions in the
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future as well. To further test this view, one could still examine models that allow for

more complicated structural changes. In section 4.2, we considered model specifications

in which the coeffi cient of the yield-curve can differ at one business cycle at the time. To

add more variation across business cycles, one can allow different coeffi cients at several (or

even at all) business cycles. However, such specifications are estimated with considerable

uncertainty. Basically, if one allows the coeffi cient of the yield-curve to change at several

business cycles, the corresponding estimates turn out to have very large standard errors,

usually none is statistically significant. Hence it is diffi cult to make conclusive statistical

inferences about multiple breakpoints using this route. An alternative strategy is to apply

Bayesian techniques that offer flexibility in the modeling of multiple breaks and provide

ways to incorporate prior information to parameter estimation (see Geweke andWhiteman

(2004) and Chauvet and Potter (2005)). It is an interesting topic for future research to

investigate whether alternative approaches could refine the picture on structural changes

in the dynamic model analyzed here.

6 Conclusion

Recent research provides mixed evidence on the stability, the dynamics and the overall

performance of yield-curve based probit forecasts of U.S. recessions. To contribute to this

literature, this paper analyzed the predictive performance and the stability of a simple

dynamic probit model that treats the underlying recession indicator as a nonhomogeneous

first-order Markov chain with transition probabilities changing as a function of the yield-

curve. The analysis of the paper shows that the simple dynamic specification is successful

in capturing the apparent serial dependence of the U.S. recession indicator and it provides

more plausible recession probability forecasts than the static yield-curve based probit

model that is commonly applied in the previous literature.

The stability analysis of the paper conducted tests for breakpoints at known and

unknown dates. In contrast to previous studies, these tests examined the possibility of a

structural change involving only a subset of model parameters. Interestingly, altogether,

the test results indicate that the coeffi cient of the yield-curve alone may be subject to
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structural changes, while there is no evidence against the stability of the remaining model

parameters. Furthermore, the evidence suggests a one-time break in the early 1980s. As

the applied breakpoint tests are known to have power against various forms of structural

changes, we examined the performance of model variants that allow alternative forms

of structural changes. These analyses give additional support for a one-time structural

change, but there is also evidence for the presence of a temporal break around the 1980-

81 recession and the preceding expansion period, both of which were exceptionally short

lived.

Finally, the paper conducted an analysis of out-of-sample performance of selected

model specifications. The first part of the analysis showed how the static probit model

tends to exaggerate the predictive content of the yield-curve so as to produce false or too

prompt recession signals and that the dynamic probit model produces probability forecasts

that are in line with the actual uncertainty that surround specific recessions. In particular,

the results are consistent with the assessment that the 1990-1991 and 2001 recessions were

inherently uncertain and thus diffi cult to forecast early in advance. The second part of the

analysis was concerned with recession probability forecasts under different assumptions

about the presence of a structural break in the predictive relationship. The out-of-sample

results give additional support for the view that the predictive content of the yield-curve

has changed in the early 1980s, while there is no evidence for further instability in the

predictive relationship in the recent decades. Hence, the simple dynamic model that is

estimated with a rolling sample scheme should produce apt probability forecasts of U.S.

recessions in the future.

Appendix: Estimation Procedures

This section shows how the parameters of the models considered in the empirical analysis

are estimated by maximum likelihood (ML) and how corresponding robust standard errors

are obtained. The estimated models are nested in the specification given by equations (5)

and (6).

One observes the series yt and xt−k for t = 1, ..., T and the initial value y0 is available.
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Let θ = (α, β, γ, λ1, ..., λp, )
′. Then the log-likelihood function (conditional on the initial

value) is

l (θ) =
T∑
t=1

lt (θ) =
T∑
t=1

yt log Φ (zt (θ)) + (1− yt) log (1− Φ (zt (θ))) (16)

where zt is given in (7). The first derivative of the log likelihood function (the score

function) is

∂l (θ)

∂θ
=

T∑
t=1

∂lt (θ)

∂θ
=

T∑
t=1

[yt − Φ(zt)]φ(zt)

Φ(zt)[1− Φ(zt)]

∂zt
∂θ

(17)

and the second derivative (the Hessian matrix) is

∂2l (θ)

∂θ∂θ′
=

T∑
t=1

∂2lt (θ)

∂θ∂θ′

=
T∑
t=1

[
φ(zt)zt

(−Φ(zt))
yt (1− Φ(zt))1−yt

−
(

φ(zt)

Φ(zt)yt(1− Φ(zt))1−yt

)2
]
∂zt
∂θ

∂zt
∂θ′

(18)

Here ∂zt/∂θ is the vector of derivatives

∂zt
∂θ

=


∂zt/∂α

∂zt/∂β

∂zt/∂γ

∂zt/∂λ

 =


1∑t

s=1 ρsxt−s+1

yt−1∑t
s=1

∂ρs
∂λ
βxt−k+1−s


where ∂ρs/∂λ is the vector of derivatives (∂ρs/∂λ1, ..., ∂ρs/∂λp) with

∂ρs
∂λi

= λ1

∂ρs−1

∂λi
+ ...+ λp

∂ρs−p
∂λi

+ ρs−i,
∂ρj
∂λi

= 0, j ≤ 1.

The ML estimator θ̂ of θ is obtained by maximizing the log-likelihood function in (16),

or equivalently, by solving the first order conditions ∂l (θ) /∂θ = 0 by applying standard

algorithms (e.g., the Newton-Raphson). To enforce that λ1, ..., λp are such that the roots

of the characteristic equation 1−λ1r− ...−λprp lie outside the unit circle, it is convenient

to reparametrize λ1, ..., λp in terms of partial correlations and then restrict these to lie

within the interval [−1, 1] (see Barndorff-Nielsen and Schou (1973) and Monahan (1984)).

Asymptotic theory for θ̂ is studied by Fokianos and Kedem (1998). They prove exis-

tence, consistency and asymptotic normality of θ̂ under regularity conditions. When the
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model is correctly specified, we have the result

T 1/2(θ̂ − θ) d→ N(0, S (θ)−1), (19)

where S (θ) = plimT→∞ T
−1
∑T

t=1 dtd
′
t, with dt = ∂lt (θ) /∂θ.

In practice, the applied forecasting model may be misspecified. For example, the ap-

plied lag of the yield-curve, xt−k, may be wrong under the restriction k ≥ h. Also, the

dynamics of the model may not capture precisely the true form of serial dependence of

the binary series. Alternative dynamic binary response models include the autoregres-

sive latent variable formulation of Chauvet and Potter (2005). Finally, the distribution

function Φ(·) needs not be normal; it might be logistic or some other distribution. Given

that there are various possibilities for model misspecification, it is useful to consider the

standard extension of (19) given by

T 1/2(θ̂ − θ∗)
d→ N(0, U(θ∗)

−1S(θ∗)U(θ∗)
−1), (20)

where

U(θ∗) = − plim
T→∞

T−1

T∑
t=1

Dt

with Dt = ∂2lt (θ) /∂θ∂θ′, and θ∗ is a value in the parameter space of θ assumed to

maximize the probability limit of T−1l (θ) (for details, see Section 9.3 of Davidson (2000)).

In the case of a correctly specified model S(θ) = U(θ) and consistent estimators of this

matrix are given by both T−1
∑T

t=1 d̂td̂
′
t, where d̂t = ∂lt(θ̂)/∂θ, and

Û = Û(θ̂) = T−1

T∑
t=1

D̂t (21)

where D̂t = ∂2lt(θ̂)/∂θ∂θ
′. In the case of a misspecified model, the estimator Û(θ̂) still

estimates the matrix U(θ∗) consistently but consistent estimation of the matrix S(θ) must

account for potential serial dependence in the derivatives dt. A general estimator is given

by

Ŝ = Ŝ(θ̂) = T−1

T∑
t=1

d̂td̂
′
t + T−1

T−1∑
j=1

wTj

T∑
t=j+1

(d̂td̂
′
t−j + d̂t−j d̂

′
t), (22)

where wTj = k (j/mT ) for an appropriate function k (x) referred to as a kernel function.

The quantity mT is the so-called bandwidth which for consistency is assumed to tend
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to infinity with T but at a slower rate. In the empirical application, the Parzen kernel

function (see Davidson (2000, p. 227)) is applied and, following the suggestion of Newey

and West (1994), mT is selected according to the rule mT = int(4(T/100)2/9), where

int(x) returns the integer part of x.

Using the estimators Û and Ŝ in conjunction with the asymptotic results (19) and

(20) one can construct standard Wald tests for hypotheses on the parameter vector θ. In

particular, approximate standard errors for the components of the ML estimator θ̂ can

be obtained in the usual way from the diagonal elements of the matrix Û−1ŜÛ−1 or, if a

correct specification is assumed, from the diagonal elements of the matrix Û−1.
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Table 1. Estimation Results for Baseline Probit Models

(1) (2)

Static Dynamic

Predictor coeff. s.e. coeff. s.e.

Constant −.37 .15 −1.76 .17

Yield-curve, xt−12 −.80 .12 −.33 .13

Recession, yt−1 – 3.23 .20

Pseudo R2 .23 .69

Log-likelihood −201.6 −69.2

BIC 208.0 78.9

Notes: The models are estimated using monthly data from January 1955

through February 2009 (650 observations). The reported standard errors

(s.e.’s) are robust to misspecification and are computed with procedures de-

scribed in the appendix.
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Table 2. Estimation Results for Probit Models with Autoregressive Terms

(1) (2) (3) (4)

Predictor coeff. s.e. coeff. s.e. coeff. s.e. coeff. s.e.

Constant −.30 .19 −.28 .20 −1.8 .18 −1.8 .18

Recession, yt−1 – – 3.2 .20 3.2 .20

Yield-curve, xt−12 −.38 .20 −.54 .19 −.37 .16 −.44 .15

Autoreg. lag 1, υt−1 .57 .25 −.05 .20 −.14 .45 −.52 .42

Autoreg. lag 2, υt−2 – .46 .22 – .16 .24

Pseudo R2 .24 .24 .69 .69

Log-likelihood −198.1 −197.4 −69.2 −69.2

BIC 207.8 210.4 82.2 85.4

Notes: The models are given by equations (5) and (6), and are estimated

using monthly data from January 1955 through February 2009. The reported

standard errors (s.e.’s) are robust to misspecification and are computed with

procedures described in the appendix.
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Table 3. Tests for Breakpoints at Unknown and Known Dates

supLM LM (79:10) LM (82:10)

(a) Static Probit

δ = (α, β) 4.97 [.58] (69:12) 3.52 [.17] 1.04 [.59]

δ = β; η = α 4.16 [.36] (80:07) 3.51 [.06] .59 [.44]

δ = α; η = β 4.61 [.30] (69:12) .69 [.41] .10 [.76]

(b) Dynamic Probit

δ = (α, β, γ) 11.23 [.15] (82:11) 1.07 [.79] 8.90 [.03]

δ = (α, β); η = γ 11.16 [.06] (82:11) .95 [.62] 8.67 [.013]

δ = (α, γ); η = β 2.07 [.98] (69:12) .58 [.75] .09 [.96]

δ = (β, γ); η = α 10.76 [.08] (82:11) .28 [.87] 8.58 [.014]

δ = β; η = (α, γ) 9.90 [.03] (82:11) .19 [.67] 7.40 [.007]

δ = γ; η = (α, β) 1.27 [.94] (80:08) .005 [.94] .08 [.78]

δ = α; η = (β, γ) 1.10 [.97] (81:07) .33 [.57] .07 [.60]

Notes: The results are obtained for the sample from January 1955 through

February 2009. The model is given by zt = α+βxt−12 +γyt−1 with restriction

γ = 0 in panel (a), and no restriction in panel (b). The first column indicates

parameters δ that are allowed to change under the alternative hypothesis, and

parameters η that are assumed constant throughout (see (13) in the text).

“sup LM”refers to the test statistic in (15) for one breakpoint with unknown

date, computed with Π = (.15, .85) so that 15% of the sample is dropped at

each end. The p-value of the test is given in square brackets, while the implied

breakpoint date is given in parentheses. “LM (Oct-79)”and “LM (Nov-82)”

refer to the LM statistics in (14) with known breakpoint dates (denoted in

parentheses). The p-value of the LM tests are given in square brackets. In the

case of the sup LM statistic, the p-values are obtained by simulating the null

distribution by applying the procedure of Andrews (1993), with the exception

that 100000 repetitions are used as in Andrews (2003). The p-values of the

LM statistics are from χ2
df -distribution, where df = dim(δ). Statistics that are

significant at 10% level are written in bold face.
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Table 4. Sub-Sample Estimation Results for Baseline Probit Models

Static Dynamic

(1) (2) (3) (4)

Predictor coeff. s.e. coeff. s.e. coeff. s.e. coeff. s.e.

Constant −.43 .17 −.05 .31 −1.90 .23 −1.40 .28

Yield-curve, xt−12 −.67 .13 −1.25 .35 −.11 .29 −.91 .41

Recession, yt−1 – – 3.33 .19 3.22 .40

Pseudo R2 .18 .26 .73 .64

Sample Jan55-Nov82 Dec82-Feb09 Jan55-Nov82 Dec82-Feb09

Notes: The models are estimated as in Table 1, but using the sub-sample

observations indicated at the final row.
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Table 5. Business Cycles

Business cycle Expansion Recession

First month Last month First month Last month

55-58 Jan-55 Aug-57 Sep-57 Apr-58

58-61 May-58 Apr-60 May-60 Feb-61

61-70 Mar-61 Dec-69 Jan-70 Nov-70

70-75 Dec-70 Nov-73 Dec-73 Mar-75

75-80 Apr-75 Jan-80 Feb-80 Jul-80

80-82 Aug-80 Jul-81 Aug-81 Nov-82

82-91 Dec-82 Jul-90 Aug-90 Mar-91

91-01 Apr-91 Mar-01 Apr-01 Nov-01

01-09 Dec-01 Dec-07 Jan-08 Feb-09

Notes: The month of the first (the last) business cycle is given by the first

(the last) month of the sample period. The actual starting month of the first

business cycle is June 1954. The ending month of the last business cycle is

sometimes after February 2009, but the NBER Business Cycle Committee has

not determined the actual month by May 2010.
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Table 6. Estimation Results for Probit Models with Temporary Shifts in Parameters

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Business cycle 55-58 58-61 61-70 70-75 75-80 80-82 82-91 91-01 01-09

Regressor

Constant −1.77 −1.78 −1.69 −1.77 −1.76 −1.59 −1.78 −1.71 −1.72

(.18) (.17) (.18) (.17) (.18) (.18) (.17) (.17) (.18)

Recession, yt−1 3.23 3.22 3.22 3.24 3.22 3.16 3.28 3.20 3.22

(.21) (.20) (.22) (.21) (.21) (.23) (.22) (.21) (.21)

Yield-curve, xt−12 −.33 −.35 −.31 −.35 −.32 −.56 −.27 −.30 −.33

(.14) (.14) (.14) (.14) (.15) (.19) (.16) (.14) (.15)

xt−12 ·Dct .08 .44 −2.6 .22 −.06 .81 −.54 −1.07 .02

(.97) (.36) (3.2) (.39) (.71) (.28) (.99) (.98) (1.06)

Pseudo R2 .686 .689 .701 .687 .686 .702 .690 .693 .686

Log-likelihood −69.20 −68.45 −65.37 −68.95 −69.21 −65.11 −68.11 −67.49 −69.22

BIC 82.16 81.40 78.32 81.90 82.16 78.06 81.07 80.44 82.17

Notes: The models are estimated using monthly data from January 1955

through February 2009 (650 observations). The applied business cycle spe-

cific indicator (Dct) varies by column. The second row indicates the starting

and ending years of the given business cycle. The numbers in parentheses

are misspecification robust standard errors of the coeffi cient estimates and are

computed with procedures described in the appendix.

34



5 5 5 7 5 9 6 1 6 3 6 5 6 7 6 9 7 1 7 3 7 5 7 7 7 9 8 1 8 3 8 5 8 7 8 9 9 1 9 3 9 5 9 7 9 9 0 1 0 3 0 5 0 7 0 9

­5

­4

­3

­2

­1

0

1

2

3

4

5

Figure 1: The Yield-Curve (the shaded area indicate NBER-dated recessions)
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Figure 2: Probability of Recession, In-sample Prediction (the shaded area indicate NBER-
dated recessions)
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Figure 3: Probability of Recession, Out-of-sample Prediction Twelve Months Ahead (the
shaded bars indicate NBER-dated recession months)
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Figure 4: Probability of Continuing Expansion Next 12 Months, Rolling Out-of-sample
Prediction (the shaded bars indicate NBER-dated recession months)
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Figure 5: Probability of Continuing Expansion Next 12 Months, Forecasts Based on
Models Estimated with Data From January 1955 to December 1982 (the shaded bars
indicate NBER-dated recession months)
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Figure 6: Probability of Continuing Expansion Next 12 Months, Predictions Based on
Models Estimated with Data From December 1982 to February 2009 (the shaded bars
indicate NBER-dated recession months)
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