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1 Introduction

The purpose of this paper is to study a certain Black-Scholes-type infinite horizon optimal stopping

problem where the underlying process is a general random walk. In more precise terms, let X be

a random variable on R with a continuous law λ, mean µ > 0 and variance σ2 < ∞ and define

the general random walk W on R as partial sums of IID random variables X, X1, X2, . . . ; i.e. let

Wn = X1 + · · ·+ Xn, where W0 = 0. For technical reasons it is assumed that

∃ ε > 0 : P{X > ε} > 0 and P{X < −ε} > 0. (1.1)

In other words, we assume that the distribution λ is not concentrated on either side of the origin.

Note that in the case where X ∼ N(µ, σ2), the process W can expressed as Wn = µn + σŴ
√

n,

where Ŵ ∼ N(0, 1). Given the process W , define the expected present value of exercise payoff

gained after potentially infinite waiting period as

J(n, x) = E
[
β−n

(
ex+Wn − c

)+
]

(1.2)

and pose the optimal stopping problem

V (x) = sup
η∈N

J(η, x), (1.3)

where N is the set of all W -stopping times, β > 1 is the discount factor satisfying the condition

E
[
β−1eX

]
< 1 and c > 0 is the exercise cost. Note that in the case where X ∼ N(µ, σ2) the

increments in the geometric random walk Yn =: ex+Wn are log-normally distributed, which is a

typical assumption in investment theoretical applications. The formulation (1.3) is well-established

in mathematical finance. In particular, it is closely related to finding the value and exercise policy

of a perpetual American call option in a Black-Scholes-type market driven in this case by a general

random walk. Using this analogy, the increment eWn+1−Wn = eXn+1 can be interpreted as the

relative price change in the period n + 1 and η is the date when the option is immediately and

irreversibly exercised.

When studying maximization problems of the form (1.3) (possibly for a more general payoff

structure) there is a number of different approaches to adopt. Perhaps the most general and funda-

mental approach is a direct application of principle of dynamic programming; for a recent treatment

of dynamic programming in discrete time stochastic control, see Bertsekas and Shreve [4]. Another

straightforward approach is to derive a set of conditions under which value function satisfies suitable

monotonicity properties and growth rate restrictions and then utilize general martingale or other

probabilistic techniques to establish the existence of a unique optimal stopping rule; see e.g. McK-

ean [14] and Dubins and Teicher [13]. This set of conditions typically include convexity assumptions

on the payoff. Yet another possible approach is the utilization of a powerful technique known as the
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Snell envelope; see e.g. Snell [19] and Dalang and Hongler [9]. However, these approaches suffer from

a downside, namely that they yield very little tangible information on the optimal characteristics,

i.e. the optimal stopping rule or the value and typically they are accompanied by complementary

techniques in order to gain more detailed information on the problem. In [10], Darling et al. solve

the problem (1.3) and present a probabilistic characterization of the optimal characteristics in terms

of the historical maximum of the driving random up to a certain independent, geometrically dis-

tributed random time. The characterizations by Darling et al. will be used as the starting point of

our study.

The content of the paper is organized as follows. In section 2 the mathematical apparatus

required by our analysis is presented. In section 3 closed-form representations of the optimal char-

acteristics of the problem (1.3) are presented. In section 4 the pasting principle of the optimal

value function is investigated. In section 5 the results are illustrated numerically and the study is

concluded in section 6.

2 On the Minimal Functions of W

Denote as L1(W ) the set of all functions f : R → R such that the expectation E
[
β−1f(x + X)

]

exists and define the averaging Markov operator PW on L1(W ) as

(PW f)(x) := E
[
β−1f(x + X)

]
=

∫ ∞

−∞
β−1f(z)p(x, z)dz,

where p(x, z) := λ(z − x) is the single-step transition density. A measurable function u : R →
R+ ∪{∞} satisfying the condition PW u(x) ≤ u(x) for all x ∈ R is called β-excessive; in the case of

an equality, the function u is called β-harmonic. A 1-excessive function is simply called excessive

and, similarly, 1-harmonic function is called harmonic. Moreover, if a β-harmonic function h has

the property that any β-harmonic function u with u(x) ≤ h(x) for all x ∈ R is proportional to h,

then h is called β-minimal. Assume that h is β-excessive and define the function ph : R2 → R as

ph(x, y) =
h(y)
βh(x)

p(x, y).

Since h is β-excessive, the function ph is a transition density. Thus it constitutes a stochastic process.

This process will be denoted as W h and called the h-process of W .

The purpose of this section is to present a characterization of the minimal functions of the

general random walk W and then utilize this characterization to actually determine the minimal

functions. The characterization formulated in Theorem 2.1 is essentially due to Doob et al. [12].

In [12], the case where the driving general random walk is spatially discrete is considered in the

absence of discounting. However, the proof they present can be straightforwardly generalized to
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cover the present case by simply replacing their corresponding definitions with the ones presented

above and carrying out the exactly same computations.

Theorem 2.1. Assume, that the function h : R → R+ satisfies the condition h(0) = 1. Then h is

β-minimal for the general random walk W if and only if it satisfies condition

(A) E[β−1h(X)] = 1,

(B) h(x + y) = h(x)h(y), for all x, y ∈ R.

Theorem 2.1 is a forceful result on a general mathematical level. It is known from the theory

of Martin boundaries that there is a fundamental connection between the minimal functions of a

stochastic process and the minimal Martin compactification of the state space of the process (see

e.g. Revuz [18], Chapter 7). Roughly speaking, this compactification is attained by embedding the

state space in a suitable way in to a certain infinite-dimensional function space. In this light, there

is no guarantee a priori that the minimal Martin compactification concurs with the elementary

two-point compactification of the state-space. However, theorem 2.1 implies that in the case of a

general random walk W , these two compactifications concur. This is equivalent to saying that there

exist exactly two β-minimal functions of the general random walk W . This statement is now proved

by utilizing Theorem 2.1.

Lemma 2.2. There exists exactly two real numbers −a and b, a, b > 0, determined by the condition

E[etX ] = β such that the functions ψ : R → R+ and ϕ : R → R+ defined as ψ(x) = ebx and

ϕ(x) = e−ax are the only β-minimal functions of the general random walk W .

Proof. It is well known that all positive solutions of the functional equation h(x+y) = h(x)h(y) can

be expressed in the form h(x) = etx for t ∈ R. For β-harmonicity the condition E[etX ] = β must

also be satisfied. Let M be the moment-generating function of X. Then h(x) = etx is β-minimal

if and only if M(t) = β. Define the function θ : R → R as θ(t) = M(t) − β. First note that θ is

convex and θ(0) = 1− β < 0. Furthermore, by virtue of the standing assumption (1.1)

lim
t→−∞ θ(t) ≥ lim

t→−∞E[etX ; X < −ε]− β > lim
t→−∞ e−tεP{X < −ε} = ∞.

Using an identical argument, the condition limt→∞ θ(t) = ∞ can also be established. This observa-

tion completes the proof.

Lemma 2.2 has a nice analogue in the theory of continuous time Markov processes. To point

this out, consider the continuous time counterpart of the process W , namely the drifting Brownian

motion B
(µ)
t = exp

{(
µ + σ2/2

)
t + σBt

}
satisfying the stochastic differential equation dB

(µ)
t =

µt + σdBt, where B is a standard Brownian motion. It is well known that the β-minimal functions
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of the process B
(µ)
t are the so-called fundamental solutions of the ordinary differential equation

1
2σ2h′′(x)+µh′(x)− (lnβ)h(x) = 0, in other words the increasing fundamental solution ψB(x) = eγx

and the decreasing fundamental solution ϕB(x) = e−δx, where γ and −δ are the positive and the

negative root of the characteristic equation 1
2σ2t2 + µt − ln β = 0, respectively (see e.g. [5], pp.

17-18). Two interesting observations can now be made. First, for any particular choice of random

variable X, the β-minimal functions of the processes B(µ) and W are of the same functional form

x 7→ etx for some parameter t ∈ R. Moreover, if X ∼ N(µ, σ2), then the condition E
[
ebX

]
= β

from Theorem 2.2 can be written as ebµ+ 1
2
σ2b2 = β, which implies that γ = b and δ = a. In other

words, if X ∼ N(µ, σ2), then the β-minimal functions of the processes B(µ) and W are the same.

To close the section, a scaled-down version of the integral representation theorem for harmonic

functions of a general Markov chain is presented. For the complete formulation of the result and

the proof, see Revuz [18], Corollary 3.11, pp. 257.

Theorem 2.3. Assume that the process W has exactly two β-minimal functions, say ψ and ϕ, and

that h is β-harmonic. Then there exists a unique pair (c1, c2) of non-negative constants such that

c1 + c2 = 1 and h(x) = c1ψ(x) + c2ϕ(x) for all x ∈ R.

3 On the Optimal Stopping Rule and Value Function

Typically, optimal stopping rules for maximization problems of the form (1.3) are characterized as

passage times of the underlying stochastic process into the stopping region. This set is potentially

very complex and its boundary, the optimal stopping threshold, can be virtually impossible to

determine. However, in a number of practically meaningful cases it can be established that the

stopping region is of the form (s∗,∞), where s∗ ∈ R. In many cases, the threshold s depends on

the properties of either the process itself or some random variable closely related to it, for example

the historical maximum or minimum of the underlying process. First of these cases cases appears

to be connected with processes having almost surely continuous sample paths (see e.g. Alvarez [2],

Dayanik and Karatzas [11], Øksendal [16]) and second with processes exhibiting jump behavior (see

e.g. Alili and Kyprianou [1], Boyarchenko and Levendorskǐi [7], Darling et al. [10], Mordecki [15]).

Given this observation, the study of the problem (1.3) is now continued by defining the random

variable M as

M = max
0≤k<τ

Wk, (3.1)

where τ is a random time which is independent of {Xi} and geometrically distributed with P{τ >

k} = β−k for k ≥ 0. In other words, the random variable M is the historical maximum of the general

random walk W up to a certain independent random time. Note that M ≥ 0, since W0 = 0. The

information of the random variable M required by our analysis is now formulated in the following
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two results.

Theorem 3.1. Let H+
0 = inf{n ≥ 0 : Wn > 0}. Then the following are equivalent:

(A) E
[
β−1eX

]
< 1

(B) E
[
β−H+

0 exp
(
WH+

0

)]
< 1

(C) E
[
eM

]
< ∞.

Proof. See [10], pp. 1367.

Corollary 3.2. The random variable M has an atom at origin; i.e. P{M = 0} > 0.

Proof. Recall the definition of random time H+
0 from Theorem 3.1. Since exp

(
WH+

0

)
> 1 almost

surely, the part (B) of Theorem 3.1 implies that P{M = 0} = 1 − P{τ > H+
0 } = 1 − E[β−H+

0 ] >

0.

The next theorem gives a probabilistic characterization of the optimal characteristics of the

problem (1.3). This theorem is essentially due to Darling et al. [10], where they consider the case

c = 1 on pages 1367-8. However, their treatment generalizes easily to the case of general c, see also

[15], Theorem 1.

Theorem 3.3. The optimal stopping rule is to stop at time Hs∗ = min{n ≥ 0 : x + Wn ≥ s∗},
where s∗ = ln

(
cE

[
eM

])
< ∞ and M is the random variable defined in (3.1). Moreover, the optimal

value reads as

V (x) = E
[
β−Hs∗

(
ex+WHs∗ − c

)+
]

=
E

[(
ex+M − cE

[
eM

])+
]

E [eM ]
. (3.2)

Useful information can be extracted from the representation (3.2). First of all, notice that

V is nondecreasing and convex and that the first equation in the expression (3.2) implies that

V (x) = ex − c for all x ≥ s∗. On the other hand, the latter equation in the expression (3.2) implies

that V (x) = 0 if and only if eM ≤ e−xcE[eM ] almost surely which does not hold for any finite x ≤ s∗.

By combining this observation with the fact that the value V satisfies the principle of dynamic

programming, i.e. that V (x) = max {ex − c, (PW V )(x)}, yields the condition V (x) = (PW V )(x)

for all x ≤ s∗. Theorem 2.3 implies now that there exists a unique constant K > 0 such that

V (x) = Kebx for all x ≤ s∗. Finally, since V (x) is continuous in s∗, the constant K = es∗−c
ebs∗ . These

results are now summarized in the following theorem, which is the first of our main results.

Theorem 3.4. The optimal value function V (x) reads as

V (x) =





ex − c, x ≥ s∗

es∗−c
ebs∗ ebx, x ≤ s∗,

(3.3)
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where b is the unique positive solution of the equation E
[
ebX

]
= β.

The function V (x) is constructed from the functions x 7→ es∗−c
ebs∗ ebx and x 7→ ex − c by past-

ing them (possibly smoothly) together in the threshold s∗. Generalize now this function with

respect to both the threshold s∗ and the exponent b. More precisely, generate a whole family

{Gy,α(x)}y∈R+, α∈R of functions of the form (3.3) by first replacing the optimal stopping threshold

s∗ with a free boundary y and the critical exponent b with an arbitrary exponent α and defining

the function Gy,α : R → R+ as

Gy,α(x) =





ex − c, x ≥ y

ey−c
eαy eαx, x ≤ y.

(3.4)

Using this notation, V (x) = Gs∗,b(x). It is now natural to ask the question when the function Gy,α

is continuously differentiable in y for a given α > 1. Elementary differentiation yields that the

function Gx∗,α =: Gx∗α is continuously differentiable in x∗α ∈ R+ if and only if ex∗α = αc
α−1 . If now

α = b, this condition is the smooth pasting principle of the problem (1.3) and the threshold x∗b =: x∗

is called the smooth pasting threshold. With this information, it is natural to pose the following

question about the pasting principle: Is s∗ = x∗?

For the sake of comparison to the continuous time setting, consider again the particular problem

(1.3) where X ∼ N(µ, σ2) and define the continuous time version of the problem (1.3) where the

underlying process is the drifting Brownian motion B(µ), in other words the problem

VB(x) = sup
ρ∈R

E
[
β−ρ

(
ex+B

(µ)
ρ − c

)+
]

, (3.5)

where B
(µ)
t is the continuous time process introduced in Section 2 and R is the set of all B(µ)-

stopping times. It has been established already in [14], Section 3 by McKean that in this case the

optimal value VB reads as VB(x) = Gx∗γ (x), where the constant γ > 1 is positive solution of the

equation 1
2σ2t2 +µt− lnβ = 0. Recall from Section 2 that b = γ. This implies that optimal stopping

threshold x∗γ of the continuous time problem (3.5) coincides with the smooth pasting threshold x∗

of the discrete time problem (1.3) when X ∼ N(µ, σ2). Moreover, given that the problem (1.3)

satisfies the smooth pasting principle, this would imply that values V and VB satisfy the (rather

counter-intuitive) condition VB(x) = V (x) for al x ∈ R.

On a conceptual level, the representation (3.3) is analogous to the one presented in Alvarez [2],

where the representation is given in terms of minimal functions of the underlying linear diffusion.

From the point of view of the pasting principle, the representation in [2] is particularly convenient,

since it gives the smooth pasting as a simple consequence. Moreover, the representation (3.3) is

not completely unfamiliar to the literature of temporally discrete optimal stopping. In [20], Taylor

considers essentially the same stopping problem as (1.3) and proves that the optimal value is bounded
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from above by a function of the form (3.3). However, he makes no comment on whether or not the

actual value of the problem is of the same form or on its connection to the Martin boundary theory.

4 Continuous Pasting vs. Smooth Pasting

Consider again the optimal stopping problem (3.5). It is a classical result (see McKean [14], Section

3) that for this problem the optimal value function VB(x) is continuously differentiable on the

optimal stopping threshold x∗γ . During the recent years, many authors have discussed the pasting

principles of various optimal stopping problems and there is an increasing number of research articles

reporting a failure of smooth pasting in the optimal value function, see e.g. Alili and Kyprianou

[1], Asmussen et al. [3], Boyarchenko and Levendorskǐi [6], Dalang and Hongler [9], Peskir and

Shiryaev [17]. While going through these articles, one observes that the breakdown of smooth

pasting appears to be connected to the cases when there is a chance that the underlying process

can jump discontinuously into the stopping region. In this light, it is reasonable to guess that the

smooth pasting fails also in the problem (1.3). In [1], Theorem 6, Alili and Kyprianou present an

elegant characterization of the pasting principle for a problem of the form (1.3) in the case where

the underlying process is a general Lévy process. They characterize the pasting principle in terms

of the random variable ML defined analogously to (3.1) for the driving Lévy process. Conveniently,

this characterization holds also for the problem (1.3).

Theorem 4.1. The optimal value function V (x) exhibits smooth-pasting if and only if M 6= 0 almost

surely.

Proof. First, recall the expression (3.2) for the optimal value V (x) from Theorem 3.3. Elementary

manipulations yield

V (x) = cE
[(

e−(s∗−x−M) − 1
)

; M > s∗ − x
]

=c
(
e−(s∗−x) − 1

)
E

[
eM ;M > s∗ − x

]

+cE
[(

eM − 1
)
; M > s∗ − x

]
.

The last equality implies that
(
es∗ − c

)− V (x)
s∗ − x

=
c
(
E

[
eM

]− 1
)− V (x)

s∗ − x
=− c

e−(s∗−x) − 1
s∗ − x

E
[
eM ; M > s∗ − x

]

+c
E

[(
eM − 1

)
;M ≤ s∗ − x

]

s∗ − x
.

In order to simplify the notation, denote last two terms on the right hand side as A(x) and B(x)

respectively. Application of L’Hospitals rule yields

lim
x→s∗−

A(x) = cE
[
eM ; M > 0

]
= es∗ − cE

[
eM ; M ≤ 0

]
.
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On the other hand, partial integration yields

B(x) =c
E

[(
eM − 1

)
; 0 < M ≤ s∗ − x

]

s∗ − x
= c

∫ s∗−x

0+

ez − 1
s∗ − x

m(dz)

=c
es∗−x − 1
s∗ − x

m{(0, s∗ − x)}+
c

s∗ − x

∫ s∗−x

0+
ezm{(0, z)}dz → 0, as x → s∗−,

where in the first expectation the atom at origin is removed, this can be done because the integrand

eM − 1 = 0 when M = 0. Combination of these results yields

lim
x→s∗−

V ′(x) = cE
[
eM ; M > 0

]
= es∗ − cE

[
eM ; M = 0

]
= es∗ − cP {M = 0} ,

which is clearly equivalent to the claim.

Coupled with Corollary 3.2, Theorem 4.1 yields immediately that smooth pasting fails in the

problem (1.3). This result is our second main theorem.

Theorem 4.2. The optimal value function V exhibits only continuous pasting on the optimal stop-

ping threshold s∗. In other words, s∗ < x∗.

As was indicated earlier, the characterization of smooth pasting in Theorem 4.1 holds for a

general Lévy processes, in particular for the drifting Brownian motion B(µ). It is a well-known fact

from the theory of Brownian motion that the sample paths of B(µ) are regular in the sense that

P{H+
0,B = 0} = 1, where H+

0,B = inf{t ≥ 0 | B
(µ)
t > 0}. This condition is clearly equivalent to

the statement P{MB = 0} = 0, where the random variable MB is defined analogously to (3.1) for

B(µ). It is also quite clear that the sample paths of the general random walk W are not regular in

the previous sense. This is simply because of the fact that the random variable X admits negative

values with positive probability.

5 An Illustration

In Section 4 it was established that the optimal value V does not exhibit smooth pasting in the

optimal stopping boundary s∗. The aim of this section is to illustrate to size of the error being

made in the case where X ∼ N(µ, σ2) if the smooth pasting principle is used as a basis of decision

making. This error is illustrated using a simple quantity, namely the relative distance D := x∗
s∗ of

the smooth pasting threshold x∗ and the threshold s∗. Recall from Section 3 that in the current

special case the threshold x∗ coincides with the optimal stopping threshold x∗γ of the problem (3.5)

and therefore the distance D can also be seen as a difference between the discrete time model

(1.3) and the continuous time model (3.5). This difference is of interest especially in investment-

theoretical applications, where in many of cases the modelled phenomena (for example the evolution
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of a stock price and the option pricing decisions based on this evolution) evolves in discrete time but

the utilized mathematical model (for example the Black-Scholes model) takes place in continuous

time. The difference between the models (1.3) and (3.5) can also be illustrated using another simple

quantity, namely the relative point-wise distance DV (x) := VB(x)
V (x) of the optimal value functions VB

and V . In the sequel, the quantities D and DV (x) will be illustrated graphically.

For simplicity, assume that c = 1. Then it is known from Darling et al. [10], pp. 1368 that the

threshold s∗ can be expressed as

s∗ =
∞∑

n=1

β−n

n
E

[
eW+

n − 1
]

=:
∞∑

n=1

β−n

n
sn. (5.1)

Since Wn = µn + σY
√

n, where Y ∼ N(0, 1), the coefficient sn can be expressed as

sn =
1√

2nπσ2

∫ ∞

0
(ez − 1)e

−(z−nµ)2

2nσ2 dz

=
1
2

(
exp

[ n

2σ2

((
µ + σ2

)2 − µ2
)]

erfc
[
−µ + σ2

2σ

√
2n

]
− erfc

[
− µ

2σ

√
2n

])
,

where erfc : R → R+ is the complementary error function defined as erfc(x) := 2√
π

∫∞
x e−y2

dy. The

thresholds x∗ and s∗ and the relative distance D are now illustrated in Figure 1 as functions of

standard deviance σ under the assumption that µ = 0.03 and β = 1.07. The approximations of s∗

are computed from series (5.1) such that the reminder term R < 10−7.

0.05 0.1 0.15 0.2 0.25
Σ

1

1.5

2

2.5

Threshold

x*

s*

0.05 0.1 0.15 0.2 0.25
Σ

1.03

1.04

1.05

1.06

1.07

1.08

1.09

DHΣ L

Figure 1. The smooth-fit threshold x∗ (continuous curve), optimal stopping threshold s∗ (dashed curve)

and the relative error D as functions of volatility σ under the assumption µ = 0.03 and β = 1.07.

The left hand side of Figure 1 indicates that for this specific example the thresholds x∗ and s∗

are both convex as functions of standard deviance σ but interestingly they are not equally ”convex”,

as the right hand side clearly shows. In other words, the right hand side indicates that for small

values of σ, the threshold x∗ grows with a faster rate increasing the relative distance D until σ

reaches a critical value σ∗ at which D is maximal; for this specific parameter configuration the
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critical σ∗ = 0.147 at which D(σ∗) = 1.092. Above this critical value, the threshold s∗ starts to gain

on x∗ and the relative distance D starts to decrease.

The behavior of the optimal value functions VB(x) and V (x) and the relative distance DV (x)

are now illustrated in Figure 2 under the assumption µ = 0.03 and β = 1.07 in the case of maximal

relative distance D(σ∗), in other words when σ = σ∗ = 0.147.

1.02 1.04 1.06 1.08 1.1 1.12 1.14
x

1.8

1.9

2

2.1

Value

Continuous pasting

Smooth pasting

s* x*

1.02 1.04 1.06 1.08 1.1 1.12 1.14
x

1.0005

1.001

1.0015

1.002

1.0025

1.003

DV HxL

s* x*

Figure 2. The optimal value function VB of the problem (3.5) (upper dashed curve) and V of the problem

(1.3) (lower dashed curve) and the reward x 7→ ex − 1 (continuous curve) under the assumption µ = 0.03,

σ = 0.147 and β = 1.07.

Figure 2 indicates that even though the thresholds x∗ and s∗ are relatively far away from each

other (D(σ∗) = 1.092), the curves VB(x) and V (x) are quite close by in relative scale (DV (x) < 1.004

for all x ∈ R). Note that when x < s∗, the distance DV (x) is actually independent of x, in other

words DV (x) = (ex∗−1)ebs∗

(es∗−1)ebx∗ . On the interval (s∗, x∗) the distance DV (x) starts to decrease as the

curve x 7→ ex − 1 gains on the curve x 7→ es∗−c
ebs∗ ebx until DV hits 1 at x∗.

The DV (x) can be seen as a simple relative measure of incompleteness of the model (1.3). Put

somewhat differently, the difference DV (x) measures the point-wise relative loss of value caused by

the restriction that the information on the underlying stochastic process and the exercise opportu-

nities do not realize in continuous but in discrete time. Moreover, it is important to stress from the

applications point of view that the difference DV (x) is a relative quantity and that small relative

differences can sum up into substantial losses in the absolute scale.

6 Concluding Remarks

The presented paper considers the infinite horizon optimal stopping problem (1.3) of general random

walk and it contains two main results. First, it presents an explicit formula (3.3) for the optimal value

function in terms of β-minimal functions of the driving random walk. This representation of the

value appears to be new in the discrete-time setting. In [20], Taylor analyzes a problem equivalent
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to (1.3) and proves that for his problem the optimal value is dominated by a function of the form

(3.3). However, he makes no comment about the actual value of the problem or its connections

to the Martin boundary theory. The representation (3.3) is analogous to the one presented in

Alvarez [2] in the case where the underlying process is a linear diffusion. In the case of a linear

diffusion, where sample paths exhibit almost sure continuity, Alvarez’s representation of the value

is particularly convenient, since it gives smooth pasting as a simple consequence and therefore

simplifies the characterization of the optimal stopping rule significantly. However, in the context of

the current study, this representation does not yield any implication on the pasting principle of the

problem. Therefore other techniques must be used in order to investigate the pasting principle. To

this end, a characterization of smooth pasting is adopted from Alili and Kyprianou [1] and utilized

to prove that the optimal value (3.3) is not differentiable in the optimal stopping threshold s∗.

The analysis of this study has a number of possible interesting extensions. First, a natural

extension would be to consider a wider class of admissible control policies than just single stopping

policies. More precisely, it would be of interest to extend the results of this paper to the sequential

stopping problems appearing in the stochastic impulse control. These type of control problems

appear for example in economics of renewable resources and cash flow management. Given the

infinite horizon setting, a second natural extension would be the introduction of a stochastic interest

rate structure. There is also room for generalization with respect to underlying stochastic dynamic

structure. One possible way of extending the results in to this direction could be a development of

some transformation technique of the underlying stochastic process (with respect to either time or

scale) in order to be able to tackle more complicated dynamical systems, for example mean-reverting

dynamics. However, these investigations are out of the scope of this study and are therefore left for

future research.
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