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Abstract Motivated by recent developments to deploy collaborative robots in

industrial production systems, we investigate the assembly line balancing problem

with collaborative robots. The problem is characterized by the possibility that

human and robots can simultaneously execute tasks at the same workpiece either in

parallel or in collaboration. For this novel problem type, we present a mixed-integer

programming formulation for balancing and scheduling of assembly lines with

collaborative robots. The model decides on both the assignment of collaborative

robots to stations and the distribution of workload to workers and robotic partners,

aiming to minimize the cycle time. Given the high problem complexity, a hybrid

genetic algorithm is presented as a solution procedure. Based on extensive com-

putational experiments, the algorithm reveals promising results in both computa-

tional time and solution quality. Moreover, the results indicate that substantial

productivity gains can be utilized by deploying collaborative robots in manual

assembly lines. This holds especially true for a high average number of robots and

tasks to be assigned to every station as well as a high portion of tasks that can be

executed by the robot and in collaboration.
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1 Introduction

The role of automation in modern manufacturing companies has increased

significantly over the past decades. Several types of automated equipment, such

as industrial robots, are frequently included in production systems (Graves and

Redfield 1988). In 2017, for instance, worldwide robot sales reached 374,000 units,

an increase of 217% compared to 2010. This growth is mainly driven by the

automotive and electronics industry (International Federation of Robotics 2018),

where industrial robots are utilized in assembly lines to ensure the companies’

ability of high-volume production at low costs. Additionally, the use of highly

automated assembly lines assures standardized product quality and process safety

(Boysen et al. 2008). As a result of the evolving role of automation technology,

enterprises predominantly focused on achieving economy of scale by standardiza-

tion of processes and inclusion of industrial robots (Hu et al. 2011).

In the current state, however, manufacturers cannot efficiently automate many

tasks as the established robot technology does not provide the required degree of

flexibility. Consequently, economy of scope is achieved by manual assembly

utilizing human advantages in manufacturing corporations and small- and medium-

sized enterprises (SMEs) (Antonelli et al. 2016; Hu et al. 2011; Krüger et al. 2009;

Michalos et al. 2014). Humans comprise characteristics like flexibility, adaptability,

decision making skills, and creativity while strength, endurance, speed, and

accuracy are attributes of robots (Helms et al. 2002; Michalos et al. 2014). To

remain competitive, manufacturing enterprises have to introduce new production

concepts to increase their performance.

Human–robot collaboration (HRC) is an emerging technology in the field of

novel production systems. By introducing stations with collaborative task execution

by workers and robots, the advantages of both automated and manual production

lines can be realized in a combined production system. As a result, the production

efficiency and quality can increase. Additionally, the introduction of HRC can be

beneficial for the workers’ states of health if the robot executes ergonomically

stressful and repetitive tasks. This is of particular importance against the

background of demographic change (Schmidtler and Bengler 2015). Further

advantages arise from the possibility of parallel work from either side of the station.

The length of the assembly line may decrease, which results in higher space

utilization. Also, the robot as an additional resource reduces the production lead

time. In addition, material handling, workers’ movement, and set-up times may also

be reduced (Bartholdi 1993; Lee et al. 2001).

Manufacturers name manifold application areas for collaborative robots (Kuka

2018; Universal Robots A/S 2018b) and they have been successfully implemented

in both manufacturing corporations (BMW Group 2013; Daimler 2014; Volkswagen

2018) and SMEs (Fraunhofer IAO 2016; International Federation of Robotics

2015a, b, c). Despite its increasing distribution in real-world industry applications,

the trend of human–robot collaboration has not yet been considered in the balancing

of assembly lines, and many companies state the necessity of additional support for

the planning process (Fraunhofer IAO 2016).
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Aside from assigning tasks to the stations of the assembly line under the

consideration of precedence relations (assembly line balancing), further challenges

arise for the balancing of assembly lines with collaborative robots. Since robots are

considered as additional resources, it has to be decided about the allocation of a

limited number of collaborative robots to the manual stations of the assembly line

(equipment selection). For stations with robots, tasks also have to be allocated to the

resources (worker and/or robot) overtime. Consequently, the assembly line

balancing problem with equipment selection is enriched by a collection of

scheduling problems. In scheduling these stations, logical relations between the

resources have to be considered. For instance, a task can only be performed

collaboratively if neither the worker nor the robot is occupied by a different task

(scheduling with logical relations). Additionally, these modes have different

efficiency. Collaborative execution by a worker and a robot, for instance, is faster

than execution only by the human worker (allocation-dependent task times), leading

to a tradeoff between time and resource consumption.

From the challenges described above, a novel planning problem for assembly line

balancing arises, which we strive to investigate in detail. Our contribution is

fourfold. First, since there are a multitude of possible applications for collaborative

robots in industrial manufacture, we discuss possible fields of application and limit

the scope of our contribution toward the balancing of assembly lines with

collaborative robots. Second, a mathematical optimization model of the considered

assembly line balancing problem is presented. Third, we develop a hybrid genetic

algorithm to solve larger problems. Fourth, by conducting an extensive computa-

tional experiment, the performance of the mathematical optimization model and the

genetic algorithm is analyzed, and general recommendations for decision makers

wavering with collaborative robots’ implementation are derived.

The remainder of this contribution is structured as follows: in the next section, we

introduce the problem of balancing assembly lines with collaborative robots based

on the classification of the problem setting and an illustrative example.

Subsequently, we review the relevant literature in the field of assembly line

balancing problems in Sect. 3. A mathematical formulation for the human–robot

collaborative assembly line balancing and scheduling problem is introduced in

Sect. 4. The hybrid genetic algorithm is presented in Sect. 5. In Sect. 6, we deliver

insights into computational results. The paper closes with a conclusion and an

outlook for future research in Sect. 7.

2 Balancing of assembly lines with collaborative robots

2.1 Problem setting

Collaborative robots (colloquially named cobots) are a novel type of lightweight

robots that are able to collaborate with humans. According to their manufacturers,

the technology is suitable for a wide range of applications faced in industrial

manufacture, for instance, pick and place, screw driving, injection molding,

measuring and inspection, and assembly operations (Kuka 2018; Universal Robots
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A/S 2018b). Besides this variety of applications, collaborative robots are

additionally assumed to be fast set up and easily programmed (within half a day),

yielding an agility advantageous in the production of small batches or processes

with fast changeovers. Since collaborative robots are also designed mobile, a quick

redeployment among the stations is possible (Robert Bosch Manufacturing

Solutions GmbH 2018b; Universal Robots A/S 2018a).

While collaborative robots may be utilized to replace human workers, they are

originally intended to support human workers in a common station (Bernhardt et al.

2007). As defined by the International Organization for Standardization (2011),

human–robot collaboration is an operation between a person and a robot while both

share a common workspace. Besides this definition, different authors tried to

classify the characteristics of human–robot collaboration. Ogorodnikova (2007)

characterizes cooperative assembly as human and robot working without physical

separation, since the systems are safe by themselves. According to Chen et al.

(2011), HRC is characterized by human and robot sharing the same working place

and time without physical barriers. The closest type of cooperation between human

and robot occurs, as described by Helms et al. (2002), if tasks at the same workpiece

are processed jointly. The latter argumentation is supported by Krüger et al. (2009),

who additionally refine that human and robot can either jointly perform the same

task or different tasks in parallel. The decision on the processing mode, particularly

the decision toward optional collaboration of the two resources, consequently

requires the consideration of the temporal dependencies of tasks and resources

within common stations (scheduling with logical relations).

While there may be promising applications of human–robot collaboration in any

of the organizational forms of production, we focus on mass production using

assembly lines. Due to the high degree of specialization and repetition of tasks, we

consider this organizational form of production as particularly promising for the

application of human–robot collaboration. The planning problem related to the

design of assembly lines is known to be the assembly line balancing problem. The

first mathematical formulation for assembly line balancing (ALB) was published by

Salveson (1955) and is referred to as simple assembly line balancing problem

(SALBP). Due to simplifying assumptions of SALBP, this planning approach is not

applicable for real-world scenarios of industrial practice (Falkenauer 2005; Sternatz

2014). Therefore, a variety of extensions for more realistic balancing problems have

been developed. Contributions have, among others, been devoted to assembly

systems with different layouts (e.g., U-shaped or two-sided lines), different product

mixes, varying processing times, or the necessity of resource allocation (Battaı̈a and

Dolgui 2013; Boysen et al. 2007).

Contributions in the field of assembly line balancing can be classified by the

objective they pursue. Common objectives are the minimization of the number of

stations, minimization of cycle time, minimization of costs, or maximization of

profit (Boysen et al. 2008). Collaborative robots may be suitable to support either of

these objectives. The number of stations may be reduced due to a high extent of

parallel work of robot and worker. Costs may be minimized (and profit maximized)

by replacing a worker by a robot, if the robot is cheaper than the worker and able to

perform each of the required tasks. The installation of collaborative robots,
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however, is usually considered within existing, manual assembly systems. An initial

configuration of the assembly line is consequently given, i.e., stations and material

flow technology are yet installed and tools are available. In addition, it is usually not

possible to reduce the workforce in most industries within a short period of time.

The minimization of the number of stations (and thus workers) consequently does

not seem to be a prioritized objective. The consideration of cost- or profit-oriented

approaches seems mainly beneficial in the initial design of assembly lines and, thus,

does not suit the scenario we pursue. In this contribution, we therefore propose an

approach to minimize cycle time of an existing manual system with the given

number of stations (type-2 assembly line balancing problem). This is also in line

with the survey conducted by Fraunhofer IAO (2016) concerned with use cases of

collaborative robots in industrial practice.

Further assumptions concern the number of collaborative robots that can be

deployed, their capabilities to perform certain tasks, and the resulting processing

times. For the number of collaborative robots to be assigned, we define robot density

(RD) as the ratio of number of robots and number of stations. Consequently, with

RD ¼ 1, a robot is assigned to each station, while RD ¼ 0 describes a scenario with

manual production only (equipment selection). To equivalently describe the density

of assembly tasks in stations, the West ratio is defined as the average number of

tasks to be assigned to each station of a production system (Dar-El 1973). With

regard to the performance of tasks by collaborative robots, we assume limited

capabilities compared to the human workers. While the human is considered to be

capable of performing each task, this is not necessarily true for robotic and

collaborative performance. Similarly to the robot flexibility introduced by

Rubinovitz et al. (1993), we define robot flexibility (RF) and collaboration

flexibility (CF) as measures for the portion of tasks that can be executed by the robot

and in collaboration, respectively. Consequently, RF ¼ 1 (CF ¼ 1) indicates that

each task can be executed by a robot (in collaboration). Vice versa, with RF ¼ 0 and

CF ¼ 0, no task can be performed by the robot and in collaboration, respectively.

To estimate the potential of robot deployment to single stations of an assembly line,

Teiwes et al. (2016) develop a procedure to estimate the automation potential of a

given line balance and apply their study to an automotive assembly line. Using their

scoring system, they find that the majority of stations reach low (around 20%) or

medium potential (around 40%) for deployment of collaborative robots. Their

findings also correspond to logical reasoning, since higher automation potential

would yet be utilized by complete automation of the respective assembly tasks.

For the determination of processing times, we assume the robot to complement

the human worker. Thus, we compare motion speed of human and robot in their

shared station to derive consistent times. The maximum human motion speed is

considered to be 1.6 m/s when evaluating human–machine interaction (International

Organization for Standardization 2010; Marvel and Norcross 2017). Collaborative

robots’ velocity depends on the specific robot model and its safety modes. Motion

speed of this robot class, however, is strongly reduced around the human workers. In

realistic settings, maximum velocity is assumed between 0.5 and 1.0 m/s (Robert

Bosch Manufacturing Solutions GmbH 2018a; Universal Robots A/S 2016). We

therefore assume the robot to require significantly higher processing time than the
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human worker. The human worker, however, is vacant and can perform a different

task in parallel. While collaboratively conducting the same task, a time reduction

may be yielded due to the robot’s support on its common task (allocation-dependent

task times).

A further important parameter to describe the assembly situation considered is

the task flexibility ratio (F-ratio). It describes the characteristics of a product’s

precedence relations, and thus the freedom within the assignment of tasks to stations

(Dar-El 1973, 1975). Maximum flexibility is denoted by F-ratio = 1, i.e., no

precedence relations among tasks exist. On the contrary, F-ratio = 0 refers to a case

with no flexibility, i.e., the only feasible solution is serial assignment in a

predetermined order.

2.2 Illustrative example

To exemplify the main ideas of our approach and also its effectiveness, an

illustration of the problem that we consider is given in Fig. 1. The initially given

assembly line comprises three stations (three workers). One product with ten tasks is

to be assembled utilizing the stations of the line. The West ratio consequently is

calculated as 3.33. The F-ratio of the example problem is 0.76 and thus provides

rather high freedom in assignment of tasks to stations. Since one robot is available

for three stations, robot density is 0.33. Out of the ten tasks, four (seven) tasks are

compliant with execution by robot (in collaboration), resulting in robot flexibility of
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Fig. 1 Illustrative example
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0.4 and collaboration flexibility of 0.7. As can be seen from the processing times,

execution by robot is assumed slower than execution by human, while collaborative

execution is assumed faster.

For the given example problem, the optimal solution of the manual assembly line

is calculated according to the formulation of SALBP-2 proposed by Scholl (1999,

Chapter 2.2.3.3, Formulation 1), while the collaborative line is calculated utilizing

our model introduced in Sect. 4. For the manual line, the model decides on the

stations the tasks are assigned to, and its solution results to a cycle time of 21 time

units. In the collaborative scenario, one robot is available and assigned to

complement the human worker in the first station. In this example, both parallel

work (on tasks 1 and 2) and collaborative execution by both resources (on tasks 4

and 7) are utilized. A cycle time of 17 time units is achieved and production output

consequently increases by 23.5%.

3 Review of relevant research

In recent years, the concept of collaboration has received increasing attention in

production (e.g., Leng and Jiang 2018; Salamati-Hormozi et al. 2018), logistics

(e.g., Basso et al. 2019; Guajardo et al. 2018), and supply chain management (e.g.,

Herczeg et al. 2018; Ponte et al. 2018). In this context, collaboration is typically

seen as a form of cooperation between two or more independent companies

planning and executing jointly specific operations. The aim is to achieve mutual

benefits, which can be related to cost reductions or the compliance with

environmental regulations, for instance. Most commonly, cooperation can either

take place between (competing) companies on the same stage of a supply chain

(horizontal collaboration) or among partners that operate on different supply chain

levels (vertical collaboration) (Basso et al. 2019; Simatupang and Sridharan 2002).

In this paper, in contrast, we are concerned with another form of collaboration,

namely the cooperation of robots and human workers on the shop floor (Krüger et al.

2009; Tsarouchi et al. 2016a, b). In particular, we consider the balancing of manual

assembly lines, in which collaborative robots either support manual task execution

by human workers or perform tasks themselves as an additional resource. In this

field, two relevant streams of literature can be distinguished. The first stream

discusses the allocation of equipment (robots) with different capabilities to stations

of a production system and is referred to as equipment selection problem. The

second stream is concerned with scheduling problems within the context of

assembly line balancing.

In the stream of equipment selection problems, automated assembly lines are

examined. The first to explicitly consider industrial robots in line balancing were

Rubinovitz et al. (1993). They stress the practical relevance of task times, which are

dependent on the specific robot, and consider these in their algorithm to solve the

robotic assembly line balancing problem (RALBP). In the recent literature, only few

papers are devoted to RALBP with the objective of minimizing the cycle time.

Levitin et al. (2006) develop a genetic algorithm (GA) for the RALBP to maximize

the production rate and conduct experiments on randomly generated test sets. To
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improve results and reduce computational effort, Gao et al. (2009) propose a GA and

combine it with heuristic local search procedures. They suggest an integer non-linear

programming model and compare its optimal results with results from their GA and

results from the aforementioned paper. Yoosefelahi et al. (2012) propose a mixed-

integer programming (MIP) model with multiple objectives. They aim at minimizing

the cycle time, robot investments, and robot setup costs and solve the problem with

different evolution strategies. Results of the different strategies are compared among

each other. Mukund Nilakantan and Ponnambalam (2015) consider a U-shaped

robotic assembly system and propose a 0–1 integer programming model and particle

swarm optimization approach. Müller et al. develop an approach for the redundant

configuration of automated assembly lines to mitigate the effect of robot failures

(Müller et al. 2016, 2017, 2018). Pereira et al. (2018) pursue a cost-oriented

approach on the robotic assembly line balancing problem. Novel solution procedures

for the RALBP are proposed by Borba et al. (2018).

Overall, the contributions in this stream of literature consider allocation-

dependent task times, since the equipment types are associated with different levels

of efficiency when performing the tasks. These assumptions are very similar to a

literature stream on the assembly line worker assignment and balancing problem

(ALWABP) for manual assembly lines based on the contribution of Miralles et al.

(2007). In the ALWABP, a heterogeneous workforce has to be assigned to stations,

where processing times depend on the actual worker. In neither RALBP nor

ALWABP, however, decisions on collaboration of resources are taken into account.

In the second stream, assembly line balancing problems with consideration of

scheduling components for (certain) stations are considered. These problems arise,

if multiple resources are assigned among a common station and may consequently

execute tasks at the same workpiece in parallel. In this field, assembly lines with

multi-manned stations are of particular importance. In this problem, tasks and

workers have to be allocated among the stations and tasks are explicitly (and

exclusively) assigned to the workers. The minimization of the number of workers is

pursued by Roshani et al. (2013) and Kellegöz and Toklu (2015). Fattahi et al.

(2011) minimize the number of workers as a primary objective and the number of

stations as a secondary objective. An improved mathematical formulation for the

same problem is proposed by Kellegöz (2016). The minimization of cycle time with

the secondary objective to minimize the number of workers is proposed by Roshani

and Giglio (2017). An extension toward multiple sides within each station is

presented by Naderi et al. (2018). Common tasks to be executed by more than one

worker simultaneously are suggested by Yazgan et al. (2011) and Sikora et al.

(2017). The collaboration of workers in their examples, however, is given as an

external assignment restriction and does not allow deciding on optional collabo-

ration. Moreover, all contributions in this stream assume resource-independent

processing times, i.e., a homogeneous workforce is considered. ALB problems with

multi-manned stations consequently pursue determination of an advantageous

amount of workers rather than the decision on their exact entities. Please note that

some contributions of two-sided assembly line balancing also consider collaboration

of resources on a common task (Bartholdi 1993; Gansterer and Hartl 2018; Pinnoi

and Wilhelm 1997). As in multi-manned ALBP, however, these approaches propose
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collaboration of resources for these tasks as obligatory and do not consider this as

variable. Reviews on the two-sided ALB problem are given by Abdullah Make et al.

(2017) and Li et al. (2017).

The literature review indicates that recent research comprises certain character-

istics required for modeling human–robot collaboration in ALB. Allocation-

dependent processing times are frequently considered in RALBP and ALWABP. In

contrast, planning approaches for balancing lines with multiple resources consider

scheduling of tasks between the resources while task times are assumed to be

independent of the resource the respective task is assigned to. None of these

approaches, however, takes into account the optional collaboration of multiple

resources on one task (scheduling with logical relations). This characteristic,

however, is of major importance for balancing lines with collaborative robots. For

that reason, we develop a novel approach for the human–robot collaborative

assembly line balancing and scheduling problem (HRCALBSP) in the following.

4 Model formulation

To provide a detailed description of the problem setting we consider, a

mathematical model formulation is given in this section. The assembly line consists

of a given set of stations K, which is connected by a material handling system, and a

set P of different process alternatives is available for each task. P contains the

alternatives of human (pH), robotic (pR), and collaborative (pC) execution. Process

alternatives pR; pC 2 P require the assignment of one of q equal collaborative robots

to the respective station, which is captured by the binary decision variable rk. A set

of tasks I have to be assigned to the stations and each task i 2 I requires a

deterministic processing time tip depending on its process alternative p 2 P. The

station a task is assigned to is encoded in decision variable zi. Whether two tasks are

subject to direct precedence relations, is modeled in the corresponding set E. In

practice, not each task can be processed with each process alternative. To model

this, tip equals a sufficiently large number if a task i 2 I is considered not to be

processible with the specific alternative p 2 P (Levitin et al. 2006). Whether a task

is assigned to a station and process alternative is indicated by the binary decision

variable xikp. To allow for parallel and collaborative execution, tasks are scheduled

within the stations. The decision variable si represents the start time of task i 2 I

relative to entry of the workpiece in the respective station. The auxiliary variables

yij serve to indicate whether scheduling of tasks i; jð Þ 2 I is required. The decision

variable c denotes the cycle time of a system configuration. The parameter �c equals
the upper bound on the cycle time and is utilized as a big-M parameter in our model

formulation. The used notation is summarized in Table 1.

The modeling approach is further based on the following assumptions: (i) a

homogeneous product is produced. (ii) Stations are arranged serially. (iii) The

necessary equipment and tools are available at each station. (iv) Processing times

are deterministic, known, and constant for any process alternative. (v) The robots

have limited capabilities. For instance, robotic and collaborative execution may be
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infeasible for certain tasks. (vi) Each task and robot can be assigned to any station

and (vii) each task has to be assigned to exactly one station and process alternative.

(viii) The precedence relations are known, captured in a precedence graph, and have

to be respected, while (ix) no other assignment restrictions apply to the considered

product.

Based on the notation and assumptions, a model formulation is derived.

Minimize c ð1Þ
Subject to:

X

k2K

X

p2P
xikp ¼ 1 8i 2 I; ð2Þ

si þ
X

k2K

X

p2P
tip � xikp � c 8i 2 I; ð3Þ

X

k2K

X

p2P
k � xikp ¼ zi 8i 2 I; ð4Þ

si þ
X

k2K

X

p2P
tip � xikp � sj þ �c zj � zi

� �
8 i; jð Þ 2 E; ð5Þ

si þ tipC � xikpC � sj þ �c 1�
X

p2P
xjkp

 !
þ �c 1� xikpC
� �

þ �c 1� yij
� �

8i; j 2 I; k 2 K;

ð6Þ

Table 1 General notation of sets, parameters, and decision variables

Sets and parameters

I Set of tasks I ¼ i; j ¼ 1; . . .; nf g
K Set of stations K ¼ k ¼ 1; . . .;mf g
P Set of process alternatives P ¼ p ¼ pH; pR; pCf g, in which tasks are processed by human (pH), robot

(pR) or in collaboration (pC), respectively

E Set of direct precedence relations (i; j)

tip Execution time of task i 2 I with processing alternative p 2 P

�c Upper bound on cycle time �c ¼ max tmax; 2 � btsum=mcf g, where tmax ¼ maxftipji 2 I; p 2 Pg and

tsum ¼
P
i2I

maxftipjp 2 Pg

q Maximum number of robots to be allocated

Decision and auxiliary variables

xikp Binary variable with value 1, if task i 2 I is assigned to station k 2 K

with processing alternative p 2 P

zi Continuous variable for encoding the station number a task i 2 I is assigned to

si Continuous variable for encoding the start time of task i 2 I in the station it is assigned to

rk Binary variable with value 1, if a robot is assigned to station k 2 K

c Non-negative variable for encoding the cycle time

yij Binary variable with value 1, if task i 2 I starts before task j 2 I (si � sjÞ
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si þ
X

p2P
tip � xikp � sj þ �c 1� xjkpC

� �
þ �c 1� yij
� �

8i; j 2 I; k 2 K; ð7Þ

si þ tip � xikp � sj þ �c 1� xikp
� �

þ �c 1� xjkp
� �

þ �c 1� yij
� �

8i; j 2 I; k 2 K; p 2 pH; pRf g; ð8Þ

xikp � rk 8i 2 I; k 2 K; p 2 pR; pCf g; ð9Þ
X

k2K
rk � q; ð10Þ

yij ¼ 1� yji 8i; j 2 I; i\j; ð11Þ
xikp 2 0; 1f g 8i 2 I; k 2 K; p 2 P; ð12Þ

si; zi � 0 8i 2 I; ð13Þ
rk 2 0; 1f g 8k 2 K; ð14Þ

yij 2 0; 1f g 8i; j 2 I; i 6¼ j: ð15Þ
The objective (1) is to minimize the cycle time. Constraints (2) assure that each

task i 2 I is assigned to exactly one station k 2 K and process alternative p 2 P

using the binary decision variables xikp. Constraint set (3) serves to define the cycle

time. Constraints (4) determine the station number each task is assigned to.

Constraint set (5) ensures precedence relations of tasks i; jð Þ 2 E, where i is a direct

predecessor of j. Constraints (6) and (7) ensure that both human and robot are

required to perform tasks collaboratively. If a task i 2 I is executed collaboratively,

both human and robot are occupied with this task. Consequently, a task j 2 I cannot

start until i is finished. Alternatively, if task j 2 I is executed collaboratively, both

human and robot have to be available. Thus, a preceding task i 2 I has to be finished

irrespective of its processing alternative. Constraints (8) ensure that manually

processed tasks j 2 I can only start after the manually processed tasks i\j have

been completed at the same station. The same constraint set applies to the robotic

execution of two tasks i; jð Þ 2 I. Collaborative and robotic process alternatives are

available only if robots are assigned to the respective stations. This is assured by

constraint set (9). The total number of robots in the system is limited to q by

constraint (10). Constraints (11) serve to determine the order of tasks within the

stations. The variables are defined by constraints (12)–(15).

Our scheduling constraints extend formulations from Kim et al. (2009) and

Esmaeilbeigi et al. (2016). Kim et al. consider a two-sided assembly line. In

contrast, Esmaeilbeigi et al. concentrate on the setup assembly line balancing and

scheduling problem. From Kim et al., we adapt the general idea of modeling the

scheduling problem utilizing big-M formulations. From Esmaeilbeigi et al., we

adapt the idea to encode tasks’ stations in decision variables zi and to denote entry

time of a workpiece in a station rather than launch time in the first station.

Since neither of the approaches are suitable to model collaborative robots’

behavior within line balancing, we explicitly model the logic relations between

resources and the equipment selection problem. With our formulation, implement-

ing the upper bound on the cycle time as a big-M parameter results in a sufficiently
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large number. From this, we are able to relax the big-M parameter in the scheduling

constraints. �c is calculated according to the definition provided by Scholl (1999,

Formula 2.63). Due to nature and assignment of the decision variables, our

formulation can be classified as a MIP model.

Since the NP-hard bin packing problem can be considered as a special case of

SALBP without precedence relations, SALBP is NP-hard (Álvarez-Miranda and

Pereira 2019). Therefore, our generalized problem is expected to be contained in the

same class. Consequently, the problem characteristics are expected to strongly

influence the computational time required to solve our model. The main complexity

driver of problem instances is the number of tasks (Wee and Magazine 1982; Scholl

1999, Chapter 2.2.1.5). To provide support to decision makers wavering with large

problems in reasonable computational time, we develop a heuristic solution

procedure for the HRCALBSP. This solution procedure is described in the

following section.

5 Hybrid genetic algorithm with MIP-based scheduling

5.1 Overview

In this section, we develop a solution procedure to solve large problem instances.

For this purpose, a metaheuristic is used since these heuristics have proven to find

good solutions for a wide range of ALB problems. Even though other metaheuristics

such as simulated annealing or tabu search could be used to solve the problem at

hand, we opted for a hybrid genetic algorithm as this is a simple but yet powerful

metaheuristic that has successfully been applied to two closely related problem

types. On the one hand, previous works in two-sided ALB demonstrate that GAs

provide very good solutions for balancing problems with basic scheduling

characteristics and are, therefore, the most frequently used solution procedure to

solve this problem type (Abdullah Make et al. 2017). On the other hand, GAs have

also proven to be highly effective to solve ALB problems that include the selection

of equipment types with the objective of minimizing the overall cycle time (Gao

et al. 2009; Levitin et al. 2006).

A GA is a stochastic procedure imitating the biological evolutionary process to

achieve optimal or near-to-optimal solutions. The hybrid GA developed in this

paper consists of seven main steps, which are shown in Algorithm 1 and described

in the following. First, the initial population is generated (Step 1). We utilize a

fitness estimation method and subsequently apply an improvement procedure on the

solutions (Step 2). The fitness evaluation method decomposes the problem and

solves the scheduling problem optimally for stations with robots (Step 3). Until the

predetermined stop criterion is met, the population is evolved over several

generations. Parents are selected randomly and offspring created by crossover.

Thereby, offspring can be subjected to mutation (Step 4). Prior to the exact fitness

evaluation of the offspring (Step 6), our heuristic fitness estimation and improve-

ment method are carried out on the new solutions (Step 5). Finally, admission of the

offspring to the population is decided (Step 7).
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To efficiently search the solution space, we need to develop genetic components

suitable for HRCALBSP. We therefore adapt the basic procedure and certain

components from the GA proposed by Kim et al. (2009) to suit our problem. This

particularly concerns the encoding, selection, crossover, and replacement schemes.

The mutation procedure is adapted from Müller et al. (2018). Methods for the robot

encoding, fitness estimation, improvement, fitness evaluation, and workload

distribution among (initial) individuals as well as the stop criterion are developed

by us. In the following, the components of the GA are briefly described.

5.2 Encoding

Generated solutions are encoded within lists representing the solution character-

istics. For our problem, we introduce two lists. The first list includes the tasks to

station allocation. This list is of length n, each element of which is an integer

between 1 and m. Consequently, the ith element represents the station task i is

assigned to. The second list of length m represents the assignment of robots to

stations, each element of which is a binary representing whether a robot is assigned

to the respective station. An example solution representation is shown in Fig. 2.

5.3 Initial population (Step 1)

To generate a pre-specified number of individuals in the initial population, a

stochastic process is iterated. First, the available robots are randomly assigned to the

stations of the system. Subsequently, tasks are assigned to stations. To this end, one

random task among tasks having no (unassigned) predecessor is chosen until all

tasks are assigned to stations. Thereby, it is ensured that the assignment satisfies

precedence relations. Consequently, the generated solutions are feasible and do not

require repair or reordering. Tasks are assigned to stations in ascending order. If the

assigned workload of any station exceeds a predetermined workload limit, tasks are

assigned to the next station.

The workload limit depends on whether a robot is assigned to a station or not.

Since stations with robots are more efficient than manual stations, we allow for

Algorithm 1 Basic Steps of the Genetic Algorithm. 
Step 1: Generate an initial population of random solutions with respect to feasibility. 
Step 2: Estimate fitness and apply improvement procedure on each solution. 
Step 3: Decode each solution of the population and evaluate its fitness.
while not stop condition satisfied do

Step 4:  Select two parent solutions. Produce offspring using a crossover procedure. 
Allow the offspring to mutate with specified mutation probability.

Step 5: Estimate fitness and apply improvement procedure on offspring.
Step 6: Decode offspring and evaluate their fitness. 
Step 7: Start replacement procedure.

end while
Return best solution
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higher workload of such stations. We therefore define a workload distribution

factor. In the range of zero and the predetermined workload distribution factor, we

subsequently choose a random number for each individual by which its stations with

robots are loaded higher than its manual stations. The procedure is precisely

described in Appendix A.

5.4 Fitness estimation and improvement procedures (Steps 2 and 5)

We apply an improvement procedure on the individuals. During this procedure,

station finish times repeatedly have to be evaluated. Since the actual fitness

evaluation generates high computational effort (see Sect. 5.5 below), we apply a

heuristic fitness estimation routine to calculate the individuals’ resulting cycle time.

For stations without robots, finish time can be calculated as sum of human

processing times of the tasks assigned to the respective station. For stations with

robots, we estimate finish time by applying a priority rule-based heuristic scheduling

approach we developed. Within this heuristic procedure, we evaluate the process

alternatives for any task to be scheduled and, hence, assign it to the most

advantageous alternative. The procedure is repeated until all tasks are scheduled.

We describe the procedure precisely in Appendix B.

Based on the station finish times, the improvement procedure is conducted. We

randomly select a task from the station with the highest finish time and, within the set

of feasible stations with respect to precedence relations, finish times of these stations

are estimated supposed the task was assigned to a specific station. The selected task

finally is (re-)assigned to the station with the lowest estimated finish time, which may

also be the original station. This procedure is repeated for a predetermined number of

iterations. Since the heuristic fitness estimation procedure may both under- or

overestimate a solution’s quality, we evaluate the actual fitness exactly.

5.5 Fitness evaluation (Steps 3 and 6)

The fitness estimation procedure described above returns exact solutions for stations

without robots. For stations with robots, the scheduling problem arises. Therefore,

we adapt the MIP proposed in Sect. 3 to suit the less complex problem of

scheduling for single stations. Notation and model formulation are illustrated in

Appendices C and D, respectively. We integrate the model in our GA and solve the

single-station scheduling problems optimally.

Station 3Station 1 Station 2

Tasks: 1, 2, 4, 7 3, 6, 8 5, 9, 10

Station 3Station 1 Station 2

Tasks: 1, 2, 3, 5 4, 6, 7, 8 9, 10

1 1 2 1 3 2 1 2 3 3 1 0 0
Tasks Robots

1 1 1 2 1 2 2 2 3 3 0 1 0
Tasks Robots

Parent 1 Parent 2

Fig. 2 Solution representation
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5.6 Selection, crossover, and mutation procedures (Step 4)

Based on the individuals’ fitness, we choose two parents for the genetic replication.

We utilize a fitness proportionate selection procedure (roulette wheel selection), i.e.,

individuals with lower cycle time have higher chance of selection for replication.

The formula for the calculation of selection probabilities of the individuals is given

in Appendix E.

To create offspring, a crossover method is applied on the selected parents. We

adapt the structured one-point crossover approach suggested by Kim et al. (2009) as

precedence relations of the produced offspring are satisfied utilizing their method. A

crossover and mutation example is illustrated in Fig. 3. Offspring are generated

according to the following procedure. Prior to actual crossover, a random cross

point r 2 1;m� 1f g is selected. From parent 1, tasks are copied to the offspring,

which are assigned to stations 1 to r. If the respective element has not been copied

from parent 1, tasks in stations r þ 1 to m are copied from parent 2. The robot

allocation is handed to the offspring from parent 1.

Please note that some elements in the genome may remain blank after crossover

(marked * in the figure). This case occurs if a task is neither assigned to stations 1 to

r in parent 1 nor to stations r þ 1 to m in parent 2. This can particularly be well

observed for the third element of the genome (i.e., the third task) in Fig. 3. In the

example, this task is assigned to station 2 in parent 1 and station 1 in parent 2,

respectively. Since the cross point is randomly determined to 1 in this example,

Parent 1:

Parent 2:

1 0 0

1 0 0

Offspring: 1 0 0

1 1 1 2 1 2 2 2 3 3

1 1 2 1 3 2 1 2 3 3

1 1 * 1 * 2 1 2 3 3

↯ ↯

Tasks Robots

Crossover of parent solutions (cross point 1)

Repair of offspring

Mutation of offspring

1 0 01 1 * 1 * 2 1 2 3 3Before repair:

A�er repair: 1 0 01 1 2 1 3 2 1 2 3 3

Before muta�on:

A�er muta�on:

Tasks Robots

Tasks Robots

1 1 2 1 2 2 1 3 3 3

1 1 2 1 3 2 1 2 3 3 1 0 0

0 1 0

Fig. 3 Crossover and mutation example
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tasks assigned to station 1 are copied to the child from parent 1, and tasks assigned

to station 2 and 3 are copied from parent 2. Since task 3 is neither assigned to station

1 in parent 1 nor to stations 2 or 3 in parent 2, this element remains blank. We repair

these elements utilizing the fitness estimation and improvement procedures

described above, i.e., the unassigned tasks are allocated to feasible stations with

the lowest resulting finish time (task 3 to station 2, task 5 to station 3 in the

example).

To avoid premature convergence of the GA, each individual is mutated with a

pre-specified probability after crossover (offspring mutation probability). This

operator randomly selects two tasks in the offspring. If the station assignments of

the tasks can be swapped without violating precedence relations, station

assignments of the tasks are swapped (tasks 5 and 8 in the example). This

operation may be repeated for a predetermined number of iterations (number of

swaps). Furthermore, robot assignment is subjected to mutation with a different

probability (robot mutation probability). This operator randomly chooses a station

with robot and assigns its robot to a station without robot (station 1 to station 2). A

second offspring is generated with the roles of the parents reversed, i.e., from parent

2, tasks are copied to the offspring, which are assigned to stations 1 to r, while tasks

in stations r þ 1 to m are copied from parent 1.

5.7 Replacement procedure (Step 7)

After fitness evaluation of the generated offspring, their admission to the population

is decided. If the cycle time of any offspring is lower than the population’s highest

cycle time, the latter individual is removed from population and is replaced by the

offspring.

6 Computational experiments

Since we strive to provide a decision support system for decision makers wavering

with collaborative robots’ implementation, we conduct computational experiments

to examine the effectivity of our solution approaches (MIP and GA) for a variety of

scenarios. Therefore, instances with realistic characteristics are constructed in

Sect. 6.1. Utilizing the mathematical model, we evaluate the complexity of the

introduced problem and illustrate the drivers of computational complexity in

Sect. 6.2. The parametrization of the genetic algorithm and an illustration of its

convergence are provided in Sect. 6.3. In Sect. 6.4, we provide a comparison of our

solution approaches. Managerial insights are provided in Sect. 6.5.

6.1 Instance generation

While there is no benchmark data set available for HRCALBSP, literature contains

several well-known test sets for SALBP. For our study, we use test instances from

the SALBP dataset of Otto et al. (2013), which are available at http://www.

assembly-line-balancing.de. The authors stress the systematic generation of the
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instances and the use of different task time distributions and precedence graph

complexities, which can typically be found in real-world settings.

By deploying collaborative robots, decision makers aim to support human task

execution where the object of consideration mainly is the supplementary automation

of the existing facilities. In automotive manufacturing, for instance, collaborative

robots may be implemented in small feeder lines in component manufacturing

(Kuka 2017). In SMEs, manual assembly lines are generally of small size, too

(International Federation of Robotics 2015a, b, c). From the data set from the

literature, we consider small instances with 20 tasks, medium instances with 50

tasks, and large instances with 100 tasks to be of sufficient size to suit assembly

lines of small- and medium-sized companies. This is also in line with Scholl (1999),

who summarizes real-world data sets for ALBP.

With regard to the task flexibility ratio, the given test set comprises precedence

graphs in the limits of 0:147�F � ratio� 0:858 for small instances, 0:195�F �
ratio� 0:904 for medium instances, and 0:098�F � ratio� 0:805 for large

instances. For our experiments, we consider two categories with high

(F � ratio ¼ 0:8) and low (F � ratio ¼ 0:2) task flexibility ratio, respectively.

For each instance size and from each category, we choose the 25 test instances with

minimum deviation of F-ratio within the category, resulting in a total of 150

different precedence graphs.

For our experiments, we choose robot and collaboration flexibilities of

RF; CF 2 0:2; 0:4f g, which correspond to the findings of Teiwes et al. (2016)

introduced in Sect. 2.1. We randomly decide about the tasks that are feasible with

robotic and collaborative execution according to the given flexibilities. Thereby, the

tasks are not forced to be exclusively feasible with either robotic or collaborative

execution. That is, some tasks can be performed by human, robot, and in

collaboration, while other tasks can only be conducted manually. Since each test

instance is analyzed for multiple flexibilities, we ensure consistent settings by

systematically extending the original instances. For each instance, a setting with

higher robot flexibility contains the same task feasibilities as the same instance with

lower robot flexibility. On that basis, the flexibility is increased by choosing

additional tasks randomly to be feasible with robotic execution. The same approach

is utilized deciding about tasks that are feasible with collaborative execution.

Following the technical data introduced in Sect. 2.1, we consider the robotic process

alternative to require twice the time a human worker needs on each identical task

(tiR ¼ 2 � tiH). For collaborative execution of any task, we assume processing time to

be reduced by 30% compared to the original effort (tiC ¼ 0:7 � tiH).
We strive to investigate the systems’ behavior for West ratio 2 2; 4f g, resulting

in m 2 5; 10f g stations for small instances, m 2 13; 25f g stations for medium

instances, and m 2 25; 50f g stations for large instances, respectively. Following the

automation potential introduced in Sect. 2.1, we consider robot density

RD 2 0; 0:2; 0:4f g. The resulting scenarios are presented in Table 2.

The model formulations of HRCALBSP and SALBP-2 are implemented in Java

(8u151) and solved using the Gurobi 8.1 Java API. The solution procedure of the

MIP terminates, if no optimal value can be confirmed within 7200 s for small and

medium instances and 28,800 s for large instances, respectively. As the model
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formulation, the genetic algorithm is implemented in Java, and the single-station

scheduling problems are solved using the Gurobi 8.1 Java API. No time limit is

applied on computations utilizing the GA. For all calculations, standard computers

with Intel Core i3-400M processor with two cores at 2.4 GHz and 4 GB RAM are

used to solve the instances.

6.2 Analysis of MIP results

In this section, we will provide detailed analyses of the MIP results to evaluate

drivers of the considered problems’ complexity. Thereby, we will report on four

different measures that serve as complexity indicators: (i) the number of instances

the MIP obtained a feasible solution within its runtime (named Feasible [# of 200] in

the tables), (ii) the relative gap remaining after termination of the solution procedure

(reporting on average relative gap and its standard deviation, named Gap ; rð Þ in the

following tables), (iii) the computational time until the first feasible solution is

found (CPU 1st ; rð Þ, in seconds), and (iv) the overall computational time for the

termination of the solution procedure (CPU ; rð Þ, in seconds).

Generally, the computational complexity of ALB problems is known to increase

with the number of feasible task sequences the considered precedence graph allows

for. With n!=2 Ej j, the number of sequences of a given precedence graph can be

estimated, where n corresponds to the number of tasks of the precedence graph and

Ej j describes the number of precedence relations between the tasks. The number of

sequences and computational complexity thus increase with increasing number of

tasks and increasing F-ratio (Boysen and Fliedner 2008; Hoffmann 1959). Results

on this relation are reported in Table 3. Scenarios without robot were excluded from

the results (Scenario 1 and 6 as described in Table 2). Following the results in

Table 3 and the theoretical implications on the complexity given above, it is

plausible for gap and computational time to increase with increasing instance size

Table 2 Parameter settings of scenarios

Scenario RF CF Small instances

(n ¼ 20 tasks)

Medium instances

(n ¼ 50 tasks)

Large instances

(n ¼ 100 tasks)

Stations Robots Stations Robots Stations Robots

1 – – 5 0 13 0 25 0

2 0.2 0.2 5 1 13 3 25 5

3 0.4 0.4 5 1 13 3 25 5

4 0.2 0.2 5 2 13 5 25 10

5 0.4 0.4 5 2 13 5 25 10

6 – – 10 0 25 0 50 0

7 0.2 0.2 10 2 25 5 50 10

8 0.4 0.4 10 2 25 5 50 10

9 0.2 0.2 10 4 25 10 50 20

10 0.4 0.4 10 4 25 10 50 20
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and F-ratio. Since higher F-ratio, however, provides for a higher number of feasible

task sequences, feasible solutions can evidently be found within less computational

time subject to high F-ratio.

Please note that the results on large instances only contain 106 (98) of 200

instances for low (high) F-ratio since we only included instances with at least one

feasible solution found within the time limit. The instances excluded from analyses

either terminated without feasible solution after the regular time limit or run out of

memory during the solution procedure. If we assumed those instances (by definition,

incorrectly) to comprise a gap of 1 and included them into the results of Table 3,

instances of both F-ratio 0.2 and 0.8 were characterized by an average gap of 0.68.

While the problem we consider thus follows theoretical implications described in

the literature, additional parameters may potentially account for an increase in

complexity. A major effect on complexity can be identified for the West ratio (cf.

Table 4). An increase in the number of stations (thus a decrease in West ratio)

results in an increase in the number of decision variables xikp (cf. (12)) and

constraints (6)–(9), which scale with the number of stations. Caused by the more

restrictive solution space, the feasibility problem becomes particularly hard, which

is well observed for large instances. For these, only 29 of 200 instances achieved a

feasible solution within the given time limit.

Contrary to the described effects, the number of robots (robot density) and the

flexibility of the robotic resources (robot and collaboration flexibility) cause minor

impact on the computational complexity. Therefore, we do not report their results in

detail, but refer the interested reader toward Appendices F and G.

These results promote our genetic algorithm as a promising solution procedure.

Given scenarios with low West ratio or precedence graphs with low F-ratio, the

number of feasible task sequences diminishes. For these settings, the MIP solver

experiences difficulties determining a feasible (and thus first) solution (observe CPU

1st in the tables). Utilizing the method for initial population creation of our GA

(Step 1 as described in Sect. 5.3), we are able to construct a variety of feasible

solutions within low computational time.

However, the major proportion of computational effort is caused by the search

for an optimal solution (observe difference of CPU 1st and CPU in the tables). To

simplify this search, we apply problem-specific knowledge in our GA as follows: we

do not compute the cycle time globally, but decompose the problem into simple

parts (stations without robot result in makespan of cumulated human task time of the

tasks allocated) and complex parts (stations with robot require actual scheduling for

makespan evaluation). Only for the latter problems, we apply the simplified MIP as

given in Appendices C and D. In the following section, we will provide details on

the initial parametrization of our GA and proof of its adequate convergence.

6.3 Parameters and convergence of the hybrid genetic algorithm

Based on the preliminary studies, we choose parameters for our genetic algorithm

such that good solutions are obtained in reasonable computational time. GAs

terminate, if a predetermined stop criterion is met. Frequently, the total number of
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reproduced individuals is chosen as termination criterion. The solution space of

ALB problems, however, depends on the size of the precedence graphs under

consideration, i.e., larger instances require larger number of reproduced individuals

to meet the desired solution quality. We develop a dynamic stop criterion. The

algorithm terminates, if no solution is created for 1000 crossovers that has a lower

cycle time than the best solution found so far. Utilizing this approach, we do not

have to adapt the stop criterion to suit the different problem sizes under

consideration. In our preliminary studies, we compared our stop criterion with

termination by a predetermined, absolute number of reproduced individuals, and

found results of both stop criteria to be equally good in solution quality. Each

problem instance is solved ten times. The remainder of the parameters determined

by our preliminary computation is reported in Table 5.

The main driver of computational effort within our GA is caused by the fitness

evaluation of stations with robots, since the one-station scheduling model has to be

solved using the Gurobi 8.1 Java API. To improve the performance of our GA, we

limit fitness evaluation to promising offspring solutions. If any of an offspring’s

stations without robot has a finish time higher than the population’s worst

individual’s cycle time, fitness of the respective offspring will not be evaluated and

the individual is rejected from the population. The same procedure is applied on

offspring, where their fitness estimation (i.e., including estimation of stations with

robots) exceeds the worst individual’s actual cycle time by at least 10%.

In evolutionary computation, the problem of premature convergence of the

population toward one identical (suboptimal) solution may arise. To avoid this

problem, we apply two diversity-generating techniques on the individuals, i.e.,

mutation of robot allocation and mutation of task allocation (as described in

Sect. 5.6). In Fig. 4, we illustrate convergence of two exemplary, large instances

with F-ratio of 0.2 (left diagram) and 0.8 (right diagram). In the former example, the

MIP terminates after 28,800 s (with a lower bound of 269 time units corresponding

to a gap of 43.5%) and a best integer solution (i.e., cycle time) of 476 time units.

The GA found a lower objective value already after the creation of the initial

population and henceforth converges (from 452) to 298 time units with an average

computational time of 4358 s per run. By limiting fitness evaluation of the

individuals to promising offspring solutions, eventually six out of eight individuals

require computationally expensive solutions to the scheduling problem. For this

Table 5 GA parameters used for the analyses

Parameter Value

Population size small/medium/large instances 100/225/400

Workload distribution factor 0.15

Iterations of improvement procedure per individual 3

Robot mutation probability 0.1

Offspring mutation probability 1.0

Number of swaps during offspring mutation 3
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example, however, it is uncertain whether the GA obtained an optimal solution,

since the MIP procedure did not provide proof of optimality.

In the latter example with F-ratio of 0.8, the MIP terminates after 25,092 s with

an optimal solution of 364 time units. The GA converges toward this solution within

average computational time of 2853 s per run. Due to our limitation in fitness

evaluation, five of eight individuals are eventually being evaluated by the MIP. For

this reason, we conclude our algorithm to converge properly. In the following

section, a comparison of the computational performance of MIP and GA is

provided.

6.4 Computational results

Since we propose a novel planning problem yet unconsidered in the literature, no

benchmark models or algorithms can be compared to our approach. Hence, we

analyze performances of the MIP and the GA throughout all generated instances

comprising robots.

Results on the computational comparison of our solution approaches are provided

in Table 6. We report on the number of instances the GA achieved the better

solution, GA and MIP tied, and the MIP obtained the better solution [referred to as #

(of 400) in the table], the average computational time of one GA run of the related

instances and its standard deviation (; rð Þ CPU GA, in seconds), and the average

computational time of the MIP and its standard deviation (; rð Þ CPU MIP, in

seconds).

Generally, an advantage of using the MIP model is to obtain solutions with proof

of optimality. For our problem, the MIP could proof optimality for 251 of 400 small

instances, 119 of 400 medium instances, and 15 of 400 large instances.

Consequently, its advantage diminishes with an increase in instance size.

Particularly for large instances, the GA obtains solutions with better or the same

objective values as the MIP in 370 of 400 cases. For these instances, already the

initially constructed solutions of the GA (prior actual optimization) frequently

provide a better objective value than the MIP after its termination (as can for

example be observed in the left diagram of Fig. 4). For some instances, the MIP

achieved better results than the GA. However, the objective discrepancy is rather
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small in these cases. The average deviation of MIP and GA objective values is 1.6%

in these cases across all instance sizes.

From the results, we deduce adequate performance and solution quality of our

algorithm. Our GA is a suitable tool for fast construction of a large amount of

possible assembly line configurations when considering collaborative robots in

industrial practice. The effect of robot deployment on cycle time can quickly be

estimated. Based on the results of the GA, we will therefore evaluate the potential of

collaborative robot deployment in manual lines and derive managerial implications

in the following section.

6.5 Managerial insights

To quantify the potential of deploying collaborative robots, we analyze their impact

on the reduction of cycle time and the assignment of tasks to the different processing

alternatives (manual, robot only, and collaboration between worker and robot).

Thereby, we concentrate on the large problem instances. The results for the small and

medium instances are structurally similar and can be found in Appendices H–M.

In Tables 7 and 8, the average relative improvement in cycle time and the

corresponding standard deviation is presented for different values of the robot

density and the robot flexibility, respectively. The results are broken down

according to different levels for the West ratio and the F-ratio. Overall, it can be

seen that a higher robot density and a higher robot flexibility allow to reduce cycle

times substantially compared to a fully manual assembly line, i.e., RD ¼ 0. In

accordance with the law of decreasing marginal utility, the efficiency gains decrease

with increasing deployment and flexibility of robots. With regard to the West ratio,

the potential of robots to reduce cycle time is especially pronounced for a high

average number of tasks to be assigned to every station. On the contrary, the F-ratio

has almost no influence on the improvement of cycle time.

Table 7 Analysis of robot density on relative improvement of cycle time for large instances (; rð Þ)

RD West ratio F-ratio

2 4 0.2 0.8

0.0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

0.2 0.03 (0.04) 0.07 (0.01) 0.05 (0.04) 0.05 (0.04)

0.4 0.03 (0.05) 0.12 (0.02) 0.07 (0.05) 0.08 (0.06)

Table 8 Analysis of robot flexibility on relative improvement of cycle time for large instances ((; rð Þ)

RF, CF West ratio F-ratio

2 4 0.2 0.8

0.0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

0.2 0.02 (0.03) 0.09 (0.03) 0.05 (0.04) 0.06 (0.05)

0.4 0.04 (0.06) 0.10 (0.03) 0.07 (0.05) 0.07 (0.06)
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The results can be explained by analyzing the modes selected for conducting the

tasks in the different instances. For that reason, the average number of tasks

assigned to human (H), robotic (R), and collaborative (C) modes is illustrated in

Fig. 5 for the large instances. Moreover, the proportion of tasks assigned to modes

in stations with robots for large instances is presented in Fig. 6. The distribution of

tasks among modes is sourced from the best found solution of the GA for each

instance. Each average hereby considers the solutions to all 25 precedence graphs

contained in the respective F-ratio group. Given the tradeoff between short

execution times (i.e., collaborative mode) and smaller resource requirements (i.e.,

human and robotic mode, preferably utilized in parallel), all processing modes are

utilized in relevant scale and no processing mode dominates another. Thereby, the

deployment of the different modes is heavily influenced by the variation in robot

density (i.e., number of robots by number of stations), West ratio (i.e., number of

tasks by number of stations), and F-ratio (i.e., degree of freedom within the

assignment of tasks to stations).

With an increase in West ratio and robot density (ceteris paribus), the average

number of tasks assigned to both robotic and collaborative modes increases, leading

to a reduction in cycle time. The same holds true for an increase in robot flexibility.

Each additional robot and each additional unit of flexibility, however, utilize less

automation and collaboration potential (law of decreasing marginal utility).

Since the F-ratio has almost no influence on the improvement of cycle time (as

reported in Tables 7 and 8), its variation requires a more differentiated assessment.

The average number of tasks assigned to the robotic and collaborative modes

increases with a higher F-ratio for low levels of robot flexibility, while it decreases

with a higher F-ratio for high levels of robot flexibility, respectively. This is mainly
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a consequence of the differences of the precedence graphs associated with a low and

a high F-ratio and relates to the favorability between robot-based modes.

The favorability between robot-based modes is particularly based on differences

in F-ratio and West ratio, respectively. A higher portion of automated processing is

favored by a higher West ratio, which is due to higher combinatorial potential in

task assignment. Consequently, with high West ratio, it is more likely to find a

combination of tasks in which the high processing time of the robotic task can be

complemented by manual tasks resulting in equal (and low) finish time. A lower

West ratio, on the other hand, favors serial task assignment in collaborative mode,

taking advantage of shorter processing times. An exception to these rules can be

seen for the combination of a high West ratio and low F-ratio. Here, slightly more

tasks are assigned to the collaborative mode than to the robotic mode if the robot

flexibility is high. This can be explained by the fact that a low F-ratio comes along

with less potential to parallelize task execution due to more distinct precedence

relations between tasks. As a consequence, serial task assignment in the

collaborative mode becomes necessary to utilize the full potential of automation.

For the same reason, tasks are generally executed more often by the collaborative

mode with a decreasing F-ratio. This evidence, therefore, explains why the

improvement of cycle time (as provided in Tables 7 and 8) is almost unaffected by

the level of F-ratio.

From the results, the following managerial implications can be derived: First,

productivity of manual assembly lines can be substantially improved by deploying

collaborative robots independent of the actual setting. The higher the robot

flexibility and the higher the number of robots compared to the number of stations,

the more pronounced this effect will be, yet with decreasing marginal utility.

Second, all processing modes are of relevance when balancing assembly lines with

collaborative robots. Industrial planners should particularly focus on enabling robots

for autonomous performance in stations with a high number of tasks. For stations

that only perform few tasks, they should create the preconditions for collaborative

execution by worker and robot. Third, given the complexity of the decision situation

under consideration and the tradeoffs between the different operating modes, a

model-based planning approach as presented in this paper should be utilized to

derive an optimal assembly line configuration for a specific setting. Especially the

influence of the product structure, i.e., precedence relations between the assembly

tasks, on the task assignment cannot be determined intuitively and needs to be

analyzed in detail.

7 Conclusions and future research

The trend of increasing automation enhances the efficiency of modern manufac-

turing enterprises. However, certain tasks cannot efficiently be automated, for

instance, due to product complexity in manufacturing corporations and small-batch

production in small- and medium-sized enterprises. These challenges are predom-

inantly faced by manual labor. In recent years, human–robot collaboration has

established opportunities to increase efficiency of manual work.

Business Research (2020) 13:93–132 119

123



Therefore, we consider the novel planning problem of configuring manual

assembly lines with collaborative robots. In our balancing approach, robots can be

assigned to stations to support human task execution, where both human and robotic

advantages can be utilized. As robots are capable of working in collaboration with

the human as well as performing tasks autonomously, the assembly line balancing

problem is extended to a scheduling problem. We present a mathematical

formulation to minimize assembly lines’ cycle times for a given number of stations

and collaborative robots, and develop a hybrid genetic algorithm to solve the

corresponding problem. In our approach, we decide about the stations the robots are

assigned to and the distribution of workload among the workers and the robots. Due

to the high problem complexity, only few system configurations can be determined

optimally with a standard solver, which in particular holds true for large problem

instances. On the contrary, the hybrid genetic algorithm allows proposing a variety

of advantageous system configurations considering collaborative robots comple-

menting workers in manual assembly lines with little computational effort.

Overall, the results indicate that substantial productivity gains can be utilized by

deploying the collaborative robots. For products with 100 tasks being manufactured

on an assembly line with 25 stations, deployment of 10 (5) collaborative robots may

yield an average increase in productivity of 12% (7%) compared to the manual case.

Due to the tradeoff between time and resource consumption of the different modes

within collaborative assembly, all modes are of relevance and the actual task

allocation depends heavily on the characteristics of the production system and the

product structure. Therefore, line planners should carefully evaluate the production

system and the product under consideration before deciding on the deployment of

collaborative robots.

Further research is needed in this field. Industrial manufacturers also appreciate

collaborative robots as they are able to release workers from physically stressful

tasks. Consequently, aspects of ergonomics should be considered in the system

configuration. Also, the determination of an economically optimal number of robots

and their capabilities should be focused rather than to assume them to be given

externally. Future approaches should, therefore, extend the scope of investigation

and be based on multi-objective formulations considering the aspects mentioned

above. Moreover, due to their object-oriented approach, the further development of

genetic algorithms appears to be a promising field, particularly for multi-objective

problem formulations.
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Appendices

Appendix A: Pseudocode—generation of initial individuals

Algorithm Workload distribution among initial individuals
for each individual in the initial population

Generate robot allocation randomly.
Initialize to one.
Initialize to the number of stations in the assembly line.
Initialize to zero. 
Initialize ℇ randomly, where ℇ ∈ {0,… , 0.15}.
Initialize human processing times for all tasks .

while not all tasks assigned do
// select task to be scheduled next
Compute set of candidate tasks having no (unassigned) predecessors. 
Select one candidate task randomly.
// determine maximum station load depending on robot assignment
if robot is assigned to :

Compute =
∑ =1

+ ·ℇ
· (1 + ℇ).

else:
Compute =

∑ =1

+ ·ℇ
.

end if
// determine station the task is assigned to, 

based on human processing times and stations’ workload
if = : 

Assign to . 
Compute = + .

else if + ≤ : 
Assign to . 
Compute = + .

else: 
Generate a random binary number ∈ {0,1}
Assign to ( + ). 
Compute = + 1. 
Compute = ∗ . 
end if

end while
end for
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Appendix B: Pseudocode—fitness estimation procedure

Algorithm Fitness estimation of tasks in robot-based stations
Compute set of tasks in the considered station.
Compute number of tasks in the considered station.

Initialize ℎ to zero.
Initialize to zero. 

Initialize ℎ to zero.
Initialize human, robotic, and collaborative processing times ( , , ) 

for all tasks in the considered station.
Initialize = ∑ =1 | ≠ ∞. 
Initialize = ∑ =1 .

while not all tasks assigned do

Compute set of candidate tasks having no (unassigned) predecessors.

// find task to be allocated to human worker
for all candidate tasks 
if task is exclusively feasible with manual execution: 

Compute ℎ = ℎ + .
Remove from set of tasks.
Continue while.

end if
end for

// find task to be allocated to robot
for all candidate tasks 

if + ≤ ℎ +

or ( ≠ ∞ and ≤ ):
Compute = + .

Remove j from set of tasks. 
Continue while.

end if
end for

// find task to be executed by worker and robot collaboratively
for all candidate tasks 

if (ℎ , ) + < ℎ +

and (ℎ , ) + < + :
Compute = (ℎ , ) + .

Compute ℎ = .
Remove j from set of tasks. 
Continue while.

end if
end for

// assign to worker, if no of the prior alternatives is true
for all candidate tasks 

Compute ℎ = ℎ + .
Remove j from set of tasks. 

Continue while.
end for

end while

// calculate and return resulting finish 
Compute ℎ = (ℎ , ).
Return ℎ .
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Appendix C: Notation of the single-station scheduling model

Appendix D: Single-station scheduling model of station k

Minimize FinishTime ð16Þ
Subject to:

X

p2P
xip ¼ 1 8i 2 Ik; ð17Þ

si þ
X

p2P
tip � xip � FinishTime 8i 2 Ik; ð18Þ

si þ
X

p2P
tip � xip � sj 8 i; jð Þ 2 E \ Ikð Þ; ð19Þ

si þ tip � xipc � sj þ �c 1� xipc
� �

þ �c 1� yij
� �

8i; j 2 Ik; ð20Þ

si þ
X

p2P
tip � xip � sj þ �c � 1� xjpc

� �
þ �c 1� yij
� �

8i; j 2 Ik; ð21Þ

si þ tip � xip � sj þ �c 1� xip
� �

þ �c 1� xjp
� �

þ �c 1� yij
� �

8i; j 2 Ik; p 2 pH; pRf g;
ð22Þ

yij ¼ 1� yji 8i; j 2 Ik; i\j; ð23Þ
xip 2 0; 1f g 8i 2 Ik; p 2 P; ð24Þ

si � 0 8i 2 Ik; ð25Þ

Sets and parameters

n Number of tasks

Ik Subset of tasks assigned to station k (index i; j)

P Set of process alternatives (index p)

pH; pR; pC Process alternatives, in which tasks are processed by human (H), robot (R) or in

collaboration (C), respectively

E Set of direct precedence relations

tip Execution time of task i 2 Ik with processing alternative p 2 P

�c Upper bound on makespan (
P
i2Ik

tipH )

Decision and auxiliary variables

xip Binary variable with value 1, if task i 2 Ik is assigned to processing alternative p 2 P

si Continuous variable for encoding the start time of task i 2 Ik in the station it is assigned to

FinishTime Non-negative variable for encoding the finish time of the considered station

yij Binary variable with value 1, if task i 2 Ik starts before task j 2 Ik (si � sjÞ
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yij 2 0; 1f g 8i; j 2 Ik; i 6¼ j: ð26Þ

Appendix E: Calculation of selection probabilities

Proba ¼
CTmax � CTa þ e

PA
a¼1ðCTmax � CTa þ eÞ

; with

Proba Selection probability of individual a

CTmax Maximum cycle time among the individuals of the population

CTa Cycle time of individual a

e Sufficiently small number to ensure probabilities to be larger zero, since

CTmax � CTa results to zero in case of saturated population

A Number of individuals in the population
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Appendix H: Analysis of robot density on relative improvement of cycle
time for small instances ; rð Þ

RD West ratio F-ratio

2 4 0.2 0.8

0.0 0 (0) 0 (0) 0 (0) 0 (0)

0.2 0.05 (0.05) 0.08 (0.02) 0.07 (0.05) 0.06 (0.03)

0.4 0.07 (0.06) 0.13 (0.03) 0.10 (0.06) 0.10 (0.05)

Appendix I: Analysis of robot flexibility on relative improvement of cycle
time for small instances ; rð Þ

RF, CF West ratio F-ratio

2 4 0.2 0.8

0.0 0 (0) 0 (0) 0 (0) 0 (0)

0.2 0.04 (0.05) 0.10 (0.04) 0.06 (0.05) 0.08 (0.05)

0.4 0.08 (0.06) 0.11 (0.04) 0.10 (0.06) 0.09 (0.05)

Appendix J: Analysis of robot density on relative improvement of cycle time
for medium instances ; rð Þ

RD West ratio F-ratio

2 4 0.2 0.8

0.0 0 (0) 0 (0) 0 (0) 0 (0)

0.2 0.05 (0.05) 0.08 (0.02) 0.06 (0.04) 0.06 (0.04)

0.4 0.06 (0.06) 0.12 (0.02) 0.08 (0.05) 0.09 (0.06)

Appendix K: Analysis of robot flexibility on relative improvement of cycle
time for medium instances ; rð Þ

RF, CF West ratio F-ratio

2 4 0.2 0.8

0.0 0 (0) 0 (0) 0 (0) 0 (0)

0.2 0.04 (0.05) 0.09 (0.03) 0.06 (0.04) 0.07 (0.05)

0.4 0.06 (0.06) 0.11 (0.03) 0.08 (0.05) 0.08 (0.05)

Business Research (2020) 13:93–132 127

123



Appendix L: Average number of tasks assigned to modes for small (top)
and medium (bottom) instances

high West ra�o, high robot density
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Appendix M: Proportion of tasks assigned to modes in stations with robots
for small (top) and medium (bottom) instances

high West ra�o, high robot density
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Kellegöz, T., and B. Toklu. 2015. A priority rule-based constructive heuristic and an improvement

method for balancing assembly lines with parallel multi-manned workstations. International Journal

of Production Research 53: 736–756. https://doi.org/10.1080/00207543.2014.920548.

Kim, Y.K., W.S. Song, and J.H. Kim. 2009. A mathematical model and a genetic algorithm for two-sided

assembly line balancing. Computers & Operations Research 36: 853–865. https://doi.org/10.1016/j.

cor.2007.11.003.
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