
Brinkmann, Jan; Ulmer, Marlin W.; Mattfeld, Dirk C.

Article

The multi-vehicle stochastic-dynamic inventory routing
problem for bike sharing systems

Business Research

Provided in Cooperation with:
VHB - Verband der Hochschullehrer für Betriebswirtschaft, German Academic Association of
Business Research

Suggested Citation: Brinkmann, Jan; Ulmer, Marlin W.; Mattfeld, Dirk C. (2020) : The multi-vehicle
stochastic-dynamic inventory routing problem for bike sharing systems, Business Research, ISSN
2198-2627, Springer, Heidelberg, Vol. 13, Iss. 1, pp. 69-92,
https://doi.org/10.1007/s40685-019-0100-z

This Version is available at:
https://hdl.handle.net/10419/233172

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s40685-019-0100-z%0A
https://hdl.handle.net/10419/233172
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


ORIGINAL RESEARCH

The multi-vehicle stochastic-dynamic inventory routing
problem for bike sharing systems

Jan Brinkmann1 • Marlin W. Ulmer1 •

Dirk C. Mattfeld1

Received: 19 February 2019 / Accepted: 28 May 2019 / Published online: 21 June 2019

� The Author(s) 2019

Abstract We address the operational management of station-based bike sharing

systems (BSSs). In BSSs, users can spontaneously rent and return bikes at any

stations in the system. Demand is driven by commuter, shopping, and leisure

activities. This demand constitutes a regular pattern of bike usage over the course of

the day but also shows a significant short-term uncertainty. Due to the heterogeneity

and the uncertainty in demand, stations may run out of bikes or congest during the

day. At empty stations, no rental demand can be served. At full stations, no return

demand can be served. To avoid unsatisfied demand, providers dynamically relocate

bikes between stations in reaction of current shortages or congestion, but also in

anticipation of potential future demand. For this real-time decision problem, we

present a method that anticipates potential future demands based on historical

observations and that coordinates the fleet of vehicles accordingly. We apply our

method for two case studies based on real-world data of the BSSs in Minneapolis

and San Francisco. We show that our policy outperforms benchmark policies from

the literature. Moreover, we analyze how the interplay between anticipation and

coordination is essential for the successful operational management of BSSs.

Finally, we reveal that the value of coordination and anticipation based on the

demand-structure of the BSS under consideration.
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1 Introduction

In many cities, station-based bike sharing systems (BSSs) have been proven to be a

healthy and flexible alternative to individual travel by car and a suitable complement

to public transportation (Büttner et al. 2011). In BSSs, customers can spontaneously

perform one-way trips between stations. BSSs are often used for commuting as well

as for leisure and shopping activities. This leads to imbalances between stations and

in the worst case to failed demand in terms of bikes and bike racks causing customer

loss on the long run. To account for the imbalances, BSS providers dispatch vehicles

to relocate bikes between stations. Research suggests to balance BSSs by means of

optimization models based on typical daily demand patterns. Thereby, short-term

demand changes, for example, due to weather conditions are largely ignored

(Borgnat et al. 2011; Vogel et al. 2011; O’Brien et al. 2014).

To incorporate spontaneous demand, the problem needs to be considered on the

level of operational control. A dispatcher dynamically routes a fleet of vehicles

relocating bikes between the stations. Subsequent decisions are taken for the

vehicles with respect to the number of bikes to relocate at its current station as well

as the next station to serve. To minimize the expected amount of unsatisfied demand

per day, stations with an immediate demand are reactively chosen to be visited next.

The respective model can be described as multi-vehicle stochastic and dynamic

inventory routing problem (SDIRP).

Recent research address the operational repositioning of bikes in a BSS. In the

previous research, a single vehicle is dynamically routed in the city to react to

realized demand and in anticipation of future demand. In this paper, we route a fleet

of vehicles. Isolated control approaches as described by Chiariotti et al. (2018),

Brinkmann et al. (2019), and Legros (2019) work for a single vehicle, but may lead

to insufficient solutions in a multi-vehicle case. For example, several vehicles may

follow the same control policy and approach the same station. Missing coordination

between vehicles may also cause unnecessarily long trips within the city. In this

paper, we present a method that coordinates the fleet of vehicles in the city. Our

method draws on the current state of the vehicles and their individual potential to

avoid failed demand. Based on the fleet information, the station an individual

vehicle is sent to is determined by means of an assignment problem solution. The

parts of the assignment solution which are relevant for the immediate decision are

implemented while the remaining parts are reevaluated later in the process based on

newly observed demand information. To estimate the unmet demand a vehicle can

avoid at a specific station, we extend a lookahead method introduced by Brinkmann

et al. (2019).

We apply our methods for two case studies based on historical data from the

BSSs in San Francisco (CA, USA) and Minneapolis (MN, USA). We show how

coordination between the vehicles is essential to enable demand satisfaction.
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This article is structured as follows. Relevant literature is reviewed in Sect. 2.

The SDIRP is defined in Sect. 3. In Sect. 4, we define our method and the

benchmark policies. A computational study is presented in Sect. 5. In Sect. 6, a

summary is drawn and an outlook is given.

2 Literature

The literature on inventory routing problems for BSSs is manifold. In the following,

we give a brief overview on relevant work. For further literature classifications, we

kindly refer the interested reader to Brinkmann et al. (2016, 2019) and Espegren

et al. (2016). Here, we consider deterministic-static, stochastic-static, and stochas-

tic-dynamic models.

Deterministic-static models either do not comprise demand or assume that

demand is known in advance. Decisions are taken in one decision point and a

solution is a set of static routes. Various authors ignore user demand during

operations (e.g., Chemla et al. 2013; Raviv et al. 2013; Erdoǧan et al. 2014, 2015;

Espegren et al. 2016; Szeto et al. 2016; Szeto and Shui 2018). These models assume

that relocations are carried out in the night when the system is closed. The goal is to

realize target fill levels provided by external information systems. Time-dependent

target fill levels for daily relocations are determined by Vogel et al. (2014) and

Neumann Saavedra et al. (2015). In other work, deterministic routing solutions are

derived to ensure such given fill levels (Contardo et al. 2012; Kloimüllner et al.

2014; Brinkmann et al. 2016; Schuijbroek et al. 2017). Neumann Saavedra et al.

(2016) determine target fill levels, relocations, and tours simultaneously.

Stochastic-static models consider stochastic demand, however, optimization is

conducted in a single decision point before the start of the BSS-operations. Raviv

and Kolka (2013) and Datner et al. (2017) determine initial target fill levels for

stations on the basis of stochastic demand. These fill levels serve as input for over-

night relocations as described in the previous category. Lu (2016) considers

stochastic demand and determines relocations for vehicle tours predefined by

external information systems and one week in advance. Stochastic-static inventory

routing problems are investigated by Ghosh et al. (2016, 2017) and Yan et al.

(2017). Ghosh et al. (2016, 2017) plan for one day in advance. Yan et al. (2017)

plan once a week.

To counteract unexpected demand and sudden imbalances, some papers propose

dynamic control during the day on basis of latest information. Brinkmann et al.

(2015, 2019), Fricker and Gast (2016), Chiariotti et al. (2018), and Legros (2019)

propose stochastic-dynamic models for a single vehicle. To the best of our

knowledge, multiple vehicles are not considered in the literature on stochastic-

dynamic routing for BSSs. Brinkmann et al. (2015) and Fricker and Gast (2016)

draw on myopic approaches. Brinkmann et al. (2019) introduce online simulations

to incorporating stochastic information and to enable anticipation. The vehicle is

routed to the station where the largest amount of expected failed demand in the

(near) future can be avoided. To this end, potential future demand is simulated.

Chiariotti et al. (2018) and Legros (2019) divide the time horizon into periods of
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equal length. Anticipation is enabled by means of target fill levels for every station

and period.

In this paper, we extend the work of Brinkmann et al. (2019) to a multi-vehicle

model. We present methods to coordinate the multiple vehicles in the service area.

To account for the increased computational burden, we modify the anticipation

process of Brinkmann et al. (2019) and shift the anticipation to an analytical offline

procedure.

3 Multi-vehicle stochastic-dynamic inventory routing for bike sharing
systems

In this section, we define the multi-vehicle stochastic-dynamic inventory routing

problem for BSSs (SDIRP). The SDIRP is an extension of the single-vehicle model

by Brinkmann et al. (2019). First, we formulate the SDIRP’s setting in Sect. 3.1.

We then model the SDIRP as Markov decision process (MDP) in Sect. 3.2 and

present an example in Sect. 3.3. In Sect. 3.4, we briefly analyze the SDIRP’s state

space dimensionality.

3.1 Problem setting

We consider a BSS with stations ni 2 N; i[ 0 and a depot n0. Every station n has an

initial fill level f n0 , i.e., a specific number of bikes, and a maximum capacity cn. Over

a time horizon T, users rent and return bikes altering the fill level of the stations

spontaneously. At a non-empty station, rental demand can be served. At a non-full

station, return demand can be served. If a demand is served, the station’s fill level is

decreased, or increased, respectively. If demand fails, a penalty occurs and the user

approaches an adjacent station.

Failed demand can be avoided by providing sufficient bikes and free bike racks at

every station and every time. To this end, the dispatcher dynamically routes a fleet

of transport vehicles V ¼ v1; . . .; vmaxf g. We assume the number of vehicles is

determined by the tactical management and the drivers are already paid. Every

vehicle starts at the depot, is initially empty, and has a capacity of cv. The travel

time between two stations is given by function sð�; �Þ. The service time for relocation

is sr per bike.
Over the course of the day, the vehicles are subsequently sent from station to

station to pick up or load bikes. Decision making therefore comprises a combination

of routing to a station and loading operation at a station. Since new demand

information reveals during travel, the loading operation is to be reconsidered, once a

vehicle arrives at a station. The service provider aims on maximizing the users’

satisfaction based on the limited resources accessible. Therefore, the goal is to

minimize the expected failed demand per day.
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3.2 Markov decision process

In the following, we model the problem as an MDP. An MDP is a framework for

stochastic-dynamic optimization problems (Puterman 2014). We extend the single-

vehicle Markov decision process of Brinkmann et al. (2019). Equation (1) depicts

the components of an MDP:

sk �!x sxk �!x skþ1: ð1Þ

In an MDP, a sequence of decision states sk occurs over time. In a decision state, a

decision x is selected leading to a post-decision state sxk. Based on post-decision

state sxk, a transition x leads to a new decision state skþ1. In the following, we define

the MDP components for the SDIRP. The notation is given in Table 1.

3.2.1 Decision states

A decision point k 2 K occurs when a vehicle arrives at a station. The associated

decision state sk contains information about the time, the stations, and the fleet. The

current point in time is tk. The fill levels at the stations are f n1k ; . . .; f nmaxk . Every

vehicle v is represented by a vector ðnvk; avk; f vk Þ. Value nvk represents the station

vehicle v is currently traveling to and value avk depicts the corresponding arrival

time. In case that the vehicle just arrives at a station, the arrival time is avk ¼ tk.

Value f vk represents the current number of bikes loaded on the vehicle.

Table 1 Notation of the Markov decision process

Symbol Description

K ¼ ð0; . . .; kmaxÞ Sequence of decision points

S ¼ s0; . . .; smaxf g Set of decision states

Xs ¼ x1; . . .; xmax j x ¼ ði; qÞf g ; 8s 2 S Sets of feasible decisions

sxk ¼ ðsk; xÞ ; 8s 2 S; x 2 Xs Post-decision states

x : S� X ! S Transition function

T ¼ t0; . . .; tmax j t 2 Nf g Time horizon

V ¼ v1; . . .; vmax j v ¼ ðnvk; avk; f vk Þ
� �

Set of vehicles

tk 2 T Point in time in state sk

fk ¼ f n0k ; . . .; f nmax

k

� �
Stations’ fill levels in state sk

nvk 2 N Vehicle v’s station in state sk

avk 2 T Vehicle v’s arrival time at nvk

f vk 2 N0 Vehicle v’s load in state sk

ix 2 Z Inventory decision

nx 2 N Routing decision

p : S� X ! N0 Penalty function

P ¼ p0; . . .;pmax j p : S ! Xf g Set of policies

Business Research (2020) 13:69–92 73

123



3.2.2 Decisions

A decision is made only about the vehicles currently staying at a station. For vehicle

v, decision x ¼ ði; qÞ contains an inventory decision i 2 Z at station nvk the vehicle

just arrives, and a next station q 2 N to serve. If i\0, the vehicle picks up jij bikes
at the current station. If i[ 0, the vehicle delivers jij bikes.

A decision changes the status of station nvk and vehicle v as follows. The fill level of

the station nvk is stepwise altered to f
n
k þ i based on the inventory decision. The fill level

of the vehicle is altered to f vk � i. The station of the vehicle is altered to q and the new

arrival time is tk þ jij � sr þ sðnvk; qÞ reflecting time for relocation and traveling.

3.2.3 Transition

The transition x leads to a new decision point k þ 1 and reflects the vehicles’

traveling and a realization of customer demand at every station. The new point in

time tkþ1 is the minimum of all arrival times a. The transition updates the fill levels

of the stations due to successfully fulfilled demand. The penalty function pðsk; xÞ
reflects the expected failed demand between two decision points k and k þ 1 if x is

the decision made in sk. Value pxðsk; xÞ represents the penalty based on the realized

transition x.

3.2.4 Objective

A solution for the SDIRP is a policy p 2 P assigning every state to a decision. An

optimal policy p� leads to the minimum of expected unsatisfied demand. Let s0 be

the initial decision state. The objective is to identify policy p� 2 P:

p� ¼ argmin
p2P

E
Xkmax

k¼0

p
�
sk; pðskÞ

����s0

" #

: ð2Þ

3.3 Example

In Fig. 1, we give an example of the MDP. On the left-hand side, decision state sk is

depicted. The center shows post-decision state sxk. The following decision state skþ1

x

n2n1

n3

v1

t=12

sk

n4

v2

n2n1

n3

v1

t=21

n4

v2

ω

n2n1

n3

t=21

n4

v2

skx sk+1

v1

Fig. 1 Exemplary decision state, post-decision state, and resulting decision state
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is depicted on the right-hand side. The system has four stations n1, n2, n3, and n4.

The depot is neglected. Two vehicles v1; v2 are given. For the stations and vehicles,

light boxes represent empty bike racks, dark boxes represent bike racks filled with a

bike. Stations n1 and n2 have a capacity of five racks, station n3 of three, and station

n4 of four racks. The vehicle capacities are four.

Decision point k is induced due to vehicle v1’s arrival at station n1 in time

tk ¼ 12. In the associated decision state sk, stations n1 and n4 contain f n1k ¼ f n4k ¼ 4

bikes, n3 contains f n3k ¼ 2 bikes, and n2 is empty, f n2k ¼ 0. Vehicle v1 is located at

nv1k ¼ n1. It just arrived at this station. Thus, the arrival time is av1k ¼ tk ¼ 12. The

current fill level of vehicle v1 is f
v1
k ¼ 1. Vehicle v2 travels to station n4 and arrives

in nine time units. It has loaded one bike. Thus, the vector for vehicle v2 reads

ðn4; 21; 1Þ.
The inventory decision is made about how many bikes to pick up at or to deliver

to station n1 by vehicle v1. The routing decision is made about which station to serve

next, or idling at the current station. Here, the applied decision is x ¼ ð�2; n2Þ:
picking up two bikes and travel to n2. Assuming sr ¼ 2 units, two pick ups consume

four time units. Furthermore, assuming travel time of sðn1; n2Þ ¼ 20, the decision

consumes 24 time units in total. Finally, vehicle v1 arrives at station n2 in

tk þ j-2j � sr þ sðn1; n2Þ ¼ 12þ 4þ 20 ¼ 36. The updated vector is ðn2; 36; 3Þ.
The resulting post-decision state sxk, including the decisions made, is depicted in

the center of Fig. 1. The next decision point k þ 1 occurs at tkþ1 ¼ 21 because

vehicle v2 arrives at station n4: a
v2
kþ1 ¼ tkþ1 ¼ 21.

Before the associated decision state skþ1 occurs, the transition x reveals new fill

levels and a realization of the penalty function. New fill levels are revealed at n1 and

n3 due to successful requests. At n1, the fill level has increased by one. At n3, the fill

level has decreased by one. Station n3 remains empty and station n4 remains full.

For the purpose of presentation, the customer trips are not depicted in Fig. 1. We

assume that one rental demand failed at n2 and one return demand failed at n4
resulting in a realized penalty of pðsk; x;xÞ ¼ 2. The resulting new decision state

skþ1 is shown on the right-hand side of Fig. 1.

3.4 State space dimensionality

An optimal policy as defined in the objective function (2) relies on the Bellman

equation (3). It minimizes the penalties over the current and all future decision

points:

p�ðskÞ ¼ argmin
x2Xsk

E
Xkmax

k0¼k

pðsk0 ; xÞ
��sk

" #

. ð3Þ

Applying the Bellman equation in decision point k results in evaluating future

decision points k þ 1; . . .; kmax and the associated decisions x 2 X. This results in

evaluating almost every potential decision state s 2 S and is usually computationally

intractable even for smaller problem instances. In the following, we demonstrate the

state space dimensionality of the SDIRP by investigating an upper bound of the state

space’s size |S|:
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(a) A state may occur at any point in time t ¼ t0; . . .; tmax.

(b) At any point in time, every station fill level is between 0 and maximum

capacity cn.

(c) Further, every vehicle load is between 0 and maximum capacity cv.

(d) Every vehicle may stay or travel to any station.

(e) Arrival times are arbitrary as well.

The resulting upper bound reads as follow:

jSj � ðtmax þ 1Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ðaÞ

�
Y

n2N
ðcn þ 1Þ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ðbÞ

�
Y

v2V
ðcv þ 1Þ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ðcÞ

� jNjjVj
|ffl{zffl}
ðdÞ

� ðtmax þ 1ÞjV j
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ðeÞ ð4Þ

The upper bound ignores the interdependencies between the fill levels of stations

(and vehicles) due to the given number of bikes in the system. However, it indicates

that calculating optimal policies by means of dynamic programming is computa-

tionally intractable even for smaller systems. To this end, we draw on a heuristic in

the next section.

4 Coordinated lookahead policy

In this section, we present our solution policy. The method coordinates vehicles

within the city and anticipates unmet demand by means of lookahead. We denote

our method the coordinated lookahead policy (CLA). The method is an extension of

prior work (Brinkmann et al. 2019) in terms of usability in the multi-vehicle case.

We first give a motivation for our policy and then describe the methodological

details.

4.1 Motivation and policy outline

The SDIRP is dynamic because of the spontaneity in user demand. A suit-

able method is required to coordinate the fleet of vehicles effectively, reacting to

current demand and anticipating potential future demand.

Coordination manifests in the routing decision of the MDP. In the routing

decision, the potential movement of the other vehicles needs to be considered. To

highlight the importance of coordination, we show a (simplified) example in Fig. 2.

The figure consists of three parts depicting different routing decisions for the same

situation. Two empty vehicles and two full stations are given. We assume the travel

time of vehicle v1 to station n1 is 12 min, to station n2, the travel time is 10 min. The

travel times for vehicle v2 are 25 min to station n1 and 15 min to station n2.

In the situation, we need to route v1. We assume that v2 will require a routing

decision a very short time later. A potentially good decision is depicted in Fig. 2a,

sending v1 to n1 and v2 to n2. The decision leads to relatively short travel times and

the vehicles arrive early to balance the stations and to avoid unmet demand.

Without coordination, we observe different decisions. The first (most obvious)

decision is depicted in Fig. 2b. If we only focus on the current vehicle and ignoring

76 Business Research (2020) 13:69–92

123



the other vehicles in the decision process, both vehicles may eventually approach

the same station. We first send v1 to n2 (ignoring v2) and a short time later, we send

v2 to the same station (ignoring v1).

However, coordination should not be restricted to avoiding vehicles approaching

the same station, as shown in Fig. 2c. In this decision, v1 is sent to its individual

‘‘best’’ station and a short time later, v2 is sent a long way to the remaining ‘‘best’’

station. As the example shows, this procedure may be inferior because other

vehicles may travel unnecessarily long distances within the city.

Coordinating the fleet allows to effectively assign vehicles to stations avoiding

unnecessary long travel. To achieve coordinated routing decisions, our method

determines the potential for every vehicle to avoid failed demand for every station.

Based on the estimation, it then determines the assignment for vehicles to stations

and selects the routing decision accordingly. The method only implements the

assignment only for the vehicle under consideration. The assignments for the other

vehicles can be reevaluated later in the process based on new observations.

To estimate the potential for a vehicle to avoid unsatisfied demand at the current

station and all other stations, anticipation of future demand is necessary.

Anticipation indicates stations which are likely to run out of bikes or congests.

In the following, we present the details of the algorithm. We first describe how

we estimate the future failed demand for the stations. We then present the

procedures to determine inventory and routing decisions.

4.2 Anticipation of failed demand

Our policy requires a measure to calculate the expected failed demand for stations.

To this end, we use historical trip data to successively update the fill levels of

stations. The updates may lead to accumulations of failed demand for each station.

The failed demand measured can then be used in the decision making of our policy.

As previous research has shown, there is benefit to limit the horizon (Brinkmann

et al. 2019) because it balances the urgency of near-future demand with longer term

demand. Thus, we limit the horizon in state sk to d minutes.

n2n1

v1 v2

n2n1

v1 v2

10 25

10 15

(c)(b)(a)

n2n1

v1 v2

12 15

Fig. 2 Example of the impact of coordination

Business Research (2020) 13:69–92 77

123



We calculate the average difference of rented and returned bikes per minute

Dn
t 2 R for each station n and minute t. These values can be precomputed based on

historical data and allow instant decision making in a real-time decision state. A

negative value of Dn
t indicates that in minute t at station n more bikes are rented than

returned. A positive value indicates that more bikes are returned than rented. For a

station n at time tk with fill level f ntk , we can then calculate the fill level development

over time as follows:

f nt ¼ minðmaxðf nt�1 þ Dn
t�1; 0Þ; cnÞ 8t ¼ tk þ 1; . . .; tk þ d: ð5Þ

The fill levels are altered minute by minute with respect to the average difference in

demand per minute. The fill levels always stay in the range between zero and the

maximum capacity. Based on this development, we calculate the cumulated

amounts of failed return demand cþðnÞ and of failed rental demand c�ðnÞ for station
n. Value cþðnÞ is calculated as follows:

cþðnÞ ¼
Xtkþd

t¼tk

maxðf nt þ Dn
t � cn; 0Þ: ð6Þ

In minute t, a failed return demand occurs if the sum of current fill level and return

demand exceeds the station’s capacity. Analogously, the failed rental demand can

be calculated:

c�ðnÞ ¼
Xtkþd

t¼tk

jminðf nt þ Dn
t ; 0Þj: ð7Þ

The values can now be used in our inventory decision i and routing decision q of our

MDP.

4.3 Inventory decision

In the first step, the CLA determines the inventory decision i. We reduce the set of

inventory decisions to evaluate because the set of potential fill levels is very large

and the runtime is limited. Here, we draw on the percentages l1 ¼ 25% (low),

l2 ¼ 50% (medium), and l3 ¼ 75% (high) leading to the target fill levels l1 � cn
v
k ,

l2 � cn
v
k , and l3 � cn

v
k . With respect to the vehicle’s capacity cv and load f vk , we may

not be able to realize the target fill levels as described. If necessary, we modify the

target fill levels and derive the corresponding relocations i1, i2, and i3 according to

Eq. (8):

ii ¼
minfli � cn

v
k � f

nv
k

k ; f vk g , if li � cn
v
k [ f

nv
k

k

maxfli � cn
v
k � f

nv
k

k ; f vk � cvg , if li � cn
v
k\f

nv
k

k

0 , else.

8
>><

>>:
ð8Þ

The first case occurs when bikes need to be delivered to the station. Then, we limit

the number of bikes to the vehicle’s load. In the second case, bikes need to be

picked up. Here, the equation ensures that the number of loaded bikes does not
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exceed the vehicle’s capacity. The third case occurs if the station’s fill level is equal

to the predetermined target fill level and therefore no relocations need to be done.

As an example, we consider a station nvk with capacity cn
v
k ¼ 20 bikes. The

current fill level is f
nv
k

k ¼ 10 bikes. The vehicle v has currently loaded f vk ¼ 2 and a

capacity of cv ¼ 20 bikes. The three relocation decisions aim on fill levels of

25% � 20 ¼ 5, 50% � 20 ¼ 10, and 75% � 20 ¼ 15 bikes. The first fill level can be

achieved by removing 5 bikes from the station, i1 ¼ �5. The second fill level can be

achieved by maintaining the fill level, i2 ¼ 0. The third fill level cannot be achieved,

because only f
nv
k

k þ f vk ¼ 12 bikes are available. Thus, with respect to Eq. (8), the

third relocation decision is i3 ¼ 2.

For each inventory decision ii, we now can determine the expected failed demand

at that station as described above. Because the failed demand depends on decision ii,
we denote the values c�ðii; nvkÞ and cþðii; nvkÞ. Based on the cumulated values of

c�ðii; nvkÞ and cþðii; nvkÞ for ii 2 fi1; i2; i3g, we select iH minimizing the sum of

failed demand:

iH ¼ argmin
i2fi1;i2;i3g

fc�ði; nvkÞ þ cþði; nvkÞg: ð9Þ

4.4 Routing decision

In the second step, the CLA determines the routing decision q for the current vehicle

in coordination with the other vehicles. In the following, we anticipate the prevented

failed demand for pairs of stations and vehicles. We then describe how we

coordinate the routing based on these values.

To derive the failed demand a vehicle can prevent at a station, we follow the

same procedure as discussed in Sect. 4.2. The only difference is that the vehicles

have different arrival times at stations and different fill levels. Mathematically, we

determine for every station n the failed demand a specific vehicle v can prevent as

follows. In time tk, a vehicle v, which arrives in time avk minutes at station nvk, can

reach station n at earliest at time avk þ sðnvk; nÞ. Thus, we consider for v only the

failed demand at n in the time interval I n
v ¼ avk þ sðnvk; nÞ; tk þ d

� 	
where d depicts

the length of the considered horizon. Let c�ðn; vÞ and cþðn; vÞ be the failed rental

and failed return demand at stations n occurring in this interval I n
v . Again, we need

to consider the vehicle’s capacity cv and load f vk . Then, the prevented failed demand

if vehicle v is sent to station n can be calculated as follows:

cðn; vÞ ¼ max min c�ðn; vÞ; f vk
� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
preventedfailedrentals

;min cþðn; vÞ; cv � f vk
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
preventedfailedreturns

8
><

>:

9
>=

>;
: ð10Þ

Figure 3 provides an example. The lookahead starts at 14:30 h and is limited to

d ¼ 360 min. We successively update the station’s fill level as described and

observe the fill level and cumulated failed demand at station n. The fill level is

represented by the solid line. We see that the fill level decreases due to rental

demand. Just before 16:00 h, the station runs out of bikes. From that time on, the
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cumulated failed demand, indicated by the dashed line, increases because rental

demand cannot be satisfied any more. If vehicles v1 or v2 are sent to n, they arrive

earliest at 15.00 h, or 15.30 h, respectively. Both vehicles arrive early enough before

any demand fails. Vehicle v3 arrives earliest at 16.30 h. This results in failed

demand of about 3.5 rentals between 16:00 and 16:30 h. Given the three vehicles

have the same capacity and load, the values for v1 and v2 are the same and both are

higher than the value for v3: cðn; v1Þ ¼ cðn; v2Þ[ cðn; v3Þ.
Only considering the demand at station n in the example in Fig. 3, it is beneficial

to send either v1 or v2 to this station. However, looking at the demand at all stations,

it might be beneficial to send v3 to n if v1 and v2 can prevent more demand at other

stations. To consider these interdependencies, we assign every vehicle to a station.

Although we only decide about the routing for the current vehicle, we make a

preliminary, tentative decision for every other vehicle as well.

To coordinate the dispatching of the vehicles, we have to solve an assignment

problem. The goal is to maximize the prevented failed demand over all stations. The

constraint is that every vehicle is assigned to one station and every station is

assigned at most to one vehicle. In the following, we formally define the assignment

problem.

We define decision variables yij 2 f0; 1g 8ni 2 N; vj 2 V to indicate the assign-

ments of stations to vehicles in Eq. (11):

yij ¼
1, if stationniis assigned to vehiclevj

0, else



ð11Þ

Value cðni; vjÞ indicates the amount of prevented failed demand at station ni if it is

assigned to vehicle vj. Then, the problem can be defined as follows:

max
XjNj

i¼1

XjV j

j¼1

yij � cðni; vjÞ ð12Þ
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Fig. 3 Observed fill level and cumulated failed demand in an exemplary lookahead
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subject to

XjV j

j¼1

yij � 1 8ni 2 N ð13Þ

XjNj

i¼1

yij ¼ 1 8vj 2 V ð14Þ

In the objective function (12), the amount of prevented failed demands over all

stations and vehicles is maximized. In constraints (13) and (14), we ensure that

every station is assigned to at most one vehicle, or every vehicle is assigned to one

station, respectively.

We apply the heuristic matrix maximum approach to solve the assignment

problem: The values of cðn; vÞ for all vehicles and stations lead to a matrix C. Each
row indicates a station and each column a vehicle. Let v be the vehicle we need to

route in the current decision state. We iteratively search the entry with the

maximum in C. Let cðni; vjÞ be this entry. If vj ¼ v, we stop the procedure and send

vehicle v to station ni: qH ¼ ni. Else, if vj 6¼ v, we remove row i and column j of

matrix C. We remove row i to ensure that we do not route our vehicle to ni because

vehicle vj is the best assignment for this station. We remove column j to ensure that

vj is not sent to another station for the same reason. We repeat the procedure until

the maximum cðni; vjÞ refers to vehicle v, i.e., v ¼ vj. Then, we choose ni to be

vehicle v’s next station: qH ¼ ni.

Notably, even though the approach is greedy, it performs comparably well.

Experiments show that solving the deterministic-static assignment problem to

optimality even decreases the solution quality of the SDIRP (compare Appen-

dix A.2). As for many dynamic problems, these results confirm the observation that

solving static subproblems to optimality in a dynamic context is often not beneficial

(Powell et al. 2000; Maggioni and Wallace 2012). One reason is that optimal

solutions for static problems usually do not yield any flexibility to react to future

information changes, as for the SDIRP, changes in C.
Eventually, the CLA selects the inventory decision iH of Sect. 4.3 and the routing

decision qH of Sect. 4.4.

4.5 Benchmark policies and tuning

In the following, we define our benchmark policies. Our CLA draws on two

components: anticipation of future developments and coordination of the fleet. We

design our benchmark policies with respect to these components.

The first benchmark policy draws on the lookahead as described in Sect. 4 but

ignores coordination of the vehicles. We denote this policy CLA-NC for no

coordination. This policy ignores information on other vehicles and sends vehicle v

to the station where this vehicle can prevent as much demand as possible:

qH ¼ argmax
n2N

cðn; vÞ: ð15Þ
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The second benchmark ignores anticipation but draws on safety buffers to determine

if a station needs to be visited (Brinkmann et al. 2015). We denote this policy as the

short-term relocation policy (STR). A threshold percentage b of the stations’

capacity is defined a priori. If a station n has less than b � cn bikes or free bike racks,
the safety buffer is violated and the station is denoted to be imbalanced. The

inventory decision i is determined as the difference between the current fill level

and the safety buffer. For balanced stations, the inventory decision is i ¼ 0. Routing

decision q selects the nearest imbalanced station. Stations where another vehicle is

currently located or approaching are excluded from consideration. The third

benchmark policy STR-NC follows the same procedure but ignores coordination.

Thus, several vehicles may be sent to the same imbalanced station. Policy STR-NC

can be seen as the basis benchmark policy because it neither considers anticipation

nor coordination.

We tune the policies as follows. For the CLA and the CLA-NC, we test horizons

of d 2 f60; 120; . . .; 720g. For STR and STR-NC, we select b 2 f0:1; 0:2; . . .; 0:5g.
For every instance setting, we run all parametrizations over 1, 000 test days and

select the best d and b for our experiments. The parameters can be found in Tables 2

and 3 in Appendix A.2.

5 Computational studies

In this section, we present our computational studies. We first describe the instance

settings based on real-world data from the BSSs of Minneapolis and San Francisco.

We then compare the results of the different policies. Finally, we analyze the impact

of our coordination method in detail. The experiments are performed on an Intel

Core i5-3470 with 3.2 GHz and 32GB RAM. The implementation bases on Java

8u121.

5.1 Instances

In this section, we describe the instances for the SDIRP based on real-world data.

We draw on the data of the BSSs in Minneapolis (MN, USA, Nice Ride 2016) and

San Francisco (CA, USA, Ford GoBike 2017). The providers frequently publish

data sets providing information on trips. Every trip comprises a rental and return

station and the corresponding rental and return times. The data sets are preprocessed

as proposed by Vogel et al. (2011):

We only draw on week days because the customer demand significantly differs

on weekends. We further remove all trips that start and end at the same station and

take less than 1 min. In these cases, we assume a user has returned the bike

immediately due to some defect and, thus, no real trip takes place. We draw on 88

working days in the summer months from July to October in 2015 for Minneapolis.

The preprocessed data set consists of 197,726 trips occurred at 169 stations. The

station capacities differ between 15 and 35 bike racks. 2246 trips take place per

day on average. Ford GoBike BSS consists of three disjoint subsystems East Bay,

San Francisco, and San José. We only draw on the San Francisco subsystem. For
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San Francisco, we select 89 working days in the summer months July to October in

2014. The data set consists of 100,728 trips after cleaning. The 35 stations have

capacities between 15 and 27. 1131 trips take place per day.

We use data sets as foundation for the average differences of rented and returned

bikes per station and minute. In our simulation, we discretize one day into 24 � 60 ¼
1440 min. Therefore, time horizon T comprises 1440 individual points in time t.

Then, we determine Dn
t ; 8n 2 N; t 2 T as the average differences of rented and

returned bikes per minute and station.

Figure 4 depicts the temporal distributions of trips in the course of the day. The

solid line refers to the average number of trips in Minneapolis, the dashed line refers

to San Francisco. Both BSSs have peaks in the morning, around noon, and in the

evening. In Minneapolis, the second and third peak are higher than the previous

ones. In San Francisco, the amplitudes of the morning and evening peak are more

equal. The noon peak is much lower. In both systems, the morning and evening

peaks are likely to represent commuters. In the morning, commuters rent bikes in

residential areas and return them in working areas. In the evening, bikes mainly are

rented in working areas and returned in residential areas. The noon peak is likely

due to leisure and shopping activities. As stated by O’Brien et al. (2014), leisure

usage is significant in Minneapolis.

The preprocessed data sets serve as foundation for the actual instances. For each

test day, we randomly draw trips with replacement from the associated data sets. We

draw 2246 trips for Minneapolis, and 1126 for San Francisco. The combination of

real trips from different days lead to new, artificial days. Further, we assume the

ratio of bike racks over all stations and bikes within the system to be 2:1 (which is a

common ratio in practice, O’Brien et al. 2014). In the beginning of the time horizon,

we distribute the bikes randomly over all stations. Here, we use a uniform

distribution. For each instance setting, we generate 1000 test days following this

procedure. We test every instance setting for every BSS and for fleet sizes between

1 and 4 vehicles. Every vehicle has a capacity of 20 bikes. The vehicles travel on

Euclidean distances between the stations with a speed of 15 km/h. This relatively

slow speed accounts for potentially longer travel distances due to the road network.

We assume a relocation time of 2 min per bike, i.e., sr ¼ 2.
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Fig. 4 Temporal distributions of trips of Minneapolis’ and San Francisco’s BSS
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In Appendix A.1, we go into detail with the user behavior we have implemented

in case of failing demand.

5.2 Analysis

Every combination of instance, fleet size, and policy demands a special different

tuning. In Appendix A.2, we provide information on the tuning parameters and the

achieved failed demand of the solutions.

Here, we compare the solution qualities of the four policies. To this end, we

calculate the improvement ratio of a policy p to the basic benchmark STR-NC for

every instance setting. Let QðpÞ denote the average failed demand of policy p. The
improvement ratio is then calculated as:

1� QðpÞ
QðSTR-NCÞ : ð16Þ

The improvements of policies STR, CLA-NC, and CLA over STR-NC are shown in

Fig. 5. The x-axis shows the policies. The y-axis shows the improvement ratio. The

dark bars refer to Minneapolis and the light bars refer to San Francisco. We observe

that all three policies significantly improve the solution quality compared to the

basic benchmark policy STR-NC. The proposed policy CLA achieves the highest

solution quality. Also STR achieves significant improvements against STR-NC.

Thus, even without anticipation, coordination is valuable. We further observe very

significant improvements for both CLA-NC and CLA up to 55:0%, or 65:3%,

respectively. We also see that anticipation is more important for San Francisco

while coordination is more important for Minneapolis: the difference between STR

and CLA is significantly higher for San Francisco while the difference between

CLA-NC and CLA is significantly higher for Minneapolis. We will analyze these

observations in more detail in the following.
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Fig. 5 Average improvement ratio of the policies compared to STR-NC
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First, we analyze how anticipation impacts the solution quality. To this end, we

calculate the improvement ratio of CLA compared to STR for both BSSs and for

fleet sizes of 1–4. Both policies coordinate their fleet. The improvement ratio is

shown in Fig. 6. We observe that for every instance setting, an improvement of at

least 20% can be achieved. Further, the improvement is significantly higher in San

Francisco. As mentioned before, San Francisco shows a stronger commuter

behavior than Minneapolis. Thus, trips are more predictable for San Francisco and

anticipation becomes more reliable. This explains the high improvement ratios for

San Francisco.

We now analyze the impact of fleet coordination. To this end, we calculate the

improvement ratio of CLA compared to CLA-NC. Following the structure of

Fig. 6, the results are shown in Fig. 7. We omit the results for tests with a single

0%

20%

40%

60%

One Two Three Four

Im
pr

ov
em

en
t R

at
io

Vehicles

Minneapolis

San Francisco

Fig. 6 Impact of anticipation: improvement ratio of CLA compared to the STR

0%

10%

20%

30%

40%

Two Three Four

Im
pr

ov
em

en
t R

at
io

Vehicles

Minneapolis

San Francisco

Fig. 7 Impact of coordination: improvement ratio of CLA compared to CLA-NC
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vehicle because in that case coordination does not effect decision making. In

Minneapolis, the coordinated dispatching achieves improvement ratios of 20:9%,

35:4%, and 44:3% for 2, 3, and 4 vehicles. In San Francisco, the improvement

ratios are 10:7%, 31:3%, and 30:2%. As assumed, we observe that coordination

becomes more important with increasing number of vehicles. We also observe that

for Minneapolis coordination is more important than for San Francisco. The BSS

of San Francisco is dominated by commuters: many customers demand rentals and

returns at a distinct set of stations at specific times. Thus, the impact of sending

vehicles in the same direction without coordination is not as severe compared to

Minneapolis where demands are more equally distributed and coordination is

crucial.

5.3 Degree of coordination

In our main experiments, we have shown that coordination is essential for successful

operational control of the fleet. In the following, we analyze the impact of

coordination in more detail. The CLA solves an assignment problem but

implements the assignment solution for the current vehicle only. The assignment

problem incorporates the potential of all vehicles in the routing decision for the

current vehicle. The only partial implementation of the assignment solutions

maintains flexibility to react to realized demand later in the process. To show the

importance of the assignment problem and the partial implementation, we run

experiments with two different coordination degrees:

– The first degree is similar to CLA-NC choosing the station with the highest

priority for the vehicle. However, we omit stations where other vehicles are

currently traveling to. This method ignores the different potentials of all

vehicles.

– The second degree is to solve the assignment problem and to completely commit

all vehicles to the solution. That means that the routing decision for other

vehicles may already be taken before the vehicles arrive at the next station. This

method ignores the value of reconsidering assignment decisions based on new

information.

We test the different degrees for both systems and for 2, 3, and 4 vehicles. We

benchmark the results with the CLA-NC. The improvements for the different

degrees are depicted in Fig. 8. The x-axis depicts the different degrees of

coordination. Our CLA as described in Sect. 4.4 is indicated by ’Partial

Assignment’. The y-axis shows the improvement over the no coordination policy

CLA-NC for the systems of San Francisco and Minneapolis.

We observe that all three coordination methods add significant benefit in

comparison to solutions without coordination. CLA with partial assignments

outperforms the other coordination degrees. Particularly, committing to the

complete assignment decision for all vehicles lead to inferior results. This confirms

that the high volatility in customer demand impedes long-term planning for both

systems.
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6 Conclusion

In this paper, we have addressed the management of bike sharing systems on the

operational level. The service provider uses a fleet of vehicles to relocate bikes

between stations with the objective of minimizing failed demand. We have modeled

the stochastic-dynamic inventory routing problem as Markov decision process and

presented a decision policy allowing for coordination and anticipation. The policy

anticipates future demand development based on historical data. Based on this

development, it relocates bikes and coordinates the vehicles accordingly. We have

tested our policy for two real-world bike sharing systems in Minneapolis and San

Francisco. Our results show that both anticipation and coordination are essential for

obtaining high customer satisfaction.

In future research, model and method could be further extended. The model may

integrate the scheduling of drivers based on the workload. This scheduling is

challenging because of the decisions’ interdependencies in stochastic, dynamic

decision problems. Scheduling decisions for one hour affect failed demand in all

future hours. The method may be extended to integrate potential routing

developments as well as potential trips between the stations. Integrating routing

decisions is challenging because it either requires extensive simulations with a

runtime-efficient routing policy or the solution of a stochastic and continuous time

inventory routing problem. Furthermore, our results show that spontaneous demand

realizations impede long-term planning. Thus, a method may be developed that

focuses more on future routing flexibility than on explicit future routing decisions.

Acknowledgements The authors thank the editors and the two anonymous reviewers for their helpful

suggestions and comments in preparation of this work.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

0%

10%

20%

30%

Minneapolis San Francisco

Im
pr

ov
em

en
t R

at
io

Bike Sharing System

Not Same Station

Partial Assignment

Complete Assignment

Fig. 8 Improvement of the different degrees of coordination over CLA-NC without coordination

Business Research (2020) 13:69–92 87

123

http://creativecommons.org/licenses/by/4.0/


author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

A Appendix

In the Appendix, we present details of the customer behavior model and results for

the individual instances.

A.1 User behavior

As aforementioned, a user approaches a neighboring station if his demand fails. We

assume that information on other stations’ fill levels is provided by a screen at the

station terminal. In this section, we formally define how users select alternative

stations in case of failed demand.

Let no and nd be the user’s origin and destination stations, and let f n be the

current fill level of any station n. If the rental demand fails at no, he approaches the

neighboring station no2 which is closest to the origin and is neither empty nor

extends the travel time to the destination according to Formula (17):

no2 ¼ argmin
n2N

fsðno; nÞ j 0\f n ^ sðn; ndÞ� sðno; ndÞg. ð17Þ

If the return demand fails at nd, he approaches the neighboring station nd2 which is

closest to the destination and is not full:

nd2 ¼ argmin
n2N

fsðnd; nÞ j f n\cng. ð18Þ

We are aware that in a worst case scenario, a user may approach stations to infinity.

However, we also have to state that in the computational studies we did not observe

failing demand two times in a row.

A.2 Results

To determine the safety buffer b for STR and STR-NC as well as the lookahead

horizon d for CLA and CLA-NC, we run experiments with b 2 f0:1; 0:2; . . .; 0:5g
and d 2 f60; 120; . . .; 720g for 1000 non-concatenated test days. For every setting,

i.e., BSS and vehicle fleet size, we individually determine parameters. For every

setting, the best parameter’s results are presented in Table 2 for Minneapolis, or in

Table 3 for San Francisco, respectively.

The column ‘Policy’ indicates the policy and the corresponding parameter in

brackets. ‘Vehicles’ indicates the fleet size. The column ‘Coordination’ points out
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how coordination is realized. Here, a dash indicates that no coordination takes place.

‘Failed Demand’ depicts the corresponding average number over all test days. In the

last column, the average CPU time for one test day is given in seconds. The first

rows refer to the case if no relocations are realized.

We further present results for the experiments where we solve the static

assignment problem to optimality. To this end, in every decision point, we solve the

assignment problem by means of the Hungarian Algorithm (Stern 2012). We

observe that optimal solutions of this static subproblem do not yield any benefit but

even decreases solution quality. This observations is in alignment with other

Table 2 Minneapolis results

Policy Vehicles Coordination Failed demand CPU time [s]

– – – 259.67 –

STR(0.1) 1 – 139.11 0.14

STR(0.2) 2 – 86.80 0.14

STR(0.2) 3 – 67.01 0.15

STR(0.2) 4 – 57.05 0.15

STR(0.2) 2 Not same station 79.77 0.16

STR(0.2) 3 Not same station 52.77 0.18

STR(0.3) 4 Not same station 40.17 0.28

CLA(240) 1 – 98.33 0.19

CLA(240) 2 – 67.48 0.49

CLA(240) 3 – 59.15 0.90

CLA(240) 4 – 56.89 1.21

CLA(240) 2 Not same station 54.00 0.49

CLA(300) 3 Not same station 39.09 1.05

CLA(420) 4 Not same station 32.76 2.20

CLA(240) 2 Partial 53.36 0.50

CLA(300) 3 Partial 38.23 1.09

CLA(420) 4 Partial 31.68 2.29

CLA(240) 2 Complete 55.24 0.54

CLA(360) 3 Complete 40.07 1.37

CLA(420) 4 Complete 33.84 2.40

CLA(180) 2 Optimal static 57.10 0.52

CLA(240) 3 Optimal static 41.34 1.14

CLA(300) 4 Optimal static 34.86 2.16
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research on stochastic and dynamic decision problems (Maggioni and Wallace

2012; Powell et al. 2000).
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