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We investigate within a continuous time setting how Knightian 
uncertainty characterized by κ-ignorance affects the optimal 
timing policies of a risk-neutral and uncertainty averse investor in 
the case where the exercise payoff is monotonic. We prove that 
increased Knightian uncertainty unambiguously decreases the 
value of the optimal timing policy of an uncertainty averse 
investor. We also show that higher Knightian uncertainty 
accelerates timing by shrinking the continuation region whenever 
the termination payoff is independent of Knightian uncertainty. If 
this independence condition is not fulfilled, then our results 
indicate that higher Knightian uncertainty may decelerate optimal 
timing. 
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1 Introduction

One of the basic qualitative conclusions of the real options literature on the optimal exercise of

deferrable investment opportunities is that under risk neutrality increased uncertainty should de-

celerate the optimal timing of irreversible decisions by increasing the required rate of return and

expanding the continuation set where exercising the opportunity is suboptimal. The reason for this

observation is that even though increased uncertainty may have a positive impact on the expected

present value of the payoff received at exercise it simultaneously increases the value accrued by

postponing the decision further into the future (cf. Dixit and Pindyck (1994)). Since the latter

of these two counteracting effects dominates the former, increased uncertainty tends to decelerate

the optimal timing of irreversible decisions. This intuitively appealing result is, however, based on

the assumption that from the point of view of the investor all the relevant probabilistic information

affecting the irreversible decision can be summarized into a single probability measure characterizing

completely the intertemporal stochastic behavior of the underlying state dynamics.

The aforementioned approach to irreversible decision making has been recently challenged on

the basis of the original work by Knight (1921) and the subsequent work by Ellsberg (1961).

According to Knight (1921) economic decision makers face two type of uncertainties; namely,

measurable and unmeasurable uncertainty. Measurable uncertainty is typically labeled as risk and

it can be analyzed on the basis of a single probability measure characterizing the stochastic behavior

of the underlying factors affecting economic decisions. The second type of these uncertainties,

which is typically called either Knightian uncertainty or ambiguity, cannot be measured and it

can be interpreted as the degree of uncertainty on the plausibility or credibility of a particular

probability measure characterizing the probabilistic structure of the alternative states of the world.

Since the latter of this types of uncertainties is more prevalent in economic decision making, studies

focusing solely on risk overlook a key factor affecting real economic decision making problems.

In light of the Ellsberg Paradox, the distinction of these two types of uncertainties is important

as decision makers prefer to act on the basis of known probabilities rather than on the basis of

ambiguous or unsure probabilities (Ellsberg (1961) and Epstein and Wang (1994)). Based on

the pioneering work by Knight (1921) and the subsequent research by Ellsberg (1961) ambiguity

was first rigorously axiomatized in a atemporal multiple priors setting by Gilboa and Schmeidler
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(1989) (for further extensions and refinements, see also Epstein (1999), Ghirardato and Marinacci

(2002), and Maccheroni et al. (2006)). Their axiomatization was subsequently extended into

an intertemporal recursive multiple priors setting in Chen and Epstein (2002) and Epstein and

Schneider (2003) (see also Epstein and Wang (1994)).

The impact of Knightian uncertainty on optimal timing decisions was first investigated by

Nishimura and Ozaki (2004) in a job search model. The impact of Knightian uncertainty on the

optimal investment timing decisions were subsequently investigated by Nishimura and Ozaki (2007)

in a continuous time model based on geometric Brownian motion and in Miao and Wang (2007) in a

model based on a general discrete time Feller-continuous Markov process. An important conclusions

of these studies is that Knightian uncertainty affects irreversible decisions in a way which radically

differs from the impact of risk. Even though increased risk tends to decelerate optimal timing,

increased ambiguity may lead to a completely opposite conclusion. The reason for this observation

is that higher Knightian uncertainty decreases the confidence of the decision maker on the credibility

of the probability distribution describing the stochastic behavior of the underlying state variable.

Consequently, a rational decision maker becomes more reluctant to postpone the timing of the

decision further into the future on the basis of this potentially more biased probability distribution

(Nishimura and Ozaki (2007)). Miao and Wang (2007) also showed that the impact of higher

ambiguity on the optimal timing policy depends heavily on the intertemporal specification of the

exercise payoff. More precisely, they proved that the impact of Knightian uncertainty on the optimal

timing decision depends on the relative degrees of ambiguity about continuation and termination

payoffs (Miao and Wang (2007)). An important implication of their findings on the optimal timing

of exit is that higher Knightian uncertainty may lead to the optimality of the standard myopic

NPV-rule for extremely high degrees of ambiguity aversion.

The objective of this study is to extend part of the analysis of Miao and Wang (2007) to

the continuous time setting and investigate how Knightian uncertainty affects the optimal timing

policies of an uncertainty averse and risk neutral investor in the case where the underlying state

variable is modeled as a one dimensional diffusion and both the continuation and the termination

payoffs are monotone. We assume that Knightian uncertainty is characterized by κ-ignorance and,

therefore, ambiguity is introduced by assuming that instead of facing a single probability measure
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the investor faces a continuum of equivalent measures defined by a parameterized family of likelihood

ratios (cf. Chen and Epstein (2002) and Nishimura and Ozaki (2007)). Along the lines of the

findings by Miao and Wang (2007) and Nishimura and Ozaki (2007), we find that the sign of

the impact of increased Knightian uncertainty on the value of the optimal timing policy of an

uncertainty averse investor is unambiguously negative. The same conclusion is shown to be valid

for the value of arbitrary single threshold policies. However, as indicated by the results of Miao

and Wang (2007), the impact of increased Knightian uncertainty on the optimal timing policy is

proven to depend on the precise inter-temporal specification of the exercise payoff. More precisely,

in the case where the termination payoff is independent of future uncertainties, increased Knightian

uncertainty accelerates the optimal timing policy of an uncertainty averse investor by shrinking

the continuation region where exercising is suboptimal. The reason for this result is that in that

case higher Knightian uncertainty decreases the value of the optimal policy while it simultaneously

leaves the termination payoff unchanged. Since exercising the opportunity is suboptimal as long as

the value of the opportunity dominates the termination payoff, we find that increased Knightian

uncertainty unambiguously accelerates rational exercise in that case. However, if the termination

payoff depends on the evolution of the state variable after exercise as well, then the impact of higher

Knightian uncertainty on the optimal timing policy is ambiguous. In that case increased Knightian

uncertainty decreases the value of the optimal policy. However, since it simultaneously decreases the

expected payoff as well, the net impact of higher Knightian uncertainty is ambiguous and depends on

its relative impact on the value of waiting and the termination payoff (cf. Miao and Wang (2007)).

The contents of this study are as follows. In section two we specify the underlying ambiguous

stochastic dynamics and introduce the considered optimal timing problem. In section three we then

investigate the impact of Knightian uncertainty on standard threshold policies and their values. The

main findings on the optimal timing policy of an uncertainty averse and risk neutral investor are

then presented in section four. Our general findings are then explicitly illustrated in section five in

a model based on geometric Brownian motion. Finally, section six concludes our study.
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2 The Model

We assume that the underlying state variable evolves according to a linear, time homogeneous, and

regular diffusion process defined on the complete filtered probability space (Ω,P, {Ft}t≥0,F) and

evolving on the state-space I = (a, b) ⊆ R according to the dynamics described by the Itô-stochastic

differential equation

dXt = µ(Xt)dt + σ(Xt)dBt, X0 = x, (2.1)

where Bt denotes standard P-Brownian motion. We assume that the drift coefficient µ : I 7→ R and

the diffusion coefficient σ : I 7→ R+ are locally Lipschitz-continuous functions satisfying the standard

growth condition and that σ(x) > 0 for all x ∈ I. These assumptions guarantee the existence and

uniqueness of a strong solution for the stochastic differential equation (2.1) (cf. Karatzas and Shreve

(1991), Theorem 2.9 on p. 289). Finally, we also assume that the boundaries of the state-space

of the underlying diffusion are natural and, therefore, that the underlying state variable X cannot

reach its boundaries in finite time (for a characterization of the boundary behavior of diffusions, see

Borodin and Salminen (2002) pp. 14–21).

In order to characterize the ambiguity faced by the uncertainty averse decision maker, we

now follow Chen and Epstein (2002) (see also Nishimura and Ozaki (2007)) and introduce the

parameterized family of positive exponential martingales (Wald’s martingale)

Zθ
t = e−θBt− 1

2
θ2t,

where the parameter θ ∈ [−κ, κ] and κ ∈ R+ is a constant measuring the degree of Knightian

uncertainty (known also as κ-ignorance; cf. Chen and Epstein (2002)). Given the exponential

martingale Zθ
t we can now define the parameterized family of equivalent measures Qθ on Ft by the

likelihood-ratio dQθ/dP = Zθ
t . A standard application of the Girsanov theorem then implies that

W θ
t = Bt + θt

is a Ft-martingale with respect to the equivalent measure Qθ (cf. Theorem 8.6.4 in Øksendal (2003)

and Borodin and Salminen (2002) pp. 48–50). Hence, for any given fixed θ and equivalent measure

Qθ we have

dXt = (µ(Xt)− θσ(Xt))dt + σ(Xt)dW θ
t , X0 = x. (2.2)
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As usually, we denote the differential operator associated to the underlying diffusion characterized

by the stochastic differential equation (2.2) as

Aθ =
1
2
σ2(x)

d2

dx2
+ (µ(x)− θσ(x))

d

dx
.

It is well-known from the classical literature on linear diffusions that there are two linearly inde-

pendent fundamental solutions ψθ(x) and ϕθ(x) satisfying a set of appropriate boundary conditions

based on the boundary behavior of the underlying process X and spanning the set of solutions of

the ordinary differential equation (Aθu)(x) = ru(x), where r > 0 denotes the prevailing constant

discount rate (see Borodin and Salminen (2002), pp. 18 – 19, for a comprehensive characterization

of these fundamental solutions). These fundamental solutions constitute the minimal r-excessive

mappings for the underlying diffusion. Since any non-trivial r-excessive function can be expressed

as a linear combination of these functions (see Borodin and Salminen (2002), p. 33, for a precise

characterization) and the value of the optimal timing policy is r-excessive, we observe that the

fundamental solutions play a key role in the analysis of the optimal timing policy and its value.

Moreover, ψ′θ(x)ϕθ(x) − ϕ′θ(x)ψθ(x) = BθS
′
θ(x), where Bθ > 0 denotes the constant Wronskian of

the fundamental solutions and

S′θ(x) = exp
(
−

∫
2(µ(x)− θσ(x))dx

σ2(x)

)

denotes the density of the scale function of X. Following Nishimura and Ozaki (2007) we assume

throughout this study that the relations among the underlying variables are not altered as the

horizon tends to infinity and, therefore, that the finite horizon characterization remains valid in the

infinite horizon setting as well.

Given the underlying stochastically fluctuating state variable Xt and the parameter θ ∈ [−κ, κ],

denote now as L1
θ the class of profit flows having a finite expected cumulative present value under

the measure Qθ. For any cash flow π ∈ L1
θ we denote its expected cumulative present value as

(Rθ
rπ)(x) = EQ

θ

x

∫ ∞

0
e−rtπ(Xt)dt.

As is known from the classical theory of diffusions, the expected cumulative present value (Rθ
rπ)(x)

of a cash flow π ∈ L1
θ can be re-expressed as (cf. Borodin and Salminen (2002), pp. 17–20 and p.
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29)

(Rθ
rπ)(x) = B−1

θ ϕθ(x)
∫ x

a
ψθ(y)π(y)m′

θ(y)dy + B−1
θ ψθ(x)

∫ b

x
ϕθ(y)π(y)m′

θ(y)dy, (2.3)

where m′
θ(y) = 2/(σ2(x)S′θ(x)) denotes the density of the speed measure of the underlying state

process Xt under the measure Qθ.

Our objective is to analyze how Knightian uncertainty characterized by κ-ignorance affects

the optimal timing policies of a risk neutral and uncertainty averse investor in the case where the

underlying state dynamics are characterized by a continuous diffusion process. To this end, we now

plan to investigate the optimal timing problem

V (x) = sup
τ

inf
θ∈[−κ,κ]

EQ
θ

x

[∫ τ

0
e−rsπ(Xs)ds + e−rτg(Xτ )

]
, (2.4)

where τ is an arbitrary stopping time, π : I 7→ R is a known continuous cash flow accrued from

continuing operation, and the exercise payoff g : I 7→ R is a known continuous function which is

assumed to be bounded from below. It is at this point worth emphasizing that in the optimal timing

problem (2.4) both the measure as well as the optimal stopping rule are determined by the investor.

More precisely, the parameter θ capturing the degree of ambiguity faced by the uncertainty averse

investor is first chosen so as to minimize the expected present value of the exercise payoff at any

state. The timing rule is then chosen so as to maximize the value of the timing policy in this worst

case scenario.

In order to derive the solution of the optimal timing problem (2.4) and characterize how it is

associated to the value of standard timing problems in the absence of ambiguity, we also consider

the parameterized family of optimal timing problems

Vθ(x) = sup
τ
EQ

θ

x

[∫ τ

0
e−rsπ(Xs)ds + e−rτg(Xτ )

]
. (2.5)

It is clear that in the absence of Knightian uncertainty (i.e. when κ = 0) the considered problem

coincides with a standard optimal investment timing problem defined with respect to the underlying

state dynamics characterized by (2.1). As soon as Knightian uncertainty is introduced and the

maximum degree of uncertainty satisfies the inequality κ > 0 there is a continuum of equivalent

measures Qθ and, therefore, a continuum of associated optimal timing problems indexed by the

parameter θ ∈ [−κ, κ].
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3 Ambiguity and Threshold Policies

Before proceeding to the analysis of the general investment timing problem of an uncertainty averse

investor, we first investigate how Knightian uncertainty affects the value of ordinary single threshold

policies arising typically in the literature focusing on real options and the timing of irreversible

investment decisions. We first state the following auxiliary result needed in the proof of our main

results and the analysis of the comparative static properties of the optimal timing rules and their

values in a broad class of investment timing problems.

Lemma 3.1. Let τy = inf{t ≥ 0 : Xt = y} denote the first hitting time of the underlying state

variable Xt to an arbitrary constant threshold y ∈ I and assume that θ̂ ≥ θ. Then

EQ
θ

x

[
e−rτy

]
=

ψθ(x)
ψθ(y)

≥ ψθ̂(x)
ψθ̂(y)

= EQ
θ̂

x

[
e−rτy

]
(3.1)

for all x ≤ y and

EQ
θ

x

[
e−rτy

]
=

ϕθ(x)
ϕθ(y)

≤ ϕθ̂(x)
ϕθ̂(y)

= EQ
θ̂

x

[
e−rτy

]
(3.2)

for all x ≥ y. Moreover, the logarithmic growth rates of the fundamental solutions ψθ(x) and ϕθ̂(x)

satisfy the inequalities

ψ′θ(x)
ψθ(x)

≤
ψ′

θ̂
(x)

ψθ̂(x)
(3.3)

and

ϕ′θ(x)
ϕθ(x)

≥
ϕ′

θ̂
(x)

ϕθ̂(x)
(3.4)

for all x ∈ I.

Proof. See Appendix A.

Lemma 3.1 states an unambiguous characterization of how the parameter θ affects the expected

present value of a unit of money received at the first date the underlying state variable hits an

arbitrary constant threshold (i.e. the current value of a zero coupon bond maturing at the random

date τy). According to Lemma 3.1 this expected value is monotonic as a function of the parameter

θ. This result is important since it proves that the parameterized family of expected present values
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attain its extreme values (as functions of Knightian uncertainty) on the boundaries of the compact

set [−κ, κ]. Since increased Knightian uncertainty constitutes a symmetric enlargement of the set

[−κ, κ], we find that Lemma 3.1 also establishes that the sign of the relationship between increased

Knightian uncertainty and the parameterized expected present value is unambiguously negative.

A second set of auxiliary results summarizing our main findings on the sensitivity of the expected

cumulative present value of a monotone cash flow with respect to changes in the parameter θ is now

summarized in the following.

Lemma 3.2. (A) Assume that the cash flow π ∈ L1
θ is non-decreasing and that θ̂ ≥ θ. Then

(Rθ
rπ)(x) ≥ (Rθ̂

rπ)(x) for all x ∈ I. Especially, infθ∈[−κ,κ](Rθ
rπ)(x) = (Rκ

r π)(x) for all x ∈ I.
(B) Assume that the cash flow π ∈ L1

θ̂
is non-increasing and that θ̂ ≥ θ. Then (Rθ

rπ)(x) ≤ (Rθ̂
rπ)(x)

for all x ∈ I. Especially, infθ∈[−κ,κ](Rθ
rπ)(x) = (R−κ

r π)(x) for all x ∈ I.

Proof. See Appendix B.

Lemma 3.2 extends the findings of Lemma 3.1 to the expected cumulative present values of

monotonic cash flows. Interestingly, and in line with the findings of Lemma 3.1, Lemma 3.2 shows

that the sign of the relationship between the parameter θ and the expected cumulative present value

depends on whether the cash flow is increasing or decreasing. In case the cash flow is increasing

(decreasing) this relationship is negative (positive). Hence, Lemma 3.2 demonstrates that increased

Knightian uncertainty decreases the expected cumulative present value of monotone cash flows.

In light of the results of Lemma 3.1 we now introduce the family of functionals F y
θ : I 7→ R and

Gy
θ : I 7→ R indexed by the parameter θ and defined as

F y
θ (x) = EQ

θ

x

[∫ τ(a,y)

0
e−rsπ(Xs)ds + e−rτ(a,y)g(Xτ(a,y)

)
]

(3.5)

and

Gy
θ(x) = EQ

θ

x

[∫ τ(y,b)

0
e−rsπ(Xs)ds + e−rτ(y,b)g(Xτ(y,b)

)
]

(3.6)

where τ(z,y) = inf{t ≥ 0 : Xt 6∈ (z, y)} denotes the first exit time of the underlying state variable X

from the open interval (z, y) ⊂ I. It is clear that these functionals measure the expected present

value of the cumulative payoff accrued by following a timing policy characterized by the hitting
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time to a fixed single threshold. Given these definitions, we can now establish the following inter-

esting result characterizing how Knightian uncertainty affects the values and continuation regions

of standard threshold policies arising in real option models of irreversible investment.

Theorem 3.3. Assume that θ̂ ≥ θ and that the cash flow π ∈ L1
θ has a finite expected cumulative

present value under the measure Qθ for all θ ∈ [−κ, κ]. Then

F y
θ (x) =





g(x) x ≥ y

(Rθ
rπ)(x) + (g(y)− (Rθ

rπ)(y))ψθ(x)
ψθ(y) x < y

(3.7)

and

Gy
θ(x) =





(Rθ
rπ)(x) + (g(y)− (Rθ

rπ)(y))ϕθ(x)
ϕθ(y) x > y

g(x) x ≤ y.

(3.8)

Moreover,

(i) if F ′
θ(x) ≥ 0 for x ∈ (a, y), then F y

θ (x) ≥ F y

θ̂
(x) for all x ∈ I, infθ∈[−κ,κ]{F y

θ (x)} = F y
κ (x),

and {x ∈ I : F y

θ̂
(x) > g(x)} ⊆ {x ∈ I : F y

θ (x) > g(x)}

(ii) if G′
θ(x) ≥ 0 for x ∈ (y, b), then Gy

θ(x) ≥ Gy

θ̂
(x), infθ∈[−κ,κ]{Gy

θ(x)} = Gy
κ(x), and {x ∈ I :

Gy

θ̂
(x) > g(x)} ⊆ {x ∈ I : Gy

θ(x) > g(x)}

(iii) if F ′
θ(x) ≤ 0 for x ∈ (a, y), then F y

θ (x) ≤ F y

θ̂
(x) for all x ∈ I, infθ∈[−κ,κ]{F y

θ (x)} = F y
−κ(x),

and {x ∈ I : F y
θ (x) > g(x)} ⊆ {x ∈ I : F y

θ̂
(x) > g(x)}

(iv) if G′
θ(x) ≤ 0 for x ∈ (y, b), then Gy

θ(x) ≤ Gy

θ̂
(x), infθ∈[−κ,κ]{Gy

θ(x)} = Gy
−κ(x), and {x ∈ I :

Gy
θ(x) > g(x)} ⊆ {x ∈ I : Gy

θ̂
(x) > g(x)}.

Proof. See Appendix C.

Theorem 3.3 states a set of sufficient conditions under which the impact of increased Knightian

uncertainty on both the value as well as the continuation region where the value dominates the

exercise payoff can be unambiguously characterized. According to Theorem 3.3, the sign of the

relationship between higher Knightian uncertainty and the expected present value of the total payoff

(the sum of continuation and termination payoffs) accrued from following a threshold policy depends
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on the monotonicity of the value as a function of the present state of the underlying stochastically

fluctuating state variable which, in turn, depends on the relative sizes of the termination and

continuation payoffs. Under the conditions of Theorem 3.3, increased Knightian uncertainty is

shown to decrease the value of a threshold policy by decreasing both the expected cumulative present

value of the cash flow accrued prior exercise and the expected present value of the termination

payoff. Theorem 3.3 also characterizes how higher Knightian uncertainty affects the continuation

region where the value of a threshold policy dominates the exercise payoff. Interestingly, under the

conditions of our theorem, higher Knightian uncertainty is shown to have a stimulating effect on

timing by shrinking the continuation region where the value dominates the exercise payoff. Naturally,

this result is based on our assumptions on the relative sizes of the termination and continuation

payoffs. As our subsequent explicit illustrations will indicate, if these conditions are not met, then

our principal findings may actually be reversed. It is also worth emphasizing that our observations

indicate that the sign of the relationship between Knightian uncertainty and the expected values of

single threshold policies is essentially based on first order monotonicity properties while the impact

of increased risk (measured by volatility) is typically based on the second order convexity properties

of the values as functions of the underlying state variable. This observation is of interest since it

indicates that the impact of these two types of uncertainties on the value of standard threshold

policies may be drastically different.

4 Knightian Uncertainty and Optimal Timing

Up to now, we have only considered the impact of Knightian uncertainty on the value of potentially

suboptimal timing strategies which are characterizable as ordinary threshold policies requiring that

the underlying state variable is stopped whenever it crosses a predetermined constant threshold.

However, due to uncertainty aversion it is not clear wether the optimal timing policies are actually

characterizable as ordinary threshold strategies or not. Fortunately, as the analysis of our previous

section already indicated, the optimal timing policy of an uncertainty averse investor can be de-

termined in typical cases subject to monotone payoffs from an ordinary optimal stopping problem

defined with respect a unique well-defined equivalent measure.
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Theorem 4.1. (A) Assume that the exercise payoff g(x) and the cash flow π(x) are non-decreasing

and continuous. Then, V (x) = infθ∈[−κ,κ] Vθ(x) = Vκ(x), that is,

V (x) = Vκ(x) = sup
τ
EQ

κ

x

[∫ τ

0
e−rsπ(Xs)ds + e−rτg(Xτ )

]
. (4.1)

(B) Assume that the exercise payoff payoff g(x) and the cash flow π(x) are non-increasing and

continuous. Then, V (x) = infθ∈[−κ,κ] Vθ(x) = V−κ(x), that is,

V (x) = V−κ(x) = sup
τ
EQ

−κ

x

[∫ τ

0
e−rsπ(Xs)ds + e−rτg(Xτ )

]
. (4.2)

In both cases (A) and (B) increased Knightian uncertainty decreases the value of the investment

opportunity and accelerates rational exercise by shrinking the continuation region where waiting is

optimal.

Proof. See Appendix D.

Theorem 4.1 extends the findings of Theorem 3.3 to the case where the investment timing pol-

icy is chosen optimally. Along the lines of Theorem 3.3 we again find that the monotonicity of the

value of the optimal timing policy as function of the current state of the underlying state variable

is the principal determinant of the sign of the relationship between increased Knightian uncertainty

and the value of the optimal policy. More specifically, Theorem 4.1 proves that increased Knightian

uncertainty unambiguously decreases the value of the optimal timing policy of an uncertainty averse

investor whenever the continuation and termination payoffs are monotone. Within our modeling

framework, higher Knightian uncertainty increases uniformly the plausibility of favorable as well as

unfavorable scenarios. However, since an uncertainty averse investor bases her timing decision on

the worst case scenario, only the unfavorable cases count and, therefore, higher Knightian uncer-

tainty unambiguously decreases the value of the optimal timing policy. Theorem 4.1 also proves

that higher Knightian uncertainty unambiguously accelerates optimal timing by shrinking the con-

tinuation region where exercising the opportunity is suboptimal. The reason for this observation

is that increased Knightian uncertainty decreases the value of the optimal timing policy and leaves

the termination payoff unchanged. Since timing is suboptimal as long as the value dominates the

termination payoff, we find that increased Knightian uncertainty accelerates timing. An interesting

11



implication of the conclusions of Theorem 4.1 on optimal exit policies of uncertainty averse firms is

summarized in the following.

Theorem 4.2. (A) Assume that g(x) ≡ 0 and that the cash flow π ∈ L1
κ is continuous, non-

decreasing, and satisfies the limiting conditions limx↓a π(x) < 0 < limx↑b π(x). Then, the value (2.4)

of the optimal exit policy of an uncertainty averse investor is

V (x) = (Rκ
r π)(x)− ϕκ(x) inf

y≤x

[
(Rκ

r π)(y)
ϕκ(y)

]
=





(Rκ
r π)(x)− (Rκ

r π)(x∗κ) ϕκ(x)
ϕκ(x∗κ) x > x∗κ

0 x ≤ x∗κ,

where the optimal exit threshold x∗κ = argmin{(Rκ
r π)(x)/ϕκ(x)} ∈ π−1(R−) is the unique root of the

ordinary first order condition (Rκ
r π)′(x∗κ)ϕκ(x∗κ) = (Rκ

r π)(x∗κ)ϕ′κ(x∗κ).

(B) Assume that g(x) ≡ 0 and that the cash flow π ∈ L1−κ is, continuous, non-increasing, and

satisfies the limiting conditions limx↓a π(x) > 0 > limx↑b π(x). Then, the value (2.4) of the optimal

exit policy of an uncertainty averse investor is

V (x) = (R−κ
r π)(x)− ψ−κ(x) inf

y≥x

[
(R−κ

r π)(y)
ψ−κ(y)

]
=





(R−κ
r π)(x)− (R−κ

r π)(x∗−κ) ψ−κ(x)
ψ−κ(x∗−κ) x < x∗−κ

0 x ≥ x∗−κ,

where the optimal entry threshold x∗−κ = argmin{(R−κ
r π)(x)/ψ−κ(x)} ∈ π−1(R−) is the unique root

of the ordinary first order condition (R−κ
r π)′(x∗−κ)ψ−κ(x∗−κ) = (R−κ

r π)(x∗−κ)ψ′−κ(x∗−κ).

(C) Increased Knightian uncertainty accelerates exit by decreasing the value of the optimal exit policy

of a uncertainty averse investor.

Proof. See Appendix E.

Theorem 4.2 characterizes the impact of higher Knightian uncertainty on the optimal exit pol-

icy of an uncertainty investor. Along the lines of our Theorem 4.1 we find that increased Knightian

uncertainty decreases the value of the optimal timing policy and accelerates optimal exit by de-

creasing the value and leaving the termination payoff unchanged. This result is interesting since

it demonstrates that the impact of Knightian uncertainty is radically different with the impact of

increased risk (as measured by volatility).

It is worth noticing that the qualitative conclusions of Theorem 4.1 are valid only when the

exercise payoff is independent of the degree of Knightian uncertainty. Even though this assumption
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is satisfied in cases where the valuation is based on the behavior of the underlying up to the exercise

date, it is obviously violated in studies considering optimal entry decisions under uncertainty. The

reason for this argument is that in those cases the exercise payoff depends both on the prevailing

market conditions as well as on their uncertain behavior after the entry opportunity has been

exercised. In the optimal entry case, the considered optimal timing problems can typically be

expressed as

V (x) = sup
τ

inf
θ∈[−κ,κ]

EQ
θ

x

∫ ∞

τ
e−rsπ(Xs)ds = sup

τ
inf

θ∈[−κ,κ]
EQ

θ

x

[
e−rτ (Rθ

rπ)(Xτ )
]
. (4.3)

The conclusions of Theorem 4.1 are partially extended to this optimal entry case in the following.

Theorem 4.3. (A) Assume that the cash flow π ∈ L1
κ is continuous, non-decreasing, and satisfies

the limiting conditions limx↓a π(x) < 0 < limx↑b π(x). Then, the value (4.3) of the optimal entry

policy of an uncertainty averse investor is

V (x) = ψκ(x) sup
y≥x

[
(Rκ

r π)(y)
ψκ(y)

]
=





(Rκ
r π)(x) x ≥ x∗κ

(Rκ
r π)(x∗κ) ψκ(x)

ψκ(x∗κ) x < x∗κ,

where the optimal entry threshold x∗κ = argmax{(Rκ
r π)(x)/ψκ(x)} ∈ π−1(R+) is the unique root of

the ordinary first order condition (Rκ
r π)′(x∗κ)ψκ(x∗κ) = (Rκ

r π)(x∗κ)ψ′κ(x∗κ).

(B) Assume that the cash flow π ∈ L1−κ is, continuous, non-increasing, and satisfies the limiting

conditions limx↓a π(x) > 0 > limx↑b π(x). Then, the value (4.3) of the optimal entry policy of the

uncertainty averse investor is

V (x) = ϕ−κ(x) sup
y≤x

[
(R−κ

r π)(y)
ϕ−κ(y)

]
=





(R−κ
r π)(x∗−κ) ϕ−κ(x)

ϕ−κ(x∗−κ) x > x∗−κ

(R−κ
r π)(x) x ≤ x∗−κ,

where the optimal entry threshold x∗−κ = argmax{(R−κ
r π)(x)/ϕ−κ(x)} ∈ π−1(R+) is the unique root

of the ordinary first order condition (R−κ
r π)′(x∗−κ)ϕ−κ(x∗−κ) = (R−κ

r π)(x∗−κ)ϕ′−κ(x∗−κ).

(C) Increased Knightian uncertainty decreases the value of the optimal entry policy of an uncertainty

averse investor.

Proof. See Appendix F.
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Theorem 4.3 characterizes the optimal entry policy and its value in the presence of Knightian

uncertainty. Along the lines of the findings of Theorem 4.1 we find that the monotonicity of the

cash flow is again the principal factor determining the sensitivity of the value of the optimal timing

policy with respect to changes in the degree of Knightian uncertainty. However, in contrast with

the findings of Theorem 4.1, we now observe that the impact of increased Knightian uncertainty

on the optimal entry threshold cannot be typically characterized unambiguously. As was already

argued before our theorem, the reason for this finding is that in the present case Knightian uncer-

tainty affects directly both the value of the optimal entry policy as well as the termination payoff

measuring the expected cumulative present value of the cash flow accrued from the entry date up

to an arbitrarily distant future. Since the continuation region where exercising the opportunity is

suboptimal reads as {x ∈ I : Vθ(x) > (Rθ
rπ)(x)}, we find that the sign of the relationship between

increased Knightian uncertainty and the optimal threshold depends on the relative impact on these

two factors.

It is worth emphasizing that our observations on the impact of increased Knightian uncertainty

on the optimal timing of exercise are in line with the findings by Miao and Wang (2007) obtained

in a discrete time setting. More precisely, Miao and Wang (2007) established in their study

that ambiguity may accelerate or decelerate option exercise depending on its relative impact on

the continuation and on the termination payoffs. As our results indicate, the same conclusion is

partially valid in the continuous time setting as well. Unfortunately, establishing an unambiguous

characterization of the impact of increased Knightian uncertainty on the optimal timing of entry

is in the present setting a demanding task. However, as our subsequent explicit illustrations will

establish, the qualitative conclusions by Miao and Wang (2007) are satisfied in the case where the

underlying dynamics follow geometric Brownian motion.

Having established an unambiguous characterization of the impact of increased Knightian un-

certainty on the value of optimal timing policies in the presence of uncertainty aversion, it would

naturally be of interest to present such an unambiguous characterization for the impact of increased

volatility (or risk) as well. Unfortunately, this is generally impossible since in the presence of Knight-

ian uncertainty increased volatility affects the rate at which the underlying state variable is expected

to grow as well. We will illustrate this observation in an explicitly parameterized example based on
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geometric Brownian motion in the following section.

5 Illustration: Geometric Brownian Motion

In order to illustrate our general results explicitly, we first assume that the underlying stochastic

dynamics follow an ordinary geometric Brownian motion characterized under the equivalent measure

Qθ by the stochastic differential equation

dXt = (µ− θσ)Xtdt + σXtdBθ
t , X0 = x. (5.1)

It is well-known that in this case the fundamental solutions read as ψθ(x) = xλθ and ϕθ(x) = xνθ ,

where

λθ =
1
2
− µ− θσ

σ2
+

√(
1
2
− µ− θσ

σ2

)2

+
2r

σ2

denotes the positive and

νθ =
1
2
− µ− θσ

σ2
−

√(
1
2
− µ− θσ

σ2

)2

+
2r

σ2

denotes the negative root of the characteristic equation σ2w(w−1)+2(µ−θσ)w−2r = 0. Standard

differentiation of the characteristic equation shows that

∂λθ

∂θ
=

2λθ

σ(λθ − νθ)
> 0,

∂νθ

∂θ
= − 2νθ

σ(λθ − νθ)
> 0,

∂λθ

∂σ
=

2λθ(σ + θ − σλθ)
σ2(λθ − νθ)

T 0, λθ S σ + θ

σ
,

and
∂νθ

∂σ
= −2νθ(σ + θ − σνθ)

σ2(λθ − νθ)
T 0, νθ S σ + θ

σ
.

To illustrate our general findings on the comparative static properties of the optimal timing

policy and its value, we now consider four different examples arising in the literature on real options.

In order to illustrate the dependence of the impact of increased Knightian uncertainty on the nature

of the continuation and termination payoffs, we first consider the valuation and optimal exercise

policy of a standard investment opportunity. In that case the exercise payoff reads as g(x) =
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(x−K)+, where K > 0 is a known exogenously determined sunk cost. Given the monotonicity and

independence of the prevailing degree of Knightian uncertainty of the lump-sum exercise payoff, we

notice that if the condition r > µ− σκ, guaranteeing that ψκ > 1, is satisfied then the value of the

optimal investment strategy of an uncertainty averse investor reads as

V (x) = Vκ(x) =





x−K x ≥ x∗κ

K
λκ−1

(
x
x∗κ

)λκ

x < x∗κ

where the optimal exercise boundary is

x∗κ =
λκK

λκ − 1
∈ (K,∞).

In light of our results on the sensitivity of the root λκ with respect to changes in the degree of

Knightian uncertainty we observe that increased Knightian uncertainty accelerates rational exercise

by decreasing the optimal investment threshold x∗κ. The impact of higher volatility is naturally

ambiguous due to the non-monotonicity of the root λκ as a function of the volatility coefficient σ.

As a second example, consider the case where the exercise payoff reads as g(x) = (K − x)+ (a

perpetual put). In contrast to our previous example, the exercise payoff is now non-increasing. It

is well-known that as long as the absence of speculative bubbles condition r > µ + κσ is satisfied,

the value of the investment opportunity reads as

V−κ(x) =





(K/(1− ν−κ))
(

x
x∗−κ

)ν−κ

x > x∗−κ

K − x x ≤ x∗−κ

where the optimal exercise threshold reads as

x∗−κ =
ν−κ

ν−κ − 1
K ∈ (0,K).

Given the monotonicity of the root ν−κ as a function of the degree of Knightian uncertainty we

notice in accordance with the findings of our Theorem 4.1 that increased Knightian uncertainty

accelerates investment timing by increasing the threshold x∗−κ and decreasing the value V−κ(x) of

the investment opportunity.

In order to analyze the effects of Knightian uncertainty affects the continuation payoff as well,

consider now the optimal entry strategy of an uncertainty averse investor (cf. Nishimura and Ozaki
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(2007)). Since

EQ
κ

x

∫ ∞

0
e−rsXsds =

x

r − µ + σκ

whenever the absence of speculative bubbles condition r > µ− σκ is met, we find that in this case

the exercise payoff reads as

g(x) =
x

r − µ + σκ
−K.

Applying a similar approach than in the former example proves that the value of the optimal entry

strategy of an uncertainty averse investor reads as

V (x) = Vκ(x) =





x
r−µ+σκ −K x ≥ x̄κ

K
λκ−1

(
x
x̄κ

)λκ

x < x̄κ

where the optimal entry threshold reads as1

x̄κ =
(

1− 1
νκ

)
rK ∈ ((r − µ + σκ)K,∞).

As indicated by our Theorem 4.3, the value of the optimal entry policy is a decreasing function of

the prevailing degree of Knightian uncertainty κ. Again, the impact of increased volatility on the

optimal entry threshold is ambiguous due to the non-monotonicity of the root νκ as a function of

the volatility coefficient σ. However, since

∂

∂κ
x̄κ =

rK

ν2
κ

∂νκ

∂κ
> 0

we find in that higher Knightian uncertainty decelerates optimal entry by increasing the optimal

entry threshold at which the opportunity is exercised. This observation is of interest since it indi-

cates that even though the sign of the relationship between ambiguity and the value of the optimal

timing policy is determined by the first order monotonicity properties of the exercise payoff, Knigh-

tian uncertainty may either decelerate or accelerate optimal investment depending on whether the

decision is based on a continuous flow of revenues or a single lump-sum payoff accrued at exercise.

1The entry threshold simplifies to the proposed form after noticing that for any a ∈ R we have

(λθ − a)(a− νθ) =
2

σ2

(
r − a(µ− σθ)− 1

2
σ2a(a− 1)

)
.
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Finally, consider as our fourth example the optimal exit problem of an uncertainty averse firm

(cf. Alvarez (1998) for an analysis in the standard real option setting). In the present case, the

optimal timing problem reads as

V (x) = sup
τ

inf
θ∈[−κ,κ]

EQ
θ

x

∫ τ

0
e−rs(Xs − c)ds,

where c > 0 denotes a flow of constant costs associated to continuing operation. Along the lines of

our findings on the optimal entry problem we find that whenever the absence of speculative bubbles

condition r > µ− σκ is met, the considered optimal exit problem reads

V (x) =
x

r − µ + σκ
− c

r
+ sup

τ
EQ

κ

x

[
e−rτ

(
c

r
− Xτ

r − µ + σκ

)]
.

It is now clear in light of our general results that in this case the value of the optimal exit strategy

reads as

V (x) =





x
r−µ+σκ − c

r + c
r(1−νκ)

(
x
x̄κ

)νκ

x > x̄κ

0 x ≤ x̄κ,

where the optimal exit threshold reads as

x̄κ =
(

1− 1
λκ

)
c ∈ (0, c).

As was established in our Theorem 4.3 increased Knightian uncertainty decreases the value of the

exit opportunity. However, since
∂

∂κ
x̄κ =

c

λ2
κ

∂λκ

∂κ
> 0

we find that increased Knightian uncertainty accelerates optimal exit of an uncertainty averse in-

vestor by increasing the threshold at which exit is optimal. This observation again emphasizes the

radically different impact increased Knightian uncertainty has on investment incentives depending

on the intertemporal properties of the exercise payoff.

6 Concluding Comments

In this paper we considered the impact of Knightian uncertainty on the optimal timing policy of a

risk neutral and uncertainty averse investor. According to our general results, increased Knightian

uncertainty unambiguously decreases the value of the optimal timing policy in all cases. However,
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our findings demonstrated that the impact of higher Knightian uncertainty on the optimal timing

policy depends on the intertemporal specification of the exercise payoff. If the exercise payoff is of

the lump-sum type and independent of the future evolution of the underlying state variable, then

increased Knightian uncertainty accelerates optimal timing by shrinking the continuation region

where exercising is suboptimal. In the case where the exercise payoff depends on the future evolution

of the underlying state variable and thereby on the prevailing degree of Knightian uncertainty, the

impact of an increase in Knightian uncertainty on the timing is ambiguous and depends on its

relative impact on the value of waiting and on the expected present value of the termination payoff.

Whichever of these two counteracting effects dominates dictates the sign of the relationship between

higher Knightian uncertainty and optimal timing.

Even though our results are based on a relatively general continuous time description of the

underlying state variable, a natural extension of our study would be to extend our analysis to a

multidimensional setting by introducing more underlying factors subject to Knightian uncertainty.

Such an extension would provide valuable information on the combined impact of potentially com-

plex interactions between various risks and Knightian uncertainty on the optimal timing policy of

an uncertainty averse decision maker (cf. Chen and Epstein (2002)). Analogously, in light of

our results on the impact of Knightian uncertainty on single investment timing decisions, it would

naturally be of interest to study how Knightian uncertainty affects the irreversible accumulation

policies and, especially, the value of growth and divestment options of uncertainty averse investors.

A third natural economically interesting extension would be to consider the impact of ambiguity

on the optimal risk adoption policies of uncertainty averse investors (cf. Alvarez and Stenbacka

(2004)). In that case both the continuation payoff as well as the termination payoff depend on both

the prevailing and on the future uncertainties. Thus, as our present analysis indicates, the impact of

Knightian uncertainty on the optimal timing policy and its value may be under such circumstances

a non-monotonic function of the prevailing degree of Knightian uncertainty. Wether this conclusion

is correct or not is an interesting research topic left for future research.
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A Proof of Lemma 3.1

Proof. Consider first the case where x ≤ y. It is well-known from the literature on the classical

theory of diffusions that (cf. Borodin and Salminen (2002), p. 18)

EQ
θ

x

[
e−rτy

]
=

ψθ(x)
ψθ(y)

,

where ψθ(x) the increasing fundamental solution of the ordinary differential equation (Aθu)(x) =

ru(x). Since θ ≤ θ̂ we observe that the monotonicity of ψθ(x) and the positivity of the diffusion

coefficient σ(x) implies that

(Aθ̂ψθ)(x)− rψθ(x) = ((Aθ̂ −Aθ)ψθ)(x) = (θ − θ̂)σ(x)ψ′θ(x) ≤ 0

for all x ∈ I. Thus, the continuity of the diffusion Xt and Dynkin’s theorem now implies that

ψθ(x) ≥ EQθ̂

x

[
e−rτyψθ(Xτy)

]
= ψθ(y)EQ

θ̂

x

[
e−rτy

]
= ψθ(y)

ψθ̂(x)
ψθ̂(y)

proving inequality (3.1). Establishing inequality (3.2) is now entirely analogous. It remains to

establish inequalities (3.3) and (3.4). To accomplish this task we notice that inequality (3.1) implies

that for all x ≤ y we have

1− ψθ̂(x)
ψθ̂(y)

≥ 1− ψθ(x)
ψθ(y)

which can be equivalently written as

∫ y

x

ψ′
θ̂
(s)

ψθ̂(y)
ds ≥

∫ y

x

ψ′θ(s)
ψθ(y)

ds.

Applying the mean value theorem of integral calculus and letting x ↑ y proves (3.3). Establishing

inequality (3.4) is analogous.

B Proof of Lemma 3.2

Proof. (A) It is known from the literature on linear diffusions that for π ∈ L1
θ the expected cumu-

lative present value (Rθ
rπ)(x) constitutes the unique bounded solution of the ordinary differential

equation (AθR
θ
rπ)(x)− r(Rθ

rπ)(x) + π(x) = 0. In light of this identity we find that

(Aθ̂R
θ
rπ)(x)− r(Rθ

rπ)(x) + π(x) = (θ − θ̂)σ(x)(Rθ
rπ)′(x) < 0
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since the expected cumulative present value preserves the monotonicity of the cash flow, σ(x) > 0

for x ∈ I, and θ ≤ θ̂. Consequently, applying Dynkin’s theorem to the expected cumulative present

value (Rθ
rπ)(x) yields

EQ
θ̂

x

[
e−rTn(Rθ

rπ)(XTn)
]
≤ (Rθ

rπ)(x)− EQθ̂

x

∫ Tn

0
e−rsπ(Xs)ds

where Tn = n ∧ inf{t ≥ 0 : Xt 6∈ (max(a + 1/n,−n), min(n, b − 1/n))}, n ∈ N, is an increasing

sequence of almost surely finite stopping times tending towards ∞ as n →∞. Letting n →∞ and

invoking the boundedness from below of the cash flow π(x) then proves that (Rθ̂
rπ)(x) ≤ (Rθ

rπ)(x)

for all x ∈ I. Establishing part (B) is analogous.

C Proof of Theorem 3.3

Proof. Applying the strong Markov property, the time homogeneity, and the continuity of the un-

derlying diffusion shows that for all x ∈ (a, y) we have

F y
θ (x) = EQ

θ

x

[∫ τ(a,y)

0
e−rsπ(Xs)ds + e−rτ(a,y)g(Xτ(a,y)

)
]

= (Rθ
rπ)(x) + EQ

θ

x

[
e−rτ(a,y)

(
g(Xτ(a,y)

)− (Rθ
rπ)(Xτ(a,y)

)
)]

= (Rθ
rπ)(x) + (g(y)− (Rθ

rπ)(y))EQ
θ

x

[
e−rτ(a,y)

]
.

Noticing that F y
θ (x) = g(x) for all x ∈ (y, b) proves the representation (3.7). Establishing (3.8) is

entirely analogous.

It remains to characterize the impact of increased Knightian uncertainty on the value of an

ordinary threshold policy and on the continuation region where the value of the threshold policy

dominates the termination payoff. Assume first that F y
θ
′(x) ≥ 0 for all x ∈ (a, y). Since F y

θ (x) =

F y

θ̂
(x) for all x ∈ (y, b) it is sufficient to consider the behavior of F y

θ (x) on the set (a, y). As is known

from the literature on linear diffusions, F y
θ (x) satisfies on (a, y) the boundary value problem

(AθF
y
θ )(x)− rF y

θ (x) + π(x) = 0, F y
θ (y) = g(y).

Relying now on the proof of Lemma 3.2 proves that F y
θ (x) ≥ F y

θ̂
(x) for all x ∈ (a, y) and, therefore,

that F y
θ (x) ≥ F y

θ̂
(x) for all x ∈ I. If {x ∈ I : F y

θ (x) > g(x)} = ∅ then {x ∈ I : F y

θ̂
(x) > g(x)} = ∅

as well. Assume, therefore, that {x ∈ I : F y
θ (x) > g(x)} 6= ∅ and let x ∈ {x ∈ I : F y

θ̂
(x) > g(x)}.
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Since F y
θ (x) ≥ F y

θ̂
(x), we find that x ∈ {x ∈ I : F y

θ (x) > g(x)} as well and, therefore, that

{x ∈ I : F y

θ̂
(x) > g(x)} ⊆ {x ∈ I : F y

θ (x) > g(x)}. Establishing the claims of parts (ii), (iii), and

(iv) is completely analogous.

D Proof of Theorem 4.1

Proof. Define the functional UT
θ : [0, T ]× I 7→ R as

UT
θ (t, x) = EQ

θ

(t,x)

[∫ T

t
e−r(s−t)π(Xs)ds + e−r(T−t)g(XT )

]
(D.1)

where g : I 7→ R is the known continuous payoff received at exercise and π(x) is the cash flow which

is accumulated prior exercise. Under our assumptions UT
θ (t, x) constitutes for (t, x) ∈ [0, T ]×I the

solution of the boundary value problem (cf. Øksendal (2003), Theorem 9.3.3.)

(Gθ
rUT

θ )(t, x) +
∂

∂t
UT

θ (t, x) + π(x) = 0

UT
θ (T, x) = g(x),

where the differential operator Gθ
r is defined for sufficiently smooth mappings f : I 7→ R by

(Gθ
rf)(x) = (Aθf)(x) − rf(x). Standard differentiation now shows that for all θ̂ > θ and (t, x) ∈

[0, T ]× I we have

(Gθ
rUT

θ̂
)(t, x) +

∂

∂t
UT

θ̂
(t, x) + π(x) = (θ̂ − θ)σ(x)

∂

∂x
UT

θ̂
(t, x).

In light of this result we find by applying Itô’s theorem to the mapping (t, x) 7→ e−rtUT
θ̂

(t, x) that

EQ
θ

(t,x)

[
e−rT g(XT )

]
= e−rtUT

θ̂
(t, x) + EQ

θ

(t,x)

∫ T

t
e−rs(θ̂ − θ)σ(Xs)

∂

∂x
UT

θ̂
(s,Xs)ds

Since the expected value UT
θ (t, x) preserves the monotonicity of the exercise payoff g(x) and the

cash flow π(x), θ̂ ≥ θ, and σ(x) > 0 for all x ∈ I we find that

EQ
θ

(t,x)

[∫ T

t
e−r(s−t)π(Xs)ds + e−r(T−t)g(XT )

]
≥ EQθ̂

(t,x)

[∫ T

t
e−r(s−t)π(Xs)ds + e−r(T−t)g(XT )

]

for all (t, x) ∈ [0, T ]×I whenever the exercise payoff g(x) and the cash flow π(x) are non-decreasing

and that the opposite inequality is valid whenever the exercise payoff g(x) and the cash flow π(x)

are non-increasing. Consequently, we find that

inf
θ∈[−κ,κ]

EQ
θ

(t,x)

[∫ T

t
e−r(s−t)π(Xs)ds + e−r(T−t)g(XT )

]
= UT

κ (t, x)
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in the former case and

inf
θ∈[−κ,κ]

EQ
θ

(t,x)

[∫ T

t
e−r(s−t)π(Xs)ds + e−r(T−t)g(XT )

]
= UT

−κ(t, x)

in the latter case.

In light of these inequalities, assume now that both the exercise payoff g(x) and the cash

flow π(x) are non-decreasing and consider the increasing sequence of functions {vn(x)}n∈Z+ defined

iteratively as v0(x) = g(x) and

vk+1(x) = sup
T≥0

inf
θ∈[−κ,κ]

EQ
θ

x

[∫ T

0
e−rsπ(Xs)ds + e−rT vk(XT )

]

= sup
T≥0

EQ
κ

x

[∫ T

0
e−rsπ(Xs)ds + e−rT vk(XT )

]

for k ≥ 1. As is known from the literature on optimal stopping the sequence vn(x) converges towards

the value of the optimal stopping problem (2.4) and, therefore, that

V (x) = sup
τ
EQ

κ

x

[∫ τ

0
e−rsπ(Xs)ds + e−rτg(Xτ )

]

proving our first claim. Establishing the alleged claim in the case where the exercise payoff g(x) and

the cash flow π(x) are non-increasing is completely analogous. The alleged sensitivities of the value

of the optimal policy and the continuation region where exercising the opportunity is suboptimal

now follow from Theorem 3.3.

E Proof of Theorem 4.2

Proof. (A) We consider the optimal exit problem for an arbitrary θ since the monotonicity of the

solution as a function of the parameter θ is then sufficient for deriving the optimal policy of an

uncertainty averse investor. We first notice that applying the Green-representation (2.3) to the

functional

(Lϕθ
(Rθ

rπ))(x) =
(Rθ

rπ)′(x)
S′θ(x)

ϕθ(x)− ϕ′θ(x)
S′θ(x)

(Rθ
rπ)(x)

yields

(Lϕθ
(Rθ

rπ))(x) =
∫ b

x
ϕθ(y)π(y)m′

θ(y)dy.
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Since π(x) > 0 for all x ∈ (π−1(0),∞) we observe that (Lϕθ
(Rθ

rπ))(x) > 0 for all x ∈ (π−1(0),∞).

Assume now that k < π−1(0). The monotonicity of the cash flow π(x) then implies that for all

x < k we have

(Lϕθ
(Rθ

rπ))(x) ≤ π(k)
r

[
ϕ′θ(k)
S′θ(k)

− ϕ′θ(x)
S′θ(x)

]
+ (Lϕθ

(Rθ
rπ))(k).

Since ϕ′θ(x)/S′θ(x) ↓ −∞ as x ↓ a (a was assumed to be a natural boundary) and π(k) < 0 we find

that equation (Lϕθ
(Rθ

rπ))(x) = 0 has a unique root x∗κ ∈ (a, π−1(0)). Noticing that

(Lϕθ
(Rθ

rπ))(x) =
ϕ2

θ(x)
S′θ(x)

d

dx

[
(Rθ

rπ)(x)
ϕθ(x)

]

shows that x∗θ = argmin{(Rθ
rπ)(x)/ϕθ(x)}. Given this observation it is now straightforward to estab-

lish that the proposed value function satisfies the conditions Vθ ∈ C1(I)∩C2(I\{x∗θ}), |V ′′
θ (x∗θ±)| <

∞, Vθ(x) ≥ 0 for all x ∈ I, and (Gθ
rVθ)(x) + π(x) ≤ 0 for all x ∈ I\{x∗θ}. Therefore, it dominates

the value of the optimal exit problem (2.5). However, since the proposed value is attained by the

admissible threshold policy τ(x∗θ ,b) we find that it coincides with the value of the optimal exit problem

(2.5) and, therefore, that τ(x∗θ ,b) is the optimal exit date. Moreover, noticing that

d

dx

[
(Rθ

rπ)′(x)
ϕ′θ(x)

]
=

2rS′θ(x)
σ2(x)ϕ′θ

2(x)

∫ b

x
ϕθ(y)(π(x)− π(y))m′

θ(y)dy < 0

proves that

(Rθ
rπ)′(x) ≥ ϕ′θ(x)

(Rθ
rπ)′(x∗θ)
ϕ′θ(x

∗
θ)

for all x ≥ x∗θ and, therefore, that the value is nondecreasing. Establishing the claims of part (B) is

entirely analogous. Finally, part (C) follows directly from Theorem 4.1.

F Proof of Theorem 4.3

Proof. (A) Before proceeding in the proof of the alleged results, we first notice that since the ter-

mination payoff now reads as g(x) = (Rθ
rπ)(x) the auxiliary functional F y

θ (x) can now be expressed

as

F y
θ (x) = EQ

θ

x

[
e−rτ(a,y)(Rθ

rπ)(Xτ(a,y)
)
]

=





(Rθ
rπ)(x) x ≥ y

(Rθ
rπ)(y)ψθ(x)

ψθ(y) x < y.

Hence, applying Lemma 3.1 and Lemma 3.2 proves that F y
θ (x) ≥ F y

θ̂
(x) for all x ∈ I, y ∈ I, and

θ̂ ≥ θ. Along the lines of our Theorem 3.3, this shows that argminθ∈[−κ,κ]{F y
θ (x)} = κ.
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Having established the monotonicity of the functionals F y
θ (x) as functions of Knigtian uncer-

tainty, we now derive the value Vθ(x) under the assumption that π ∈ L1
θ. Consider the continuously

differentiable functional

(Lψθ
(Rθ

rπ))(x) =
(Rθ

rπ)′(x)
S′θ(x)

ψθ(x)− ψ′θ(x)
S′θ(x)

(Rθ
rπ)(x).

Applying the Green representation (2.3) yields

(Lψθ
(Rθ

rπ))(x) = −
∫ x

a
ψθ(y)π(y)m′

θ(y)dy

which implies that

(Lψθ
(Rθ

rπ))′(x) = −ψθ(x)π(x)m′
θ(x) T 0, x S π−1(0).

In light of the assumed monotonicity and boundary behavior of the cash flow π(x) we observe that

(Lψθ
(Rθ

rπ))(x) > 0 for all x ≤ π−1(0). Let x > k > π−1(0). Invoking the additivity of the functional

(Lψθ
(Rθ

rπ))(x) and the monotonicity of the cash flow π(x) yields

(Lψθ
(Rθ

rπ))(x) = (Lψθ
(Rθ

rπ))(k)−
∫ x

k
π(y)ψθ(y)m′

θ(y)dy

≤ (Lψθ
(Rθ

rπ))(k)− π(k)
r

[
ψ′θ(x)
S′θ(x)

− ψ′θ(k)
S′θ(k)

]
↓ −∞

as x ↑ b, since ψ′θ(x)/S′θ(x) ↑ ∞ when b is a natural boundary for the underlying diffusion (cf.

Borodin and Salminen (2002), p. 19). Therefore, equation (Lψθ
(Rθ

rπ))(x) = 0 has a unique root

on x∗θ ∈ (π−1(0), b) by the continuity and monotonicity of (Lψθ
(Rθ

rπ))(x). Noticing that

(Lψθ
(Rθ

rπ))(x) =
ψ2

θ(x)
S′θ(x)

d

dx

[
(Rθ

rπ)(x)
ψθ(x)

]

shows that x∗θ = argmax{(Rθ
rπ)(x)/ψθ(x)} and, therefore, that F

x∗θ
θ (x) ≥ (Rθ

rπ)(x) for all x ∈ I.

Moreover, we find that F
x∗θ
θ ∈ C1(I) ∩ C2(I\{x∗θ}), |D2

xF
x∗θ
θ (x∗θ±)| < ∞, (AθF

x∗θ
θ )(x)− rF

x∗θ
θ (x) = 0

for x ∈ (0, x∗θ) and (AθF
x∗θ
θ )(x) − rF

x∗θ
θ (x) = −π(x) < 0 for x ∈ (x∗θ, b). Consequently, F

x∗θ
θ (x)

constitutes a r-excessive majorant of the exercise payoff (Rθ
rπ)(x). Since Vθ(x) is the smallest of

these majorants, we have that Vθ(x) ≤ F
x∗θ
θ (x) for all x ∈ I. In order to establish the opposite

inequality, it is sufficient to notice that since

F
x∗θ
θ (x) = ψθ(x) sup

y≥x

{
(Rθ

rπ)(y)
ψθ(y)

}
= EQθ

x

[
e
−rτ(a,x∗

θ
)(Rθ

rπ)(Xτ(a,x∗
θ
)
)
]
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and τ(a,x∗θ) is an admissible stopping time (being a Markov-time), we have that Vθ(x) ≥ F
x∗θ
θ (x) for

all x ∈ I and, therefore, that Vθ(x) = F
x∗θ
θ (x). Moreover, it is clear from the proof of Theorem 4.1

that in this case infθ∈[−κ,κ] Vθ(x) = Vκ(x) = V (x). Establishing part (B) is analogous. Finally, the

negativity of the sign of the relationship between higher Knightian uncertainty and the value of the

optimal timing policy follows directly from Lemma 3.1 and Lemma 3.2.
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