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ABSTRACT 

We study repeated prize allocation problem when the discount 
factors f the agents are not equal. It is shown that the feasible set of 
payoffs is not well behaved. In particular, it is not convex as it 
contains holes and caves. The Pareto frontier is everywhere 
discontinuous and there is an open subset of discount factors such 
that the feasible set is totally disconnected. 
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1 Introduction

A handy way to model infinitely repeated interaction is to assume discount-
ing. The special case of equal discount factors is well studied in the litera-
ture. Often cited and useful property of the feasible set of payoffs is that it
coincides with the convex hull of stage game payoffs. While one justification
for this might be public randomization, the more fundamental one relies on
the repeated structure itself. Fudenberg and Maskin (1991) and Sorin (1986)
demonstrate that any convex combination of stage game payoffs can be in-
duced by alternating pure actions with the appropriate frequencies. This
result constitutes a building block of the folk theorem by Fudenberg and
Maskin (1986, 1990): Any individually rational feasible payoff configuration
can be implemented in subgame perfect Nash equilibrium, even without
public randomizing device.

Lehrer and Pauzner (1999) show that, when discount factors differ and
when players have access to a public randomizing device, the set of feasible
payoffs is larger than the convex hull of stage game payoffs.1 They also
assert that public randomization is without loss of generality - as it is under
equal discount factors. We demonstrate that this assertation is not true.

The aim of this note is to problematize the unequal discount factors
case. We allocate a fixed prize infinitely many times between a patient and
an impatient player, and abstract from strategic issues.

The feasible set of payoffs is difficult to characterize. As after any finite
history the continuation feasible set is a discounted version of the period zero
feasible set, there is no finitary method that determines all coordinates of the
feasible set, as opposed to the case of equal discount factors (cf. Fudenberg
and Maskin, 1991).2 Moreover, we show that in a large class of discount
factors the feasible set is totally disconnected. Whether this holds for all
games under unequal discount factors remains an open question.

Pareto-optimality is the key criterion of successive collective decision
making. However, with any unequal discount factors the Pareto frontier of
the feasible set is nowhere continuous. It is not clear how one should bargain
over set with nowhere continuous Pareto frontier.

We assert that our results extend to a general class of repeated games.
Some simulations concerning the feasible set in other repeated games are
provided in the final section.

1The reason for this is that players’ trade-off between consuming today versus later
differ when their discount factors differ. Hence there may exist mutually beneficial ”payoff
trades”.

2The feasible set of a repeated game is a fractal whose self-similar components happen
to overlap.
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2 The set up

There is an infinite sequence of indivisible prizes of consumption value unity,
to be allocated either to player P (patient) or I (impatient). The discount
factors of the two players are δP and δI , respectively, with 1 > δP > δI > 0.
Denote by sk ∈ {0, 1} the stage k allocation with sk = 1 if the prize goes to
P and 0 otherwise. A stream is denoted by s = (s0, s1, ...), and the set of
streams by S = {0, 1}∞.

Normalized payoff from stream s to P and I are

uP (s) = (1− δP )
∞P
t=0

stδ
t
P ,

uI(s) = (1− δI)
∞P
t=0
(1− st)δ

t
I .

Denote the value of s at period t by u(s : t). That is,

uP (s : t) = (1− δP )
∞P
τ=t

sτδ
τ−t
P ,

uI (s : t) = (1− δI)
∞P
τ=t
(1− sτ )δ

τ−t
I .

For any A ⊆ S, denote u[A] = {(uP (s), uI(s)) : s ∈ A}, and the
i−projection of u[A] by ui[A], for i = I, P . By our normalization, u[S] ⊂
[0, 1]2. Denote the set of Pareto-optimal sequences by

PO =
©
s : ui(s

0) > ui(s)⇒ uj(s
0) < uj(s), for all s0 ∈ S

ª
.

The P - and I-maximal payoffs are generated by streams 1 = (1, 1, ....)
and 0 = (0, 0, ....), respectively. Denote by by 1t = (0, ..., 0| {z }

t−1
, 1, 0, 0, ...) the

sequence that gives P only the t’th prize. Use notation s−s0 = (s0−s00, s1−
s01, ...) if st− s0t ∈ {0, 1} for all t. Then 1− s gives the prize in period t to P
if and only if s gives it to I. Moreover, s± 1t is the stream that differs from
s only in that it changes the allocation of t’th prize in s.

2.1 Characterization

The set S = {0, 1}∞ is a compact metric space (“the Cantor space”). Hence
the function u : S → [0, 1]2, for u(s) = (uI(s), uP (s)), is a continuous
function on a compact metric space and, consequently, u[S] is a compact
subset of [0, 1]2.

Proposition 1 Let δP < 1/2. Then S = PO.
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Proof. First we claim that s0 6= s implies uP (s) 6= uP (s
0) and uI(s) 6= uI(s

0).
Let t be the least index such that st 6= s0t, and, without loss of generality,
st = 1, s0t = 0. If, say, uP (s) = uP (s

0), then also uP (s : t) = uP (s
0 : t).

In the extreme case, st0 = 0 and s0t0 = 1 for all t0 = t + 1, t + 2, ..., i.e.
uP (s : t) ≥ 1 − δP and uP (s

0 : t) ≤ δP . But since δP < 1/2, we have
1− δP > δP . Thus uP (s : t) > uP (s

0 : t), a contradiction.
Take any s ∈ S, and suppose that s0 ∈ S Pareto dominates s. By the

previous paragraph, s0 is strictly better for both P and I than s. Let t be the
least index such that st 6= s0t. By the argument of the previous paragraph
st = 1 implies that uP (s) > uP (s

0), which is not possible. Hence st = 0.
But then, by the same argument, uI(s) > uI(s

0), a contradiction.

The following result is well known (e.g. Fudenberg and Maskin, 1991;
Sorin, 1986).

Lemma 2 If δi ≥ 1/2, then ui[S] = [0, 1], for i = I, P.

This does not yet say much about the feasible set u[S] in [0, 1]2. However,
in the special case of δP = δI the set u[PO] coincides with the interval
[(1, 0), (0, 1)], the convex hull of the "stage game" payoffs. We now argue
that this does not generalize to the δP > δI case.

A closed subset U of an Euclidean space is connected if it cannot be
partitioned into two disjoint closed sets. The maximal connected subsets
of U are called components of U. Now U is totally disconnected if all its
components are one point sets.

The recursive structure of u[S] implies that it is self-similar. Define
u [S : ∅] = u [S] and let, for all t = 0, 1, ...,

u [S : s0, ..., st] = {(x+ st(1− δP ), y + (1− st)(1− δI)) : (x, y) ∈ u[S : s0, ..., st−1]} .
Then, for all t = 0, 1, ...,

u[S : s0, ..., st−1] = ∪st∈{0,1}u [S : s0, ..., st−1, st] .

Proposition 3 For any δP > 1/2 there is d such that u[S] is totally dis-
connected if δP ≥ d > δI > 1/2.

Proof. First we show that u[S] is totally disconnected when δP > δI = 1/2.
By the self-similarity of u[S], it suffices to show that u[S : 0] and u[S : 1] are
disjoint. Thus we need that u(1, s1, s2, ...) 6= u(0, s01, s02, ...), for all s1, s2, ...
and s01, s02, ... .

Suppose, to the contrary, that u(1, s1, s2, ...) = u(0, s01, s02, ...) for some
s1, s2, ... and s01, s02, ... . Then, since uI(1, s1, s2, ...) = uI(0, s

0
1, s

0
2, ...), we

have

δI =
∞P
t=1

δtI(s
0
t − st).
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Since δI = 1/2, necessarily st = 0 and s0t = 1 for all t = 1, 2, .... But
this implies, since also uP (1, s1, s2, ...) = uP (0, s

0
1, s

0
2, ...), that δP = 1/2, a

contradiction.
That the desired d > 1/2 exists follows from the continuity of uI(·) in

δI .

Figure 1a below depicts a fractal that is induced by discount factors
δP = 0.7 and δI = 0.55. It is easy to see that u[S] is disconnected. By
self-similarity of the components, it is also totally disconnected. Figure 1b
depicts u[S] when δP = 0.8 and δI = 0.7. Now it is no longer clear whether
u[S] is connected or not.

[Figure 1a,b around here]

We leave open the question of when exactly is the feasible set is totally
disconnected. What is clear is that there are discount factors under which
the feasible set is connected (when the discount factors are equal and above
1/2). Whether this holds in general when the discount factors are close
and/or high is a difficult question.

2.2 Pareto Frontier

We first argue that a Pareto-optimal stream has a stage from which onwards
all prizes are given to the impatient player only if the stream gives all the
prizes to him.

Lemma 4 Let δP ≥ 1/2. If s ∈ PO\{0}, then s allocates infinitely many
prizes to P .

Proof. Suppose, to the contrary, that there is t such that st = 1 and st0 = 0
for all t0 > t. Then uI (s : t) = δI , and uP (s : t) = 1 − δP . Let, without
loss of generality, t = 0. By Lemma 2, there is s0 such that s00 = 0 and
uP (s

0 : 1) = (1 − δP )/δP . Since stδP ≥ (1 − st)δI , for all t = 0, 1, ..., with
strict inequality when st = 1, it follows that uP (s0 : 1) > uI (1− s0 : 1) .
Thus, since δP > δI , we have

1− δI > 1− δP

= uP
¡
s0 : 1

¢
δP

> uI
¡
1− s0 : 1

¢
δI

= uI
¡
1− s0 : 0

¢
,
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where the final equality follows by 1 − s00 = 1. By construction, δI < 1 −
uI(1− s0 : 0) = uI(s

0 : 0). Thus, since move from s to s0 keeps P indifferent
but increases I’s payoff, we have s 6∈ PO.

Thus any Pareto-optimal stream (other than 0) gives the prize infinitely
many times to the patient player. From this it follows that any utility level
of player P can be induced by some Pareto-optimal stream.

Proposition 5 Let δP ≥ 1/2. Then uP [PO] = [0, 1].

Proof. Take any closed interval [x, 1] ⊂ [0, 1], x < 1. By Lemma 2, there
is a nonempty, compact subset A of S such that uP (A) = [x, 1]. Since A
is compact and uI continuous, the set B = argmaxs∈A uI(s) is nonempty,
compact subset of A, and hence there is s∗ such that s∗ ∈ argmaxs∈B uP (s).
By construction, s∗ ∈ PO. It suffices to show that uP (s∗) = x. Suppose
that uP (s∗)−x > 0. By Lemma 4, there is big enough t such that s∗t = 1 and
uP (s

∗)− x > (1− δP )δ
t
P . But then s∗ − 1t ∈ A while uI(s∗ − 1t) > uI(s

∗),
which contradicts the assumption that s∗ ∈ B.

By Proposition 5, there is a function f : [0, 1] → [0, 1] whose graph
coincides with the Pareto frontier, i.e. f(uP (s)) = uI(s) for all s ∈ PO. Then
f(uP (s)) ≥ uI(s) for all s ∈ S. By construction, f is a strictly decreasing
function. Function f is nowhere continuous if there is no open interval on
which f is continuous.

Proposition 6 f is nowhere continuous.

Proof. Let, to the contrary of the proposition, there be an open interval
X ⊂ [0, 1] on which f is continuous. Since f is strictly decreasing on X, the
set of points where f is not differentiable has Lebesque measure zero. Let f
be differentiable on a setD ⊂ X that has strictly positive Lebesgue measure.
Denote by S(1t) the set of sequences such that st0 = 1 for all t0 ≥ t. Since
∪∞t=0S(1t) consists of countably many elements, set uP [∪∞t=0S(1t)] has zero
measure. Thus we may assume D ⊂ uP [S\ ∪∞t=0 S(1t)].

Take x ∈ D, and find s ∈ PO\ ∪∞t=0 S(1t)) such that u(s) = (x, f(x)).
By construction, there are infinitely many periods t such that st = 0. Thus,
s+ 1t ∈ S, for all these periods t. For any such t,

uP (s+ 1t) = uP (s) + (1− δP )δ
t
P ,

uI(s+ 1t) = uI(s)− (1− δI)δ
t
I .
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Choosing {xt} = {uP (s+1t)}, we have, by the definitions of derivative and
f ,

f 0(x) = lim
t→∞

f(uP (s))− f(uP (s+ 1t))

uP (s)− uP (s+ 1t)

≥ lim
t→∞

uI(s)− uI(s+ 1t))

uP (s)− uP (s+ 1t)

= lim
t→∞−

µ
δI
δP

¶tµ 1− δI
1− δP

¶
= 0 (1)

But (1) contradicts the fact that f is strictly decreasing.

However, f also possesses some continuity properties.

Proposition 7 Let δI ≥ 1/2. Then f is left-continuous.

Proof. Let {xn} be an increasing sequence on [0, 1] converging to x. Then
{f(xn)} is a decreasing sequence bounded below by 0. Hence {f(xn)} con-
verges to y. Since u[S] is compact, (x, y) is in u[S] by definition of f . Since
(xn, f(xn)) is a Pareto optimal utility allocation for each n, we cannot have
f(x) > y. So f(x) ≤ y, and since (x, y) is in u[S], we have f(x) = y, by
definition of f .

We conclude from Proposition 4 that it is nonproblematic for the patient
agent to find his personal maximal subject to impatient agent’s reservation
payoff. However, by Proposition 6, this is not the case for the impatient
agent: his maximal payoff is very sensitive to the patient agent’s payoff, and
hence finding it is computationally very hard.

3 Discussion

This paper studies the consequences of differentiated discount factors on
players’ payoffs from prize streams. To see how differentiated discount fac-
tors affects the feasible set of a repeated game, consider the case of prisoners’
dilemma:

C D
C 3,3 0,4
D 4,0 1,1

As demonstrated by Lehrer and Pauzner (1999), the induced feasible set
under randomization has a smooth boundary, and contains the convex hull
of stage game payoffs as a proper subset. However, without randomization
the feasible set of prisoners’ dilemma is a proper subset of the feasible set
with randomization. The boundary is everywhere non-smooth and contains
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caves. Fig. 2 depicts the feasible set under δP = 0.9 and δI = 0.7. Our
results still apply: the Pareto-frontier is is everywhere discontinuous. The
shape of the feasible set is sensitive to the size of the discount factors.

[Figure 2 around here]

These observations have some relevance from the viewpoint of the Folk
theorem. For example, the equilibria in Fudenberg and Maskin (1986, 1990)
rely on the assumption that continuation payoffs can be matched with in-
centives not to deviate. When mixed strategies are used, exact match of
continuation payoffs may be important. The problem is that when discount
factors are unequal, the feasibe set is far from convex, and it is no longer
clear (to us) that one can always find the needed continuation payoffs.

References

[1] Fudenberg, D. and E. Maskin (1986), The Folk Theorem in Re-
peated Games in Repeated Games with Discounting or with Incomplete
Information, Econometrica 54, 533-54.

[2] Fudenberg, D. and E. Maskin (1990), Nash and Perfect Equilibria of
Discounted Repeated Games, Journal of Economic Theory 51, 194—206.

[3] Fudenberg, D. and E. Maskin (1991), On the Dispensability of Pub-
lic Randomization in Discounted Repeated Games, Journal of Economic
Theory 53, 428-38.

[4] Lehrer, E. and A. Pauzner (1999), Repeated Games with Differential
Time Preferences, Econometrica 67, 393-412.

[5] Sorin, S. (1986), On Repeated Games with Complete Information,
Mathematical Operations Research 11, 147-60.

7



8



9



10



Aboa Centre for Economics (ACE) was founded in 
1998 by the departments of economics at the Turku 
School of Economics, Åbo Akademi University and 
University of Turku. The aim of the Centre is to 
coordinate research and education related to 
economics in the three universities. 

Contact information: Aboa Centre for Economics, 
Turku School of Economics, Rehtorinpellonkatu 3, 
20500 Turku, Finland. 

Aboa Centre for Economics (ACE) on Turun kolmen 
yliopiston vuonna 1998 perustama yhteistyöelin. Sen 
osapuolet ovat Turun kauppakorkeakoulun kansan-
taloustieteen oppiaine, Åbo Akademin national-
ekonomi-oppiaine ja Turun yliopiston taloustieteen 
laitos. ACEn toiminta-ajatuksena on koordinoida 
kansantaloustieteen tutkimusta ja opetusta Turun 
kolmessa yliopistossa. 

Yhteystiedot: Aboa Centre for Economics, Kansan-
taloustiede, Turun kauppakorkeakoulu, 20500 Turku. 

www.tse.fi/ace 

ISSN 1796-3133 


