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ABSTRACT 
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1 Introduction

We study an n-player alternating offers bargaining game where the players
try to agree on a division of a cake. Time proceeds in discrete periods
to infinity, player 1 starts the game, and the proposer in any period is the
player who first rejected the offer of the previous period. We are interested in
what happens when the number of players increases. Our way of increasing
the population parallels the core convergence literature as we replicate the
situation so that while the number of players is increased the size of the cake
increases proportionally: each replica of players brings in a new cake to the
pool of shareable cakes. This could reflect matters e.g. when similar nations
group together as a federation.

Having a large set of players is attractive since in the limit almost all
players act as responders; only one player enjoys the first proposer advantage
and hence, as the number of replicas becomes large, the solution becomes
almost distortion-free. We show that in the limit the unique stationary
subgame perfect equilibrium has a simple characterization in terms of a
single replica’s preferences. Finally, the resulting single replica outcome has
an attractive Walrasian interpretation: the unique equilibrium in a market
where the first proposer right is sold to a single replica of bargainers induces
the same outcome.

The primitive of our model are the time preferences á la Fishburn and
Rubinstein (1982). This approach does not make assumptions concerning
the concavity of utility functions.1 Under similar assumptions, Kultti and
Vartiainen (2007) show that the stationary equilibrium outcome converges to
the Nash-bargaining solution when the length of the time period goes to zero.
Since no additional assumptions are made on the utility representations, this
is an extension of Binmore, Rubinstein and Wolinsky (1986). We now show
that the limit outcome under replication (but fixed time interval) converges
to a well defined solution also, but different from the Nash solution.2

2 The Model

A cake of size X > 0 is to be divided among the set N = {1, 2, ..., n} of
players. The set of divisions of the cake is

Sn(X) = {x ∈ Rn :
Pn

i=1 xi ≤ X, xi ≥ 0, for all i} .
1Our assumptions about preferences are weaker than, for instance, in Kirshna and

Serrano (1996). As their (unique) equilibrium is stationary, our results can be interpreted
as an extension of theirs.

2One could also study what happens when the size of the cake is kept fixed and the
number of players is increased. Then there is convergence to the Nash-bargaining solution
because the utility frontier becomes practically linear. The same reasoning applies when
the size of the cake is increased while keeping the number of players fixed.
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Let us write x = (x1, ..., xn) and x−i = (x1, ..., xi−1, xi+1, ...xn).
The players’ preferences over divisions and timing constitute the prim-

itive of the model. The cake can be divided at any point of time T =
{0, 1, 2, ...}. Let division 0 = (0, ..., 0) serve as the reference point, and
let (complete, transitive) preferences over S × T satisfy, for all x, y ∈ S,
for all i ∈ N, and for all s, t ∈ T, the following properties (Fishburn and
Rubinstein, 1982; Osborne and Rubinstein, 1990, Ch. 4):

A1. (x, t) ºi (0, 0).

A2. (x, t) ºi (y, t) if and only if xi ≥ yi.

A3. If s > t, then (x, t) ºi (x, s), with strict preference if xi > 0.

A4. If (xk, tk) ºi (y
k, sk) for all k = 1, ..., with limits (xk, tk)→ (x, t) and

(yk, sk)→ (y, s), then (x, t) ºi (y, s).

A5. (x, t) ºi (y, t+ 1) if and only if (x, 0) ºi (y, 1), for any t ∈ T.

A1-A5 hold throughout the paper. By A2, the Pareto-optimal divisions
at any date are given by

Pn(X) = {x ∈ Sn(X) :
Pn

i=1 xi = X} .

For each i there is a function vi : [0,X] → [0,X], defining the present
consumption value of xi in date 1:

(y, 0) ∼i (x, 1) if vi(xi) = yi, for all x, y ∈ Sn(X). (1)

Fishburn and Rubinstein (1982) show that given A1-A5, vi(·) is continuous
and increasing on [0,X].

We assume that the loss of delay increases in the share of the cake.

A6. xi − vi(xi) is strictly increasing and differentiable.

That is,
dv−1i (xi)

dxi
=

1

v0i(xi)
> 1, for all xi ≥ 0. (2)

This property will be used when we prove the existence of a stationary
equilibrium.

3 The Game

Given N and X, we focus is on a unanimity bargaining game ΓN (X) defined
as follows: At any stage t ∈ {0, 1, 2, ...},
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• Player i(t) ∈ N makes an offer x ∈ Sn(X). Players j 6= i(t) accept or
reject the offer in the ascending order of their index.3

• If all j 6= i(t) accept, then x is implemented. If j is the first who
rejects, then j becomes i(t+ 1).

• i(0) = 1.

We focus on the stationary subgame perfect equilibria, simply equilibria
in the sequel, of the game, where:

1. Each i ∈ N makes the same proposal x(i) whenever he proposes.

2. Each i’s acceptance decision in period t depends only on xi that is
offered to him in that period.

We now characterize equilibria. Let division x ∈ Sn(X) and d > 0 satisfy

xi = vi(xi + d), for all i ∈ N, (3)
nP
i=1

xi = X − d. (4)

Proposition 1 x is a stationary equilibrium outcome of ΓN (X) if and only
if x = (x1 + d, x2..., xn), for the x and d that meet (3) and (4).

Proof. Only if: In a stationary SPE the game ends in finite time.
Assume that it never ends. Then each player receives zero. This means
that in all subgames each player must get zero. Otherwise there would
be a subgame where some offer y = (y1, ..., yn) is accepted. Because of
stationarity this offer is accepted in every subgame. In particular, player 1
can deviate in the first period and offer y = (y1, ..., yn). This is a profitable
deviation and constitutes a contradiction with the assumption that there is
a stationary SPE where the game never ends.

Assume next that there is a stationary SPE where an offer x(i) by some
player i ∈ {1, 2, ..., n}, is not accepted immediately. Denote by z(i) the
equilibrium outcome in a subgame that starts with an offer x(i) of player i.
But now player i could offer z(i) instead of x(i); everyone else would accept
the offer as in the stationary equilibrium acceptance depends only on the
offer.

Thus, in any equilibrium, i(t)’s offer x(i(t)) = (xj(i(t)))j∈N is accepted
at stage t ∈ {0, 1, 2, ..}. In stationary equilibrium the time index t can be
relaxed from x(i(t)). An offer x by i is accepted by all j 6= i if

xj(i) ≥ vj(xj(j)), for all j 6= i. (5)

3The order in which players response to a proposal does not affect the results.

3



Player i’s equilibrium offer x(i) maximizes his payoff with respect to con-
straint (5) and the resource constraint. By A3, all constraints in (5) and the
resource constraint must bind. That is,

xj(i) = vj(xj(j)), for all j 6= i, (6)

and
nP
i=1

xi(j) = X, for all j. (7)

Since player i’s acceptance decision is not dependent on the name of the
proposer, there is xi > 0 such that xi(j) = xi for all j 6= i. By (6), xj(i) <
xj(j) for all j. Hence there is d > 0 such that

nP
i=1

xi = X − d. (8)

By (6) and (8), x and d do meet (3) and (4). Since 1 is the first proposer,
the resulting outcome is x(1) = (x1 + d, x2..., xn).

If: Let x and d meet (3) and (4). Construct the following stationary
strategy: Player i always offers x−i and does not accept less than xi. Player
i’s offer y is accepted by all j 6= i only if

yj ≥ vj(X −
P

k 6=j xk) = vj(xj + d), for all j 6= i. (9)

Since vj is increasing, and since

xj = vj(xj + d), for all j 6= i,

i’s payoff maximizing offer to each j is xj .

Thus, to find a stationary equilibrium it is sufficient to find x and d that
meet (3) and (4).

By (2), v−1i (xi)− xi is a continuous and monotonically increasing func-
tion. Thus, the function ei(·) such that

ei(xi) := v−1i (xi)− xi, for any xi ≥ 0, (10)

is continuous and monotonically increasing.
Define ēi ∈ (0,∞] by

sup
xi≥0

ei(xi) := ēi.

Since ei(·) is continuous and monotonically increasing, also its inverse
xi(e) := e−1i (e), for all e ∈ [0, ēi],

is continuous and monotonically increasing in its domain [0, ēi]. Condition
(10) can now be stated in the form

xi(e) = vi(xi(e) + e), for all e ∈ [0, ēi]. (11)
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Proposition 2 There is a unique stationary equilibrium of ΓN (X).

Proof. By A1 and A3, xi(0) = 0. Since, for all i, x−1i (·) is a monoton-
ically increasing function on R+ having its supremum at ē, it follows that
lime→ēi xi(e) =∞. Thus, since

Pn
i=1 xi(e)+e is a continuous function of e on

[0, ēi] ranging from 0 to ∞, there is, by the Intermediate Value Theorem, a
unique d > 0 such that

nP
i=1

xi(d) = X − d.

By (11), the pair (x(d), d) meets (3) and (4).

4 The Limit Result

We increase the size of the problem by replicating a one-cake - n−player
problem k times. That is, in a k-replicated problem we allow each replica
of n players to bring a cake of size 1 to the pool of shareable cakes, and the
resulting set of k·n players bargain over the resulting cake of size k according
to the procedure specified in the previous section.

Formally, let N = {1, ..., n} be a set of original agents, and relabel them
by {11, 12, ..., 1n}. Let the k times replicated - or k-replicated - set of agents
be {11, ..., 1n, 21, ..., 2n, ..., k1, ..., kn}. That is, the k-replicated problem con-
tains k agents of type i ∈ N, each with the preferences of i. Attaching the
player li the index h(li) = n · (l − 1) + i, we may order players 11, ..., kn
according to their h−indices {h(11), ..., h(kn)} = {1, ..., n · k}. Using this
indexation of the players, we specify a game Γ{1,...,n·k}(k), for any k = 1, 2, ...
. Then Propositions 1 and 2 are valid for any k-replicated problem.4

By Proposition 1, the equilibrium of the k-replicated problem is charac-
terized by x(k) ∈ Sk·n(k) and d(k) > 0 meeting (3) and (4). By symmetry,
the following result is immediate:

Lemma 1 xli(k) = x(l+1)i(k), for all i ∈ N , for all l ∈ {1, ..., k}, for all
k = 1, 2, ... .

Because of Lemma 1, it is sufficient to focus on x1·(k) = (x11(k), ..., x1n(k)).
We may rewrite (4), for all k ∈ {1, 2, ...},

d(k) = k (1−Pn
i=1 x1i(k)) ≥ 0. (12)

Let {x(k)}∞k=1 be a sequence of points meeting (3) and (4) for the re-
spective k−replicated problems, for all k.

Lemma 2 Sequence {x1·(k)}∞k=1 is bounded.
4Any indexation of the players would do.
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Proof. If {x1·(k)}∞k=1 is not bounded, there is a subsequence {x1·(kt)}∞t=1
and j such that x1j(kt)→∞. But given x1i ≥ 0 for all i, this would violate
the budget constraint (12).

Lemma 3 Let {x1·(kt)}∞t=1 be a convergent subsequence of {x1·(k)}∞k=1 such
that

x1j(kt)→ yj , for all j = 1, ..., n. (13)

Then
Pn

i=1 yi = 1.

Proof. By (2), and the continuity of vi

yi = lim
kt

x1i(kt) = lim
kt

vi (x1i(kt) + d(kt))

= vi

µ
lim
kt

x1i(kt) + lim
k
d(kt)

¶
= vi

µ
yi + lim

kt
d(kt)

¶
.

Since vi is an increasing function, there is d < ∞ such that d(kt) → d. By
(12),

nP
i=1

x1i(kt) = 1−
d(kt)

kt
.

Given d(k)→ d, we have
Pn

i=1 x1i(k)→ 1.

Now we give a characterization of the unique convergence point of x(k)
on the Pareto frontier. To do this, identify a property of the preferences of
a single replica of players.

Lemma 4 There are unique y∗ ∈ Sn(1) and d∗ > 0 such that the following
holds: y∗i = vi(y

∗
i + d∗) for all i = 1, .., n and

Pn
i=1 y

∗
i = 1.

Proof. Let xi(·) be defined as in (10). By Proposition 2, there is a unique
d∗ such that

Pn
i=1 xi(1+d∗) = 1. By (10), xi(d∗) = vi(xi(d

∗)+d∗), for all i.
Let x(d∗) = y∗.

Figure 1 depicts how the limit outcome of a single replica is formed in
the n = 2 case. For any d > 0, identify function v1(1 + d− x2) = x1 for all
x2 ∈ [0, 1], and function v2(1 + d − x1) = x2 for all x1 ∈ [0, 1]. The unique
intersection (y1, y2) of the two functions satisfies

v1(1 + d− y2) = y1,

v2(1 + d− y1) = y2.
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Then d is chosen to be d∗ such that the intersection of the functions, (y∗1, y∗2),
satisfies y∗1 + y∗2 = 1. Given such d∗,

v1(1 + d∗ − y∗2) = v1(y
∗
1 + d∗) = y∗1,

v2(1 + d∗ − y∗1) = v2(y
∗
2 + d∗) = y∗2.

Thus (y∗1, y∗2) and d∗ satisfy the conditions in (3) and (4) of a two player game
with X = 1 + d∗. The next proposition shows that (y∗1, y∗2) is the converge
point of the sharing rule of all generations but the first, and (y∗1 + d∗, y∗2) is
the convergence point of the first generation.

[FIGURE 1 HERE]

More generally, the efficient n−vector y∗ specifies how the gains of each
generation are distributed among the members of the generation when the
economy grows large. This is our main result.

Proposition 3 x1·(k) converges to y∗ as specified in Lemma 4 when k tends
to infinity.

Proof. Since, by Lemma 2, sequence {x1·(k)}∞k=1 is bounded, it suf-
fices to show that every convergent subsequence of it converges to y∗. Let
subsequence {x1·(kt)}∞t=1 converge to y. By Lemma 3,

Pn
i=1 yi = 1. By

Propositions 1 and 2, and continuity of vi, there is a unique d > 0 such that
yi = vi(yi + d) for all i = 1, .., n. By Lemma 4, y = y∗.

By Lemma 1, all sequences {xl·(k)}, for l ∈ {1, 2, ...}, converge to y∗ =
(y∗1, ..., y∗n). The main point is that the converge point y∗ is characterized by
the data of the original generation of n players.

5 Market for the First-Proposer Right

To conclude, we give a "Walrasian" interpretation to the characterized limit
outcome y∗. Being the first proposer in the bargaining game is valuable.
Consider a market where an arbitrator sells the right to be the first proposer
in a bargaining game to one of the n bargainers. The right is sold to the
bargainer who makes the highest bid. If many bargainers make the same
highest bid, then the winner is chosen according to some rule among those
who make the highest bid. Once the winner, say i, has paid price p for
the right, p is added to the pool of resources over which bargaining takes
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places. That is, given the original size 1 of the cake, player i becomes the
first proposer in the bargaining game Γn(1 + p).

We claim that d∗ is the unique Walrasian price for the first-proposer
right in these markets, and y∗ is the resulting allocation of the original cake.

Let zi(X) be what a receiver i gets in the game Γn(X). By (3) and (4)
and Proposition 2, z(X) = (z1(X), ..., zn(X)) is the unique solution to

zi(X) = vi(X −
P
j 6=i

zj(X)), for all i. (14)

By the Implicit Function Theorem, z is a continuous function.

Lemma 5 zi(X) is strictly increasing in X, for all i.

Proof. Rewrite condition (14) as

v−1i (zi(X))− zi(X) = X −
nP

j=1
zj(X).

By (2), and since zi is a continuous function, zi is strictly increasing if X −Pn
j=1 zj(X) is. Since this applies to all i,

Pn
j=1 zj(X) is strictly increasing

if X −Pn
j=1 zj(X) is. But then, since

Pn
j=1 zj(X) being weakly decreasing

means that X−Pn
j=1 zj(X) is strictly increasing, it cannot be the case thatPn

j=1 zj(X) is not strictly increasing. Thus
Pn

j=1 zj(X) is strictly increasing
and hence zi is strictly increasing.

Proposition 4 d∗ is the unique market price for the first-proposer right
and y∗ is the resulting allocation of the cake, for d∗ and y∗ as specified in
Lemma 4.

Proof. Only if: Suppose that there is a single highest bid. Then buying
the proposing right with price p must be at least profitable as the opportu-
nity cost of lowering the bid by small ε > 0 :h
1 + p−Pj 6=i zj(1 + p)

i
− p ≥

h
1 + p− ε−Pj 6=i zj(1 + p− ε)

i
− (p− ε).

That is
0 ≥ P

j 6=i
[zj(1 + p)− zj(1 + p− ε)].

But by Lemma 5 this cannot hold.
Thus at least two bidders bid the winning bid p. Then buying the propos-

ing right under pmust be at least profitable as the opportunity cost of letting
the other highest bidder win with price p :h

1 + p−Pj 6=i zj(1 + p)
i
− p ≥ zi(1 + p). (15)
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Since increasing ones bid is not profitable for the losing bargainer j that
bids p,h
1 + p+ ε−Pk 6=j zk(1 + p+ ε)

i
− (p+ ε) ≤ zj(1 + p), for all ε > 0. (16)

Since zk is continuous and (16) holds for all ε > 0, it follows thath
1 + p−Pk 6=j zk(1 + p)

i
− p ≤ zk(1 + p). (17)

Combining (15) and (17) gives

1 =
nP
i=1

zi(1 + p).

Thus by (14),

zi(1 + p) = vi(zi(1 + p) + p), for all i = 1, ..., n.

By Lemma 4, this yields zi(1 + p) = y∗i for all i, and p = d∗.
If: Let all n bargainers bid p = d∗. By construction, zi(1 + d∗) = y∗i for

all i. We show this does constitute an equilibrium. Since n > 1 and

1 =
nP
i=1

zi(1 + d∗), (18)

it follows that h
1 + d∗ −Pj 6=i zj(1 + d∗)

i
− d∗ = zi(1 + d∗).

Thus decreasing one’s bid does not have payoff consequences. Increasing
one’s bid by ε > 0 is strictly profitable ifh

1 + d∗ + ε−Pj 6=i zj(1 + d∗ + ε)
i
− (d∗ + ε) > zi(1 + d∗).

That is, by (18),

1−P
j 6=i

zj(1 + d∗ + ε) > 1−P
j 6=i

zj(1 + d∗),

which is in conflict with Lemma 5. Thus all players bidding d∗ does consti-
tute an equilibrium.

By Proposition 3, the unique outcome y∗ of the market game for the first-
proposing right can be thought as the expected outcome of bargaining when
the number of bargainers grows large and the probability of a particular
player having the right be the first proposer (bargaining power) becomes
negligible. Having a large set of players is attractive since the resulting
bargaining outcome reflects strong average fairness: all but one generation
distribute their resources without a player with first mover advantage. Thus
the simple market game with small number of players can be used to simulate
the outcome that fairly represents what one should expect in a bargaining
situaition with many players.
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