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Abstract Building operation faces great challenges in electricity cost control as

prices on electricity markets become increasingly volatile. Simultaneously, building

operators could nowadays be empowered with information and communication

technology that dynamically integrates relevant information sources, predicts future

electricity prices and demand, and uses smart control to enable electricity cost

savings. In particular, data-driven decision support systems would allow the uti-

lization of temporal flexibilities in electricity consumption by shifting load to times

of lower electricity prices. To contribute to this development, we propose a simple,

general, and forward-looking demand response (DR) approach that can be part of

future data-driven decision support systems in the domain of building electricity

management. For the special use case of building air conditioning systems, our DR

approach decides in periodic increments whether to exercise air conditioning in
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regard to future electricity prices and demand. The decision is made based on an ex-

ante estimation by comparing the total expected electricity costs for all possible

activation periods. For the prediction of future electricity prices, we draw on

existing work and refine a prediction method for our purpose. To determine future

electricity demand, we analyze historical data and derive data-driven dependencies.

We embed the DR approach into a four-step framework and demonstrate its

validity, utility and quality within an evaluation using real-world data from two

public buildings in the US. Thereby, we address a real-world business case and find

significant cost savings potential when using our DR approach.

Keywords Information and communication technology � Data-driven
decision support � Design science research � Demand response in electricity

markets

Abbreviations
Dtemperature Outside temperature—tempreq
am/pm Ante meridiem / post meridiem

a/c Air conditioning

a Parameter for short-term adjustment

AMI Advanced metering infrastructure

C Electricity Costs

�C Degree Celsius

cf Confer

D Demand

DPE Demand prediction error

DR Demand response

DSM Demand side management

DSS Decision support system

E Expectation value

e.g Exempli gratia

EI Energy informatics

EPEX European Power Exchange

et al Et alia

h Hour

ICT Information and communication technology

ID Initial Demand

i.e Id est

K Kelvin

kWh Kilo Watt hours

LS Load shifting

n Reference interval to compute a
p Page

PD Periodic demand

S Spot price for electricity

S Long-term mean electricity price

$/€ U.S. Dollar / Euro
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T Occupancy time

t Time of day

t0 First possible starting time for a/c

ti A/c activation time

tL Latest possible starting for a/c

tm Current point in time

tempreq Required inside temperature

h Mean reversion speed

x Restoration time for tempreq

% Percent

1 Introduction

To date, the energy transition is mostly pushed forward in advanced European

economies (e.g., Germany, Norway, Sweden, Switzerland), but there is also a

world-wide political endeavor (e.g., South America, Japan) to stop global warming

(World Economic Forum 2017). With an increasing number of countries aiming for

an entirely sustainable energy production (especially from wind and solar),

sustainable energy sources evolved to be the world’s (relatively) fastest-growing

energy source (U.S. Energy Information Administration 2018). The adverse effect

of sustainable energy sources is their lack of controllability (e.g., sun shining, wind

blowing), which brings volatility to energy supply (Goebel 2013; Ludig, et al.

2011). As a result, the expansion of sustainable energy sources results in more

volatile electricity prices (Smith et al. 2010; Ketterer 2014).

Additionally, the world’s energy consumption is projected to increase by 28%

between 2015 and 2040, especially due to increased economic growth, access to

marketed energy, and quickly growing populations in non-OECD countries (U.S.

Energy Information Administration 2017), that outweigh increasingly energy-

efficient technologies. Thereby, in 2017, domestic and commercial building sectors’

combined contribution to U.S. energy consumption has reached 27% (Pérez-

Lombard, et al. 2008; U.S. Energy Information (Pérez-Lombard, et al. 2008; U.S.

Energy Information Administration 2015) and is projected to increase by 32%

between 2015 and 2040, an increasing proportion of which is electricity

consumption with an annual increase of 2% (U.S. Energy Information Adminis-

tration 2017). Thus, for building operation, which has the objective to manage

buildings and their facilities (e.g., technical infrastructure, heating, ventilation and

air conditioning), volatile electricity prices are a difficult challenge and electricity

demand management is an important task.

Building operators can reduce their volatility-exacerbated electricity costs by

utilizing flexibility in electricity consumption, which ‘‘bear[s] economic value’’

(Fridgen, et al. 2016, p.538). As electricity prices—depending on the market—are

likely to be lower during some periods (e.g., night times), it is preferable to consume

electricity in these periods rather than during periods, in which prices are regularly
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at their peak (e.g., noon). Following Rozali, et al. (2014, p.2464) load shifting (LS)

defines the ‘‘process of reallocating the electricity demands from the peak periods

when the electricity tariff is high, to off-peak periods when the electricity tariff is

low’’. While LS is usually not possible for the entire electricity demand, already

minor LS flexibilities can yield substantial electricity cost savings. More precisely,

certain appliances are interactive and usually lack flexibility potential (e.g.,

television, lighting, stove, office equipment) (Barker, et al. 2012), however, other

appliances may contain flexibility potential that can be utilized by smarter control

systems (e.g., air conditioning systems, water boiler, washing machine). The

research domain for utilizing LS flexibility is called demand response (DR). DR is

defined as ‘‘changes in electric usage by end-use customers from their normal

consumption patterns in response to changes in the price of electricity over time

[…]’’ (Federal Energy Regulatory Commission 2008, C-2).

In U.S. building operation, a/c systems are an important influencing factor of

electricity costs (U.S. Energy Information Administration 2016) and denote a sub-

category of building automation systems, i.e., systems which are ‘‘widely employed in

modern buildings to realize automatic monitoring and control of building services

systems’’ (Liu, et al. 2009, p.1138). Nevertheless, to this day, there are many a/c

systems that are manually controlled ((Ferreira, et al. 2012) and prone to run constantly

throughout the day, even during disused hours on working days, weekends, and night

times. These a/c systems possess LS flexibility potential by reducing a/c to the on-

demand usage in advance to the occupancy of a room or building. Other a/c systems

provide ‘‘automatic control of the indoor environment conditions’’ (Ducreux, et al.

2012, p.4847) and either preset a/c activation to a fixed time of day or trigger a/c

activation by temperature measurements within the building’s sensor networks.

Opposite to these approaches, the present paper aims to contribute to the

development of data-driven decision support systems (DSS) that make a/c

additionally cost-sensitive. In general, DSSs are ‘‘computer technology solutions

that can be used to support complex decision making and problem-solving’’ (Shim,

et al. 2002, p.111). According to the ‘‘Expanded DSS Framework’’ of (Power 2008,

p.127), the special type of data-driven DSS ‘‘emphasizes access to and manipulation

of a time series of internal […] data and sometimes external and real-time data’’.

Data-driven DSSs can significantly improve electricity management for a/c systems

by monitoring and processing decision-relevant information from different infor-

mation sources. They can integrate both building-specific information (e.g., current

and required inside temperature, occupancy schedules) and external information

(e.g., historical and real-time electricity price information, weather information) to

enable ex-ante optimal LS decision making. Compared to many existing approaches

to building automation, these decisions are time-saving and cost-saving under

consideration of human objectives and frame conditions. Hence, the present paper

covers a relevant real-world problem:

‘‘How can data-driven decision support for load shifting reduce electricity costs
in real estate air conditioning systems?’’

For the creation of data-driven DSSs, smart and machine supported information

systems are of great value. An advanced metering infrastructure (AMI) as a

subcategory of information and communication technology (ICT) records ‘‘customer
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consumption (and possibly other parameters) hourly or more frequently and provides

for daily or more frequent transmittal of measurements over a [bidirectional]

communication network to a central collection point’’ (Federal Energy Regulatory

Commission 2008, p.5). Therefore, AMI enables rapid information exchange and

remote control for activating and deactivating a/c systems.

A building operator’s LS decision on a/c depicts a dynamic and stochastic

optimization problem. Therefore, this paper presents an artifact to address this real-

world problem by following principles of the design science research (DSR)

paradigm (Gregor and Hevner 2013; Hevner, et al. 2004; Peffers, et al. 2007). The

artifact comprises a DR approach for data-driven DSSs, which enables building

operators to perform real-time decision making on LS. The DR approach is

embedded into a standardized four-step framework and decision making is realized

by an algorithm that requires building operators to set a few input parameters.

Thereby, the DR approach automatically searches for the expected optimal

activation time of the a/c system within a specified temporal flexibility window.

Three artifact requirements are postulate

d: It must be easy to understand and use, without requiring engineering expertise

or thermal modeling (i.e., simple). It must be applicable for a broad range of

applications scenarios (i.e., general), and it must integrate electricity price and

demand prediction (i.e., forward-looking).

The paper is structured as follows: This section discusses the purpose and scope

of the artifact and its relevance for the target audience (building operators).

Section 2 specifies the problem context in detail and presents findings from prior

research. Section 3 presents the artifact referred to as DR approach. Section 4

contains the artifact demonstration and a rigorous design evaluation that underpins

the validity, utility, and quality of the artifact based on a real-world business case

with historical data from two large public buildings. Section 5 summarizes results

and discusses limitations and possible future research.

2 Related work

The development of an artifact, which enables building operators to reduce

electricity costs using ICT-enabled decision support, is a contribution to energy

informatics (EI). EI is concerned with ‘‘analyzing, designing, and implementing

systems to increase the efficiency of energy demand and supply systems’’ (Watson,

et al. 2010, p.24). An application domain of EI is demand-side management (DSM),

which comprises ‘‘approaches such as the general increase in energy efficiency and

time-based electricity pricing for end-consumers’’ (Feuerriegel and Neumann 2014,

p.359). Strbac (2008) provides an overview of DSM, explaining both benefits and

challenges. The author lists DSM as a means to reduce long-term electricity reserve,

to reduce preventive measures for power system security, to improve operation

efficiency, and to manage network constraints at the distribution level (Strbac 2008).

DR is a subclass of DSM (Sui, et al. 2011), which is an umbrella term (Feuerriegel

and Neumann 2014). DR is more customer-centric by promoting their interaction

and responses to market signals (e.g., electricity prices) (Albadi and El-Saadany
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2008; Siano 2014; Palensky and Dietrich 2011). Fridgen et al. (2016) propose a DR

valuation method for LS flexibility from a utility’s perspective using real option

analysis. They build on prior research applying real option analysis (Benaroch and

Kauffman 1999; Ronn 2002; Sezgen et al. 2007; Ullrich 2013) and develop a model

to dynamically optimize LS in discrete time increments. For households and small

businesses, Conejo et al. (2010) develop a model to dynamically adjust the hourly

load level in response to consumption constraints and electricity prices, which are

forecasted within confidence intervals. Lujano-Rojas et al. (2012) present an

optimal DR load management strategy, which considers electricity price prediction,

user-defined preferences on energy demand, renewable power production, and electric

vehicle utilization. In two case studies, they illustrate that users of the proposed model

can reduce electricity bills between 8 and 22%. Presenting a tool to maximize social

welfare, Su and Kirschen (2009) illustrate that electricity prices tend to decline by

increasing usage of LS. In a case study, Albadi and El-Saadany (2008) demonstrate that

DR reduces electricity price peaks and changes the consumption patterns of end-

consumers. The authors list the benefits of DR and find that savings are not only

possible for participating customers, but for all customers in the market. Further, they

find positive effects of DR on electricity system reliability and electricity market

performance. Mohsenian-Rad, et al. (2010, p.329) use a game-theoretic approach to

illustrate that in the presence of a real-time electricity market, each user has the

incentive to participate in a scheduling game. They propose an ‘‘optimal, autonomous,

and distributed incentive-based energy consumption scheduling algorithm’’ that aims to

minimize ‘‘the cost of energy and also to balance the total residential load’’ (Mohsenian-

Rad, et al. 2010, p.329). Further, they focus on communication among users rather than

interactions between a utility company and its customers. For residential customers,

Gottwalt, et al. (2011) build different scenarios with flat and time-based electricity

tariffs. Without uncertainty in a day-ahead hourly pricing regime, households can

realize significant savings in electricity costs.

In the context of commercial building operation, Zhou, et al. (2011) build an

agent-based simulation model and illustrate that DR actions by several building

operators shave load profiles at peak hours (peak clipping), reduce the volatility of

aggregated electricity demand, reduce electricity prices (and therefore electricity

costs), and reduce electricity price volatility. Bahrami, et al. (2012) suggest a new

load management strategy to reduce building operators’ electricity costs. Their DR

approach models electricity prices as a convex function of electricity demand and

supply, i.e., an individual building operator’s hourly market price is influenced by

information about the total electricity consumption of all customers and the total

generation capacity of the respective utility. However, since building operators

usually lack such detailed market information, this approach is rather game theoretic

and only applicable from a utility’s perspective. A model for electricity price

prediction is developed by Mohsenian-Rad and Leon-Garcia (2010) who propose an

automatic energy consumption scheduling framework. Similar to the present paper’s

objectives, these authors intent to help building operators ‘‘to shape their response

[to electricity prices] properly and in an automated fashion’’ (Mohsenian-Rad and

Leon-Garcia 2010, p.121). While the present paper’s approach takes into account

the dependence of electricity demand on temperature forecasts, Mohsenian-Rad and
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Leon-Garcia (2010) require building operators to manually announce their

upcoming electricity demand using AMI. Henze (2005) presents a model-based

approach for predictive control of active and passive thermal storage inventory.

Their supervisory controller includes short-term weather prediction and therefore

a/c electricity demand prediction, time-of-use differentiated electricity prices, and

real-time control strategies with dynamically updated forecasts. However, since

these authors assume electricity rate structures to be visible and exogenously

predetermined by the utility, their model is not suited for situations in which a

building operator must decide based on real-time electricity market price

information with stochastic future development. The present paper grasps this

situation by applying a prediction methodology for intraday electricity price

development under consideration of historical price patterns. Another approach that

integrates dynamic electricity tariffs and electricity storage management is

presented by Oldewurtel, et al. (2011). Like the present paper’s approach, these

authors model dynamic electricity prices with stochastic future development to

achieve electricity cost savings by exploiting LS flexibilities. Instead of predicting

electricity demand, however, these authors empirically collect and aggregate

historical demand profiles, which makes their model insensitive for individual

electricity consumption. While these articles focus on a macrogrid perspective, there

is also a substantial research stream on decentral microgrid concepts (e.g., Guerrero,

et al. 2012; Hatziargyriou, et al. 2007; Münsing, et al. 2017; Thiam 2010). Though

this perspective is gaining increasing importance with the further distribution of

decentralized (renewable) electricity generation (e.g., solar, wind), this manuscript

focuses on the optimization of electricity costs in the presence of a macro electricity

market (i.e., against public market prices).

Most of the mentioned studies rely on data-driven decision making and assume

smart grids and respective ICT (especially AMI) as technological enablers.

Concluding, researchers have already started to develop data-driven DR approaches

by suggesting new control logics in building operation, which might be part of

future DSSs. The present paper strives to contribute to this development by

addressing especially one identified research gap: To the best of the authors

knowledge, formal DR approaches which dynamically predict electricity prices and

electricity demand for a/c systems based on weather information and occupancy

schedules and that perform automated and real-time decision support on LS with the

objective to reduce electricity costs do not exist so far.

3 Artifact description

In this section, the present paper continues to ‘‘create and evaluate(the appropriate)

IT artifact intended to solve [the] identified problem’’ (Hevner, et al. 2004, p.77). In

line with the EI framework introduced by Watson, et al. (2010), the artifact supports

building operators using flow networks (AMI) and sensitized objects (a/c system) to

smarter consume electricity. Hence, it addresses the problem of a ‘‘lack of

information to enable and motivate economic and behaviorally driven solutions’’

(Watson, et al. 2010, p.24).
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3.1 Scenario introduction

The present paper defines an ‘‘a/c system’’ as technology that building operators use

to change temperature (i.e., heating, or cooling) inside a room or building. Although

many authors use the term heating, ventilation and air conditioning systems, this

paper applies a/c systems as a general term, which can comprise all these use cases.

The a/c system is part of a greater information system that ‘‘ties together the various

elements to provide a complete solution’’ (Watson, et al. 2010, p.27). In the

following, the artifact’s application scenario is explained along with prerequisite

assumptions and the four-step framework embedding the DR approach to reduce

electricity costs.

The application scenario is characterized as follows: A building operator must

prepare appropriate temperature according to an exogenously specified room or

building (in the following referred to as object) occupancy schedule (Fig. 1).

Occupancy time is the time when the considered object is not empty. The required

inside temperature (tempreq) needs to be achieved until occupancy starts (T),

whereas inside temperature prior to occupancy may deviate. For the DR approach,

the present paper focuses on the time span between the first possible starting time

for a/c (t0) and the latest possible starting time for a/c (tL). The latter is necessary to

guarantee tempreq until occupancy: tL is the latest point prior to T at which a/c

activation ensures tempreq until T. By finding the expectedly optimal point in time

between t0 and tL (i.e., the temporal flexibility window for LS) to activate the a/c

system, building operators can minimize expected electricity costs. During each

day, several subsequent, non-overlapping events can take place in one object.

Assumption 1: Building operators can deduce t0 and tL by analyzing the
occupancy schedule and tempreq is constant for different object occupancies.

The DR approach uses the end of one occupancy as t0 to optimize a/c for

subsequent occupancy (if an occupancy is the first on the day, t0 could be the

previous day). Hence, due to the previous occupancy, the object’s inside

temperature in t0 can be assumed to be tempreq. If a/c is deactivated in t0, the

object’s inside temperature starts striving toward outside temperature due to

thermal movement.

Assumption 2: The object’s inside temperature in t0 equals tempreq.

Considering the first artifact requirement (‘‘easy to understand and use’’), the DR

approach applies discrete-time optimization, which is less complex and

demanding (for decision-makers and ICT) than continuous-time optimization.

Fig. 1 Exemplary time scheme prior to occupancy time
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Moreover, the DR approach requires an appropriate a/c procedure, i.e., a

sequence of a/c activations and deactivations with specific durations and

intensities. A/c procedures are specified by their control levers: Cooling and

heating can be activated unilaterally or alternately. Then, cooling and heating can

be activated continuously or with interruptions. Finally, cooling and heating can

be performed at different intensities within certain technical boundaries. These

control levers can be applied either solely or jointly within one procedure. The

common objective of all procedures is to achieve tempreq until T.

Figure 2 illustrates three exemplarily procedures (for cooling): A procedure

where a/c is activated dynamically over multiple periods (1). At each discrete time

step, an algorithm decides to either activate or deactivate a/c and, for activation, a/c

intensity. Although this is a very promising procedure to minimize electricity costs

for a/c, it also entails the largest optimization complexity. Then, a less complex

procedure in which tempreq (until T) is achieved by one-time activation and

deactivation (2). To compensate for an object’s thermal movement, inside

temperature during activation (before T) is undercooled. However, this procedure

has technical restrictions (e.g., the a/c system may cool below the freezing point of

cooling water) wherefore additional optimization conditions are necessary. Finally,

a procedure in which a/c runs constantly (without interruption) from t0 to tL (3).

This procedure foregoes LS flexibility and is (in most cases) a waste of savings

potential and energy.

The present paper applies a procedure that is more simplistic than procedure (1)

and a combination of procedure (2) and (3) with modifications to avoid technical

restrictions resulting from undercooling or overheating and to reduce the waste of

energy: After activation, a/c is performed continuously and not allowed to interrupt.

After reaching tempreq, it is performed at a lower intensity to keep tempreq until T

(Fig. 3).

Thereby, x� 1 is the duration (number of discrete-time increments) after a/c

activation until tempreq is restored. The algorithm of the DR approach starts in t0

and examines whether immediate activation of a/c is expected to be optimal. The

activation of a/c is expected to be optimal if the total expected electricity costs

Fig. 2 Objective and variants of a/c procedures
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resulting from a/c activation in the current period until T are lower compared to later

activation times. If a later activation is expected to be optimal, a/c is not activated

and computation is repeated the next discrete time step (tL at the latest).

3.2 Framework introduction

The data-driven DR approach is embedded within a standardized four-step

framework (Fig. 4).

It consists of an inner cycle (decision algorithm for LS) and an outer cycle

(feedback cycle). In step 1 (scheduling), the DR approach imports input information

for data-driven decision making. In step 2, the DR approach predicts future

electricity prices (a) and demand (b). This information is used in step 3, when the

DR approach decides upon LS, i.e., activation of the a/c system. If activation is

deferred, the DR approach reiterates step 2 and 3 in the next period. After the

optimization is completed, the DR approach evaluates realized cost savings (step 4).

In the following, this paper explains each step and the accompanying assumptions in

more detail.

Fig. 3 The applied procedure

Fig. 4 Four-step framework of the DR approach
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3.3 Step 1: scheduling

The first step is the collection of three human input parameters according to

Assumption 1: t0, tL, and tempreq. t0 and tL may be implicitly derived out of the

object’s occupancy schedule. These parameters strongly influence further decision

making and set the boundaries for optimization.

3.4 Step 2a: Price prediction

As the DR approach optimizes a/c activation under consideration of expected

electricity costs, the algorithm must integrate currently observable and expected

future electricity (market) prices. Therefore, the DR approach requires an electricity

price prediction model, which is not only accurate but also able to keep

comprehensiveness and simplicity. Although different price prediction models are

conceivable, the present paper builds upon the work of Fridgen, et al. (2016), who

develop a discrete-time price prediction model for the valuation of LS flexibility in

an intraday electricity market. In the following, their model is referred to as ‘‘price

prediction model’’.

Within the price prediction model, the authors develop a stochastic process

‘‘which realistically replicates intraday electricity spot price development’’ (Frid-

gen, et al. 2016, p.537). Their stochastic process predicts electricity price

movements and thereby certain reoccurring intraday patterns out of historical data.

Since this paper does also focus on intraday flexibility in discrete-time increments,

the price prediction model is appropriate for the present purpose.

The price prediction model uses geometric electricity spot price returns to set up

a geometric Brownian motion consisting of two components: A component

depicting expected price changes (drift) and a component depicting uncertain price

changes (volatility). The computation of the drift integrates historical time (of day)-

dependent mean electricity prices and expects that the process reverts to these

patterns (mean-reversion). Since mean price and volatility patterns vary between

different times (of day), the price prediction model ties a ‘‘chain of single-period

stochastic processes’’ (Fridgen, et al. 2016, p.1001). However, the present paper

makes some modifications to align the price prediction model: The original model

values LS flexibility using a real options approach, since flexibility is purchased in

these authors’ scenario. Real options and their value are dependent on price

volatility. Whereas Fridgen et al. (2016) model only electricity prices as the

underlying asset to their real option, this paper would have to model both electricity

prices and demand, which would result in a far more complex real option analysis.

Instead, a simple expectation maximization on already existing flexibility is applied.

Assuming risk-neutral building operators, price volatility is no influencing factor for

ex-ante decision making:
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3.5 The decision-maker is risk-neutral in his decision making.

The resulting electricity price prediction model based on Fridgen, et al. (2016) is

defined by the following term (E is the expectation value, S is the spot price for

electricity, t is the time of day, h 2 ½0; 1� is the speed of mean-reversion, �
S is the

long-term mean electricity price, and a ¼
Pi¼n

i¼0
S t�ið Þ

Pi¼n

i¼0
S t�ið Þ

2 0;1½ Þ; a parameter for short-

term adjustment of�S ):

E S t þ 1ð Þð Þ ¼ E S tð Þð Þ þ h � a � S t þ 1ð Þ
� �

� E S tð Þð Þ ð1Þ
The speed of mean-reversion h determines how fast the electricity price is

expected to return to its long-term price pattern during the next discrete time

increment. If h ¼ 1, the electricity price in tþ 1 is expected to equal the adjusted

long-term mean price in tþ 1. If h ¼ 0, the electricity price in t þ 1 is expected to

equal the price in t. The short-term adjustment a determines the adjustment of �
S to

represent recent price information. In particular, daily electricity prices usually

deviate from their long-term mean price level because of temporary fluctuations in

electricity demand and supply. The DR approach integrates current observable price

information and applies the price prediction model whenever it must decide about

a/c activation.

3.6 Step 2b: demand calculation

Besides electricity prices, building operator’s electricity costs depend on electricity

demand. In step 2b, the DR approach calculates electricity demand (D ti; tL; xð Þ) for
a/c activation. D ti; tL; xð Þ is the total amount of electricity (in kwh) that is consumed

between ti and tL. It depends on the difference between outside temperature and

tempreq, which is referred to as DtemperatureðtÞ. For further analysis, D ti; tL; xð Þ is
separated into two components (Fig. 5):

IDðti; xÞ is the initial electricity demand or payback load (Illerhaus and Verstege

2000) for a/c deactivation in t0 and subsequent thermal movement until a/c

(re)activation. ID ti; xð Þ is the initial electricity demand per time increment

Fig. 5 Electricity demand in the applied procedure
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ID ti; xð Þ ¼
Xt¼tiþx�1

t¼ti
ID tð Þ ð2Þ

To estimate IDðtÞ; building operators analyze the historical data-based depen-

dence of IDðtÞ on previous periods’ development of DtemperatureðtÞ. They regress

IDðtÞ, for example, on mean temperature or use a weighted average with a higher

weighting for more recent temperature developments (due to thermal movement). A

multi-dimensional model that regresses IDðtÞ simultaneously on every previous

periods’ DtemperatureðtÞ is also conceivable but exposed to great complexity and

data requirements. If historical data is absent, building operators could conduct

experimental runs to collect the required information. Moreover, starting in ti,
further electricity PD ti; tL; xð Þ is required to compensate for continuous thermal

movement until T. After achieving tempreq, PDðtÞ is the periodical amount of

electricity (in kwh) that is required to keep tempreq constant between t and t þ 1. In

addition, until tempreq is achieved (i.e., during the initial cooling process between ti

and ti þ x), there is already a fraction of PDðtÞ that is required (in addition to

IDðti; xÞ) as the a/c system starts to regulate the inside temperature toward tempreq,

which also initializes energy loss due to thermal movement. For simplification, this

amount of energy is estimated by
PDðtÞ
2

for t 2 ½ti; ti þ x� 1�. Hence, PD ti; tL; xð Þ can
be computed as

PD ti; tL; xð Þ ¼
Xtiþx�1

t¼ti

PD tð Þ
2

þ
Xt¼tL

t¼tiþx
PD tð Þ ð3Þ

Like IDðtÞ, building operators can measure the dependence of PD tð Þ on

DtemperatureðtÞ. Figure 6 illustrates a schematic dependency structure for PD tð Þ.
Thus, the algorithm can compute the total electricity demand between ti and tL:

D ti; tL; xð Þ ¼ ID ti; xð Þ þ PD ti; tL; xð Þ ð4Þ

3.7 Step 3: decision-making

In this step, the DR approach decides either to activate the a/c system in the current

period or to defer the activation decision to the next period. More precisely, for each

possible (discrete) activation time ti until tL, estimated in time tm (m� i, refers to

the current point in time for decision making), the algorithm calculates expected

Fig. 6 Schematic dependence of PDðtÞ on DtemperatureðtÞ
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total electricity costs for a/c activation. For IDðti; xÞ and PDðti; tL; xÞ, costs amount

to:

E C IDðti; xð ÞÞð Þ ¼
Xt¼tiþx�1

t¼ti
E ID tð Þð Þ � E S tð Þð Þð Þ ð5Þ

E C PDðti; tL; xð Þð ÞÞ ¼
Xt¼tiþx�1

t¼ti

PD tð Þ
2

� E S tð Þð Þ
� �

þ
Xt¼tL

t¼tiþx

PD tð Þ � E S tð Þð Þð Þ ð6Þ

adding E C IDðti; xð ÞÞð Þ and EðC PDðti; tL; xð ÞÞÞ, building operators can calculate

the expected total electricity costs EðC ti; tL; xð ÞÞ. In particular, EðC ti; tL; xjtmð ÞÞ
expresses these costs estimated in time tm. The objective of the algorithm in time tm
is therefore to identify the minimum EðC ti; tL; xjtmð ÞÞ out of all possible activation

times ti, i.e., min
i
ðEðC ti; tL; xjtmð ÞÞÞ. If the algorithm expects

min
i
ðEðC ti; tL; xjtmð ÞÞÞ ¼ EðC ti; tL; xjtmð ÞÞ, a/c is activated and ex-ante optimization

is terminated. Otherwise, the algorithm defers the activation decision for one period

to update information and to decide again. If tm ¼ tL is reached, a/c activation is

obligatory.

3.8 Step 4: feedback

In the last step, the activation decision and resulting electricity costs are ex-post

evaluated. The algorithm’s activation decision bases on electricity price and demand

predictions and does not necessarily yield optimal results. Hence, there is a need to

quantify electricity cost savings to evaluate the quality of the artifact (Goebel 2013;

Strueker and Dinther 2012). Absolute and relative cost savings can be computed by

comparing the results of the applied procedure (Fig. 3) and a procedure with no DR.

As a reference for no DR (‘‘default procedure’’), procedure (3) from Fig. 2 can be

applied in which a/c is activated continuously throughout the day. In addition, the

feedback should contain a comparison between cost savings and cost savings

potential. Cost savings potential is defined as the maximum of electricity costs that

could have been saved within the applied procedure by optimally applying LS

within the given flexibility window from an ex-post perspective. This is the

benchmark for the DR approach. Finally, observable information can be recorded

(e.g. time of day, electricity prices, outside temperature, and electricity demand) and

processed into a continuously growing database that the DR approach can use to

maintain or improve prediction quality.

4 Artifact demonstration and evaluation

4.1 Real-world scenario description

In this section, the artifact is evaluated as required within the DSR paradigm.

Therefore, the artifact’s functionality is illustrated within an example, i.e., the

decision algorithm of LS is applied to demonstrate that the DR approach ‘‘can be
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implemented in a working system’’ (Hevner, et al. 2004, p.79). Afterward, the DR

approach is evaluated with multiple simulations of random scenarios to demonstrate

that the ‘‘artifact (generally) works and does what it is meant to do’’ (validity)

(Gregor and Hevner 2013, p.351). For both, real-world data is applied.

The object that serves for demonstration and evaluation is located in the

southeastern part of the United States, in Georgia. Georgia is known for its

subtropical climate, with humid summers and moderate winters. Especially during

summer months (May to September), temperatures are comparatively high (between

15–31.7 �C on average). During winter months (November to March), temperatures

are on average above freezing point (between 0.6 �C and 18.3 �C). For research
purposes at the University of Georgia, a/c data were collected from two University

buildings. The rooms within the buildings are used as offices and for large meetings.

Both buildings are partly open to the public. Using measuring points, different

parameters were collected during a period ranging from January 2010 to December

2014. Collected parameters comprise inside temperature on a room level, outside

temperature, and electricity consumption (kWh) for a/c usage. Measuring points

recorded instantaneous, i.e., not as averaged values within a certain time span. Main

components of the a/c system are two chiller systems that jointly air-condition via

chilled water loops. Together, both chiller systems have a maximum wattage of

1.2 MW and are responsible for 90% of the a/c system’s total electricity

consumption. The remaining 10% are consumed by auxiliary equipment that scales

up with the chillers’ current load level. By applying variable load control, the a/c

system is designed to provide a constant supply water temperature (about

5 �C ? /-0.2 �C). Electricity consumption of the a/c system depends on the

temperature of return water (that, in turn, depends on outside and the buildings’

inside temperature). Warmer return water increases electricity consumption and

vice versa. To date, no DR mechanism is in place and the (central) a/c system runs

all day (not to be confused with a single room’s air supply, which can toggle on and

off), even in times of low or no occupancy (e.g., on weekends and at night). Overall,

the current system wastes energy and yields unnecessary electricity costs.

The University purchases electricity for the a/c system from a local utility

company. The company charges real-time electricity prices rather than offering a

flat plan. Thus, electricity prices are sometimes high and the University incurs

significant electricity costs. The collected data of the a/c system and payed

electricity prices make this example suitable for the DR approach’s demonstration

and evaluation. Although a data-driven DSS that integrates the DR approach is not

implemented yet, its theoretical cost savings potential is evaluated in this scenario.

For variable load control, the a/c system already possesses sensor systems that

measure further parameters such as supply water temperature and current load level,

a web server that collects all sensor information, and a remote controller that

building operators can access using a web portal. Access to the utility’s real-time

electricity prices is available using the customer portal. To establish cost-sensitive

a/c control, there is a need for changes and enhancements in the monitoring and

control system as it must dynamically import the utility’s price information (by

accessing a respective application interface) and possess control software that

applies the data-driven DR approach. Moreover, hardware for faster communication
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and computation would be useful in order that the system can react on changes in

input information in near real-time (which is especially necessary to scale downtime

increment length between two optimization iterations). Due to an expert’s opinion

(an engineer at the university with a PhD who is specialized in a/c systems), the sum

of all university-internal and -external costs for implementing such cost-sensitive

control in the considered a/c system amounts to about $100.000. Further running

costs are expected to be insignificantly low. Besides this application scenario, the

expert expects the control software to be applicable in other university buildings as

soon as they are also equipped with modern monitoring and control systems. To

obtain a conservative estimate, the present paper limits the business case analyses to

the described scenario.

4.2 Step 1 Scheduling (demonstration)

For artifact demonstration, tempreq is set to 21 �C. This is the currently targeted

inside temperature in the scenario’s buildings. As Georgia, USA, is known for its

humid and hot summers, a typical day in September is chosen, when a/c is required

to cool (keep) the inside temperature to (at) 21 �C. In particular, the DR approach is

applied on September 04, 2014. The hypothetical event of interest (e.g., a major

event of a university initiative) takes place at 2 pm (occupancy time) in both

buildings. The earliest possible a/c activation is set to 7am. The University’s expert

stated that every room within the two buildings (regardless of current inside and

outside temperature) can be cooled down to tempreq by a/c within one hour. Hence,

tL is at 1 pm (i.e., x ¼ 1). As the dataset of historically payed electricity prices

features hourly time increments, artifact demonstration and evaluation is also

conducted with hourly time increments between t0 and tL. Table 1 illustrates the

schedule.

4.3 Step 2a: Price prediction (demonstration)

As described in Sect. 3, this paper modifies and applies the price prediction model

developed by Fridgen, et al. (2016). This price prediction model draws upon the

existence of historical time of day- and season-specific price patterns and updates

price prediction at every time step by integrating new observable price information.

Figure 7 illustrates historical time of day-specific price patterns of electricity prices.

Further, Table 2 illustrates descriptive statistics on electricity price patterns of

different months.

Table 1 Schedule for artifact demonstration

Time t0 = 7am 8am 9am 10am 11am 12noon tL = 1 pm T = 2 pm

t 0 1 2 3 4 5 6 7
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For configuration purposes, building operators can adjust three endogenous

(model) parameters within the DR approach’s price prediction model: h, n (the

adjustment reference interval to compute shot-term adjustment a), and an estimation

corridor to compute �
S ðtÞ. Fridgen, et al. (2016) vary h within an interval between 0

and 1. For artifact demonstration, h is arbitrarily set to 0.8 and further analysis of its

influence is left to the subsequent evaluation. Similar, n is set to 0. To calculate �
S ðtÞ,

Fridgen, et al. (2016) analyze seasonal price patterns. The authors differentiate

Table 2 Descriptive statistics for electricity prices per month [$/kWh]

Mean Std. Dev Min Max

January 0.06983 0.03770 0.04693 0.67465

February 0.06509 0.00937 0.04756 0.11991

March 0.06392 0.00784 0.03000 0.10256

April 0.06467 0.00929 0.04483 0.11846

May 0.06460 0.00916 0.04661 0.17592

June 0.07623 0.03772 0.04643 0.42924

July 0.08093 0.04634 0.04800 0.41529

August 0.08153 0.05391 0.04981 0.72466

September 0.06680 0.01556 0.04919 0.31288

October 0.06406 0.00828 0.04600 0.09350

November 0.06387 0.00864 0.05137 0.30558

December 0.06414 0.01241 0.04933 0.36954

Fig. 7 Hourly mean electricity
prices (June 2012–November
2014)

Business Research (2020) 13:1491–1525 1507

123



between summer, winter, and intermediate season. However, this does not fully

reflect the course of historical time-of-day-specific price patterns. For example, their

intermediate seasons include March–May and September–November. Therefore,

March and September share the same �
S ðtÞ, which is (in our case) not accurate as

shown in Table 2. Hence, this paper calculates �
S ðtÞ based on a historical corridor

around the date of interest and time-of-day. For the presented example (September

04, 2014), �
S ðtÞ at (e.g.) 12 noon is calculated by averaging previous-years’

historical electricity prices from (e.g.) 30 days prior to 30 days after the date of

interest, i.e., from August 05, (2010–2013) to October 04, (2010–2013) each of

which at 12 noon. Table 3 illustrates respective results (with SðtÞ being the actual

observable electricity prices).

Example: E S 9amj8amð Þð Þ ¼ EðS 8amj8amð Þ þ h�ða 8amð Þ�S 9amð Þ�
E S 8amj8amð Þð Þ ¼ 0:0599þ 0:8� 0:9552�0:0625� 0:0599ð Þ ¼ 0:0597

In the next step, the DR approach estimates Dðti; 1pm; 1Þ. As described in

Sect. 3.5, Dðti; 1pm; 1Þ is split into ID ti; 1ð Þ and PD ti; 1pm; 1ð Þ (as x ¼ 1 is constant

within the real-world scenario, this section continues with a reduced formal notation

that neglects x). For the real-world scenario, Table 4 illustrates related

DtemperatureðtÞ and PDðtÞ observations and a respective linear regression.

The real-world scenario’s a/c system is intended for cooling only. Cooling for

DtemperatureðtÞ\0 implies that the two buildings were still heated up when outside

temperature already fell below tempreq. Unfortunately, historical temperature

forecasts that match the given historical data set were not obtainable. Hence, for

artifact demonstration and evaluation, this paper requires an assumption to predict

electricity demand:

4.4 Actual outside temperature equals previous weather forecasts

Generally, Assumption 4 depicts a great simplification of reality. However, since the

DR approach focusses on short-term schedules for only a few hours, weather

forecasts are close to reality (National Weather Service 2017). Moreover,

subsequent evaluation integrates an artificial demand prediction error to analyze

electricity cost savings’ sensitivity to demand forecasting quality. Hence, the

algorithm can use historical outside temperature as previous weather forecasts to

compute PDðtÞ. Table 5 illustrates the respective results.

To date, historically collected parameters are only appropriate for the estimation

ofPDðtÞ. To precisely estimateIDðtiÞ, experimental runs would be necessary that

analyze different a/c deactivation durations and different outside temperature

developments. However, these experimental runs have not been conducted yet. As

interim solution, threshold values are applied that logically contain the cor-

rectIDðtiÞ. For the lower limit applies:IDðtiÞ ¼ 0, i.e., a situation in which no a/c is

required to restoretempreq. For the upper limit applies: ID tið Þ ¼
Pt¼ti�1

t¼t0

PD tð Þ, which

equals the sum of all electricity that would have been necessary to keep the inside
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temperature at tempreq at any time sincet0. Until more accurate solutions or

historical data are available, IDðtiÞ 2 ½0;
Pt¼ti�1

t¼t0
PDðtÞ� is an appropriate interval to

estimateIDðtiÞ. For demonstration, we arbitrarily choose a parametere ¼ 0:4, which

Table 3 Price prediction parameters

(i) Time (September 04,
2014)

7am 8am 9am 10am 11am 12noon 1 pm 2 pm

(ii) i 0 1 2 3 4 5 6 7

(iii) �
SðtÞ[$] 0.0585 0.0608 0.0625 0.0643 0.0671 0.0732 0.0833 0.0959

(iv) SðtÞ[$] 0.0606 0.0599 0.0639 0.0655 0.0676 0.0692 0.0708 0.0906

(v) h 0.8

(vi) a( n ¼ 0) 0.9457 0.9552 0.9712 1.0227 1.0351 0.9855 1.0212 1.0178

Expected electricity price Sðtjt0Þ at time t in [$/kWh] (utilizing F-1)

(vii) EðSðtj7amÞÞ 0.0606 0.0581 0.0594 0.0618 0.0673 0.0741 0.0805 0.0944

(viii) E S tj8amð Þð Þ 0.0599 0.0597 0.0619 0.0673 0.0741 0.0805 0.0944

(ix) E S tj9amð Þð Þ 0.0639 0.0627 0.0674 0.0741 0.0805 0.0944

(x) E S tj10amð Þð Þ 0.0655 0.0680 0.0742 0.0805 0.0944

(xi) E S tj11amð Þð Þ 0.0676 0.0741 0.0805 0.0944

(x) E S tj12noonð Þð Þ 0.0692 0.0795 0.0943

(xi) E S tj1pmð Þð Þ 0.0708 0.0925

(xii) E S tj2pmð Þð Þ 0.0906

Table 4 Empirical dependence of PD ti on Dtemperature

Model parameters PDti *Dtemperatureti

Estimate Standard error t-value Pr([|t|)

Intercept 428.5889 1.1151 384.3 2e-16 ***

Dtemperatureti 21.8235 0.1775 122.9 2e-16 ***

Significance codes 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Multiple R-squared 0.5645 Adjusted R-squared 0.5644

F-statistic 1.511e ? 04 P value 2.2e-16
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simulates a building that absorbs heat to a medium extent. Table 5 (vii) illustrates

estimations for IDðtiÞ and (viii) estimations for D ti; 12ð Þ:

ID tið Þ ¼ e �
Xt¼ti�1

t¼t0

PD tð Þ ð7Þ

Example: PD 8amj2pmð Þ ¼ Intercept�Dtemperature tð Þ�Estimate ¼ 428:5889þ
3:8�21:8235

PD 8amj2pmð Þ ¼ PD 8amð Þ
2

þ
P

t¼
9am2pmPD tð Þ ¼ 511:52

2
þ 520:25þ . . .þ 697:02þ

550:80

ID 1pmð Þ ¼ e�
Pt¼ti�1

t¼t0

PD tð Þ ¼ 0:4� 507:15þ 511:52þ . . .ð Þ ¼ 1411:83

Table 5 Development of DtemperatureðtÞ and PD (t)

(i) Time (September 04, 2014) 7am 8am 1 pm 2 pm

(ii) t 0 1 6 7

(iii) Outside Temperature (t) [�C] 24.6 24.8 33.3 26.6

(iv) DtemperatureðtÞ[K] 3.6 3.8 12.3 5.6

(v) PDðtÞ[kwh] 507.15 511.52 697.02 550.80

(vi) PDðti; 2pmÞ[kwh] (utilizing F-3) 4523.83 4014.49 899.31 275.40

(vii) IDðtiÞ[kwh] (utilizing F-7) 0.00 202.86 1411.83 1690.64

(viii) Dðti; 2pmÞ[kwh] (utilizing F-2,3) 4523.83 4217.35 2311.14 1966.04

Table 6 Decision making within artifact demonstration

(i) Time (September 04, 2014) 7am 8am 10am 1 pm 2 pm

(ii) SðtÞ[$/kWh] 0.0606 0.0599 0.0708 0.0906

(iii) E S tj7amð Þð Þ[$/kWh] 0.0606 0.0581 0.0805 0.0944

(iv) E S tj8amð Þð Þ[$/kWh] 0.0599 0.0805 0.0944

(v) E S tj1pmð Þð Þ[$/kWh] 0.0708 0.0925

(vi) IDðtiÞ[kwh] 0.00 202.86 1411.83 1690.64

(vii) PDðtÞ[kwh] 507.15 511.52 697.02 550.80

(viii) PDðti; 2pmÞ[kwh] 4523.83 4014.49 899.31 275.40

Expected electricity costs at time t in [$] (utilizing F-5,6)

(xi) EðC ti; 2pmj7amð ÞÞ 319.42 300.98 193.71 185.68

(xii) EðCðti; 2pmj8amÞ) 302.02 193.71 185.68

(xiii) EðCðti; 2pmj1pmÞ) 175.58 181.87

(xiv) EðCðti; 2pmj2pmÞ) 178.13
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D 1pm; 2pmð Þ ¼ ID 1pmð Þ þ PD 1pmð Þ
2

þ
P2pm

t¼2pm

PD tð Þ ¼ 1411:83þ 697:02
2

þ 550:80 ¼ 2311:14

4.5 4.5 Step 3: Decision making (demonstration)

In the third step, the decision algorithm for LS determines if immediate a/c

activation is ex-ante optimal (cost minimal). In particular, from the perspective of

the current period, the algorithm predicts and compares expected total electricity

costs for all possible activation periods. Table 6 illustrates computations from the

perspectives of 7a.m., 8a.m., 1p.m., and 2p.m. In this example, the algorithm would

wait until 1 pm to initialize a/c.

Example: E C 1pm; 2pmj1pmð Þð Þ ¼ ID 1pmð Þ�EðS 1pmj2pmð Þþ
P2pm

t¼1pm

E S tj2pmð Þ�PD tð Þð Þ ¼0:0708�1411:83þ 0:0708� 697:02
2

þ :0925�550:80 ¼ 175:58

4.6 4.6 Step 4: Feedback (demonstration)

In the last step, the DR approach ex-post evaluates the ex-ante chosen activation

time as described in Sect. 3.7. Therefore, the DR approach computes savings of its

decision compared to the default procedure with no DR. By applying DR and

activating a/c at 1 pm, total electricity costs would have been $174.53 (cf.

Table 7ii). These are the lowest actual (not expected) total costs and can be

computed by utilizing F-6 with the actual (not expected) electricity prices. The

default procedure, however, would have yielded total electricity costs of $312.90

(cf. Table 7ii). This equals an electricity cost reduction of 44.22% due to the DR

approach. Moreover, the theoretically optimal point in time for a/c activation (the

benchmark) was also at 1 pm. In particular, the DR approach was able to utilize the

entire cost savings potential. Table 7 summarizes the results for the presented

example. Cex�post are calculated using the demand for each hour and according

actual prices, not the expected prices. Since this example is biased in its validity

because it was manually picked, the next section contains randomly chosen

historical simulations and sensitivity analysis. Thereby, the general usefulness of the

artifact is analyzed.

4.7 Evaluation

DSR methodology calls for an evaluation of a developed artifact to provide

evidence ‘‘how well the artifact supports a solution to the problem ‘‘(Peffers, et al.

2007, p.56). A possible evaluation method within DSR are simulations (Hevner,

et al. 2004). This paper’s evaluation is divided into three parts and presents

historical simulations on the real-world scenario with 200,000 simulation runs each:

The first part gives an impression on the DR approach’s effectiveness in terms of

average electricity cost savings and sensitivity of the latter to endogenous model
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parameters (h,n, and estimation corridor, c.f. Section 4.3). Subsequently, the triple

of endogenous model parameters that yields the highest average electricity cost

savings is fixed for the second part of the historical simulation. This calibration

procedure for the prediction model is valid, as building operators can individually

chose model parameters. The electricity cost savings of the second part are then

analyzed on their sensitivity to exogenous scenario parameters (t0,tL, flexibility
window lengthtL � t0, and dependency of IDti on PDt). To lift Assumption 4, a third

simulation part integrates an artificial hourly demand prediction error). Therefore,

the sensitivity of electricity cost savings to forecasting quality of electricity demand

is measured. For all simulation parts, sensitivity of the results to the electricity

market is analyzed by also repeating every simulation with electricity prices from

the German-Austrian market area of EPEX SPOT. This market has a significantly

growing capacity of renewable energy generation (EPEX SPOT 2017) that may

evolve to a global trend. To isolate market influences on the results, the object and

temperature conditions are assumed to equal the real-world scenario. In the

following, this section refers to both markets as US market and EU market,

respectively. Results of all simulation parts are discussed afterward.

4.7.1 Historical simulation – part 1

A multivariate sensitivity analysis identifies the triple of all three endogenous model

parameters that yield (in combination) the highest average electricity cost savings:

h ¼ 1:0, n ¼ 6h, and estimation corridor length ¼ 30 days with average electricity

cost savings of $99.76 (or 45.40%) for the US market and h ¼ 1:0, n ¼ 0h, and

estimation corridor length ¼ 60 days with average electricity cost savings of €51.28
(or 46.11%) for the EU market. As building operators can individually select

endogenous model parameters, they should always conduct such pre-simulations on

their individual historical data to maximize electricity cost savings. Thereby, as the

present example illustrates, the best parameter combination can vary between

Table 8 Range of evaluation parameters (Simulation—part 1)

Parameter Values (intervals)

Simulation runs 200,000

Date {June 01, 2012,…,November 30, 2014} Randomized

Starting time t0 {6am,7am,…,6 pm} Randomized

Latest point for a/c activation tL {(t0 þ 1),…,min(10 pm, (t0 þ 8))} Randomized

Theta h {0, 0.25, 0.5, 0.75, 1.0} Randomized

Reference interval n [h] {0, 2, 4, 6 no a} Randomized

Estimation corridor for �
S [days] {30, 60, 90} Randomized

Initial Demand IDðtiÞ [kwh] f0; 0:25 �
Pt¼ti

u0
PDðtiÞ; . . .; 1:0 �

Pt¼ti
t¼t0

PDðtiÞg Randomized
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different electricity markets. In the second part of the simulation, the respective best

parameter combinations are fixed for both markets.

4.7.2 Historical simulation–part 2

Table 8 illustrates the evaluation parameters and their range. Simulation runs are

conducted by sampling with replacement. Overall parameter combinations, the DR

approach yields average electricity cost savings of $94.61 (or 44.52%) for the US

market and €48.42 (or 44.07%) for the EU market compared to the default

procedure with no DR. Standard deviation is $134.62 (142.29% of mean) for the US

market and €52.30 (108.01% of mean) for the EU market. The cost savings potential

(i.e., the benchmark) is $99.63 (or 46.88%) for the US market and €50.58 (or

46.03%) for the EU market. Therefore, the utilization of cost savings potential by

Table 9 Sensitivity of absolute and relative savings to endogenous (model) parameters

US market EU market

Absolute savings Relative savings Absolute savings Relative savings

Mean-reversion h

0 $92.36 43.47% €48.25 43.80%

0.25 $93.41 44.19% €47.90 43.77%

0.5 $95.45 44.78% €48.37 43.98%

0.75 $95.62 44.96% €48.66 44.37%

1 $96.22 45.19% €48.94 44.41%

Two-Sample t-Test: Reject H0 hypothesis for both markets (US ***, EU ***) that mean savings of (
h\0:5) � mean savings of ( h� 0:5Þ, consequently higher h preferable

Adjustment reference interval n

0 h $96.23 45.23% €49.12 44.71%

2 h $95.13 44.61% €48.83 44.45%

4 h $93.91 44.16% €48.48 44.11%

6 h $93.38 44.06% €48.24 44.01%

Off $94.41 44.54% €47.46 43.07%

Two-Sample t-Test: Reject H0 hypothesis for European market (US -, EU ***) that mean savings of
‘‘short-term adjustment’’ � mean savings of ‘‘no short-term adjustment’’, consequently applying
short-term adjustment preferable

Two-Sample t-Test: Reject H0 hypothesis for both markets (US ***, EU ***) that mean savings of (
n 6¼ 0) � mean savings of ( n ¼ 0Þ, consequently n ¼ 0 preferable

Estimation corridor length

30 $94.47 44.54% €48.29 44.07%

60 $95.02 44.65% €48.39 44.00%

90 $94.34 44.37% €48.58 44.13%

Two-Sample t Tests: No significant preferences for both markets (US -, EU -)

***Significant for 1% level, ** significant for 5% level, * significant for 10% level
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applying the DR approach is 94.96% for the US market and 95.74% for the EU

market. Table 9 presents the result’s sensitivity to endogenous model parameters:

For the second evaluation part with fixed (calibrated) endogenous model

parameters (cf. Table 10), the DR approach yields average electricity cost savings of

$95.49 (or 45.03%) for the US market and €49.47 (or 45.14%) for the EU market

compared to the default procedure with no DR. Standard deviation is $132.81

(139.07% of mean) for the US market and €51.83 (104.75% of mean) for the EU

market. The cost savings potential is $99.84 (or 47.08%) for the US market and

€50.61 (or 46.18%) for the EU market. Therefore, the utilization of cost savings

potential by applying the DR approach is 95.65% (first evaluation part, without

calibration, 94.96%) for the US market and 97.75% (first evaluation part 95.74%)

for the EU market. Figure 8 illustrates the histograms and Table 11 presents the

result’s sensitivity to exogenous model parameters:

4.7.3 Historical simulation—part 3

In the third evaluation part, Assumption 4 is lifted and an artificial hourly demand

prediction error (DPE) is integrated. More precisely, for the first predicted discrete

time step (i.e., hour), the DR approach estimates upcoming electricity demand by

drawing from an equal distribution to the extent of the DPE around the historically

measured value of that time. Predicting the subsequent discrete time step (i.e., the

second hour in future), the algorithm reiterates this procedure but additionally adds

Table 10 Range of evaluation parameters (Simulation—Part 2)

Parameter Values (intervals)

Simulation runs 200,000

Date {June 01, 2012,…,November 30, 2014} Randomized

Starting time t0 {6am,7am,…,6 pm} Randomized

Latest point for a/c activation tL {(t0 þ 1),…,min(10 pm, (t0 þ 8))} Randomized

Theta H 1.0 (both markets) Fixed

Reference interval n [h] 6 (US), 0 (EU) Fixed

Estimation corridor for �
S [days] 30 (US), 60 (EU) Fixed

Initial Demand IDðtiÞ [kwh] f0; 0:25 �
Pt¼ti

u0
PDðtiÞ; . . .; 1:0 �

Pt¼ti
t¼t0

PDðtiÞg Randomized

Fig. 8 Histogram of absolute savings (0 excluded, bin width: 1 [$ or €])
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Table 11 Sensitivity of absolute and relative savings to exogenous (scenario) parameters

US market EU market

Absolute savings Relative savings Absolute savings Relative savings

Starting time t0

6am $58.74 39.17% €44.67 44.40%

7am $63.90 37.93% €52.79 47.72%

8am $73.00 37.64% €59.18 49.51%

9am $84.87 38.87% €62.52 50.19%

10am $98.04 40.05% €60.87 48.24%

11am $117.39 44.21% €59.58 47.12%

12noon $130.55 47.30% €54.96 44.75%

1 pm $138.46 49.84% €50.69 42.35%

2 pm $139.79 52.10% €49.61 42.24%

3 pm $118.75 51.66% €44.32 42.08%

4 pm $96.53 50.02% €39.15 41.49%

5 pm $69.39 46.02% €34.12 40.89%

6 pm $51.26 43.16% €30.64 41.60%

Two-Sample t Test: Reject H0 hypothesis for US market (US ***) that mean savings of (t0 � 12am)�
mean savings of (t0 [ 12amÞ, consequently late t0 profitable

Two-Sample t Test: Reject H0 hypothesis for EU market (EU ***) that mean savings of (t0 [ 12am)�
mean savings of (t0 � 12amÞ, consequently early t0 profitable

Latest point for a/c activation tL

7am $10.23 29.91% €5.52 26.65%

8am $16.27 35.58% €9.76 30.25%

9am $23.40 38.47% €15.79 34.60%

10am $33.07 40.47% €24.82 40.22%

11am $43.76 41.04% €33.62 43.01%

12noon $53.10 39.11% €39.97 42.12%

1 pm $63.89 37.11% €52.35 47.62%

2 pm $75.87 35.32% €60.21 49.42%

3 pm $88.37 36.41% €62.42 50.58%

4 pm $101.57 38.70% €59.61 49.91%

5 pm $113.15 42.53% €55.28 47.80%

6 pm $122.96 48.55% €47.81 43.38%

7 pm $123.40 52.54% €44.21 41.20%

8 pm $130.34 53.07% €48.40 40.03%

9 pm $134.75 52.66% €57.84 42.99%

10 pm $138.70 52.36% €68.40 46.93%

Two-Sample t Test: Reject H0 hypothesis for both markets (US ***, EU ***) that mean savings of

(tL � 3pm)� mean savings of (tL [ 3pmÞ, consequently late tL profitable

Flexibility window length tL � t0

1 h $21.43 32.31% €10.85 31.64%

2 h $43.80 39.53% €22.76 38.83%

3 h $66.87 42.88% €35.07 42.34%
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the first hour’s prognosis error. This approach is applied for all remaining discrete

time steps within the temporal flexibility window.

With fixed endogenous model parameters and DPE (cf. Table 12), the DR

approach yields average electricity cost savings of $93.44 (or 44.10%) for the US

market and €48.28 (or 44.01%) for the EU market compared to the default

procedure with no DR. Standard deviation is $132.40 (141.69% of mean) for the US

market and €52.28 108.28% of mean) for the EU market. The cost savings potential

is $99.45 (or 46.94% compared to the default procedure) for the US market and

€50.50 (or 46.04%) for the EU market. Therefore, the utilization of cost savings

potential by applying the DR approach is 93.95% (second evaluation part 95.65%)

for the US market and 95.60% (second evaluation part 97.75%) for the EU market.

Table 13 presents the result’s sensitivity to the DPE:

4.8 Discussion of evaluation results:

Summarizing all evaluation results, the authors derive the following insights and

interpretations: Within the real-world scenario, there is a huge savings potential in

electricity costs by applying the DR approach. Thereby, the DR approach utilizes

almost the entire cost savings potential, although it uses an algorithm with ex-ante

Table 11 continued

US market EU market

Absolute savings Relative savings Absolute savings Relative savings

4 h $91.16 44.92% €47.77 44.69%

5 h $116.43 46.15% €60.47 46.15%

6 h $142.35 46.89% €73.21 47.00%

7 h $167.42 47.05% €86.77 48.19%

8 h $193.40 47.84% €99.30 48.59%

Two-Sample t Test: Reject H0 hypothesis for both markets (US ***, EU ***) that mean savings of

(tL � t0 � 4)� mean savings of (tL � t0 [ 4Þ, consequently longer flexibility window length

preferable

e for initial demand IDðtiÞ
0 $188.93 89.12% €97.39 89.03%

1
4
�
Pt¼ti

t¼t0
PDðtiÞ $140.93 66.49% €73.46 66.81%

1
2
�
Pt¼ti

t¼t0
PDðtiÞ $90.11 42.67% €48.49 44.44%

3
4
�
Pt¼ti

t¼t0
PDðtiÞ $44.25 20.74% €23.41 21.24%

Pt¼ti

t¼t0
PDðtiÞ $11.91 5.62% €3.91 3.57%

Two-Sample t Test: Reject H0 hypothesis for both markets (US ***, EU ***) that mean savings of

(IDðtiÞ[ 0:5 �
Pt¼ti

t¼t0
PDðtiÞ)� mean savings of (IDðtiÞ� 0:5 �

Pt¼ti

t¼t0
PDðtiÞ), consequently lower

IDðtiÞ preferable

***Significant for 1% level, **significant for 5% level, *significant for 10% level
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(uncertain) electricity price prediction. The high exploitation of savings potentials is

due to the following reasons:

Electricity cost savings potential does only refer to cost savings that can

(theoretically) be obtained by applying the present paper’s applied a/c procedure

(Fig. 3). It excludes further cost savings potential that would exist for more flexible

but complex a/c procedures [e.g., ‘‘dynamic (de)activation’’ as illustrated in Fig. 2,

(1)] or for managerial flexibility that differs from temporal flexibility (e.g.,

flexibility in temperature limits that this paper excluded by Assumption 1).

Furthermore, for the second simulation part, early a/c activation (before tL) was
ex-post optimal in only 30.80% of all simulations for the US market and 25.63% for

the EU market. More precisely, as this paper models hourly time increments within

a real-world scenario that exhibits significant electricity demand to keep the inside

temperature at tempreq, it is often disadvantageous to cool before tL. The DR

approach correctly anticipated that fact and had only a few misjudgments. If this

paper had modeled shorter time increments (e.g., quarter-hourly instead of hourly),

more flexibility of action would (on the one hand) increase the DR approach’s cost

savings potential and (on the other hand) stronger challenge decision making (with

possibly more misjudgments of the algorithm and therefore less exploitation of the

savings potential). However, as the present paper’s real-world example is restricted

to hourly electricity market data (cf. Section 4.2), a sensitivity analysis for time

increment length is subject to future research.

Besides, some electricity cost savings are due to Assumption 4, i.e., missing

uncertainty in electricity demand forecasts. However, as the third simulation part

and Table 13 illustrates, this effect is rather small and has only a significant impact

for huge misjudgments of the prediction model.

Finally, the DR approach’s performance within the presented real-world scenario

is significant, since today’s cost-insensitive a/c control wastes a huge amount of

energy as a/c runs constantly throughout the day, even during disused hours on

working days, weekends, and night times. Therefore, smart a/c control that

Table 12 Range of evaluation parameters (Simulation—Part 3)

Parameter Values (intervals)

Simulation runs 200,000

Date {June 01, 2012,…,November 30, 2014} Randomized

Starting time t0 {6am,7am,…,6 pm} Randomized

Latest point for a/c activation tL {(t0 þ 1),…,min(10 pm, (t0 þ 8))} Randomized

Theta H 1.0 (both markets) Fixed

Reference interval n [h] 6 (US), 0 (EU) Fixed

Estimation corridor for �
S [days] 30 (US), 60 (EU) Fixed

Initial Demand IDðtiÞ [kwh]
0; 0:2 �

Pt¼ti

t¼t0

PDt; . . .; 1:0 �
Pt¼ti

t¼t0

PDt

( )
Randomized

Hourly Demand Prediction Error [DPE] (%) {1, 5, 10, 30, 50} Randomized
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considers occupation schedules, electricity price prediction, and weather forecasts

can yield huge electricity cost savings, even for minor misjudgments that fail ex-

post optimal decision making.

The results also indicate that relative electricity cost savings, relative cost savings

potential and the utilization of cost savings potential by applying the DR approach

differ only slightly between the US and the EU market. This implies that the DR

approach is applicable to different electricity markets that offer volatile electricity

spot market prices. However, standard deviations of electricity cost savings are

comparatively high and larger on the US market than on the EU market. The former

results from the fact that average electricity cost savings depend on the simulation’s

(randomly chosen) model and scenario parameters (as illustrated within respective

sensitivity analysis). As many parameter combinations are possible, electricity cost

savings can vary significantly. In addition, the evaluation puts forth some

implications of parameter sensitivity analysis:

Sensitivity of electricity cost savings to endogenous (model) parameters:

Significant greater electricity cost savings due to greater h confirm the value of

modeling mean-reversion to time-of-day-specific price patterns for short-term

electricity prediction. While such patterns do not exist in many other spot markets

(such as stock prices on capital markets) due to the instability of arbitrage

opportunities, they occur in electricity spot markets as electricity consumption

depends on time-dependent customer preferences that lack flexibility potential and

renewable electricity generation that lacks controllability (cf. Introduction).

Significant greater electricity cost savings due to the existence of an adjustment

factor a that is computed on current observable price information (n ¼ 0) indicates

that instantaneous price developments are likely to deviate from long-term historical

Table 13 Sensitivity of absolute and relative savings to hourly demand prediction error

DPE US market EU market

Absolute savings Relative savings Absolute savings Relative savings

1% $94.86 44.89% €49.48 45.12%

5% $94.68 44.62% €49.15 44.75%

10% $95.23 44.96% €48.86 44.66%

30% $93.18 43.87% €47.75 43.50%

50% $89.29 42.19% €46.19 42.04%

Two-Sample t Test: Maintain H0 hypothesis for both markets (US -, EU *) that mean savings of (
DPE� 10%) � mean savings of ‘‘no DPE’’, consequently low DPE has no significant influence on
results

Two-Sample t Test: Reject H0 hypothesis for both markets (US ***, EU ***) that mean savings of (
DPE[ 10%) � mean savings of ‘‘no DPE’’, consequently high DPE has significant influence on
results

Two-Sample t Test: Reject H0 hypothesis for both markets (US ***, EU ***) that mean savings of

(DPE[ 10%)� mean savings of (DPE� 10%Þ, consequently lower DPE preferable
***Significant for 1% level, ** significant for 5% level, * significant for 10% level
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mean prices. Therefore, an appropriate prediction model should consider short-term

effects on electricity market prices. As electricity cost savings did not significantly

depend on estimation corridor length, historical time-of-day-specific price patterns

on the two researched electricity markets are rather stationary, i.e., seasonal price

patterns’ influence on results are low.

Sensitivity of electricity cost savings to exogenous (scenario) parameters: The

observation that electricity cost savings for the US and the EU market significantly

depend on t0 and tL is another indicator for the impact of both market’s (individual)

time-of-day-specific price patterns that help building operators to identify lucrative

opportunities to utilize flexibility in a/c. In addition, t0 and tL are critical influencing

factors for available flexibility window length. The observation of longer flexibility

window length significantly increasing electricity cost savings is intuitive, as a

longer flexibility window (that is favored by low room or building occupancy)

provides the DR approach with a greater economic scope of action. Similar, the

dependency of electricity cost savings on IDti is intuitive as buildings with less

insulation are exposed stronger to (outside) temperature development and, therefore,

thermal movement, which results in a higher payback load that shrinks electricity

cost savings due to temporal a/c deactivation.

For the University of Georgia’s business case calculation, the expert estimated

total costs for implementing and running cost-sensitive a/c control (using the DR

approach) to about $100.000 (cf. Section 4.1). Evaluation results illustrate that the

payback period for this investment depends especially on electricity cost savings per

LS measure and therefore on exogenous scenario parameters (as endogenous model

parameters can be calibrated by the building operator). For discounting electricity

cost savings, building operators require an appropriate annual risk-free interest rate

rf . Therefore, for example, they can calculate the mean of the 3-month U.S.

Treasury Bill yields observed over the last 10 years, which would currently amount

to rf ¼ 0:7% (Mukherji 2011; U.S. Department of Treasury 2017). Moreover, LS

frequency is relevant, i.e., how often building operators can conduct LS measures.

Applying a common net present value approach, Table 13 shows calculations for the

payback period of the business case (without economies of scales, cf. Section 4.1)

that authors use to support investment decision making within the described real-

world scenario (Table 14).

Table 14 Business Case Payback Periods [Y]

Electricity cost savings per LS measure

$40 $80 $120 $160

Number of annual (equally distributed) LS measures 50 61.50 27.48 17.72 13.08

100 27.48 13.08 8.59 6.40

200 13.08 6.40 4.23 3.16

365 7.02 3.47 2.30 1.72

1520 Business Research (2020) 13:1491–1525

123



5 Implications, limitations, and further research

5.1 Implications

The present research contributes to the development of data-driven DSSs that can

significantly reduce building operators’ electricity costs. In particular, a DR

approach is presented, which utilizes existing LS flexibility potential of a/c systems

by performing real-time decision making. The latter requires rapid information

exchange and remote control for activating and deactivating a/c, which is enabled

using modern ICT (especially AMI).

The DR approach satisfies the requirements stated in the introduction: It is

simple, general, and forward-looking. Computations are feasible without engineer-

ing expertise because they focus on data-driven decision making. Building operators

can use the presented four-step framework to derive their individual DR approach

for real-estate a/c systems. The development of the DR approach follows the

principles of the DSR Paradigm. The artifact demonstration and evaluation propose

that the DR approach is valid (‘‘validity’’) (Gregor and Hevner 2013). By applying

real-world data from two university buildings and a respective business case, the

present paper demonstrates the usability of the artifact in practice (‘‘utility’’)

(Hevner, et al. 2004). Within the real-world scenario, the artifact would be able to

yield remarkable electricity cost savings compared to current existing a/c procedure

(‘‘quality’’) (Gregor and Hevner 2013). However, sensitivity analysis illustrate that

the payback period of the real-world business case does strongly depend on

endogenous model and exogenous scenario parameters.

Within similar frame conditions, the developed artifact provides considerable

electricity cost savings between 42 and 45% across the German and a special US

electricity market. The tested parameters illustrate that mean-reversion parameter,
adjustment reference interval, and estimation corridor length tend to influence

electricity cost savings. Moreover, this research paper suggests how to analyze the

business case for implementing and running cost-sensitive a/c control (using the DR

approach). Our results imply that the viability of such an investment depends

critically on the frequency of LS measures and the extent of possible electricity cost

savings.

5.2 Limitations and further research

There are also limitations to the DR approach. First, an assumption is made that

actual outside temperature equals previous temperature forecasts (i.e., there is no

uncertainty in electricity demand). Indeed, weather forecasts for only a few hours

are close to reality (National Weather Service 2017), which is confirmed by this

paper as it additionally applies an additional sensitivity analysis, which implements

an artificial hourly demand prediction error that proves to have only little influences

on results. However, future research should further develop the presented approach

and waive this simplification. Second, this paper assumes a constant required room

temperature tempreq and, therefore, focuses on temporal flexibility of a/c systems.
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However, we neglect the possibility to generate further cost savings by considering

flexibility in quality (i.e., flexibility of tempreq), which would be a promising

extension for future research. Third, since authors have no data to estimate the

dependence of initial a/c electricity demand on the previous hours’ outside

temperature development, only an interim solution is applied that basis on interval

estimation. Especially an application in practice or the cooperation with other fields

of research would yield important insights to further specify the quantification of

initial a/c electricity demand. Fourth, the DR approach is limited to only one

procedure of performing a/c. In particular, for reasons of simplicity, it cannot

account for scenarios in which a building operator dynamically activates and

deactivates the a/c system. A procedure that allows at each discrete time step to

either activate or deactivate a/c and (for a/c activation) to control a/c intensity

should further increase the cost savings potential. Fifth, there is also a proportion of

simulation runs, in which cost savings are negative. To strengthen confidence, trust,

and attention into DR technologies, future research should try to develop DR

approaches that reduce the occasions of negative results. As negative results are

more formative (Rozin and Royzman 2001), this might deter building operators to

apply DR (Venkatesh, et al. 2003). Nevertheless, the designed artifact is a robust

data-driven method for building operators and can be used beyond the application

domain. By its simplicity, generality, and forward-look, it depicts a suitable solution

for many applicants. In line with Palensky and Dietrich (2011), this is also a further

step to make DSM more customer-centric in the future. Sixth, besides presented

approaches for electricity price and demand prediction, future research could apply

and compare other common modeling approaches such as Holt-Winters seasonal

models (Holt 2004; Winters 1960) for electricity price prediction or consumption-

based asset pricing models (Breeden 1979) for electricity demand prediction.

Finally, we consider macrogrids as the only source for electricity. In times of

increasingly decentralized power generation, e.g., by local solar modules on

building roofs, integrated approaches of ‘‘make-or-buy-electricity’’ should be worth

consideration. Therefore, future research could grasp our approach, e.g., to build an

algorithm that decides in discrete time increments to either sell self-generated

electricity or use it for premature a/c before room occupation.
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