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1 Introduction

One of the basic conclusions of studies considering irreversible investment and

sequential incremental capital accumulation in the presence of price uncertainty

is that increased volatility increases the required exercise premium and expands

the continuation region where investment is suboptimal (cf. Pindyck (1988),

Dixit (1995), and Bertola (1998). For extensive and excellent surveys on the

literature on irreversible investment, see Pindyck (1991) and Dixit and Pindyck

1994). The positivity of the sign of the relationship between increased volatility

and the investment threshold typically follows from the observation that even

though higher volatility may increase the expected cumulative present value

of the marginal revenue product of the current capital stock it simultaneously

increases the value of the opportunities to expand capacity later in the future.

Since the latter effect dominates the former the existing literature concludes

that increased price uncertainty should be detrimental for investment.

Even though the findings mentioned above are in line with economic intu-

ition, they are obtained on models where the underlying driving processes evolve

according to geometric Brownian motions. This naturally raises two important

questions. First, given the relatively simple structure of the stochastic charac-

terization of the underlying price dynamics it is not clear how a more general

specification (for example, mean reverting) affects the optimal investment pol-

icy and its value. Second, given that the comparative static properties of the

optimal policy and its value are highly sensitive with respect to the character-

ization of the underlying stochastically fluctuating unit price of output, it is

not clear whether the negativity of the sign between increased volatility and

the value remains true within a more general setting. Motivated by these argu-

ments, we consider in this study the optimal incremental capital accumulation

problem of a competitive firm in the presence of investment irreversibility and

price uncertainty. In order to extend the results of previous studies addressing



the same question we model the underlying stochastically fluctuating price as

a one dimensional but otherwise general diffusion. Along the lines of previous

studies modelling the price as a geometric Brownian motion, we find that the

optimal capital accumulation policy can be characterized as an ordinary thresh-

old policy stating that new productive capacity should be added as soon as

the expected cumulative present value of the marginal revenue product of cap-

ital exceeds a critical level. We demonstrate that the optimal investment rule

can be interpreted as a requirement that the firm should invest whenever the

underlying price exceeds a capital-dependent threshold at which the expected

cumulative net present value of the marginal revenue product of capital is max-

imized. Since each unit of stock decreases the marginal product of capital, we

find that the optimal boundary is an increasing function of the capital stock.

Therefore, in line with previous studies considering irreversible incremental cap-

ital accumulation our results indicate that small firms will generally invest more

frequently than large ones in the general setting as well. We also consider how

increased price volatility affects the optimal capital accumulation policy and its

value and state in terms of the net appreciation rate of the unit price of output

a set of general conditions under which higher price volatility unambiguously

expands the continuation region where investment is suboptimal and decreases

both the expected cumulative present value of the marginal revenue product of

the current capital stock and the value of the future expansion options. Inter-

estingly, since the conditions guaranteeing that the required exercise premium

is an increasing function of volatility are not necessary for the existence of an

optimal investment threshold, our results imply that the marginal value of cap-

ital does not generally have to be monotonic as a function of volatility. We also

investigate the long run behavior of the optimal accumulation policy and state

a set of conditions under which a well-defined long run stationary steady state

distribution exists.

The contents of this paper are as follows. In section two we present the
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considered general model of capital accumulation and state our main results.

These results are then explicitly illustrated in section three for two separate

dynamic price specifications (geometric Brownian motion and a mean reverting

diffusion) in the presence of a Cobb-Douglas production function. Section four

then concludes our study.

2 Irreversible Capital Accumulation

Consider a competitive value maximizing firm facing a stochastically fluctuat-

ing price evolving on the complete filtered probability space (Ω,F , {Ft}t≥0,P)

according to the stochastic dynamics characterized by the stochastic differential

equation

dpt = µ(pt)dt + σ(pt)dWt, p0 = p ∈ R+ (2.1)

where Wt is standard Brownian motion, and both the drift coefficient µ : R+ 7→
R and the volatility coefficient σ : R+ 7→ R+ are assumed to be continuously

differentiable. As usually, we denote as

A =
1
2
σ2(p)

∂2

∂p2
+ µ(p)

∂

∂p
(2.2)

the differential operator associated with the price dynamics pt. For simplicity,

we will assume that the boundaries of the state space (0,∞) of the price process

pt are natural. Hence, even though the price dynamics may tend toward its

boundary it is never expected to attain it in finite time (for a comprehensive

characterization of the boundary behavior of linear diffusions, see Borodin and

Salminen (2002), pp. 14–20).

The considered firm is assumed to produce a single homogenous output F (k)

by using a single homogenous productive input k, which is called capital. As

usually, we assume that the function F : R+ 7→ R+ is continuously differentiable,

monotonically increasing, strictly concave, and satisfies the Inada-conditions
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F (0) = 0, limk↓0 F ′(k) = 0 and limk→∞ F ′(k) = ∞. Moreover, increasing the

current operating capacity is assumed to be costly and that the unit cost of

increased capacity is an exogenously determined constant q > 0. Given these

assumptions, we now plan to analyze the optimal capital accumulation problem

V (k, p) = sup
k∈Λ

E
∫ ∞

0

e−rs(psF (ks)ds− qdks), (2.3)

where r > 0 is an exogenously given discount rate. Along the lines of Dixit

(1995) we assume that the capital stock is non-depreciating and call an ir-

reversible capital accumulation policy k admissible if it is non-negative, non-

decreasing, right-continuous, and {Ft}-adapted, and denote the set of admis-

sible accumulation policies as Λ. Applying the generalized Itô-formula to the

linear mapping e−rtqk yields (cf. Protter (1990), p. 74)

V (k, p) ≤ qk + sup
k∈Λ

E
∫ ∞

0

e−rs(psF (ks)− rqks)ds. (2.4)

Thus, (2.4) demonstrates that the value of the firm is dominated by the sum of

the value of current capital stock and the expected excess return accrued from

following an optimal investment policy. It is worth emphasizing that since the

inequality (2.4) becomes an equality whenever the expected present value of the

future capital stock vanishes in the long run, (2.4) actually constitutes an explicit

decomposition of the value in that case. In order to guarantee the finiteness of

the objective functional (2.3) we assume that the expected cumulative present

value of the maximal short run profit flow π(p) = supk∈R+
[pF (k) − rqk] is

bounded.

Instead of tackling the stochastic capital accumulation problem directly via

variational inequalities (cf. Kobila (1993) and Øksendal (2000)), we rely on

the optimal timing interpretation of the marginal value of capital (cf. Bertola

(1998) and Pindyck (1988)) and re-express it as

Vk(k, p) = inf
τ

E
[∫ τ

0

e−rspsF
′(k)ds + e−rτq

]
. (2.5)
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The major advantage of this approach is that we can now focus on a single

marginal investment decision instead of having to analyze the whole accumu-

lation policy at once. Moreover, since the marginal value of capital can be

interpreted as Tobin’s marginal q focusing on the marginal decision is helpful in

providing useful interpretations in terms of this classical capital theoretic ap-

proach (for an excellent and extensive survey of the q-theory of investment see

Caballero (1999); for a critical treatment see Caballero and Leahy (1996)).

Applying now the strong Markov property of diffusions implies that (2.5)

can be restated as

Vk(k, p) = G(p)F ′(k)− sup
τ

E
[
e−rτ (G(pτ )F ′(k)− q)

]
, (2.6)

where

G(p) = E
∫ ∞

0

e−rspsds (2.7)

denotes the expected cumulative present value of the flow p from the present up

to an arbitrary distant future. It is well-known that if this value exists it can

be re-expressed as

G(p) = B−1ϕ(p)
∫ p

0

ψ(y)ym′(y)dy + B−1ψ(p)
∫ ∞

p

ϕ(y)ym′(y)dy, (2.8)

where B denotes the constant Wronskian of the fundamental solutions ψ(p)

and ϕ(p) of the ordinary second order differential equation (Au)(p) = ru(p),

m′(p) = 2/(σ2(p)S′(p)) denotes the density of the speed measure and

S′(p) = exp
(
−

∫
2µ(p)dp

σ2(p)

)

denotes the density of the scale function of the price process pt (for a complete

characterization of the fundamental solutions, see Borodin and Salminen (2002),

pp. 18–19). Moreover, since

G(p)F ′(k)− q = E
∫ ∞

0

e−rs[psF
′(k)− rq]ds
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we observe that the optimal timing problem (2.6) states that investment is opti-

mal at the instant when the difference between the expected cumulative present

value of the future marginal revenue products of capital and the acquisition cost

of a marginal unit of capacity is at its maximum. Since the marginal product of

capital vanishes as the operating capital stock becomes unbounded, we find that

the marginal value of future expansion options tends to zero as the operating

capital stock becomes infinitely large.

Given these observations, we can now establish the following theorem char-

acterizing the marginal value of the optimal capital accumulation policy and

the exercise threshold at which investing is optimal.

Theorem 2.1. Under the optimal capital accumulation policy the marginal

value of capital reads as

Vk(k, p) =





q p ≥ p∗(k)
[
G(p)− G′(p∗(k))

ψ′(p∗(k)) ψ(p)
]
F ′(k) p < p∗(k)

(2.9)

where the optimal investment threshold

p∗(k) = argmax
p

{
G(p)F ′(k)− q

ψ(p)

}
>

rq

F ′(k)
(2.10)

is the unique root of the optimality condition J(p∗(k))F ′(k) = q, where

J(p) =
S′(p)
ψ′(p)

∫ p

0

ψ(y)ym′(y)dy ∈ [0, p/r] (2.11)

is a continuously differentiable and monotonically increasing function. Espe-

cially, the marginal value of capital is a non-increasing function of the current

capital stock and it satisfies the value matching condition limp→p∗(k) Vk(k, p) =

q, the smooth fit condition limp→p∗(k) Vkp(k, p) = 0, and the limiting conditions

limk→∞ Vk(k, p) = 0 and limk↓0 Vk(k, p) = q (for p > 0). Moreover, the optimal

exercise threshold is an increasing function of the current operating capital stock

and satisfies the conditions limk→∞ p∗(k) = ∞, and limk↓0 p∗(k) = 0.

Proof. See Appendix A.
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Theorem 2.1 characterizes both the investment threshold at which investing

is optimal and the marginal value of capital under the optimal capital accumula-

tion policy. According to Theorem 2.1 the optimal capital accumulation policy

can be characterized by a single investment threshold at which investment is

optimal. Since the marginal revenue product of capital exceeds its user cost

at the optimal boundary we find that uncertainty unambiguously increases the

required exercise premium in comparison with the certainty case. Theorem 2.1

also establishes that the optimal investment boundary is an increasing function

of the current operational capital stock. This observation is naturally based on

the irreversibility of the capital accumulation policy and the monotonicity of

the marginal product of capital. Since each marginal unit of installed capacity

decreases the marginal revenue productivity of capital and, therefore, the value

of future investment opportunities, a rationally investing firm has to increase

the price at which investing becomes optimal in order to compensate for the lost

option value. As usually in models considering single investment opportunities,

we again find that the optimality condition characterizing the accumulation

boundary has an intuitive interpretation in terms of the classical balance iden-

tity requiring that at the optimum the project value has to coincide with its

full costs. More precisely, we find that at the optimum the expected cumulative

present value of the revenue product generated by the acquired marginal unit

of capacity has to coincide with the sum of its acquisition cost and the value of

the lost expansion option. Theorem 2.1 also proves that the marginal value of

capital is non-increasing as a function of the operating stock and, therefore, that

the value function is concave as a function of capital. Thus, even though the

marginal value of capital is positive it is non-increasing and eventually vanishes

as the installed capital stock becomes infinitely large. However, the monotonic-

ity of the optimal investment boundary implies that in terms of the current

capital stock the investment rule states that for a fixed price p investment is

optimal as long as the current capital stock satisfies is below the critical stock
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k∗(p) = p∗−1(p). Thus, for any positive current price p the value of a marginal

unit of capacity coincides with its acquisition cost for capital stocks below the

optimal boundary k∗(p). A third important, and very natural, implication of

Theorem 2.1 is that the value of the future expansion options vanish as the

operating capacity tends to infinity. Thus, even though a greater capital stock

increases the value of the firm it simultaneously decreases the incentives for

further expanding the productive stock. Since the marginal product of capital

vanishes as capacity tends to infinity the investment incentives vanish eventually

as well.

In order to analyze how the optimal irreversible accumulation policy differs

from the case where investment is reversible, we first notice that that the aux-

iliary functional stated in (2.11) can be re-expressed as J(p) = (1 − ν(p))p/r,

where1

ν(p) =
∫ 1

0

Q(xp)
Q(p)

dx ∈ (0, 1)

and Q(p) = ψ′(p)/S′(p) is a positive, continuously differentiable, and monoton-

ically increasing mapping. Thus, we find that along the optimal accumulation

path investment occurs at the dates when the identity

pF ′(k) =
(

1 +
ν(p)

1− ν(p)

)
rq (2.12)

holds. It is worth emphasizing that if investment would be reversible, then the

marginal revenue product of capital would coincide along the optimal capital

accumulation path with its marginal user cost rq. Hence, (2.12) demonstrates

that the term ν(p)/(1− ν(p)) measures the required excess rate of return (from

a marginal unit of stock) arising from the irreversibility of investment.
1Noticing that

J(p) =
S′(p)

ψ′(p)

∫ p

0

∫ y

0
ψ(y)m′(y)dxdy

and changing the order of integration (i.e. applying Fubini’s theorem) yields

J(p) =
p

r
− 1

r

S′(p)

ψ′(p)

∫ p

0

ψ′(x)

S′(x)
dx.
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The optimal incremental capital accumulation policy and the resulting

marginal product of capital are now explicitly characterized in the following.

Theorem 2.2. The optimal capital accumulation policy reads as

k∗t = max
(
k, F ′−1(q/J(Mt))

)
, (2.13)

where Mt = sup{ps; s ∈ [0, t]} denotes the maximum price up to time t. Hence,

under the optimal capital accumulation policy, the marginal product of capital

evolves according to the dynamics

F ′(k∗t ) = min(F ′(k), q/J(Mt)). (2.14)

Proof. See Appendix B.

Theorem 2.2 characterizes the optimal capital accumulation policy. As usu-

ally, the optimal policy depends on the initial capacity. If the initial stock k is

below the optimal level k∗(p) = p∗−1(p) then an immediate lump-sum invest-

ment k∗(p)−k is made. After that a marginal unit of capacity is added whenever

the underlying price increases to the investment boundary p∗(k). If the initial

stock is, however, above the optimal threshold k∗(p) then marginal units of

capacity are added whenever the underlying price increases to the investment

boundary p∗(k). The explicit characterization of the marginal product of cap-

ital implies that along the optimal accumulation path we have the inequality

J(Mt)F ′(k∗t ) ≤ q. Especially, since the maximum process Mt increases only at

those times where it coincides with the underlying price, i.e. when the condition

Mt = pt is satisfied, and the mapping J(p) is monotonic, we find that the con-

dition J(pt)F ′(k∗t ) < q holds for almost all dates and that the capital stock is

increased only whenever the inequality becomes an equality. Thus, the optimal

singular capital accumulation policy is such that the capital stock is maintained

above the critical stock F ′−1(q/J(pt)) at all times.

An important implication of Theorem 2.1 and Theorem 2.2 is now summa-

rized in the following.
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Corollary 2.3. The value of the optimally investing firm is

V (k, p) =





G(p)F (k) + ψ(p)
∫∞

k
G′(p∗(y))F ′(y)

ψ′(p∗(y)) dy k > k∗(p)

q(k − k∗(p)) + V (k∗(p), p) k ≤ k∗(p).
(2.15)

Proof. See Appendix C.

Corollary 2.3 presents an explicit characterization of the value of an opti-

mally investing firm. Since a discrete lump sum investment k∗(p) − k is made

whenever the initial capital stock is below the optimal level k∗(p), we find that in

that case an optimally investing firm has to incur an immediate cost q(k∗(p)−k)

in order to acquire V (k, k∗(p)) capturing the value of future operation. If the

initial stock is above the optimal level k∗(p) then no initial investment is made

and the firm initiates production with the existing operational stock. In that

case the value is constituted by two factors. The first captures the expected

cumulative present value of the revenue product of capital generated by the

current stock. The second term, in turn, captures the value of future expansion

opportunities (cf. Dixit and Pindyck (1994), p. 365).

Our main findings characterizing the comparative static properties of the

optimal capital accumulation policy and its marginal value are now summarized

in the following:

Theorem 2.4. Assume that the net appreciation rate µ(p)−rp is non-increasing

and concave. Then the marginal value of capital is non-decreasing and concave

as a function of the current price p and increased volatility decreases its value.

Moreover, higher volatility increases the investment threshold p∗(k) at which

investing is optimal and, therefore, expands the continuation region {(k, p) ∈
R2

+ : p < p∗(k)} where investing is suboptimal.

Proof. See Appendix D.

Theorem 2.4 extends standard comparative static results (cf. Pindyck (1988,

1991), Dixit (1995), Dixit and Pindyck (1994), pp. 369–372, and Bertola (1998))
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to the case where the underlying price may evolve according to a more general

diffusion than just ordinary geometric Brownian motion. According to Theorem

2.4 increased volatility decreases the marginal value of capital and expands the

continuation region where investing is suboptimal whenever the expected growth

rate of the net present value of a unit of output is decreasing and concave.

The reason for this observation is that under the assumptions of Theorem 2.4

increased volatility decreases both the expected cumulative present value of the

marginal revenue product of the current capital stock and the value of the future

expansion options. It is, however, worth noticing that since the existence of an

optimal exercise boundary does not depend on the convexity properties of the

drift coefficient µ(p), the marginal value of capital needs not to be a monotonic

function of volatility.

Given the negativity of the sign of the relationship between increased volatil-

ity and the investment threshold one could be tempted to argue that the im-

pact of higher volatility on the optimal capital accumulation path should be

negative. This argument is, however, typically not true since even though in-

creased volatility may expand the continuation region where investment should

be postponed it simultaneously speeds up the maximum process Mt and, there-

fore, increases the probability of attaining high prices in fixed time intervals.

Whichever of these two opposite effects dominates then determine the net im-

pact of increased volatility on investment. We will illustrate this argument

explicitly in the following section in an explicitly parametrized example.

Having considered the optimal capital accumulation policy and its marginal

value, we now proceed in our analysis to the long-run behavior of the optimal

accumulation policy. Our main findings on the long-run stationary behavior of

the optimal capital stock are now summarized in the following.

Theorem 2.5. Assume that 0 is an attracting boundary for the underlying price

process, that is, assume that limp↓0 S(p) < ∞. Then, the optimal capital stock

11



converges towards the long run stationary value

k∗∞ = max
(
k, F ′−1(q/J(M̂))

)
(2.16)

and the marginal product of capital converges towards the long run stationary

value

F ′(k∗∞) = min(F ′(k), q/J(M̂)), (2.17)

where the global maximum M̂ = sup{ps, s ∈ R+} is distributed on [p,∞) ac-

cording to the distribution

Pp[M̂ ≤ z] =
S(z)− S(p)
S(z)− S(0)

. (2.18)

Proof. See Appendix E.

Theorem 2.5 characterizes those circumstances under which the optimal cap-

ital accumulation path is stationary and has a non-trivial long-run stationary

distribution. According to Theorem 2.5 such distribution exists only if the lower

boundary 0 is attracting for the underlying price process. Otherwise, a long-

run steady state distribution does no exist and the capital stock will eventually

become almost surely infinite (cf. Karatzas and Shreve (1991), pp. 345–346).

Theorem 2.5 also characterizes the long run stationary behavior of the opti-

mal capital accumulation policy and the marginal product of capital explicitly

instead of considering the long run stationary behavior of functionals of these

random variables. Dixit and Pindyck (1994) (pp. 372–373) investigated the long

run behavior of the marginal revenue product of capital and Bertola (1998) in-

vestigated the long run behavior of the ratio between the marginal profitability

of capital and the acquisition cost of a unit of stock. Given that the underlying

processes where modelled as geometric Brownian motions, they found that the

long run stationary distribution of the considered functionals tend towards a

truncated geometric distribution (the logarithms tend towards a truncated ex-

ponential distribution). In the present case, we find from Theorem 2.2 that the

12



capital stock is controlled in such a way that the functional (1−ν(pt))ptF
′(k∗t ) is

maintained at almost all times below the capitalized unit cost rq of capital goods

and, therefore, that under the optimal accumulation policy (1− ν(pt))ptF
′(k∗t )

constitutes a one dimensional process evolving on (0, rq] and reflected at rq.

Unfortunately, deriving the long run stationary distribution of this process in

the present case without further simplifications is extremely difficult, if possible

at all.

3 Illustration

In this section we plan to illustrate our main results in two explicit examples.

In the first example we reconsider the standard case where the underlying price

process is assumed to evolve according to a geometric Brownian motion. In the

second example, we assume that the underlying price evolves according to a

mean reverting process. In both cases, we assume that the production function

is of the standard Cobb-Douglas form F (k) = kβ , where β ∈ (0, 1) is a known

exogenously given constant measuring the elasticity of production. In light of

our findings, the optimal investment boundary now reads as

k∗(p) =
(

βJ(p)
q

)1/(1−β)

,

where J(p) is defined as in (2.11).

3.1 Exponentially Growing Prices

In this subsection we assume that the underlying price process evolves according

to a geometric Brownian motion characterized by the stochastic differential

equation

dpt = µptdt + σptdWt, p0 = p ∈ R+, (3.1)

where µ, σ ∈ R+ are exogenously determined constants. It is known that in this

case the increasing fundamental solution of the ordinary differential equation
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(Au)(p) = ru(p) reads as ψ(p) = pη, where

η =
1
2
− µ

σ2
+

√(
1
2
− µ

σ2

)2

+
2r

σ2
(3.2)

denotes the positive root of the characteristic equation σ2a(a−1)/2+µa−r = 0.

Since S′(p) = p−2µ/σ2
we observe that if the condition r > µ is satisfied then

the optimal exercise boundary is (cf. Dixit and Pindyck (1994), p. 372)

p∗(k) =
η

η − 1
(r − µ)q

β
k1−β =

(
1− 1

θ

)
p̃(k),

where

θ =
1
2
− µ

σ2
−

√(
1
2
− µ

σ2

)2

+
2r

σ2
(3.3)

denotes the negative root of the characteristic equation σ2a(a − 1)/2 + µa −
r = 0 and p̃(k) = rqk1−β/β denotes the optimal investment threshold in the

absence of uncertainty and irreversibility. Since ∂θ/∂σ = 2θ(1 − θ)/(σ(θ −
η)) > 0 we observe that ∂p∗(k)/∂σ > 0 and, therefore, that increased volatility

unambiguously expands the continuation region where investing is suboptimal

by increasing the optimal investment boundary.

Given the explicit characterization of the investment boundary we now find

that the optimal capital accumulation policy reads as

k∗t = max

(
k,

(
(η − 1)β
ηq(r − µ)

)1/(1−β)

M1/(1−β)
t

)
,

where Mt = sup{ps; s ≤ t} denotes the maximum price up to the date t. If

p ≥ p∗(k), then the marginal revenue product of the optimal capital stock at

any future date t reads as

βptk
∗
t

β−1 =
ηq(r − µ)
(η − 1)

pt

Mt
=

ηq(r − µ)
(η − 1)

eσ(sup{Ws;s≤t}−Wt).

Applying Levy’s characterization of reflected Brownian motion (cf. Borodin and

Salminen (2002), p. 55) implies that

βptk
∗
t

β−1 ∼ ηq(r − µ)
(η − 1)

e−σ|Wt|
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and, therefore, that the expected marginal revenue product of the optimal cap-

ital stock is

Ep

[
βptk

∗
t

β−1
]

= 2e
1
2 σ2tΦ

(
−σ
√

t
) ηq(r − µ)

(η − 1)
,

where Φ(x) denotes the cumulative distribution function of the standard nor-

mal distribution. The expected marginal revenue product of the optimal capital

stock is illustrated for various volatilities and drift coefficients in Figure 1 un-

der the parameter specifications r = 0.03, and q = 10. Interestingly, Figure
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Figure 1: The Expected Marginal Revenue Product of Capital

1 indicates that even though increased volatility unambiguously increases the

optimal investment boundary, its effect on the expected marginal revenue prod-

uct of capital is ambiguous. In the specific circumstances of Figure 1, increased

15



price volatility has a positive impact on the marginal revenue product of capital

in the short run but a negative one in the long run. Moreover, the expected

capital stock now reads as (when p ≥ p∗(k))

Ep [k∗t ] = 2e
1
2 ( σ

1−β )2
tΦ

(
σ
√

t

1− β

) (
θβpe(µ−σ2/2)t

(θ − 1)rq

) 1
1−β

.

We illustrate the optimal capital stock for various volatilities and drift coeffi-

cients in Figure 2 under the parameter specifications r = 0.03, and q = 10.

Along the lines of our findings on the marginal revenue product of the optimal
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Figure 2: The Expected Optimal Capital Stock

capital stock, we again observe that the impact of increased volatility on the

optimal capacity is ambiguous. Again, we observe that even though the impact

16



of higher volatility on the capital stock may be negative in the short run, it

appears to increase the stock in the long run.

It remains to consider the long-run behavior of the stock. If µ ≥ 1
2σ2 then

Mt → ∞ almost surely as t → ∞ and, therefore, in that case the optimal

capital stock becomes almost surely unbounded in the long run. However, if

µ < 1
2σ2 then Mt → M̂ where the global maximum M̂ is distributed on [p,∞)

according to the geometric distribution

Pp[M̂ ≤ z] = 1−
(p

z

)η+θ

.

In this case, if the integrability condition µ < − βσ2

2(1−β) is satisfied and p > p∗(k)

then the expected long run capital stock is

Ep[k∗∞] =
(1− β)(θ + η)

(1− β)(θ + η)− 1

(
θβp

(θ − 1)rq

)1/(1−β)

.

The expected long run capital stock is illustrated for various volatilities in Figure

3 under the parameter specifications µ = −0.025, r = 0.03, q = 10, and β = 0.75.

As Figure 3 clearly indicates, whenever an expected long run capital stock exists,

it is an increasing function of the volatility of the underlying unit price of output.

3.2 Mean Reverting Prices

In order to illustrate our general results in a dynamically more complex setting,

we now assume that the underlying price process evolves according to a mean

reverting diffusion characterized by the stochastic differential equation

dpt = µpt(1− γpt)dt + σptdWt, p0 = p ∈ R+, (3.4)

where µ, γ, σ ∈ R+ are exogenously determined constants. It is known that in

this case the increasing fundamental solution of the ordinary differential equa-

tion (Au)(p) = ru(p) reads as

ψ(p) = pηM

(
η, 2η +

2µ

σ2
,
2µγ

σ2
p

)
,

17
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where

η =
1
2
− µ

σ2
+

√(
1
2
− µ

σ2

)2

+
2r

σ2

denotes the positive root of the characteristic equation σ2a(a−1)/2+µa−r = 0,

and M denotes the confluent hypergeometric function of the first type (cf.

Abramowitz and Stegun (1968), pp. 555-566). Unfortunately, deriving the op-

timal boundary and the optimal capital accumulation policy explicitly is in this

case impossible and, therefore, we illustrate the optimal investment boundary in

Figure 4 under the parameter specifications µ = 0.02, r = 0.035, γ = 0.01, β =

0.5, and q = 10. In accordance with the findings of Theorem 2.1, Figure 4 shows

that the optimal exercise boundary is monotonically increasing as a function of

the current capital stock. Moreover, as was established in Theorem 2.4 we find

that increased price volatility increases the optimal investment boundary and,

therefore, expands the continuation region where investing is suboptimal.

In this case the density of the scale function S(p) reads as

S′(p) = p−2µ/σ2
e2µγp/σ2

.

Thus, if the condition µ ≤ 1
2σ2 is satisfied, then the global maximum M̂ =
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sup{ps; s ∈ R+} is distributed on [p,∞) according to the truncated Gamma-

distribution

Pp[M̂ ≤ z] = 1−
∫ 2µγp/σ2

0
y−2µ/σ2

eydy
∫ 2µγz/σ2

0
y−2µ/σ2eydy

.

Since this probability distribution is not monotonic as a function of volatility,

we conjecture that the impact of increased volatility on the expected long run

capital stock is ambiguous.

4 Concluding Comments

In this study we analyzed how price uncertainty and investment irreversibility

affects the optimal capital accumulation policy of a competitive firm. We ex-

tended previous results to a general setting and established that the optimal

capital accumulation policy is generally characterizable as a rule stating that

a further marginal unit of capacity should be acquired whenever the marginal

revenue product of capital exceeds an optimal threshold at which the expected

cumulative net present value of the marginal revenue product of capital is maxi-

mized. We also analyzed the sign of the relationship between increased volatility
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and the rational capital accumulation policy and stated a set of general condi-

tions under which increased volatility unambiguously expands the continuation

region where investment is suboptimal and decreases the marginal value of cap-

ital.

There are several economically interesting directions towards which the

analysis of our study could be extended. Given the perpetuity of the considered

optimal investment problems a natural extension of our analysis would be

to introduce interest rate uncertainty and in that way consider the impact

of a stochastically fluctuating opportunity cost of investment on the optimal

capital accumulation policy. Especially, such a generalization would indicate

the main differences between the optimal investment policy in the sequential

case where current capacity affects the future investment options and in the

single investment opportunity case where the discrete investment opportunity

is either exercised or not (cf. Ingersoll and Ross (1991) and Alvarez and

Koskela (2003, 2005, 2006)). A second interesting extension would be to admit

partial reversibility of investment by assuming that disinvestment is costly

along the lines of the models considered in Abel and Eberly (1996) and Abel,

Dixit, Eberly and Pindyck (1996). Such an extension would provide potentially

valuable information on the impact of asymmetric investment costs on optimal

capital accumulation policies in a general setting. A third natural extension of

our analysis would be to model all factor prices, productivity growth, and the

underlying interest rate dynamics as potentially dependent stochastic processes

(cf. Bertola (1998)). Unfortunately, such extensions are out of the scope of the

present study and left for the future.
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A Proof of Theorem 2.1

Proof. Consider first the mapping J(p). Applying the identity

ψ′(p)
S′(p)

= r

∫ p

0

ψ(y)m′(y)dy (A.1)

implies that

J(p) =

∫ p

0
ψ(y)ym′(y)dy

r
∫ p

0
ψ(y)m′(y)dy

<
p

r

and, therefore, that limp↓0 J(p) = 0. Since limp→∞ ψ′(p)/S′(p) = ∞ we find

by applying L’Hospitals rule that limp→∞ J(p) = limp→∞ p/r = ∞. Standard

differentiation of J(p) yields

J ′(p) =
rψ(p)m′(p)

(ψ′(p)/S′(p))2

∫ p

0

ψ(y)(p− y)m′(y)dy > 0

demonstrating that J(p) is strictly increasing. Given these findings consider for

a fixed initial capital stock k ∈ R+ the behavior of the mapping

L(k, p) =
G(p)F ′(k)− q

ψ(p)
.

Differentiating L(k, p) and applying the representation (2.8) yields

Lp(k, p) =
ψ′(p)
ψ2(p)

[q − J(p)F ′(k)] .

Since limp→∞ J(p) = ∞ and limp↓0 J(p) = 0 the monotonicity of the map-

ping J(p) implies that equation Lp(k, p) = 0 has a unique root p∗(k) =

argmaxp {L(k, p)} > rq/F ′(k). Implicit differentiation now yields

∂p∗(k)
∂F ′(k)

= − −J(p∗(k))
J ′(p∗(k))F ′(k)

< 0

proving that increased productivity accelerates investment by decreasing the op-

timal exercise boundary. The strict concavity of F (k) then implies that p∗′(k) >

0. Since the optimality condition can be re-expressed as J(p∗(k)) = q/F ′(k) we

find by the existence and uniqueness of p∗(k), the continuity of J(p), and the

assumption limk→∞ F ′(k) = 0 that limk→∞ p∗(k) = ∞. Considering the case

limk↓0 p∗(k) is analogous.
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Denote the proposed marginal value function as U(k, p). Given the obser-

vations above we immediately observe that since the proposed marginal value

function can be re-expressed as

U(k, p) = q + (G(p)F ′(k)− q)− ψ(p) sup
y≥p

[
G(y)F ′(k)− q

ψ(y)

]

we have that U(k, p) ≤ q for all (k, p) ∈ R2
+. On the other hand, since

(AU)(k, p) − rU(k, p) + pF ′(k) = 0 for all p < p∗(k) and (AU)(k, p) −
rU(k, p) + pF ′(k) = pF ′(k) − rq > 0 for all p > p∗(k), we find that

(AU)(k, p) − rU(k, p) + pF ′(k) ≥ 0 for all (k, p) ∈ R+ × (R+\{p∗(k)}). Since

U(k, p) is continuous with respect to the current capital stock, twice continu-

ously differentiable with respect to the current price outside the optimal bound-

ary, Upp(k, p∗(k)+) = 0 and

Upp(k, p∗(k)−) = −2(p∗(k)F ′(k)− rq)
σ2(p∗(k))

< ∞

we observe that the proposed marginal value function satisfies the sufficient

variational inequalities (cf. Theorem 10.4.1 in Øksendal (2003), p. 225) and,

therefore, that U(k, p) ≤ Vk(k, p) for all (k, p) ∈ R2
+. However, since

U(k, p) = E

[∫ τ(p∗(k))

0

e−rspsF
′(k)ds + e−rτ(p∗(k))q

]
,

where τ(p∗(k)) = inf{t ≥ 0 : pt ≥ p∗(k)} we find that U(k, p) ≥ Vk(k, p) which

demonstrates that U(k, p) = Vk(k, p).

Under the optimal capital accumulation policy the marginal value of capital

can be written on the continuation region (0, p∗(k)) where investing is subopti-

mal as

Vk(k, p) = G(p)F ′(k)− G(p∗(k))F ′(k)− q

ψ(p∗(k))
ψ(p)

Standard differentiation then implies that Vkk(k, p) = G(p)F ′′(k) < 0. On the

other hand, since Vk(k, p) = q on the region where investing is optimal, we find

that Vkk(k, p) ≤ 0 on the investment region as well and, therefore, that the

marginal value of capital is decreasing as a function of capital. It remains to
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establish that the marginal value of capital vanishes as the capital stock becomes

infinitely large. To see that this is indeed the case, we first observe that since

G′(p∗(k))F ′(k)
ψ′(p∗(k))

= B−1 ϕ′(p∗(k))
ψ′(p∗(k))

∫ p∗(k)

0

ψ(y)yF ′(k)m′(y)dy

+B−1

∫ ∞

p∗(k)

ϕ(y)yF ′(k)m′(y)dy

= B−1 ϕ′(p∗(k))
S′(p∗(k))

q + B−1

∫ ∞

p∗(k)

ϕ(y)yF ′(k)m′(y)dy

= B−1

∫ ∞

p∗(k)

ϕ(y)(yF ′(k)− rq)m′(y)dy

the marginal value can be re-expressed on the continuation region (0, p∗(k))

where investing is suboptimal as

Vk(k, p) = G(p)F ′(k)− ψ(p)B−1

∫ ∞

p∗(k)

ϕ(y)(yF ′(k)− rq)m′(y)dy.

Since limk→∞ p∗(k) = ∞ and limk→∞ F ′(k) = 0 we finally find that

limk→∞ Vk(k, p) = 0 completing the proof of our theorem.

B Proof of Theorem 2.2

Proof. The separability of the optimality condition J(p∗(k))F ′(k) = q and the

monotonicity of the marginal product F ′(k) implies that the optimal investment

boundary can be expressed as k = F ′−1(q/J(p)). Hence, as was established

in Øksendal (2000) (see also Kobila (1993)) the optimal capital accumulation

policy constituting the solution of the associated Skorokhod-problem reads as

k∗t = max
(
k, sup{F ′−1(q/J(ps)); s ∈ [0, t]}

)
.

The monotonicity of the marginal product of capital implies that

k∗t = max
(
k, F ′−1(inf{q/J(ps); s ∈ [0, t]})

)
.

The monotonicity of the function 1/J(p) then implies that

k∗t = max
(
k, F ′−1(q/J(sup{ps; s ∈ [0, t]}))

)
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proving that the optimal policy reads as in (2.13). The monotonicity of the

marginal product of capital then implies (2.14).

C Proof of Corollary 2.3

Proof. Since

G′(p∗(k))F ′(k)
ψ′(p∗(k))

= B−1

∫ ∞

p∗(k)

ϕ(y)(yF ′(k)− rq)m′(y)dy

we find that

∫ ∞

k

G′(p∗(v))F ′(v)
ψ′(p∗(v))

dv = B−1

∫ ∞

k

∫ ∞

p∗(v)

ϕ(y)(yF ′(v)− rq)m′(y)dydv.

Changing the order of integration yields

∫ ∞

k

G′(p∗(v))F ′(v)
ψ′(p∗(v))

dv = B−1

∫ ∞

p∗(k)

ϕ(y)(yF (k∗(y))− rqk∗(y))m′(y)dy

− B−1F (k)
∫ ∞

p∗(k)

ϕ(y)ym′(y)dy −B−1qk
ϕ′(p∗(k))
S′(p∗(k))

≤ B−1

∫ ∞

p∗(k)

ϕ(y)π(y)m′(y)dy

− B−1F (k)
∫ ∞

p∗(k)

ϕ(y)ym′(y)dy −B−1qk
ϕ′(p∗(k))
S′(p∗(k))

,

where k̂(p) = argmaxk{pF (k)− rqk} and π(p) = supk∈R+
[pF (k)− rqk] denotes

the maximal short run profit flow. Since this flow was assumed to be integrable,

we find that the integral expression measuring the value of future expansion op-

tions exist. Given this observation it is now from the proof of Theorem 2.1 that

the value satisfies the variational inequalities (AV )(k, p)− rV (k, p)+pF (k) ≤ 0

and Vk(k, p) ≤ q. Since this value is attained by applying an admissible policy,

we find that the value reads as in (2.15).
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D Proof of Theorem 2.4

Proof. Equation (2.9) implies that on the continuation region (0, p∗(k)) we have

Vkp(k, p) = ψ′(p)
[
G′(p)
ψ′(p)

− G′(p∗(k))
ψ′(p∗(k))

]
F ′(k).

Since

G′(p)
ψ′(p)

= B−1 ϕ′(p)
ψ′(p)

∫ p

0

ψ(y)ym′(y)dy + B−1

∫ ∞

p

ϕ(y)ym′(y)dy

we find by ordinary differentiation that

d

dp

[
G′(p)
ψ′(p)

]
=

2rS′(p)
σ2(p)ψ′2(p)

∫ p

0

(y − p)ψ(y)m′(y)dy < 0

implying that the marginal value is monotonically increasing as a function of

the current price p on the continuation region (0, p∗(k)). Differentiating the

marginal value twice with respect to the current price yields

Vkpp(k, p) =
[
G′′(p)− G′(p∗(k))

ψ′(p∗(k))
ψ′′(p)

]
F ′(k).

As was established in Alvarez (2003) the assumed monotonicity of the net ap-

preciation rate µ(p)− rp implies that the increasing fundamental solution ψ(p)

is strictly convex on R+. Moreover, since

G′(p) = E
∫ ∞

0

e
∫ t
0 (µ′(ps)−r)dsMtdt, (D.1)

where

Mt = exp
(∫ t

0

σ′(ps)dWs − 1
2

∫ t

0

σ′2(ps)ds

)

is a positive exponential martingale. Defining the equivalent measure Q by the

likelihood ratio dQ/dP = Mt implies that (D.1) can be re-expressed as

G′(p) = EQ
∫ ∞

0

e
∫ t
0 (µ′(ps)−r)dsdt.

The assumed concavity of the net appreciation rate implies that the µ′(p) is

non-increasing and, therefore, that G′(p) is non-increasing as well. Combining

27



these observation imply that the marginal value is concave as a function of the

current price p on the continuation region (0, p∗(k)). Since Vk(k, p) = q on

[p∗(k),∞) we find that the marginal value of capital is concave as a function of

the current price p.

Denote as V̂k(k, p) the marginal value of capital in the presence of the more

volatile price dynamics p̂t characterized by the differential operator

Â =
1
2
σ̂2(p)

∂2

∂p2
+ µ(p)

∂

∂p

where σ̂(p) ≥ σ(p) for all p ∈ R+. It is now clear that the marginal value

V̂k(k, p) satisfies the inequality V̂k(k, p) ≤ q for all (k, p) ∈ R2
+. Moreover, since

(AV̂k)(k, p)− rV̂k(k, p)− pF ′(k) ≥ 1
2
(σ2(p)− σ̂2(p))V̂kpp(k, p) ≥ 0

we find that the marginal value V̂k(k, p) satisfies the sufficient variational

inequalities and, therefore, is smaller than or equal to the marginal value

of capital in the presence of the less volatile price dynamics pt. That is,

V̂k(k, p) ≤ V (k, p). Finally, denote as Cσ̂ = {(k, p) ∈ R2
+ : V̂k(k, p) < q}

the continuation region in the presence of the more volatile price dynamics p̂t

and as Cσ = {(k, p) ∈ R2
+ : Vk(k, p) < q} the continuation region in the presence

of the less volatile price dynamics pt. If (k, p) ∈ Cσ then V̂k(k, p) ≤ Vk(k, p) < q

implying that (k, p) ∈ Cσ̂ as well and, therefore, that Cσ ⊆ Cσ̂.

E Proof of Theorem 2.5

Proof. Assume that p ∈ (a, b) ⊂ R+ and that 0 < a < b < ∞. It is known that

the probability of hitting the upper boundary b before than the lower boundary

a can be expressed as (cf. Borodin and Salminen (2002), p. 14)

Pp[τa > τb] =
S(p)− S(a)
S(b)− S(a)

,

where S(p) denotes the scale function of pt. Since 0 is a natural boundary for the

underlying price process pt we have that τ0 = ∞ a.s. Moreover, lima→0 S(a) <

28



∞ whenever 0 is attracting for the underlying price process pt. Thus, in the

case of our theorem

Pp[τb < ∞] =
S(p)− S(0)
S(b)− S(0)

.

However, since Pp[Mt > z] = Pp[τz < t] for all p < z we find that Pp[M̂ >

z] = Pp[τz < ∞] for all p < z (cf. Borodin and Salminen (2002), p. 26) and,

therefore, that the optimal capital stock and marginal productivity of capital

tend towards the proposed limits (2.16) and (2.17).
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