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ABSTRACT 

That historical inequality can affect long run macroeconomic per-
formance has been argued by a large literature on ‘endogenous 
inequality’ using models of indivisibilities in occupational choice, 
in the presence of borrowing constraints. These models are char-
acterized by a continuum of steady states, and absence of mobility 
in any steady state. We augment such a model with heterogeneity 
in agents’ abilities in order to generate occupational mobility in 
steady state. Steady states with mobility are shown to be generi-
cally locally unique and finite in number. We provide forms of 
heterogeneity for which steady state is globally unique, and others 
where they are non-unique. Agent heterogeneity may also cause 
competitive equilibrium dynamics to fail to converge, but conver-
gence can be restored in the presence of sufficient ‘inertia’ or occu-
pation switching costs. 
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1 Introduction

The role of history in powerfully shaping the nature of economic development
many centuries later has been argued by many recent authors ([1],[6],[12]).
These authors describe how historical inequality associated with colonial in-
stitutions can help explain differences in economic backwardness even long after
these institutions have disappeared. This raises the question: what prevents
such countries from catching up with more developed countries, once these colo-
nial institutions have disappeared?

Theoretical explanations of the role of historical inequality in determining
long run macroeconomic performance have been based on indivisibilities in oc-
cupational choice combined with credit constraints. In [7],[15], and [16], equal
and unequal steady states are shown to co-exist, with historical distributions
determining which steady state the economy converges to. In much of the liter-
ature in this field (e.g., [4-5],[13],[19],[24],[27]) a continuum of steady states are
shown to exist, all of which are unequal, and involve zero mobility.1 A typical
steady state without mobility entails strict incentives for skilled parents to invest
in the skills of their children, and likewise for unskilled parents not to invest:
these strict incentives are preserved with small perturbations in the proportion
of skilled households, thus allowing the steady state set to form a continuum.
The steady states are ordered by per capita skill, income, consumption, and
wage inequality; those with higher per capita income also involve lower inequal-
ity (and so are representative of more developed countries). Since there is a
continuum of such steady states, small temporary shocks or policies to steady
states have permanent macro effects, and can therefore be remarkably effective
in affecting long term development.

The feature of zero mobility in income or occupations is clearly at odds
with reality: even the most unequal societies are typically characterized by
some mobility. One would expect that it would be relatively straightforward
to explain the presence of occupational mobility by enriching these models to
allow heterogeneity of agents’ characteristics, in the style of [9],[20] or [22]. For
instance, if children’s learning abilities are randomly generated, occupational
mobility would emerge owing to the tendency for unusually gifted children in
poor families to acquire education (and conversely untalented children in rich
families would fail to become educated). Alternatively if wage incomes within
any occupation are subject to sources of randomness (as in [7] and [26]), it could
generate mobility (as some unskilled households earn above-normal wages, or
skilled households earn below-normal wages).

1The continuum of steady states also appears in [15-16]. However, there are some papers in

which there are steady states with mobility, such as [7],[9],[20],[22],[26]. A detailed comparison

with the existing literature is provided in Section 6.

5



This paper studies the implications of introducing such forms of heterogene-
ity (or income risk) in a model of human capital accumulation which generates
positive mobility in steady state. The model has two occupations, skilled and
unskilled. To enter the skilled occupation an agent needs to acquire an educa-
tion. Agents are heterogenous with respect to their cost of getting educated,
reflecting their innate learning ability; these costs are treated as i.i.d. random
variables. We abstract from income risk for the sake of simplicity, though the
effects of such risk would be qualitatively similar to the effects of heterogenous
learning ability.2 Parents cannot borrow against their children’s future earnings:
this is the key capital market imperfection.3

We explore existence and multiplicity of steady states as well as non-steady-
state dynamics within this model in some generality. We provide three principal
sets of theoretical results. First, steady states with mobility are (generically)
locally unique and finite in number. This is in contrast to the case of homo-
geneous agents and riskless incomes which generally has a continuum of steady
states.

Second, we explore conditions for global uniqueness, and show how these
depend on the ability distribution. We provide sufficient conditions only in terms
of the range (i.e., endpoints) of the distribution for both uniqueness and non-
uniqueness of steady states. Global uniqueness obtains if the range of schooling
costs is shifted down sufficiently, and preferences for schooling do not switch
more than twice with respect to a rise in the skill ratio in the economy. In
contrast, there is (generically) more than one mobile steady state if the range
of schooling cost is shifted up sufficiently.

Third, we explore non-steady-state dynamics. With agent homogeneity and
lack of income risk, competitive equilibrium with perfect foresight always con-
verges to a steady state. With the introduction of heterogeneity, competitive
equilibrium may fail to converge. However global convergence can be restored
with restrictions on the speed of ‘adjustment’. Under these conditions, multi-
plicity or otherwise of steady states translates into corresponding statements of
dependence of long run outcomes on initial conditions.

We also numerically compute the set of steady states in an economy with
Cobb-Douglas technology, logarithmic utility and a variety of ability distribu-

2Indeed, in the case of logarithmic utility it is easily verified that the two phenomena

(heterogenous abilities and income risk) are isomorphic with respect to investment incentives

and therefore the same model and results apply to the context of income risk as well. We are

also abstracting from intergenerational transmission of ability, in the interest of simplicity.

Incorporating this would require abilities of parents and children to be correlated.

3The benchmark case of homogeneous ability corresponds to the models in [13],[19],[24].

The baseline model in this paper differs from [24] only with respect to the bequest motive:

instead of a dynastic bequest motive it is assumed that parents care about the incomes earned

by their children, apart from their own consumption.
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tions. In all examples with a continuous ability distribution (including uniform,
exponential and truncated normal distributions) with a wide enough support,
and with a low level poverty trap (where at low enough skill ratios, unskilled
wages fall below the minimum education cost, so that unskilled parents cannot
afford to educate their children), we found only one locally stable steady state
with mobility. However, examples of multiple locally stable steady states with
mobility can be constructed with discrete (or sufficiently ‘jagged’ continuous)
ability distributions, or with standard well-behaved distributions when a low
level poverty trap does not exist.

The principal implication of these results is that the extent of history de-
pendence (or the steady state set) shrinks markedly upon applying arbitrarily
‘small’ perturbations of a homogeneous agent economy with perfect income cer-
tainty. In general, small temporary shocks do not affect long run outcomes.
For suitable ranges of the distribution of ability shocks, as well as in our nu-
merical examples with well-behaved continuous ability distributions and a low
level poverty trap, the long run outcome is unique and independent of initial
conditions. For others, it is non-unique and there exist ‘large’ temporary shocks
or policies with permanent impact.

The main contrast with papers such as [7],[26] is that they provide examples
of particular parameter values for which multiple steady states with mobility
exist, but do not provide more general results. For instance, they do not address
issues of local uniqueness, whether there are parameter zones with a unique
steady state, or the general dynamic properties of the system. The contrast
with [9] or [20] is that they have a unique steady state with mobility, owing
mainly to their assumption of a convex investment technology.

The intuition for our uniqueness results is somewhat akin to the effects of
enriching the occupational space to allow diversity of occupations (i.e., removing
the indivisibility in investment options). As shown in [24,25] steady states with
occupational diversity are characterized by incentive constraints in the form of
equality rather than inequality constraints: agents have to be locally indiffer-
ent between their own occupation and neighboring occupations. These equality
constraints pin down the steady state uniquely. In this paper we retain occu-
pational indivisibilities and instead introduce heterogeneity in education cost.
Steady states with mobility are characterized by ability thresholds for educa-
tional investments among unskilled and skilled households respectively, where
agents at the threshold are indifferent between educating and not educating
their children. Hence the steady state is characterized by incentive constraints
for the threshold type that take the form of equality constraints. This removes
the scope for local multiplicity of mobile steady states: small perturbations to
the skill ratio cause the steady state conditions to be violated.

A potential criticism of this paper is that long run ergodic properties may
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be of less interest than the short or intermediate run, i.e., where the extent
of persistence of income or occupational status is more fundamental. From
this perspective the effect of introducing small shocks to income or ability to a
standard endogenous inequality model is hardly dramatic. We would reply to
such a criticism as follows. First, much of the discussion in the literature on
historical origins of underdevelopment spans several centuries, so presumably
the long run is of some interest. Second, there is no reason to believe that
the importance of ability heterogeneity or residual income risk is small, relative
to the effect of parental status. Empirical findings suggest that differences in
parental status explains part of the difference between earnings of children, but
considerable residual unexplained variation still remains (see, e.g., [10] for a
summary of empirical results in the field, where more than 50% of variation
in earnings typically remain unexplained). Hence the dynamics induced by
such shocks may be just as important as those associated with parental status.
Models where such heterogeneity or income risk are substantial would seem to
be more focal than ones where they are entirely absent. Moreover, they are
needed to explain the fact that almost every society experiences non-negligible
mobility. Hence conclusions concerning history dependence are better based
on models of this genre. And as we show, such models tend to generate long
run history dependence only under special conditions, suggesting the need for
empirical research concerning the validity of such conditions as a way of testing
the hypothesis of history dependence.4

Section 2 introduces the model. Section 3 explains the baseline case of ho-
mogeneous ability, where the set of steady states forms a continuum, and com-
petitive equilibrium dynamics are globally convergent and history-dependent.
Section 3 provides steady state uniqueness results for the model with hetero-
geneity, while Section 4 discusses non-steady state dynamics. Section 5 describes
how this paper relates to existing literature in some detail. Section 6 concludes
with a discussion of future research questions concerning occupational mobility.

2 Model

There is a continuum of families indexed by j ∈ [0, 1]. At each date t = 0, 1, 2, . . .

family j is represented by an agent who lives as an adult for one period. This
agent is also referred to by j. Any generation-t agent j has an occupation
oj

t ∈ {n, s}, referring to either unskilled or skilled labor. The fraction of skilled
agents in period t is denoted by λt. Each agent supplies one unit of labor
inelastically, as long as the wage rate exceeds a positive reservation wage w > 0

4For instance, the conditions involved include non-monotonicity of investment incentives

of unskilled households with respect to the skill ratio in the economy, which is empirically

testable.
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which represents the value of leisure or some backyard self-employment option.
The economy produces a single consumption good under conditions of perfect

competition. Output is given by a production function H which is assumed to
be twice continuously differentiable, strictly concave in both types of labor, has
constant returns to scale, and satisfies Inada end-point conditions. The marginal
products of the unskilled and skilled respectively are given by functions hn(λ)
and hs(λ) respectively, where hn is strictly increasing, hs is strictly decreasing,
hn(0) = 0 = hs(1); hn(1) = hs(0) = ∞.

Skilled workers can choose whether to work as skilled or unskilled employees,
implying that the skilled wage can never fall below the unskilled wage. Let
λ̄ ∈ (0, 1) be defined by the property that hn(λ̄) = hs(λ̄) ( = w̄ say). Then if
wn(λ) and ws(λ) denote wages of the unskilled and skilled respectively, and λ

denotes the skill ratio at which hn = w, it follows that equilibrium wages are
given by5

wn(λ) =





w if λ ≤ λ

hn(λ) if λ ∈ (λ, λ̄)

hn(λ̄) if λ ≥ λ̄,

(1)

and

ws(λ) =





hs(λ) if λ ≤ λ

hs(λ) if λ ∈ (λ, λ̄)

hs(λ̄) if λ ≥ λ̄.

(2)

The ability of a child is represented by the cost x ≥ 0 (denominated in units
of the consumption good) that its parent would have to incur in order for the
child to enter the skilled profession. These costs are i.i.d. random variables with
a distribution function F on a range [x, x̄]. The endpoints are characterized by
the property that x = inf{x |F (x) > 0} and x̄ = sup{x |F (x) < 1}. Most of
our results will be stated in terms of properties of these endpoints, and will not
depend on other features of the distribution F . So as to admit a wide range
of possible distributions, we shall allow F to be generated by a mixture of a
continuous density f and a finite number of mass points over the range [x, x̄].6

Parents have to finance their child’s education but cannot borrow against
their descendent’s income. So education for a generation-t agent j has to be
paid from its parent’s income wj; t−1.7 There is no way to transfer wealth be-

5If the skill ratio in the economy as a whole falls below λ, the skill ratio in the production

sector will be pegged at λ, with surplus unskilled workers withdrawing from the production

sector into leisure or self-employment.

6The only essential restriction here is that we rule out an infinite set of mass points. This is

mainly a technical simplification, one that we do not expect to have any serious consequences.

7This condition can be relaxed considerably to allow some borrowing but either subject to

a credit limit or with borrowing rates exceeding lending rates. All that matters is that the

9



tween generations apart from parents’ educational investment.8 The investment
needed to work in the unskilled profession is zero.

Let Ij
t equal 1 if generation-t agent j decides to invest in his child’s education

and 0 otherwise (corresponding to oj
t+1 = s and oj

t+1 = n, respectively). The
parents’ bequest motive takes a form of paternalistic altruism, where they care
about the wealth of their children, apart from their own consumption: agent j

selects Ij
t to maximize

U(wj; t − xIj
t ) + V (wj; t+1), (3)

where U and V are both strictly increasing, continuously differentiable functions,
U is strictly concave, and wj; t+1 is determined by Ij

t and the equilibrium skill
ratio in the economy at t + 1.9

Given skill ratio λt in generation t, the income distribution in that generation
is determined: fraction λt households earn ws(λt) while the remaining earn
wn(λt). Define the benefit to a generation t parent of investing in his child’s
education: B(λt+1) ≡ V (ws(λt+1)) − V (wn(λt+1)), and the utility sacrifice
Co(λt, x) ≡ U(wo(λt))−U(wo(λt)−x) entailed in this investment if the parent
is in occupation o and the education cost is x. The consequent net benefit of
investing is go(λt, λt+1, x) ≡ B(λt+1)−Co(λt, x). Clearly g is strictly decreasing
in x, going to −∞ as x → ∞ and nonnegative for x = 0. Hence we can
define a threshold cost xo(λt, λt+1) for occupation o parents as the solution to
go(λt, λt+1, x) = 0, at which they are indifferent between investing and not.

Let F 0(x) denote the fraction of children with education cost strictly below
x. Then

σ(λt, λt+1) ≡ (1− λt)F 0(xn(λt, λt+1)) + λtF
0(xs(λt, λt+1)) (4)

is the fraction of generation t households that strictly prefer to invest, while

in(λt, λt+1) ≡ (1− λt)[F (xn(λt, λt+1))− F 0(xn(λt, λt+1))]

is(λt, λt+1) ≡ λt[F (xs(λt, λt+1))− F 0(xs(λt, λt+1))]

cost of financing investments be higher for poorer parents.

8Consequences of allowing supplemental financial bequests are discussed in [23,25]. In-

equality is then no longer inevitable, as parents of unskilled agents can make compensating

financial bequests to allow equality of income with skilled agents. However this requires a

sufficiently strong bequest motive, relative to the span of earning differentials between occu-

pations. For less strong bequest motives, inequality is again inevitable in steady state, and

properties of that model concerning steady states and non-steady state dynamics are similar

to those in the current model where financial bequests are not allowed.

9This represents a bequest motive less far-sighted and sophisticated than a Barro-Becker

dynastic motive where parents care about the utility of their child, and thus indirectly about

the consumption of all their future descendants. But it is more sensitive to the consequences of

bequests for the well-being of their children, compared to a ‘warm-glow’ bequest motive (where

they care only about the size of the bequest apart from their own consumption) traditionally

assumed in much of the literature (e.g., [7],[15]).
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denote the measure of unskilled and skilled households respectively that are
indifferent between investing and not investing.

Definition 1 λt+1 is a competitive equilibrium skill ratio in generation
t + 1 given skill ratio λt at t if there exist α, β both in [0, 1] such that

λt+1 = σ(λt, λt+1) + αin(λt, λt+1) + βis(λt, λt+1). (5)

In order to avoid a trivial equilibrium, we assume:

(A1) F (0) < λ̄.

If we define a genius to be a child who acquires skill at zero cost (x = 0) then
(A1) stipulates that the fraction of geniuses born is less than the skill ratio λ̄

where skilled and unskilled wages are equalized. Clearly all geniuses will acquire
skill as long as skilled wages exceed unskilled wages. So if (A1) does not hold,
equilibrium will involve λt ≥ λ̄ for all t: there is perfect income equality at all
dates and no one with positive education cost will ever invest.

Lemma 1 Suppose (A1) holds. Given any skill ratio λt in generation t, a com-
petitive equilibrium skill ratio at t + 1 exists, is unique, and less than λ̄.

The proof of the Lemma as well as of subsequent results is provided in
the Appendix. Existence and uniqueness rest on the fact that the measure
φλt(λ

e
t+1) of households willing to invest at the current skill ratio λt is (apart

from constituting a convex-valued u.s.c. correspondence) strictly decreasing in
the skill ratio λe

t+1 they anticipate for the next generation. This is illustrated
in Figure 1. Under (A1), the equilibrium skill ratio must be below λ̄, with
wage inequality in every generation.10 Hereafter we denote the mapping of
equilibrium skill ratios across successive generations by λt+1 = E(λt).

Definition 2 A steady state (SS) skill ratio λ∗ is a stationary competitive
equilibrium skill ratio, i.e., a fixed point of E. If there exists a stationary com-
petitive equilibrium with skill ratio λ∗ in which a positive measure of unskilled
(respectively skilled) households in any given generation become skilled (resp.
unskilled) in the next generation, then λ∗ is a steady state with mobility
(SSM).

Steady states can be characterized in terms of equality of upward and down-
ward mobility flows. Define these as follows:

u(λ) ≡
{

µ | µ = (1− λ)[F 0(xn(λ, λ)) + αin(λ, λ)] for some α ∈ [0, 1]
}

d(λ) ≡
{

µ | µ = λ[1− F (xs(λ, λ))] + βis(λ, λ) for some β ∈ [0, 1]
}

10Otherwise there are no benefits from investing, and anyone with positive x will not invest.

So the skill ratio at the next generation cannot exceed F (0), which owing to (A1) is less than

λ̄, contrary to the premise.
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Then λ is a SS if and only if u(λ) ∩ d(λ) 6= ∅. It is a SSM if there exists a
positive mobility flow µ ∈ u(λ) ∩ d(λ).

Proposition 1 A SS always exists.

The rest of the paper turns attention to uniqueness and stability of steady
states.

3 The Case of Homogeneous Agents

We illustrate first the case where the distribution of x is degenerate, concen-
trated at a single x = x∗ > 0, so x = x̄ = x∗. This is essentially the model
considered by previous literature ([13],[19],[24],[27]). For the sake of complete-
ness, we provide a proof of the following proposition, particular versions of which
are available in these papers.11 Figure 2 illustrates the set of steady states and
the nature of the dynamics.

Proposition 2 With homogeneous agents (x = x̄ = x∗ > 0):

(a) If x∗ is large enough that

Cs(λ, x∗) > B(λ) (6)

there is a unique SS at λ = 0;

(b) Otherwise there is a continuum of SS’s. If

Cs(λ, x∗) < B(λ) (7)

there exists an interval of steady state skill ratios within which higher λ

SS’s are associated with higher per capita income and lower skill premium
in wages;

(c) Every SS entails zero mobility;

(d) From any initial skill ratio λ0 at t = 0, the equilibrium skill ratio converges
to a SS, and the dynamics is described as follows. If λ0 is a SS then
λt = λ0 for all t. If λ0 exceeds the highest SS λ̃ then the skill ratio falls
to a SS λ∗ < λ̃ at t = 1 and stays there for ever after. If neither of these
two cases apply then λt increases monotonically in t and converges to the
nearest SS λ̂ to the right of λ0 where the unskilled are indifferent between
investing and not.

11The papers cited above confine their analysis to steady states, and use a dynastic bequest

motive. So the result here differs in its use of a different bequest motive, and a complete

description of the dynamics. Note however that a complete analysis of dynamics of the model

with a dynastic bequest motive was provided earlier by [27].
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The model exhibits an extreme form of history dependence, both at the
household and economy-wide level. In steady state, there cannot be any mo-
bility, so a household’s occupation is determined entirely by the occupation of
its ancestors. Moreover, there is macroeconomic hysteresis, with a continuum
of steady states varying in per capita income and inequality. Starting at any
interior steady state a one-time small shock to the skill ratio induced either by
demographics, technology, endowments or policy will have a permanent macro
effect. The same is not necessarily true out of steady state, however — e.g., if
the economy starts at a low (between λp and λ1 in Figure 2) non-steady state
skill ratio, then a small perturbation in the skill ratio will only have a short
term effect, as the equilibrium skill ratio will converge eventually to the same
steady state λ1.

Note also that it is possible for the set of steady states to not be connected,
as ilustrated in Figure 2. The model can therefore explain the phenomenon of
distinct ‘convergence clubs’ at different ranges of per capita income and human
capital.12 This owes to possible non-monotonicity of the educational incentives
of unskilled with respect to the skill ratio. As λ increases, the benefit from
educating children decreases, lowering educational incentives for all parents. At
the same time, the unskilled wage increases, reducing the poverty of unskilled
parents, and lowering the sacrifice entailed in educating their children. So the
cost and benefit functions for the unskilled can intersect more than once. These
non-monotonicities will play an important role in the discussion of uniqueness
in the next section.

4 Heterogeneous Ability

4.1 Examples

To illustrate the impact of introducing heterogenous abilities, consider the fol-
lowing variation on the homogenous agent case, where a small fraction of chil-
dren are unusual with regard to their learning abilities. Here the distribution
over x is concentrated at three mass points x = 0 < x∗ < x̄. A fraction γ of
children are geniuses, with an educational cost of x = 0, so it will be optimal for
them to become educated in all situations. Another fraction ι of children are id-
iots, with an educational cost x̄ so large that their parents will never want to try
to educate them, even if they were skilled and the skill scarcity is at its greatest
(i.e., Cs(λ, x̄) > B(λ)). The remaining children are normal and have a common
(fixed) educational cost of x∗, as in the previous section. Let the highest steady
state interval in the homogeneous agent economy be denoted by [λ1, λ2]. Sup-

12See [3] for a description of the relevant stylized facts concerning convergence clubs, and

an alternative explanation in terms of financial development.
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pose also that the proportion of geniuses and idiots in the population is small
enough in the sense that γ < λ2, ι < 1− λ1.

Consider the case where γ
ι lies in between λ1

1−λ1 and λ2

1−λ2 . In this case
define λ∗ by the property that λ∗

1−λ∗ = γ
ι , which then falls in between the two

endpoints λ1 and λ2 of the steady state interval. For any λ in this interval to the
left of λ∗, there will be a ‘rightward’ drift in the skill ratio owing to the presence
of the unusual children. Those with normal children will behave exactly as in
the homogeneous agent economy. But not the unusual children: geniuses from
unskilled households will acquire skills, and idiots from skilled households will
not. To the left of λ∗ the upward flow of geniuses from unskilled households will
dominate the downward one of idiots from skilled households, inducing the skill
ratio to rise. This destabilizes what would have constituted a steady state in
a population constituted entirely of ‘normal’ children, except only at λ∗. The
perturbation created by introduction of a few unusual children has the effect of
singling out a unique steady state from the continuum of steady states in the
homogenous agent economy.

Figures 3(a) and (b) illustrate upward and downward flows u(λ) and d(λ)
for special numeric instances of the homogenous baseline case and its genius-
idiot variation.13 Figure 3(c) shows the effect of heterogeneous costs that are
uniformly distributed on a narrow interval. The extent of heterogeneity there
is insufficient to generate steady state mobility. The support of the cost distri-
bution is widened in (d) to induce mobility in steady state, but then the steady
state becomes unique. In example (d), notice that the investment preferences
amongst the unskilled exhibit are non-monotone.

Figure 4 shows the effect of different truncations of a normal cost distribu-
tion. In (a), the support is again too narrow for any steady state mobility, while
costs in (b) have full support on the positive reals. Figures 4(c) and (d) show
intermediate cases with a positive lower bound on costs, i.e., ruling out very
high ability levels. Very low ability levels are also ruled out in (c), resulting in a
unique steady state with mobility in addition to an interval of immobile steady
states (the latter require a sufficiently low reservation wage). In (b) and (c) we
obtain a unique steady state with mobility. A case of multiple mobile steady
states arises in (d), in which there is no lower bound to ability (i.e., education
costs have no upper bound). However, only one of the two mobile steady states
is locally stable.

4.2 The General Case with Heterogenous Ability

Return now to the general case of heterogeneous learning abilities, where x < x̄.
As explained above, this is essential in order to explain mobility in steady state.

13Figures 3–5 are based on H(λ, 1− λ) =
p

λ(1− λ) and U ≡ V ≡ ln.
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Indeed, there must be enough variation in ability to allow upward and downward
mobility to co-exist, so we hereafter assume that x and x̄ are sufficiently dis-
parate that at some skill ratio some children from unskilled families will invest
and some from skilled families will not:

(A2) There exists λ̌ ∈ (0, λ̄) such that

B(λ̌)− Cn(λ̌, x) > 0 > B(λ̌)− Cs(λ̌, x̄) (8)

This is clearly a necessary condition for existence of a SS with mobility. The
following Lemma provides a sufficient condition for every SS to involve mobility.

Lemma 2 Given any x̄ > 0 there exists a threshold x̂(x̄) > 0 for x below which
every SS involves positive mobility.

We now present the first major result of the paper, concerning local unique-
ness and finiteness of the set of SS’s in the presence of heterogeneity. For this
we parameterize the altruistic component of the parental utility V (wj; t+1) =
δW (wj; t+1), where δ > 0 is a scaling parameter measuring the extent of altru-
ism, and W is a strictly increasing, continuously differentiable function. Generic
statements will refer to the set of values of δ for which a given property is true,
and will mean that its complement is a set of zero Lebesgue measure.

Proposition 3 Suppose (A1) and (A2) hold. Then generically there are a
finite number of mobile steady state skill ratios.

The main idea underlying the result is the following. Mobile steady states
are characterized by equality of upward and downward flows, which are C1

functions (a.e., on the set of continuity points of F ). A continuum of SS’s
now requires an interval of values of λ where the upward and downward flow
functions are tangent to one another. An increase in the altruism parameter δ

raises the upward flow function, and lowers the downward flow function. So a
small perturbation in δ will eliminate any such steady state with tangency of
the upward and downward flows.

Note that the result does not apply to all steady states, only those that
are mobile. A continuum of immobile SS’s can occur quite non-pathologically,
e.g., there can be an interval [0, λ∗] of immobile SS’s where both upward and
downward flows are zero. This is the case arising with homogeneous agents, for
instance, where each occupation class has a strict incentive to not switch to the
other class. This essentially requires the lower endpoint x be large enough to
shut off all upward mobility for a range of low values of λ. In contrast when
Lemma 2 applies then Proposition 3 ensures generic finiteness of the set of all
SS’s.
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As in general equilibrium theory, generic finiteness is by itself a blunt con-
clusion. ‘Finite’ can stand for one as well as several million. Indeed, one can
construct examples that involve an arbitrary number of mobile SS’s (see the
discussion following Proposition 5). However, they involve special type distri-
butions involving either discrete types or continuous approximations to these.
Considering a wide range of parameter constellations, our numerical computa-
tions with standard ability distributions such as uniform (Figures 3(c) and (d)),
truncated normal (Figure 4), or exponential have produced no more than two
locally stable SSM’s, and no more than one such SSM whenever a poverty trap
exists for low values of λ (i.e., where there is a minimum education cost x ex-
ceeding w, implying that the unskilled wage is insufficient to pay for education
whenever λ < λ).14

Proposition 3 and Lemma 2 in combination imply that (generically) small
temporary shocks to SS cannot have permanent effects (assuming that such a
SS is locally stable, an issue we will explore in the next section). This conclu-
sion requires only appropriate endpoint conditions on the ability distribution as
stated in Lemma 2. Hence it applies to arbitrarily small ‘amounts’ of hetero-
geneity: the hysteresis result of the homogeneous agent economy represented in
Proposition 2 is not robust.

4.3 Global Uniqueness

We now turn to the question when SS is globally unique. If SS is locally but not
globally unique then there is still scope for history dependence, and for large
temporary shocks to have permanent macro effects.

We first provide a sufficient condition for global uniqueness, in terms of
ranges of the endpoints of the ability distribution, allied with a condition on
preferences and technology that prevents ‘excessive’ non-monotonicity of in-
vestment incentives of the unskilled. Recall that as the skill ratio rises, the
benefit of investing falls owing to the shrinking wage premium. On the other
hand the unskilled wage rises, reducing the utility sacrifice for unskilled par-
ents in educating their children. This can naturally cause their incentive to
be non-monotone with respect to the skill ratio. The following condition —
which we call the double crossing property (DCP) — limits the extent of such
non-monotonicity to at most two reversals of preference as λ increases.

DCP For any x ∈ [x, x̄] the set of steady skill ratios λ at which an unskilled
family with education cost x prefers to invest in education is either empty,

14Steady state configurations arising from an exponential distribution on [c,∞) resemble

those arising from a similarly truncated normal distribution. When a poverty trap does not

exist, we have found instances of a second stable SSM at some λ < λ, where a positive mass

of talented children of unskilled parents get education despite the latter earning only w.
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a singleton or an interval.

Under DCP, there is at most an interval [λn
1 (x), λn

2 (x)] of steady skill ratios
at which an unskilled household with an education cost of x would prefer to
invest. Below λn

1 (x) or above λn
2 (x) it would prefer not to invest, so its preference

for investing switches at most twice. We show below that DCP is satisfied if
agents have logarithmic or constant elasticity utility functions with relative risk
aversion at least one, and the technology is of the Cobb-Douglas form.

Lemma 3 Let the economy be defined by a Cobb-Douglas production function

H(λ, 1− λ) = λα(1− λ)1−α

for α ∈ (0, 1), utility function

U(wj; t − xIj
t ) + δU (wj; t+1)

with δ > 0 and

U(c) = ln(c) or U(c) =
c1−ρ

1− ρ

with ρ > 1. Then DCP is satisfied.

We now provide a sufficient condition for global uniqueness.

Proposition 4 Suppose (A1), (A2) and DCP hold, and that in addition:

(a) the upper endpoint x̄ is not too high (in the sense that there exists a
steady skill ratio λ̂ where every unskilled household would prefer to invest:
B(λ̂) > Cn(λ̂, x̄));

(b) the lower endpoint x is smaller than the threshold x̂(x̄) defined in Lemma 2.

Then there is a globally unique SS, and it involves positive mobility.

An instance of this situation is depicted in Figure 3(d). The proof of the
Proposition is simple: at skill ratio λ̂, every unskilled family wants to invest,
and hence so must every skilled family. Since the downward flow is monotone
increasing in λ, it is zero at every λ below λ̂. So there cannot be any steady
state with mobility at or below λ̂.

Next, note that at λ̂, the upward flow u is strictly positive. For all higher
skill ratios, DCP implies that the upward flow must be strictly decreasing in λ

whenever it is positive.15 Since the downward flow is increasing in λ, it follows

15This is because at λ̂ all unskilled families want to invest, so λ̂ exceeds λn
1 (x̄) where the

net investment gain of the highest cost type first turns positive. Further increases in λ above

λ̂ cannot increase the upward flow rate any further: it must be weakly decreasing thereafter.

If the rate is positive then the flow, which equals 1− λ times the flow rate, must be strictly

decreasing.
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there must be a unique SS above λ̂. Finally, condition (b) in conjunction with
Lemma 2 ensures that there cannot exist a SS with zero mobility.

Conditions (a) and (b) on the endpoints of the ability distribution are suffi-
cient but clearly not necessary for uniqueness (see Figures 3(b) and 4(b)). Their
role is that they generate enough upward mobility. Condition (b) says the lower
endpoint of the schooling cost is low enough to ensure there are smart enough
children among unskilled families that will move up to the skilled occupation in
any steady state. Condition (a) on the upper endpoint ensures that the highest
schooling cost is not too large: at some stationary skill ratio even the least able
child from an unskilled family wants to invest. These conditions prevent low
level traps: steady states must lie above λ̂. And over this region investment
incentives of the unskilled are decreasing monotonically, ensuring uniqueness of
steady state.

The next result presents in contrast a range of circumstances in which there
are multiple SS’s.

Proposition 5 Suppose (A1), (A2) hold, and also:

(a) x > w, with consumption constrained to be nonnegative; and

(b) x̄ is large enough that there will always be downward mobility: Cs(λ, x̄) >

B(λ).

Then:

(i) generically (with respect to δ): mobile SS’s if they exist are non-unique;
and

(ii) λ = 0 is a SS without mobility.

This shows that mobile SS’s are generically non-unique in the presence of
a ‘poverty trap’ (where by (a) education cost is bounded away from zero and
earnings of the unskilled are insufficient to cover this minimum cost) along with
a sufficiently low floor to ability (defined in condition (b)). If one mobile SS
exists, there must be at least another one. Figure 4(d) provides an illustration
of this. Note, however, that only one of the two mobile steady states is locally
stable (in the sense that the upward flow exceeds the downward flow in a right
neighborhood of the steady state skill ratio). In particular, Proposition 5 says
nothing about the multiplicity of locally stable steady states with mobility.

One may wonder if DCP (or a generalization allowing for at most m ≥ 3
preference reversals) can be used to provide bounds on the number of SSM.
Figure 5 indicates why this is generally not the case. Its underlying technol-
ogy and preferences are as in Figures 1-3, which satisfy DCP. However, the
latter condition merely restricts non-monotonicity of investment incentives of
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the unskilled, but does not eliminate it: the upward flow composed of unskilled
investors can increase over some initial range before it begins to decline with
respect to increases in λ. Over this initial range it is possible to create multiple
steady states with a sufficiently ‘jagged’ ability distribution. This is illustrated
in Figure 5, which uses a discrete cost distribution. Clearly, similar examples
can be created with a continuous ability distribution which approximates the
discrete distribution. In general if there are r discrete cost levels, there can exist
up to 2(r − 1) SSM’s.

In the event of multiple SS’s, it is interesting to note that mobile steady
states are ordered with respect to the extent of mobility:

Proposition 6 Suppose there are two steady states with positive mobility. Then
the steady state with higher skill ratio has higher mobility, lower wage inequality,
and higher per capita income.

This follows from the fact that the downward flow correspondence is strictly
increasing in λ when it is positive. Comparing two economies with exactly the
same characteristics but operating at two distinct steady states, equality and
mobility will be positively related. Richer countries will tend to be more equal
and more mobile. However the positive correlation between equality and mo-
bility may not obtain when examining comparative static properties of a given
steady state. For instance, if we start at a given steady state and shift the ed-
ucation cost distribution downwards, the upward flow correspondence will rise,
and the downward flow will fall, at every λ. The steady state skill ratio will
move to the right, but the effect on mobility is ambiguous, depending on which
flow moves more. If the downward flow falls locally ‘by more’ than the increase
in the upward flow, the net effect will be to lower steady state mobility. Intu-
itively, the greater incentive of the unskilled families to invest in their children’s
future is outweighed by the greater reluctance of skilled families to allow their
children to descend to the unskilled occupation. This may be relevant in un-
derstanding cross-country differences in mobility. For instance, [11] finds that
Italy is characterized by a lower level of mobility than the US, despite a more
generous public education program: our model provides a possible explanation
of this finding.

5 Non-Steady-State Dynamics

Agent heterogeneity complicates competitive equilibrium dynamics consider-
ably. Recall that in the homogenous agent case, the competitive equilibrium
is globally convergent. With even a ‘little bit’ of heterogeneity, competitive
equilibria can fail to converge, even if there should be a unique steady state.
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To illustrate this, return to the genius-idiot example. Let λo(λ) denote the
skill ratio at the generation following one where it is λ, which would make a
family with occupation o today and a ‘normal’ child indifferent between investing
and not. Specifically:

B(λo(λ)) = Co(λ, x).

Since skilled families are richer than unskilled families (given λ < λ̄), we know
that the threshold is higher for skilled families: λs(λ) > λn(λ). Moreover, λs is
a decreasing function, while λn is an increasing function.

Define the drift function D(λ) ≡ λ + (1− λ)γ − λι, the dynamic of the skill
ratio driven by the unusual children alone (with all ‘normal’ children following
their parents’ occupations). Then the competitive equilibrium dynamic will be
as follows. If the current skill ratio is λ, the ratio λ′ at the next generation will
be given by D(λ) if this lies in between λn(λ) and λs(λ). Otherwise if D(λ) is
less than λn(λ), λ′ will equal λn(λ). In this case unskilled families with normal
children must be indifferent about investing, and a fraction of them will invest.
On the other hand if D(λ) is bigger than λs(λ), then λ′ equals λs(λ): in this
case a positive fraction of skilled families with normal children will invest, while
all unskilled families with normal children will not.

Let λ1 and λ2 denote the endpoints of the rightmost steady state interval
in the baseline case where there are no geniuses or idiots. Note that at the sta-
tionary skill ratio λ1 (resp. λ2), unskilled (resp. skilled) parents are indifferent
between investing and not. Hence λn(λ1) = λ1 and λs(λ2) = λ2. See Figures 6
and 7.

If the dynamic of skill ratios follows the λn function over the entire range,
the skill ratio will converge to λ1. But if instead it follows the λs function, it
will converge (to λ2) only if the slope of this function in the neighborhood of
λ2 is less than one in absolute value. If the slope exceeds one then the steady
state λ2 of the λs function is locally unstable. Whether the slope of the λs

function exceeds or falls below one depends on the parameters of the model,
e.g., on the strength of the altruism motive. If this motive is sufficiently weak
(i.e., the altruism parameter δ sufficiently small), then the slope will exceed one
for a large neighborhood of λ2.

However, as we have noted above, the global dynamic will not follow either
the λn or λs function throughout. It will switch between these two functions
and the drift function, depending on the relative values of these functions. So
in order to characterize the global dynamic, we need to distinguish between
different cases, which are represented in Figures 6 and 7 respectively.

In Figure 6 the unique steady state λ∗ (defined by the condition λ∗
1−λ∗ = γ

ι )
lies in the interior of (λ1, λ2). Here the competitive equilibrium converges to the
steady state from arbitrary initial conditions. In the neighborhood of the steady
state the drift function lies in between the λn and λs functions, so represents the
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local dynamic. The equilibrium sequence converges because the drift function
has a positive slope less than one (note that D is linear with a slope of 1−γ−ι).

In Figure 7 we represent the case where the proportion of geniuses is much
larger, and γ

ι > λ2

1−λ2 . Now the unique steady state skill ratio is at λ2, because
the rightward drift is positive even at λ2, and a positive fraction of skilled
families with normal children must disinvest in order to counterbalance the
rightward drift.16 The competitive equilibrium dynamic in the neighborhood of
the steady state must follow the λs function (since the drift function lies above it
in such a neighborhood). Recall from the above discussion that the λs function
may well have a slope exceeding one in absolute value, in which case the steady
state is unstable. Any slight perturbation of the steady state will lead to a
dynamic sequence which will perpetually oscillate around the steady state. It
can be checked that the dynamic properties of the genius-idiot example extend
locally to any finite number of cost types. So the problem is quite a general one.
The failure to converge is reminiscent of failures of various learning algorithms to
converge to mixed strategy Nash equilibria or cycling of competitive equilibrium
dynamics for sufficiently strong income and intertemporal substitution effects
despite perfect foresight (see, e. g., [17]).

We now describe some modifications of the dynamic that would restore con-
vergence. It is easy to verify that the competitive equilibrium dynamic has the
general property that if the current skill ratio is less (resp. greater) than a unique
steady state, then the skill ratio at the next date will be higher (resp. lower)
than the one prevailing today. In other words, the skill ratio moves in the direc-
tion of the steady state. The same is true regarding non-repelling steady states
in general. The failure to converge stems from a tendency to overshoot just as
in similar failures of, e.g., discrete time replicator or other dynamics to converge
to a unique (mixed) evolutionary stable state (for example, see [28, sect. 4.1] or
[18, sect. 6])). Such a tendency would be mitigated in the presence of inertia.
This is essentially what is involved in going to a continuous time dynamic (as
in [7]). For instance, suppose that only a positive fraction of families consider
switching occupations in any generation, the size of which is a nondecreasing
function of the payoff benefit from the switch (with nobody switching if the
current occupation of the parent is strictly optimal for the child). One interpre-
tation of this is that there is a special cost advantage in learning one’s parent’s
occupation (e.g., the parent may directly impart education to the child), which
differs randomly across families (e.g., owing to differences in effectiveness of
parental educations). Alternatively, inertia could arise from a form of bounded
rationality. If the fraction of switchers is scaled down enough (for any given

16There cannot be a steady state to the right of λ2 because there all skilled families with

normal children will want to disinvest. Then the skill ratio at the following date will be γ,

which is less than λ2 by assumption.

21



payoff benefit) as a result of inertia, one may speculate that overshooting can
be moderated so as to ensure convergence.

In our model, however, this is less straightforward than it might seem. Con-
sider for instance the simplest formulation of inertia, where each parent recon-
siders its family’s earlier investment decision with a small payoff-independent
exogenous probability p < 1.17 The problem of non-convergence then persists if
the type distribution has mass points. Consider again the divergence situation
in the genius-idiot example (Figure 7). Scaling down the excess of the mass of
geniuses newly investing over the mass of idiots disinvesting by p turns the drift
function D towards the 45◦-line. This leaves a shrunken but still nonempty
neighborhood of the unique steady state λ2 in which dynamics are determined
by the condition that all normal skilled families are indifferent, i.e., by the func-
tion λs. But this function is not affected by inertia. Given that dynamics do
not converge from any λ0 in a neighborhood of λ2 under the original process
(p = 1), they do not converge for small p either.

We now show that a slightly more complex form of inertia, where switch-
ing probabilities depend on possible payoffs, does nevertheless restore global
convergence.

Recall go(λt, λ
e
t+1; x) denotes the net gain from investing for a parent in

occupation o in generation t, if the child’s ability is represented by cost x of
entering the skilled profession (in the absence of any inertia). In the presence of
inertia, assume that the fraction of families in this category that will actually
switch occupations is given by p(∆U) ∈ [0, 1] where18

∆U ≡
{

gn(λt, λ
e
t+1;x) if o = n,

−gs(λt, λ
e
t+1;x) if o = s

and p(.) satisfies the following properties: p(∆U) = 0 for ∆U < 0, and there
exists ε ≥ 0 such that p(∆U) ∈ (0, p̄) for ∆U ∈ [0, ε), and p(∆U) = p̄ ∈ (0, 1]
for all ∆U ≥ ε. If ε > 0, then p is nondecreasing and differentiable with
dp/d∆U ≤ lp̄/ε for some l ≥ 1 fixed independently of p̄. In this case the
switching probability is continuous in the utility gain from switching, with a
bounded rate of change.

Denote the resulting dynamic process in which agents have perfect foresight
by Φp̄,ε. The process continues to be well-defined because the set of possible
λt+1 is for any given λt a decreasing correspondence of λe

t+1 satisfying the
assumptions of Kakutani’s theorem. Perfect-foresight competitive equilibrium
dynamics represent the special case where Φ ≡ Φ1,0.

17[14], for example, motivates continuous replicator dynamics in this way.

18Any fraction of indifferent skilled (resp. unskilled) families not exceeding p(0) may switch

professions.
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Proposition 7 Given any ε′ > 0, there generically exist ε > 0 and p̄ ∈ (0, 1]
such that:

1. For any steady state λ′ of Φp̄,ε there exists a steady state λ of Φ with
|λ′ − λ| < ε′ and vice versa.

2. Φp̄,ε converges to one of its steady states from any initial state λ0.

The proof is provided in the appendix. It also shows convergence of a related
dynamic process in which families are myopic out of steady state and have static
expectations. The incorporation of inertia and myopia results in a plausible
model with boundedly rational agents which has (approximately) the same long
run predictions as the dynamic process investigated in this paper.

6 Relation to Existing Literature

Models analyzing steady state mobility include [2], [7], [22] and [26]. [7] considers
a model with four occupations and three income classes, with risky income
patterns within each occupation. Mobility is induced by sufficient variability
in ex post incomes, somewhat analogous to the variability in education costs in
our model. Positive income shocks allow the poor to escape poverty and switch
occupations. These shocks eliminate steady states with zero mobility. [7] works
out the steady state set and dynamics with a discrete two-point distribution
for income risk and two specific classes of parameter values: these are shown
to yield two distinct locally stable steady states. Our paper considers a simpler
model with two occupations, but yields more general results concerning steady
state uniqueness and convergence. [2] studies a model with a unique mobile
steady state, while [26] share many of the features described above for [7] and
so bears the same relation to this paper.19

[22] considers a model very similar to ours, but does not address the ques-
tion of steady state multiplicity, nor the convergence properties of competitive
equilibria. Instead the authors focus on the qualitative features of a ‘develop-
ment process’, characterized by the movement from a low non-steady state skill
ratio to a steady state skill ratio. They also analyze the effects and design of
redistributive taxes along such a development process.

The relation to [13],[19],[23-25],[27] has already been discussed: steady states
in those models are characterized by zero mobility, and a continuum of unequal
steady states in the presence of occupational indivisibility. This paper can be
interpreted as studying the effect of augmenting such a model with heterogene-
ity in agents’ education costs. As pointed out in the introduction, the effect of

19See [8, section 6] for a recent survey of this literature.
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introducing heterogeneous abilities is akin to the removal of investment indivis-
ibility in [23]: both can transform the inequality constraints which characterize
steady states in the baseline model into equalities.

[15] does not allow any heterogeneity or income risk; consequently the steady
states in that paper do not involve any mobility. The first model in [15] is char-
acterized by complete absence of pecuniary externalities, so each family follows
an independent dynamic. The income dynamic has two steady states, hence at
the macro level there is a continuum of steady states varying with respect to
the proportion of families at different steady state income levels. In that con-
text it is evident that adding heterogeneity of income or education costs would
typically eliminate this indeterminacy, and give rise to a unique steady state at
the macro level. So the conclusions of our paper would (trivially) apply to that
context as well. The subsequent model in [15] which incorporates pecuniary
externalities describes two classes of steady states (associated respectively with
a developed and underdeveloped economy), but does not address the question
of local indeterminacy.

[16] consider a simplified version of [7], with three occupations, homogenous
agents and absence of income risk. In this model also there is a continuum of
steady states, and absence of occupational mobility in steady state. We presume
that our results concerning the implications of introducing heterogeneity or
income risk on steady state multiplicity will also apply to their model.

Finally, earlier literature (e.g., [9],[20]) was based on a version of the neoclas-
sical growth model with no indivisibilities or nonconvexities in the investment
technology. Their models incorporate agent heterogeneity in order to explain
the persistence of income inequality. They are characterized by a unique steady
state with mobility.

7 Conclusion

This paper has argued that when occupational mobility is sought to be explained
by heterogeneity of talent (or investment cost, or ex post income uncertainty),
long run macroeconomic outcomes become less history dependent. This is true
despite the presence of borrowing constraints and nonconvexities in investment
opportunities. The local indeterminacy of steady states in models with homo-
geneous agents is generally lost, even with arbitrarily ‘small’ extents of het-
erogeneity. For certain classes of heterogeneity we showed that steady state is
globally unique, for some others we showed they were non-unique. Numerical
computations with various examples of well-behaved continuous ability distri-
butions and parameter constellations permitting existence of a low level poverty
trap for the unskilled, showed a unique locally stable steady state with mobility.
We also discussed problems with possible nonconvergence of competitive equi-
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librium dynamics in the presence of heterogeneity, and how convergence could
be restored in the presence of inertia or investment ‘adjustment costs’.

Many questions remain to be explored. For one, there is the question of how
robust the results are with respect to the bequest motive, or presence of more
than two occupations. Robustness with respect to state dependence of ability
within families (e.g., if there is intergenerational transmission of genes or social
skills) or alternative formulations of agent heterogeneity is also an interesting
question.

Second, what is the role of interventionist policies in a world with occu-
pational mobility? The results suggest that temporary policies (of education
subsidies for instance) are considerably less effective in affecting long run hu-
man capital, per capita income, or inequality. But there may still be a role for
permanent policies. Is it possible that steady states involve too little investment
in human capital from an efficiency standpoint? Also as discussed in the text,
permanent education subsidies may raise steady state levels of human capital
and per capita income while reducing cross-sectional inequality, but their effects
on mobility are considerably less clear-cut. Issues concerning effects and optimal
design of public policies in contexts involving occupational mobility constitute
an important research agenda for the future.
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Appendix

Proof of Lemma 1: The proof is illustrated in Figure 1. Define the non-empty,
compact and convex-valued correspondence φλt

: [0, 1] ⇒ [0, 1] by

φλt
(λe

t+1) =
{

λ | λ = σ(λt, λ
e
t+1)+α in(λt, λ

e
t+1)+β is(λt, λ

e
t+1) for α, β ∈ [0, 1]

}
.

(9)
For given λt, φλt maps expected expected skill ratio λe

t+1 to the set of all actual
skill ratios λt+1 that could result from its anticipation. The latter need not be
a singleton if the skill distribution has atoms.

Since threshold levels xn(λt, λ
e
t+1) and xs(λt, λ

e
t+1) are continuous, σ(λt, λ

e
t+1)

is continuous in λe
t+1 except at points where a positive mass of agents switches

from a strict preference for or against investment to indifference. Moreover,
except at these points, φλt(λ

e
t+1) = {σ(λt, λ

e
t+1)} and thus φλt is continuous,

too. If at λe
t+1 a mass of agents becomes indifferent between investing or not,

all or none of them may invest. So for arbitrary λe
t+1 and arbitrary sequences

{λen}n≥0 and {λn}n≥0 with λen → λe
t+1, λn ∈ φλt(λ

en), and λn → λ′ it is
true that λ′ ∈ φλt(λ

e
t+1). In other words, φλt is upper semi-continuous and, by

Kakutani’s theorem, must have a fixed point λt+1 ∈ φλt(λt+1).
Uniqueness follows from the fact that φλt is a decreasing correspondence

over the range [0, λ̄], i.e., that for all λ ∈ φλt(λ
e
t+1) and λ′ ∈ φλt(λ

e
t+1

′): λe
t+1 ≤

λe
t+1

′ ⇐⇒ λ ≥ λ′. This follows from the fact that a higher expected skill ratio
decreases the benefits of child education, while the costs are determined by the
currently given skill ratio at t.

Proof of Proposition 1: Define the correspondence λ′(λ) from [0, 1] to itself as
follows:

λ′(λ) ≡
{

λ′ = λ + µ1 − µ2 | µ1 ∈ u(λ), µ2 ∈ d(λ)
}

.

A SS is a fixed point of this correspondence. Its existence follows from applying
the Kakutani theorem, since the correspondence is non-empty, convex-valued
and u.s.c. (because u and d have these properties by construction).

Proof of Proposition 2: We first prove (c). Since (A1) holds here, any SS must
involve λ < λ̄, implying ws(λ) > wn(λ). So xn(λ, λ) < xs(λ, λ). If λ = 0 then
such a SS involves no mobility. So suppose λ > 0. If x∗ /∈ [xn(λ, λ), xs(λ, λ)]
then either every household or no household in the economy will invest, contra-
dicting the property that λ ∈ (0, λ̄). Hence

xn(λ, λ) ≤ x∗ ≤ xs(λ, λ). (10)

Now if there is upward mobility in the SS, then x∗ = xn(λ, λ). It follows that all
skilled households will invest, in which case there will be no downward mobility.
Hence (c) is established.
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We can therefore restate the steady state condition as

Cn(λ, x∗) ≥ B(λ) ≥ Cs(λ, x∗) (11)

if λ > 0, and
Cn(λ, x∗) ≥ B(λ) (12)

if λ = 0. Now (a) follows from the fact that B is strictly decreasing while
Cs(λ, x∗) is strictly increasing in λ over [λ, λ̄], and both are constant on [0, λ). If
(6) holds then no SS with λ > 0 can exist, as no household will have an incentive
to invest, and λ = 0 is the unique SS. If (6) does not hold, then there exists
λ̃ ∈ (0, λ̄) such that B(λ̃) = Cs(λ̃, x∗). This is a SS, since Cn(λ̃, x∗) > Cs(λ̃, x∗).
Moreover every skill ratio in some left neighborhood of λ̃ is also a SS, since B

is decreasing, Cs(λ, x∗) is nondecreasing and Cn(λ, x∗) is continuous in λ. So
there is a continuum of SS’s. If (7) holds, then λ̃ > λ and there exists an
interval (λ̃ − ε, λ̃) with λ̃ − ε > λ such that every skill ratio in this interval is
a steady state, and within this interval per capita income is increasing and the
skill premium decreasing as we move across SS’s with higher λ. This establishes
(b).

Finally we turn to dynamics. If λ0 is a SS then the result follows from the
uniqueness of equilibrium (Lemma 1).

So consider the case where λ0 > λ̃. Then

B(λ0) < B(λ̃) = Cs(λ̃, x∗) < Cs(λ0, x
∗), (13)

so neither skilled nor unskilled households want to invest if λ1 = λ0.
If B(λ) < Cs(λ0, x

∗), then the equilibrium must entail λ1 = 0, since there
is no skill ratio at t = 1 that would induce anyone to invest. In this case every
skill ratio from 0 to λ̃ is a SS, because B(λ) ≤ B(0) = B(λ) < Cs(λ0, x

∗) ≤
Cs(λ̄, x∗) = Cn(λ̄, x∗) ≤ Cn(λ, x∗) for every λ ≤ λ̄, so the unskilled never want
to invest at any steady skill ratio below λ̄. On the other hand B(λ) ≥ Cs(λ, x∗)
for all λ from 0 to λ̃, so the skilled invest at any such steady skill ratio. Hence
λ1 = 0 is a SS, and then by the reasoning above, λt = λ1 = 0 for all t > 1.

On the other hand suppose that B(λ) ≥ Cs(λ0, x
∗). Then there exists

λ ∈ [λ, λ̃] such that B(λ) = Cs(λ0, x
∗). This is an equilibrium skill ratio (where

only λ measure of (skilled) households invest and the rest being indifferent do
not invest, while no unskilled household wants to invest), and by uniqueness
of equilibrium λ1 must equal this λ. Moreover λ1 is a SS because B(λ1) =
Cs(λ0, x

∗) > Cs(λ1, x
∗) while Cn(λ1, x

∗) > Cn(λ0, x
∗) > Cs(λ0, x

∗) = B(λ1).
So λt = λ1 for all t ≥ 1.

Finally consider the case where λ0 is less than λ̃ and is not a SS. Then all
households in the economy want to invest at the steady skill ratio λ0. In this case
λ1 must be characterized by indifference for unskilled households’ investment
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decision: B(λ1) = Cn(λ0, x
∗), and a fraction of these unskilled households

switch to the skilled occupation, while all skilled households invest. This requires
λ1 > λ0. We claim that λ1 is also less than λ̃ and therefore not a SS. This follows
from B(λ1) = Cn(λ0, x

∗) > Cn(λ1, x
∗) so the unskilled again want to invest at

a stationary skill ratio λ1, contrary to the requirement of a SS. Now the same
argument as at t = 0 applies again, hence λ2 > λ1, etc. Therefore skill ratios
rise monotonically. Since they are bounded above by λ̄ they must converge. The
limiting ratio must involve indifference among the unskilled, and must therefore
be a SS.

Proof of Lemma 2: Define λ′(x̄) by the condition that B(λ′) = Cs(λ′, x̄) if
B(λ) > Cs(λ, x̄), and equal to λ otherwise. Then by construction λ′(x̄) ∈ [λ, λ̄).

We claim that λ ∈ (λ′(x̄), λ̄) and µ ∈ d(λ) implies µ > 0. This is because
B(λ′(x̄)) ≤ Cs(λ′(x̄), x̄); at any λ > λ′(x̄) it is true that B(λ) < Cs(λ, x̄) so at
any such steady skill ratio λ there must be downward mobility.

Next, define x̂(x̄) > 0 by the condition Cn(λ, x̂) = B(λ′(x̄)). This is well-
defined because Cn(λ, x) is increasing from 0 to ∞ as x goes from 0 to ∞, and
B(λ′(x̄)) > 0. Then if x < x̂(x̄) we have for any λ ≤ λ′(x̄):

Cn(λ, x) ≡ U(wn(λ))−U(wn(λ)−x) ≤ Cn(λ, x) < Cn(λ, x̂(x̄)) = B(λ′(x̄)) ≤ B(λ),

implying there must be upward mobility. Combining with the result in the
previous paragraph, Lemma 2 is established.

Proof of Proposition 3: Consider first the case where F has no mass points,
i.e., F ≡ F 0 and has a continuous density f . In this case u(λ) and d(λ) are
functions, which depend on the parameter δ; accordingly we denote these by
u(λ, δ), d(λ, δ) respectively. For any given δ, let xn(λ, δ) and xs(λ, δ) denote the
costs at which unskilled and skilled households are indifferent between investing
and not investing at the constant skill ratio λ. Define the net upward flow:

µ(λ, δ) ≡ u(λ, δ)− d(λ, δ)

= (1− λ)F (xn(λ, δ))− λ (1− F (xs(λ, δ)))

= F (xn(λ, δ))− λF (xn(λ, δ))− λ + λF (xs(λ, δ))

for λ ∈ [0, 1] and δ ∈ [0,∞). xn and xs are C1 and strictly increasing in δ for
any λ ∈ (0, λ̄). Since F is C1, so is µ.

Lemma 4 Suppose F has no mass points, and let λ ∈ (0, λ̄) and δ > 0 be such
that u(λ, δ) = d(λ, δ) > 0. Then

∂µ(λ, δ)
∂λ

= 0 =⇒ ∂µ(λ, δ)
∂δ

> 0.
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Proof of Lemma 4: Consider

∂µ(λ, δ)
∂λ

= f(xn(λ, δ))
∂xn(λ, δ)

∂λ
− F (xn(λ, δ))− λf(xn(λ, δ))

∂xn(λ, δ)
∂λ

− 1 + F (xs(λ, δ)) + λf(xs(λ, δ))
∂xs(λ, δ)

∂λ
= 0. (14)

We claim that f(xn(λ, δ)) and f(xs(λ, δ)) cannot simultaneously equal zero.
Otherwise (14) reduces to

∂µ(λ, δ)
∂λ

= −F (xn(λ, δ))− 1 + F (xs(λ, δ)) = 0.

This would require F (xn(λ, δ)) = 0 and F (xs(λ, δ)) = 1, in contradiction to
u(λ, δ), d(λ, δ) > 0. Therefore, f(xn(λ, δ)) > 0 or f(xs(λ, δ)) > 0 whenever
∂µ(λ,δ)

∂λ = 0.
We have

∂µ(λ, δ)
∂δ

= f(xn(λ, δ))
∂xn(λ, δ)

∂δ
− λf(xn(λ, δ))

∂xn(λ, δ)
∂δ

+ λf(xs(λ, δ))
∂xs(λ, δ)

∂δ

= (1− λ)f(xn(λ, δ))
∂xn(λ, δ)

∂δ
+ λf(xs(λ, δ))

∂xs(λ, δ)
∂δ

.

Now for λ ∈ (0, λ̄) and ∂µ(λ,δ)
∂λ = 0, the monotonicity of threshold costs in δ

(namely, ∂xn(λ,δ)
∂δ > 0 and ∂xs(λ,δ)

∂δ > 0) implies ∂µ(λ,δ)
∂δ > 0.

¤
Return now to the proof of Proposition 3 in the case where F has no mass

points. Define the function λ(δ) : R+ → [0, λ̄] as the constant skill ratio at
which the lowest ability children of skilled parents with discount factor δ are
indifferent between investing and not investing. Specifically, if x̄ < xs(λ, δ) it
is the unique solution to xs(λ, δ) = x̄. If x̄ = xs(λ, δ) set λ(δ) = λ, and if
x̄ > xs(λ, δ) set λ(δ) = 0. Since F has no mass points, a steady state skill ratio
λ at δ satisfying µ(λ, δ) = 0 has positive mobility if and only if it has positive
downward mobility, i.e., it satisfies the additional condition λ ∈ (

λ(δ), λ̄
)
.

Therefore if we define the open manifold

Ξ = {(λ, δ) ∈ [0, λ̄]× R+ |λ ∈
(
λ(δ), λ̄

)} (15)

λ is a mobile steady state skill ratio at δ if and only if µ(λ, δ) = 0 and (λ, δ) ∈ Ξ.
Hence the set of SSM is exactly

EM = {(λ, δ) ∈ Ξ |µ(λ, δ) = 0} (16)

i.e., if we consider the C1 map µ : Ξ → R, we have EM ≡ µ−1(0). By Lemma 4,
(

∂µ(λ,δ)
∂λ

∂µ(λ,δ)
∂δ

)
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has rank 1 at every (λ, δ) ∈ EM . Therefore 0 is a regular value of the map µ.
The Implicit Function Theorem ([21], H.2.2) then implies that µ−1(0) = EM is
a C1 manifold of dimension 1.

Define the projection map π : EM → R+ by π(λ, δ) = δ. We now claim that
if λ is a critical SSM at δ, i.e., (λ, δ) ∈ EM satisfying ∂µ

∂λ = 0, then δ is a critical
value of π. By Lemma 4, ∂µ

∂δ > 0 at any such (λ, δ)-pair. Hence the Implicit
Function Theorem yields ∂π

∂λ = −[∂µ
∂δ ]−1 ∂µ

∂λ = 0, implying that δ is a critical
value of π. Now Sard’s Theorem ([21], I.1.1) implies that the set of critical
values of the smooth function π has Lebesgue measure zero. Hence the set of
discount factors at which there exists a mobile steady state skill ratio λ which
is critical, is a set of Lebesgue measure 0.

Now suppose that F has a finite number of mass points. Then the function
µ is well-defined on the open set O resulting from removing all (λ, δ)-pairs from
(0, λ̄)× (0,∞) for which xn(λ, δ) or xs(λ, δ) corresponds to a mass point of F .
On this set, µ is C1 and by the above arguments all its zeros are locally unique
generically. It remains to consider possible zeros of µ amongst the removed
(λ, δ)-pairs. Now we claim that for a generic set of values of δ, only a finite
number of λ’s were removed. This follows since for any given mass-point of x,
say x∗, a (λ, δ) pair was removed if δB(λ) − U(wo(λ)) + U(wo(λ) − x∗) = 0
for either o = n or o = s. Since B(λ) > 0 for every λ ∈ (0, λ̄), and there
are a finite number of mass points, application of Sard’s Theorem once again
implies that for a generic set of values of δ, a finite number of λ’s were removed.
Hence generically, only finitely many more zeros can exist for the steady state
condition µ(λ, δ) = 0, implying that generic finiteness of the set of mobile steady
states continues to hold.

Proof of Lemma 3: If ρ > 1, the net benefit to an unskilled investor with cost x

is

gn ≡ (1−ρ)−1[δα1−ρη(1−α)(1−ρ)−(1+δ)(1−α)1−ρη−α(1−ρ)+{(1−α)η−α−x}1−ρ]
(17)

where η ≡ 1
λ − 1. Hence in this case gn is nondecreasing in η if and only if

m(η) ≡ {(1− α)η−α − x}−ρ − δα−ρη1−ρ(1−α) − (1 + δ)(1− α)−ρηαρ ≥ 0. (18)

It can easily be verified that the same is true when the utility function is loga-
rithmic (putting ρ = 1).

Claim: If ρ ≥ 1 and m(η) ≥ 0, then m′(η) > 0.

To prove the claim, note that the condition m′(η) > 0 is equivalent to

αρ(1−α)η−1−α{(1−α)η−α−x}−1−ρ > αρ(1+δ)(1−α)−ρηαρ−1+δ(1−ρ+αρ)α−ρηαρ−ρ

(19)
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Now ρ ≥ 1 implies that αρ ≥ αρ + 1 − ρ, so m(η) ≥ 0 implies that the R.H.S.
of (19) cannot exceed αρη−1{(1 − α)η−α − x}−ρ, which in turn cannot exceed
the L.H.S. of (19). This establishes the claim.

The claim implies that if m(η∗) ≥ 0 then m(η) > 0 for all η > η∗. Using
(18) this implies that if (gn)′ ≥ 0 at λ∗, then (gn)′ > 0 at all λ < λ∗. If ρ ≥ 1
then we know that gn is negative for λ in a right neighborhood of λ(x) defined
by wn(λ(x)) = x, and also in a left neighborhood of λ̄. Hence if there exists
some λ ∈ (λ(x), λ̄) where gn > 0, then gn must have a unique maximum λ∗ over
this range, and will be rising from λ(x) to λ∗ and decreasing thereafter. Hence
gn is inverse U-shaped if it is positive somewhere, which implies DCP.

Proof of Proposition 5: Part (ii) of the result follows from the fact that at
λ = 0 all households are unskilled, earn a wage of w which is smaller than the
lowest education cost (owing to (a)), so the requirement of nonnegativity of
consumption prevents any of them from investing.

So we turn to (i). Assumption (b) ensures that the downward flow will be
positive at all steady λ > 0, so any SS with a positive skill ratio must involve
mobility. Suppose λ∗ > 0 is a SS. Then Proposition 3 says that generically λ∗

is locally unique; moreover u(λ) and d(λ) are C1 functions in a neighborhood
of λ∗ with distinct slopes. There exist right and left neighborhoods Nr and Nl

of λ∗ such that either: (A) d(λ) > u(λ) for all λ ∈ Nr and d(λ) < u(λ) for all
λ ∈ Nl, or (B) d(λ) < u(λ) for all λ ∈ Nr and d(λ) > u(λ) for all λ ∈ Nl.

Suppose (A) is true. Assumption (a) implies that u = 0 in a neighborhood
Nu of λ = 0 where the unskilled wage falls below x. So there is a λ1 > 0 in
this neighborhood where u = 0 < d. On the other hand u > d in Nl. Since u

and d are u.s.c. and convex-valued, there must exist an intermediate skill ratio
between neighborhoods Nl and Nu which is a SS with mobility.

And if (B) is true, then noting that u(λ̄) = 0 < d(λ̄), there must exist a skill
ratio between Nr and λ̄ where upward and downward flows match. In either
case, there must be a SS distinct from λ∗.

Proof of Proposition 7: First, note that families’ inertia has no effect whatsoever
on the location of steady states without mobility. So to prove 1. it suffices to
investigate the distance between mobile steady states of Φ and Φp̄,ε, which
are generically locally unique.20 Second, note that steady state upward and
downward flows under Φp̄,ε – denoted by up̄,ε(λ) and dp̄,ε(λ), respectively –
merely scale down u(λ) and d(λ) by factor p̄ if ε = 0. So

µp̄,0(λ) ≡ up̄,0(λ)− dp̄,0(λ) = p̄
[
u(λ)− d(λ)

]

20Local uniqueness implies that it is possible to choose ε small enough to ensure that Φ and

Φp̄,ε have the same number of mobile steady states.
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and steady states of processes Φ and Φp̄,0 exactly coincide for any p̄ ∈ (0, 1].
We will argue that steady states of Φp̄,0 and Φp̄,ε are close to each other in the
sense of 1. for small ε > 0.

A smooth transition from zero probability of switching in response to ∆U =
0 up to probability p̄ in response to ∆U ≥ ε > 0 implies that flow correspon-
dences up̄,ε(λ) and dp̄,ε(λ) are singleton-valued even if the cost distribution F

has atoms. Let us confirm that introducing such a smooth transition from 0 to
p̄ on interval [0, ε] shifts steady states continuously: Define xo

ε(λ, λ′) as the cost
type with occupation o that has net switching benefits of ε, i. e.

go(λ, λ′; xo
ε(λ, λ′)) =

{
ε if o = n,

−ε if o = s.

We abbreviate the corresponding steady state or static-expectations thresholds
and net gains by xo

ε(λ) ≡ xo
ε(λ, λ) and go(λ; x) ≡ go(λ, λ; x); as before let

xo(λ) ≡ xo
0(λ) denote the cost that for fixed λ makes a parent with occupation

o indifferent. Investment decisions of unskilled families (skilled families) with
cost x /∈ [xn

ε (λ), xn(λ)] (x /∈ [xs(λ), xs
ε(λ)], resp.) are the same under Φp̄,ε and

Φp̄,0. Net upward flows µp̄,0(λ) and µp̄,ε(λ) may differ – and hence also their
zeroes may differ – because for any λ there may exist unskilled families with
x ∈ [xn

ε (λ), xn(λ)] for whom µp̄,0(λ) overstates the actual switching probability
by p̄− p(gn(λ; x)), and similarly skilled families whose switching probability is
overstated.

If, for given λ, F has atoms neither at xn(λ) nor at xs(λ), both µp̄,ε(λ) and
µp̄,0(λ) are singleton-valued. Then the distance between µp̄,0(λ) and µp̄,ε(λ) is

D(λ; ε) ≡ −(1− λ)

xn(λ)∫

xn
ε (λ)

[p̄− p(gn(λ; x)]dF (x) + λ

xs
ε(λ)∫

xs(λ)

[p̄− p(−gs(λ;x)]dF (x).

D(λ; ε) converges to zero as ε → 0 for any λ because xo
ε(λ) → xo(λ) for o = n, s.

The distance between steady states of Φp̄,0 and Φp̄,ε (=zeroes of µp̄,0(λ) and
µp̄,ε(λ)) must hence converge to zero, too. In particular, it can be bounded
above by ε′ through an appropriate choice of ε.

When F has an atom at xn(λ) or xs(λ), the location of steady states is
affected by smoothing only if µp̄,0(λ) 3 {0}. While it need not be true that
the (vertical) distance between µp̄,0(λ) and µp̄,ε(λ) becomes arbitrarily small
for ε → 0, there must still exist δ > 0 such that {0} ∈ µp̄,ε(λ′) for some
λ′ ∈ (λ − δ, λ + δ) and δ → 0 as ε → 0: Suppose first that an atom of skilled
families with cost xs(λ) causes µp̄,0 to turn from positive to negative at λ. Then
none of the skilled xs(λ)-types disinvests at λ under Φp̄,ε, but the same share p̄

as under Φp̄,0 does at λ′′ defined by gs(λ′′, λ′′; xs(λ)) = −ε. So µp̄,ε(λ) > 0, but
µp̄,ε(λ′′) < 0 (for ε small enough so that u(·) has no upward jump between λ and
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λ′′). Choosing δ ≡ λ′′ − λ, the (singleton-valued) continuous correspondence
µp̄,ε(·) must assume zero at some λ′ ∈ (λ, λ + δ). Continuity of gs implies that
δ → 0 as ε → 0. Analogous reasoning applies if an atom of unskilled families
causes a drop of µp̄,0(·) to below zero or a jump to above zero. This proves the
first part of Proposition 7.

Now turn to the second part of the proposition. Denote the upward and
downward flows which would result for given λt and anticipated λe

t+1 by up̄,ε(λt, λ
e
t+1)

and dp̄,ε(λt, λ
e
t+1); treat them as real numbers (rather than sets containing a

single real number) in order to simplify notation in the following. Let λ+(λt)
denote the (unique) solution to

λt + up̄,ε(λt, λ
+)− dp̄,ε(λt, λ

+) = λ+.

So
νp̄,ε(λt) ≡ up̄,ε(λt, λ

+(λt))− dp̄,ε(λt, λ
+(λt))

is the competitive equilibrium net upward flow characterizing Φp̄,ε. In contrast,
µp̄,ε(λt) ≡ up̄,ε(λt, λt)−dp̄,ε(λt, λt) is the net flow that would result from agents
having static expectations. It corresponds to the steady state flow investigated
above and would produce a disequilibrium except if λt is indeed a SS. Upward
or downward adjustments under perfect foresight are bounded above by the
corresponding adjustments under static expectations:

Lemma 5 |νp̄,ε(λt)| ≤ |µp̄,ε(λt)|.
Proof:
Suppose νp̄,ε(λt) ≡ λ+(λt) − λt > 0, i. e. λt+1 > λt under perfect foresight.
Then

νp̄,ε(λt) = up̄,ε(λt, λ
+(λt))− dp̄,ε(λt, λ

+(λt))

≤ up̄,ε(λt, λt)− dp̄,ε(λt, λt)

= µp̄,ε(λt)

because unskilled families’ incentive to invest decreases in λt+1, and skilled
families’ incentive to disinvest increases in λt+1. Similarly, for λ+(λt) < λt, or
νp̄,ε(λt) < 0, we have

νp̄,ε(λt, λ
+(λt)) = up̄,ε(λt, λ

+(λt))− dp̄,ε(λt, λ
+(λt))

≥ up̄,ε(λt, λt)− dp̄,ε(λt, λt)

= µp̄,ε(λt).

¤

Define the static expectations process Φ̃p̄,ε by

λt+1 ≡ λt + µp̄,ε(λt).
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Note that Φp̄,ε and Φ̃p̄,ε have the same steady states, and adjustments of λt

are always in the same direction. Thus, if for suitable choice of p̄ and ε the
possible overshooting in adjustment towards a (non-repelling) steady state λ∗

is moderate enough for convergence of Φ̃p̄,ε, then Φp̄,ε must converge, too.
Recall that f denotes the density of the absolutely continuous part of type

distribution F ; let η(xa) ≡ F (xa)−F 0(xa) denote the measure of F ’s atoms xa

with a ∈ A ⊂ N. Then

µp̄,ε(λ) = (1− λ)
[ xn(λ)∫

x

p(gn(λ; x))f(x) dx +
∑

a∈A,
xa≤xn(λ)

η(xa) p(gn(λ;x))
]

−λ
[ x̄∫

xs(λ)

p(−gs(λ; x))f(x) dx +
∑

a∈A,
xa≥xs(λ)

η(xa) p(−gs(λ; x))
]

Differentiating yields

dµp̄,ε(λ)
dλ

= −
[ xn(λ)∫

x

p(gn(λ; x))f(x) dx +
∑

a∈A,
xa≤xn(λ)

η(xa) p(gn(λ;x))
]

+(1− λ)
[
p(gn(λ; xn(λ)))f(xn(λ))

dxn(λ)
dλ

+

+

xn(λ)∫

x

dp(·)
d∆U

∂gn(λ; x)
∂λ

f(x) dx +
∑

a∈A,
xa≤xn(λ)

η(xa)
dp(·)
d∆U

∂gn(λ; x)
∂λ

]

−
[ x̄∫

xs(λ)

p(−gs(λ;x))f(x) dx +
∑

a∈A,
xa≥xs(λ)

η(xa) p(−gs(λ; x))
]

−λ
[
− p(−gs(λ; xs(λ)))f(xs(λ))

dxs(λ)
dλ

−
x̄∫

xs(λ)

dp(·)
d∆U

∂gs(λ; x)
∂λ

f(x) dx−
∑

a∈A,
xa≥xs(λ)

η(xa)
dp(·)
d∆U

∂gs(λ;x)
∂λ

]
.

We can concentrate on adjustment towards a steady state λ∗, so that dµp̄,ε(λ)/dλ <

0 holds near λ∗. A sufficient condition for local stability and convergence to λ∗

from any λt ∈ (λ∗ − δ, λ∗ + δ) for some δ > 0 is then that dµp̄,ε(λ)/dλ > −1.
Using p(·) ≤ p̄, dp/d∆U ≥ 0, and dp/d∆U ≤ lp̄/ε, we obtain
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dµp̄,ε(λ)
dλ

≥ −
[
p̄ + p̄

]

+(1− λ)
[
p̄ · k1 + lp̄/ε · k2

]

−
[
p̄ + p̄

]

−λ
[
p̄ · k3 + lp̄/ε · k4

]

with

k1 ≡ −
∣∣∣ inf

λ∈[0,λ̄]
f(xn(λ))

dxn(λ)
dλ

∣∣∣

k2 ≡ −
∣∣∣ inf

λ∈[0,λ̄]

xn(λ)∫

xn
ε (λ)

∂gn(λ; x)
∂λ

f(x) dx
∣∣∣−

∣∣∣ inf
λ∈[0,λ̄]

∂gn(λ; x)
∂λ

∣∣∣

k3 ≡ − inf
λ∈[0,λ̄]

f(xs(λ))
dxs(λ)

dλ
≥ 0

k4 ≡ − inf
λ∈[0,λ̄]

x̄∫

xs(λ)

∂gs(λ;x)
∂λ

f(x) dx− inf
λ∈[0,λ̄]

∂gs(λ;x)
∂λ

> 0

or, in summary,

0 >
dµp̄,ε(λ)

dλ
≥ −p̄ ·K

with
K ≡ 4− (1− λ)(k1 + k2l/ε) + λ(k3 + k4l/ε) > 0.

Hence, |dµp̄,ε(λ∗)/dλ| < 1 for p̄ > 0 appropriately close to zero. So for each
non-repelling mobile steady state λ there exists a δλ > 0 such that Φ̃p̄,ε and
Φp̄,ε converge to λ from any λ0 ∈ (λ− δλ, λ + δλ).

Denote the minimum of δλ over all (generically finite) steady states by δ∗.
An upper bound to any one-step upward/downward adjustment of λt is given by
p̄ because the maximal measure of unskilled/skilled families is one. So choosing
p̄ < 2δ∗ ensures that neither Φ̃p̄,ε nor Φp̄,ε jump over the non-empty neigh-
borhood of the nearest (non-repelling) mobile steady state. Since the latter is
asymptotically stable, both processes must globally converge. This concludes
the proof of Proposition 7.
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Figure 1: Competitive Equilibrium Given Arbitrary Current Skill Ratio λt
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Figure 2: Homogeneous Agents: Steady States and Dynamics
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Figure 3: Upward and downward flows u(λ) and d(λ) for (a) homogeneous

cost 0.125; (b) measures γ = 0.075 and ι = 0.1 of geniuses and idiots, and nor-

mal agents with cost 0.125; (c) cost distributed uniformly on [0.115, 0.135];

and (d) uniformly on [0.075, 0.175]
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Figure 4: Upward and downward flows u(λ) and d(λ) for a (0.185, 0.3)-

normal distribution of costs truncated on (a) [0.175, 0.195]; (b) [0,∞); (c)

[0.175, 0.475]; and (d) [0.175,∞)
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Figure 5: Upward and downward flows u(λ) and d(λ) for cost types 1/8,

1/6, 3/16, and 10 having measures 0.075, 0.075, 0.075, and 0.775, respectively
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Figure 6: Genius-Idiot Example: Convergent Dynamics
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Figure 7: Genius-Idiot Example: Divergent Dynamics
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