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Abstract If a decision context is completely precise, making good decisions is

relatively easy. In the presence of ambiguity, rational decision-making is incom-

parably more challenging. We understand ambiguous situations as cases, where the

decision-maker has imprecise (uncertain or vague) knowledge that is acquired from

incomplete information (without limiting it to probability judgements as in common

terminology). From that, we assume that imprecisions in knowledge can affect all

elements of the decision field as well as the objective function. For the modeling of

such decision situations, classical logics are no longer considered as means of

choice, so that we suggest using approaches from the field of multi-valued logic. In

the present work, we take suitable calculi from the so-called intuitionistic fuzzy

logic into account. On that basis, we propose a model for the formulation and

solving of decision problems under ambiguity (in the general sense). Particularly,

we address decision situations, in which a decision-maker has sufficient information

to specify point probability values, but insufficient information to express point

utility values. Our approach is also applicable for modeling cases in which the

probability judgments or both, probability and utility judgements are imprecise. Our

model is novel in that we combine core elements of established approaches for the

formal handling of uncertainty (maxmin and a-maxmin expected utility models)

with the mathematical foundation of intuitionistic fuzzy theory.
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1 Introduction

Theories of rational decision-making behavior under uncertainty have always been

central subjects in prescriptive decision theory. Bernoulli’s work (1738)1 with its

later axiomatization by von Neumann and Morgenstern (1947) forms the theoretical

basis of rational behavior in decisions under risk, the expected utility theory (EU). It

proposes that if a decision-maker’s preferences concerning risky alternatives fulfill a

set of well-defined axioms, a utility function can be derived. This function assigns a

real number to the consequences of each alternative in every state of nature. It

reflects the decision-maker’s attitude towards the consequence values as well as his

or her attitude towards risk. The sum of the probability weighted single utilities for

each alternative determines their respective expected utility values. According to the

theory, a rational decision-maker maximizes his or her utility by choosing the

alternative with the highest expected utility value. EU and the underlying axioms do

not focus on the question of how the decision-relevant state probabilities are

determined. This aspect is much more a subject of subjective expected utility theory

(SEU). It postulates conditions, under which probabilities can be derived from

preference statements. Its axiomatic foundation is attributed to Savage (1954) and is

accounted as one of the most important approaches for rational decision-making

under risk.

Equally as important are the innumerable studies concerning behavioral

violations of corresponding axioms; primarily, because they reveal the limits of

rationality-forming theories and thus claim to provide proof of irrational behavior

by decision-makers, who act inconsistently to them. The latter described efforts are

often to be found in the literature, especially when it comes to violations of the

rationality postulates of SEU in decision situations that are (at least partially)

ambiguous. The concept of ambiguity has different interpretations in the literature,

whereas the most common definitions and types can be ascribed to incomplete

information on probabilities (see e.g., Franke 1978; Curley et al. 1986; Frisch and

Baron 1988; Camerer and Weber 1992; Fox and Tversky 1995; Ghirardato et al.

2004). This terminology receives an increased scientific attention due to the work of

Ellsberg (1961), who provides evidence for violations of Savage’s axioms in

decision situations under ambiguity. This kind of decision problems, which Ellsberg

characterizes as situations between ‘‘complete ignorance’’ and ‘‘risk’’, attracts many

researchers and results in a tremendous follow-up research. It mainly focusses on

the description of behavioral inconsistencies regarding both preference-building

mechanisms and probabilistic requirements of SEU (see e.g., Slovic and Tversky

1974; Einhorn and Hogarth 1986; Kahn and Sarin 1988; Curley and Yates 1989;

Kunreuther et al. 1995).

The ever-increasing amount of empirical results supporting Ellsberg’s findings

gives rise to another research stream, which develops a more critical view to most of

these insights. While some of the corresponding works solely question the necessity

and sufficiency of common rationality axioms as foundation for rational behavior,

some other try to present approaches for a formal handling of inconsistencies with

1 For translated version, see Bernoulli (1954).
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the rationality axioms in decision situations with ambiguous probability assess-

ments. Particularly, the application of non-additive measures for the modeling of

ambiguity settings has achieved great recognition in decision theory since the

corresponding contributions by Schmeidler (1989) and Gilboa and Schmeidler

(1989). By modifying the axioms of SEU, Schmeidler (1989) elaborates a

subjective, non-additive measure based approach that can be applied to define

ambiguity attitudes and formally handle inconsistencies with selected axioms of

rational behavior. He uses Choquet’s (1954) theoretical basis of non-additive

capacities. Therefore, the corresponding theory is called Choquet expected utility

theory (CEU). While in CEU the decision-maker’s beliefs regarding the occurrence

of states are expressed by non-additive probability substitutes (unique priors), in

Gilboa’s and Schmeidler’s (1989) maxmin expected utility model (MEU) decision-

maker’s beliefs are represented by a set of probabilities (multiple priors). Under

consideration of Wald’s (1949) maxmin rule, it is a pessimistic approach, which

suggests selecting the alternative with the highest minimum expected utility value.

By supplementing aspects of the Hurwicz criterion (1951), Ghirardato et al. (2004)

have established the a-maxmin expected utility model (a-MEU). In accordance to

MEU, a-MEU assumes that decision-maker’s beliefs are represented by a set of

probabilities. For decision-making, the overall expected utility is calculated as the

weighted average of maximum and minimum expected utility for each alternative.

Within this approach, the weights are understood as expressions of the decision-

maker’s attitude towards ambiguity.2 Al-Najjar and Weinstein (2009) provide a

critical review of related approaches that were elaborated during the following two

decades after Gilboa’s and Schmeidler’s initial work. A broader overview of related

research contributions is given by Gilboa and Marinacci (2016).

The work mentioned previously, primarily deals with the relaxation of axiomatic

demands on decision-makers, regarding the formation of their preferences and

probability judgments. Other than that, there are approaches, which rather deal with

the formal structure of imprecise knowledge, and its handling within corresponding

decision problems. Significant theories to mention in this context are theories of

fuzzy measures and fuzzy sets, initially introduced by Zadeh (1965, 1978). While

fuzzy measure theory is primarily concerned with the analysis of alternative

measures to the stringently axiomatized probability measure, the fuzzy set theory

mainly provides tools for the mathematical modeling of imprecisions with respect to

all possible components of the decision field (for discussion, see Metzger and

Spengler 2017). The latter mentioned theories have great potential for the

formulation of decision problems in which the decision-maker is faced with vague

or incomplete information; in particular, because vague or incomplete information

has a major impact on corresponding rationality considerations. We suggest not only

reducing these to inconsistencies concerning probability judgements and preference

statements, but rather focus on potential behavioral effects resulting from imperfect

information. In this context, we want to refer to the following statement given by

Gilboa and Marinacci (2016):

2 For the purposes of our approach, we will later on not refer to this interpretation of decision weights.
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[…] (T)he (traditional) axiomatic foundations […] are not as compelling as

they seem, and […] it may be irrational to follow this approach. […] (It) is

limited because of its inability to express ignorance: it requires that the agent

express beliefs whenever asked, without being allowed to say ‘‘I don’t know’’.

Such an agent may provide arbitrary answers, which are likely to violate the

axioms, or adopt a single probability and provide answers based on it. But

such a choice would be arbitrary, and therefore a poor candidate for a rational

mode of behavior.

We support this statement to the fullest and are strongly convinced, that this

problem also appears, when a decision-maker is asked to determine (point) utility

values. Subsequently, the question arises, whether the previously presented models

can actually handle these limitations of (S)EU when it comes to determine rational

decision behavior. From our previous discussion it follows that they are able to

handle limitations of (S)EU, but only those associated with vague probability

statements. Vagueness, that affects other components of the decision field, is not

treated by these approaches. Additionally, all of them generate other requirements

the decision-maker has to fulfill in order to apply these models in respective

decision-making contexts. In this regard, we want to extend the theoretical analysis

of (ir-) rational decision-making under incomplete information. Therefore, we

specify our understanding of rationality and apart from that generalize the definition

of ambiguity compared to the narrow one manifested by Ellsberg (1961). On that

basis, we propose an approach for the formal handling of ambiguity in the general

sense, including instruments of intuitionistic fuzzy theory.

The remainder of this paper is structured as follows. In Sect. 2, we first describe

our comprehension of the rationality and ambiguity terms in relation to our

approach. In Sect. 3, we provide theoretical and terminological basics for the

method that underlies to our approach. In Sect. 4, we introduce our model and

illustrate it with a numerical example. In Sect. 5, we conclude with a discussion on

our results and implications for future research.

2 Understanding of ambiguity and rationality within our approach

Considering its etymology, rational behavior is reasonable and thoughtful behavior,

while emotional behavior is one arising from intense and temporary mind

movements. As long as people (and not machines) make decisions, they are always

more or less emotional. Emotions thus accompany rational decisions, so that the

interpretation as opposing concepts does not hit the core. In rationality concepts that

are constructed bipolar, ‘‘irrational’’ is the opposite of ‘‘rational’’ et vice versa, and

‘‘rational’’ is the opposite of ‘‘emotional’’ et vice versa. In contrast to bipolar

constructs, we assume here the possibility of complete independence (orthogonality)

of rationality, irrationality, and emotionality, which may—but do not have to—be

present within actions of an individual. Thus, it is possible for the decision-maker to

show rational behavior for some components of the decision, and irrational as well

as emotional behavior for others. For illustration, imagine a decision-maker that has
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to conduct calculations in order to obtain a reasonable solution for a decision

problem. This individual accounts calculations as satisfying and generally enjoys it.

During this calculation procedure, he or she makes an unconscious mistake and on

that basis takes the wrong decision. In this case, the procedure itself would be

rational and also emotional to some degree. Due to the mistake in the calculations,

the result would be also irrational at the same time.

Constructing all three dimensions orthogonally, for which we want to plead here,

the overall interrelation can be illustrated graphically in the form of a cube (Fig. 1).

The notion of ambiguity is mainly of Latin (later also French) origin and

generally means equivocation (see e.g., Ries 1994). In decision-logic contexts,

which we are essentially concerned with here, this addresses the equivocation of

elements of the decision field and the objective function. This in turn can refer to

alternatives, consequences, environmental states and probability judgements on the

one hand and (above all) to the preference function on the other hand. Therefore, we

propose to understand ambiguous situations as general cases, where the decision-

maker has imprecise (uncertain or vague) knowledge that is acquired from

incomplete information (without limiting it to probability judgements). From that,

we assume that imprecisions in knowledge can affect all elements of the decision

field. This understanding of ambiguity goes beyond the terminology and concep-

tualization as introduced by Ellsberg (1961). Extensive discourses on ambiguity in

the broader sense are provided by, e.g., Furnham and Ribchester (1995), Furnham

and Marks (2013), McLain, Kefallonitis, and Armani (2015) and Lauriola et al.

(2016). How an individual deals with ambiguity depends on his or her ambiguity

attitudes (see e.g., Budner 1962; McLain 1993). We will come back later to the

particular impact of ambiguity attitudes within decision situations.

If the decision context is completely precise, making good decisions is relatively

easy. In the case of ambiguity, rational decision-making is incomparably more

difficult, irrespective of the degree of irrationality and emotionality. Classical logics

are then no longer considered as means of choice, so that one is well advised to use

approaches from the field of multi-valued logic. The term ‘multi-valued logic’

describes all logical concepts that do not satisfy the bivalence principle and

therefore have more than two truth values, in contrast to two-valued logic, which

allows something only being true (= 1) or false (= 0) (see e.g., Dubois and Prade

1980; Gottwald 2006). In the present work, we take suitable calculi from the so-

called intuitionistic fuzzy logic into account.

Rationality

Irrationality

Emotionality

Fig. 1 Orthogonality of
rationality, irrationality and
emotionality
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3 Fuzzy theory and intuitionistic fuzzy theory and terminology basics

The foundation of our approach is Atanassov’s (1986) intuitionistic fuzzy set theory

(or i-fuzzy-, for short), which in the past decades has received increasing scientific

attention as extension of Zadeh’s (1965) fuzzy set theory.

The starting point of our model is the construct of a fuzzy set (in the following we

call it traditional fuzzy set) as introduced by Zadeh (1965). Let X be a finite classical

set with its elements x. A corresponding fuzzy set ~A is determined by assigning to

each x 2 X a value l ~AðxÞ 2 0; 1½ � that expresses the membership degree of the

elements x to this fuzzy set ~A. The higher the membership degree l ~AðxÞ, the more

element x belongs to ~A. Structurally we get a set containing ordered pairs,
~A ¼ x; l ~AðxÞ

� �
j x 2 X

� �
, where l ~A represents a set function with l ~A : X ! 0; 1½ �.

We want to illustrate this approach by the following example (Spengler 2015): A

manager wants to assess his or her satisfaction with potential annual profit levels.

Applying the traditional fuzzy set approach, (s)he first has to formulate a classical

set X with realizable profit values x. This example set may contain the following

elements (in thousand €): X ¼ 100; 200; 300; 400; 500; 600f g. Subsequently (s)he

has to assess to what extent each potential annual profit level x 2 X satisfies him or

her. In the sense of traditional fuzzy set theory, the manager assesses to which

degree l ~AðxÞ the annual profit values belong to the fuzzy set ~A of satisfactory profits.

Here, ~A formally represents the fuzzy statement ‘‘x is a satisfactory annual profit

level’’ and exemplarily can appear as follows:

~A ¼ 100; 0:2ð Þ; 200; 0:3ð Þ; 300; 0:5ð Þ; 400; 0:7ð Þ; 500; 0:8ð Þ; 600; 1ð Þf g:
While traditional fuzzy set theory does not specify how to interpret the inverse

membership degree 1� l ~AðxÞ, Atanassov (1986) makes this aspect to a core

research subject within his i-fuzzy set theory. He proposes a further differentiation

of 1� l ~AðxÞ by introducing a degree of non-membership and a degree of

indeterminacy, which enable a decision-maker to undertake a much stronger

content-related and formal information differentiation. Furthermore, this approach

provides a sophisticated basis for representation of ambiguous knowledge, which

allows us to describe real decision problems in a more appropriate way.

But what is intuitionistic about Atanassov’s i-fuzzy sets? The concept of intuition

is essentially based on the Latin noun intuitio (= the immediate contemplation).

Intuitive assessments are based more on afflatus or anticipated grasp (‘‘from the

gut’’) and less on scientifically discursive justifications (see e.g., Dorsch et al. 1994).

While classical logics (e.g.) are based on the bivalence principle, according to which

a statement is either clearly true or clearly false, more than two (truth) values are

allowed in non-classical (multi-valued) logics. The latter includes intuitionistic

logic (Brouwer 1913).3 This logic is not about truth functionality, but about the

question of whether A _ :A can be proved. Consequently, the law of excluded

middle does not apply in it, just as it does not apply in fuzzy logic (see e.g., Dubois

and Prade, 1985). An extension of the intuitionistic logic is the intuitionistic fuzzy

3 For reprinted version, see Brouwer (1999).
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logic (see e.g., Takeuti and Titani 1984; Atanassov 1999). In the present work, we

want to use i-fuzzy sets in Atanassov’s sense, so that the interesting terminological

discourse between Atanassov (2005) and Dubois et al. (2005) is only marginally

mentioned here.

In contrast to the notation used in traditional fuzzy set theory, we denote an

intuitionistic fuzzy set by Â. Having a finite set X with its elements x, we now can

assign to each element x a membership degree lÂðxÞ 2 0; 1½ �, a non-membership

degree mÂðxÞ 2 0; 1½ �, and degree pÂðxÞ, where pÂðxÞ ¼ 1� lÂðxÞ � mÂðxÞ. pÂðxÞ
represents the degree of indeterminacy regarding the (non-) membership of the

element x to the i-fuzzy set Â. These structurally form a set of ordered triplets with

the following definition: Â ¼ ðx; lÂðxÞ; mÂðxÞÞ j x 2 X
� �

. In this standard notation,

the degree of indeterminacy is not explicitly noted. It implicitly results from the

subtraction mentioned above. From this notation also can be derived, that if pÂðxÞ ¼
0 then mÂðxÞ ¼ 1� lÂðxÞ. In this case, we again have a traditional fuzzy set

definition. It follows, that traditional fuzzy sets are special cases of i-fuzzy sets.

Considering the intuitionistic fuzzy approach within our previous example, in

addition to assessing its satisfaction with profit levels x 2 X, the manager may

indicate to what extent (s)he does not account them as satisfying. For this (s)he has

to determine the degree mÂðxÞ, to which (s)he is dissatisfied with the single profit

values. If (to a certain degree) (s)he is not sure, how (dis-) satisfying the profit levels

are, (s)he also can specify a degree pÂðxÞ. The corresponding i-fuzzy set Â

exemplarily can appear as follows: Â ¼ 100; 0:2; 0:8ð Þ; 200;ðf
0:3; 0:5Þ; 300; 0:5; 0:4ð Þ; 400; 0:7; 0:2ð Þ; 500; 0:8; 0:1ð Þ; 600; 1ð Þg. In this paper we

want to focus on constructs called intuitionistic fuzzy values (or i-fuzzy values, for

short), which are strongly interrelated with the i-fuzzy set concept. Based on the

above defined i-fuzzy sets, aðxÞ ¼ laðxÞ; maðxÞð Þ is called i-fuzzy value, where

laðxÞ 2 0; 1½ �, maðxÞ 2 0; 1½ � and laðxÞ þ maðxÞ� 1. The degree paðxÞ with paðxÞ ¼
1� laðxÞ � maðxÞ maps the indeterminacy of the decision-maker when evaluating

an element x with respect to a defined attribute. In the following, we use the triple

notation of an i-fuzzy value in the form aðxÞ ¼ laðxÞ; maðxÞ; paðxÞð Þ (see e.g., Xu

and Yager 2009).

To illustrate possible geometrical representations of i-fuzzy values, we go back to

the example of the manager, who wants to assess his or her satisfaction with

potential annual profit levels. In this context, we ‘‘translate’’ the previously deduced

elements of i-fuzzy set Â into i-fuzzy values. From that we get six i-fuzzy values

að100Þ ¼ ð0:2; 0:8; 0Þ, að200Þ ¼ ð0:3; 0:5; 0:2Þ, að300Þ ¼ ð0:5; 0:4; 0:1Þ,
að400Þ ¼ ð0:7; 0:2; 0:1Þ, að500Þ ¼ ð0:8; 0:1; 0:1Þ and að600Þ ¼ ð1; 0; 0Þ, which

can be geometrically represented in an MNO-triangle (Fig. 2) as suggested by

Szmidt and Kacprzyk (2010). M, N and O are the corner points of the triangle,

where, respectively, one of the elements laðxÞ, maðxÞ or paðxÞ equals 1 and the other

two elements are equal to zero. Point Mð1; 0; 0Þ, where laðxÞ equals 1, represents
the ideal-positive element. For our example að600Þ is such an ideal point, because

the corresponding annual profit level satisfies the manager to the fullest. Point

Nð0; 1; 0Þ where maðxÞ equals 1, is called ideal-negative element. It is insofar
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‘‘ideal’’ because one can argue (on the base of our example), that for the manager

perfectly knowing what completely dissatisfies him is as good as perfectly knowing

what satisfies him to the fullest. Point Oð0; 0; 1Þ, where paðxÞ equals 1, expresses

total ignorance concerning the positivity or negativity of the corresponding attribute

referred to x. In the case of our manager, e.g., selected achievable profit levels may

be entailed with consequences that (s)he cannot at all assess in advance.

The line connecting point M and N, with paðxÞ ¼ 0 and therefore

laðxÞ þ maðxÞ ¼ 1, represents elements that are compatible with the traditional

fuzzy set definition. In our example, point að100Þ ¼ ð0:2; 0:8; 0Þ would be such a

point, because we also can find a full corresponding element in ~A from the

traditional fuzzy example. Lines parallel to the line connecting point M and N,

capture elements with equal degrees of indeterminacy. In our example, elements

að300Þ, að400Þ and að500Þ have equal indeterminacy degrees (0.1). Graphically,

they are therefore displayed on one parallel line. Generally, the closer a parallel line

is to point O, the higher is the degree of indeterminacy.

Finally, we want to present selected arithmetic operations on i-fuzzy values.

Based on operations for i-fuzzy sets (Atanassov 1986; De et al. 2000) Xu (2007a)

defines the following arithmetic operations for two given i-fuzzy values, aðxÞ ¼
ðlaðxÞ; maðxÞÞ and aðyÞ ¼ ðlaðyÞ; maðyÞÞ:

Fig. 2 Composition of an MNO-triangle
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aðxÞ � aðyÞ ¼ laðxÞ þ laðyÞ � laðxÞ � laðyÞ; maðxÞ � maðyÞð Þ; ð1Þ
aðxÞ � aðyÞ ¼ laðxÞ � laðyÞ; maðxÞ þ maðyÞ � maðxÞ � maðyÞð Þ; ð2Þ

c � aðxÞ ¼ 1� ð1� laðxÞÞc; ðmaðxÞÞcð Þ; c[ 0; ð3Þ
aðxÞc ¼ ðlaðxÞÞ

c; 1� ð1� maðxÞÞcð Þ; c[ 0: ð4Þ
For these definitions, Xu (2007a) uses the pair notation of i-fuzzy values. Here,

the resulting indeterminacy degrees paðxÞ are determined from the difference

1� laðxÞ
0
� maðxÞ0, where laðxÞ

0
and maðxÞ0 are the results of the arithmetic

operations.

As already discussed in previous work (Metzger and Spengler 2017), i-fuzzy sets

and i-fuzzy values have similar mathematical definitions, but their applications can

pursue different goals. On the one hand, i-fuzzy values are used to condense

information related to an element x. An example frequently presented in the

literature is the group voting case. Imagine a group of 10 persons that are asked to

vote on the implementation of a strategy. Three people vote for the implementation,

five against and two abstain. The derived i-fuzzy value condensing these

information would thus be a = (0.3, 0.5, 0.2) (see e.g., Szmidt 2014; Xu 2007b;

Zhao et al. 2014). On the other hand, i-fuzzy values are often applied to model

imprecision in multi-criteria decision problems. For that, e.g., one or several

decision-makers are requested to (separately) assess predefined attributes of

decision-relevant alternatives by use of i-fuzzy values. In this context laðxÞ
represents the degree of the positive and maðxÞ the degree of negative assessment

with respect to these attributes. Here, paðxÞ can be an expression of either neutrality,
undecidedness or unknowingness. To generate an overall evaluation of the

respective alternative, all i-fuzzy values regarding the corresponding attributes are

aggregated to a single i-fuzzy value. In this way, all decision-relevant information

that is available concerning alternatives is summarized and condensed to an i-fuzzy

value triple (see e.g., Atanassov et al. 2005; Xu and Yager 2008). Using different

ranking methods (for overview, see Szmidt 2014), the corresponding alternatives

can then be ranked and placed in a preference order. These examples show that

possible applications offered by the construct of an i-fuzzy value go beyond the set-

theoretic basic functions described in the beginning of this chapter. Overall, we can

say that i-fuzzy theory provides powerful instruments to map uncertain knowledge

acquired from incomplete information. Especially the construct of paðxÞ, which we

can either interpret as undecidedness or as unknowingness will be the key element

of our model presented in the next chapter.

4 An intuitionistic fuzzy approach for decision problems
with ambiguous information

The starting point for our model is a decision matrix as presented in Table 1. We

denote alternatives by ai i ¼ 1; 2; . . .; nð Þ and states by sjðj ¼ 1; 2. . .;mÞ with

corresponding probabilities pðsjÞ. Consequences are denoted by cij. In a business
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management context, for example ai could represent investment alternatives, sj

various market development states and the cij cash flows, which are dependent on

the respectively chosen alternative and the occurring market development state.

Within our approach, we assume that the decision-maker has sufficient

information to specify point probability values for all states sj. Alternatively, we

can assume that they are exogenously given. Other than that, (s)he is only able to

present imprecise assessments on utility values for the respective consequences

uðcijÞ. The sources for such imprecise utility assessments can be different: On the

one hand, the consequences themselves may be vague and thus have ambiguous

utilities for the decision-maker. On the other hand, the respective consequences may

be precisely determinable, but the corresponding utilities are not clear to the

decision-maker. These cases are relevant in particular, if the consequences are non-

monetary. For reasons of simplicity, in the following we do not distinguish between

these sources of utility ambiguity. Both can be processed equally within our

approach. We rather want to focus on the formal expression and the handling of

these imprecise utility assessments within ambiguous decision situations. For this,

we use trivalent i-fuzzy values, which we substantially adapt for the underlying

problem as follows: auðcijÞ ¼ ðlau
ðcijÞ; mau

ðcijÞ; pau
ðcijÞÞ. Table 2 shows the struc-

ture of imprecise utility assessments formally described by i-fuzzy values.

We interpret the single elements of auðcijÞ as follows: lau
ðcijÞ reflects the utility

level, which is necessarily realized according to the decision-maker’s judgements.

In other words, this degree corresponds to the lowest possible utility value that the

decision-maker assigns to the corresponding consequence cij. mau
ðcijÞ expresses the

Table 1 Basic problem structure

pðs1Þ pðs2Þ � � � pðsmÞ
s1 s2 � � � sm

a1 c11 c12 � � � c1m

a2 c21 c22 � � � c2m

..

. ..
. ..

. . .
. ..

.

an cn1 cn2 � � � cnm

Table 2 i-fuzzy representation of the adapted problem structure

pðs1Þ � � � pðsmÞ

s1 � � � sm

a1 lau
ðc11Þ; mau

ðc11Þ; pau
ðc11Þ

� �
� � � lau

ðc1mÞ; mau
ðc1mÞ; pau

ðc1mÞ
� �

a2 lau
ðc21Þ; mau

ðc21Þ; pau
ðc21Þ

� �
� � � lau

ðc2mÞ; mau
ðc2mÞ; pau

ðc2mÞ
� �

..

. ..
. . .

. ..
.

an lau
ðcn1Þ; mau

ðcn1Þ; pau
ðcn1Þ

� �
� � � lau

ðcnmÞ; mau
ðcnmÞ; pau

ðcnmÞ
� �
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degree, to which cij relatively displeases him. We can also understand it as a degree

of relative disutility of cij. In addition, pau
ðcijÞ reflects the degree, to which the

decision-maker is unsure about the utility assessment of cij.

The following interdependencies apply: lau
ðcijÞ 2 0; 1½ �; mau

ðcijÞ 2 0; 1½ � with

lau
ðcijÞ þ mau

ðcijÞ� 1 and pau
ðcijÞ ¼ 1� lau

ðcijÞ � mau
ðcijÞ. Thus, i-fuzzy values,

where pau
equals 0 can be ‘‘translated’’ to point utility values. This is because in that

case we presume that the decision-maker has sufficient information to precisely

determine the utility and disutility degree of the corresponding consequence. I-fuzzy

values with pau
ðcijÞ[ 0 indicate an incomplete information basis regarding utility

assessment. This representation allows us to map decision-maker’s attitudes towards

consequence values in a much more differentiated way, especially because it

enables us to express formally his or her ignorance towards these variables.

Within the next step, we aggregate the imprecise utility judgments expressed by

i-fuzzy values. To do this, we first apply Formula (3) to weight the i-fuzzy utilities

with the corresponding state probabilities, and then aggregate them for each

alternative using Formula (1). The values thus obtained, reflect the decision-maker’s

imprecise expected utility assessment for each alternative ai. Substantially they are

also i-fuzzy values and are denoted by auðaiÞ ¼ ðlau
ðaiÞ; mau

ðaiÞ; pau
ðaiÞÞ. To derive

meaningful interpretations of the single elements of auðaiÞ we define the two

following sets that are interrelated with auðaiÞ.4 Let Gau aið Þ be a set of i-fuzzy values

with auðaiÞ being the reference element.

This set Gau aið Þ ¼ auðaiÞjlau
ðaiÞ þ k1pau

ðaiÞ; mau
ðaiÞ þ k2pau

ðaiÞ
� �

with

k1 2 0; 1½ �, k2 2 0; 1½ � and k1 þ k2 � 1 describes all elements that can arise from

possible (partial) redistributions of pau
ðaiÞ. Such redistributions apply in cases,

where indeterminacy according to an evaluated element reduces to a certain degree.

Additionally, we define a subset Hau aið Þ � Gau aið Þ as Hau aið Þ ¼
auðaiÞjlau

ðaiÞ þ kpau
ðaiÞ; mau

ðaiÞ þ 1� kð Þpau
ðaiÞ

� �
with k 2 ½0; 1� representing

all possible total redistributions of pau
ðaiÞ. These are cases, where the indeterminacy

referred to an evaluated element fully vanishes. We assume that formal redistri-

butions of pau
ðaiÞ and therefore (partial or full) reductions of indeterminacy,

resulting from improvements of the decision-maker’s information state. For

illustration, let us exemplarily assume auðaiÞ being ð0:3; 0:2; 0:5Þ. Mapping this

element into our MNO-triangle, we can see from Fig. 3, that set GauðaiÞ is

geometrically represented by the hatched triangle and from Fig. 4, that its subset

HauðaiÞ is expressed by the highlighted black line.

From Fig. 4 we can also see that all elements of HauðaiÞ are bounded by two

elements, which we denote by auðaiÞmin and auðaiÞmax. For our example we get

auðaiÞmin ¼ ð0:3; 0:7; 0Þ, which represents a full distribution of pau
ðaiÞ to mau

ðaiÞ and
auðaiÞmax ¼ ð0:8; 0:2; 0Þ, representing a full distribution of pau

ðaiÞ to lau
ðaiÞ. As

previously defined, i-fuzzy values with an indeterminacy degree of 0 can be

interpreted as point utility values. Bringing all this together, we can sum up the

following for the present case: an alternative ai, which overall expected utility has

4 We derive these sets from two operators (Da and Fa;b) for i-fuzzy sets as suggested by Atanassov

(1999).

Business Research (2019) 12:271–290 281

123



been evaluated by ð0:3; 0:2; 0:5Þ, is highly ambiguous and indicates a decision-

maker having a relatively poor information state regarding this alternative.

Improving this information state leads to a revision of the assessment, which

formally results in a redistribution of pau
ðaiÞ. We assume that after the occurrence of

state s the resulting consequence of the previously chosen alternative is observable.

Treating this as equivalent to the instant improvement of information state, the

corresponding utility value is thus also observable for the decision-maker. In this

regard HauðaiÞ represents the set of expected values, which anticipates all potential

cases of the redistribution of pau
ðaiÞ and with it, all cases of realizable (point)

expected utility values at the time of the decision.5

From the ex ante perspective our example, auðaiÞ ¼ ð0:3; 0:2; 0:5Þ, may take any

expected utility values between auðaiÞmin ¼ ð0:3; 0:7; 0Þ (least favorable case) and

auðaiÞmax ¼ ð0:8; 0:2; 0Þ (most favorable case). Translating these into point values,

we would say that the actual expected utility value of ai is located between 0:3 and

0:8. Hence, the decision-maker has a vague decision basis. In order to choose that

alternative, which maximizes his or her overall expected utility, (s)he needs further

5 There are also cases possible, in which after occurrence of state s the respective consequence of the

previously chosen alternative ai is observable to the decision-maker. But yet, he or she is still not able to

fully determine a precise utility value. Therefore, we would have to consider all elements of set Gau aið Þ
instead of its subset Hau aið Þ. For reasons of simplification, we do not examine such cases in this paper.

Fig. 3 Geometric interpretation of GauðaiÞ
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decision support. In the following, we introduce two types of suitable approaches

for the choice of alternatives in those situations.

First, we propose to make use of intuitionistic ranking functions, being the most

common method for ranking i-fuzzy alternatives. The core elements of such ranking

functions are similarity or distance measures. A broad overview and mathematical

foundations of these concepts are presented by Szmidt (2014). For our purposes, we

exemplarily apply the ranking method as suggested by Szmidt and Kacprzyk (2010).

Within this approach, it is assumed that an alternative evaluated with ð1; 0; 0Þ
represents the ideal-positive alternative (referring to our MNO-diagram this point is

denoted by M). Possible interpretations are, e.g., the alternative is fully satisfying

the decision-maker regarding his or her objectives or, per se, is leading to the

maximum (expected) utility for the decision maker. The corresponding ranking

values, which we denote by RðauðaiÞÞ, are based on a normalized Hamming distance

(Hamming 1950) between Mð1; 0; 0Þ and the respective i-fuzzy alternative auðaiÞ.
We determine them as follows:

RðauðaiÞÞ ¼ 0:5ð1þ pau
ðaiÞÞð1� lau

ðaiÞÞ: ð5Þ
The lower the value RðauðaiÞÞ, the better is the respective alternative ai in terms

of the extent and reliability of (positive) information concerning its expected utility.

To determine the relatively best alternative for the present decision situation, we

Fig. 4 Geometric interpretation of HauðaiÞ
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propose to account RðaðaiÞÞ as preference value and apply the following objective

function:

RðauðaiÞÞ ! min
i

! ð6Þ

As alternative approach, we propose to combine the results obtained by the i-

fuzzy method with adapted decision criteria as applied in maxmin expected utility

model (Gilboa and Schmeidler 1989) and a-maxmin expected utility model

(Ghirardato et al. 2004). First, we want to focus on the maxmin approach. Having a

set of possible expected utility values, it suggests choosing the alternative with the

highest minimum expected utility value. It is considered as pessimistic approach,

because the decision-maker rather prefers to ‘‘play safe’’, neglecting possibilities to

achieve higher utility values. For our i-fuzzy alternatives we elaborated auðaiÞmin

being the element representing the least favorable case and with it expressing the

lowest achievable utility value. This represents the situation, where pau
ðaiÞ totally

redistributes to mau
ðaiÞ. Therefore, lau

ðaiÞ is accounted as the only element that is

relevant for the final assessment of ai and thus for the decision. On that basis, we

suggest to apply the following objective function in order to determine the relatively

best alternative for the corresponding decision situation:

lau
ðaiÞ ! max

i
! ð7Þ

Unlike a pessimist, an optimistic decision-maker rather focuses on the most

favorable cases regarding the development of variables. Within our i-fuzzy

approach, we stated that auðaiÞmax are elements representing the most favorable

cases, and therefore the highest achievable utility values. Formally, it expresses a

total redistribution of pau
ðaiÞ to lau

ðaiÞ. Therefore, the sum of lau
aið Þ and pau

aið Þ is
accounted as preference value and the following objective function is applied6:

ðlau
ðaiÞ þ pau

ðaiÞÞ ! max
i

! ð8Þ

Integrating the core ideas of the a-maxmin expected utility model by Ghirardato

et al. (2004) as explained in Sect. 1, we can further determine the overall expected

utility as the weighted average of maximum and minimum expected utility for each

alternative. In terms of our approach we therefore need to refer to our previously

defined set HauðaiÞ, which represents all achievable combinations of the most and

least favorable utility results. Formally, it expresses all possible redistribution of

pau
ðaiÞ to lau

ðaiÞ and mau
ðaiÞ.

Contrasting the interpretation of Ghirardato et al. (2004), for our approach, we do

not interpret the weights as decision-maker’s ambiguity attitudes. For our approach,

we regard it as more suitable to stick to the original interpretation for the weights as

expressions of optimism and pessimism considerations, as suggested by Hurwicz

(1951). Hence, the higher the value of k, the more the decision-maker believes in

achieving a favorable result. Therefore, the sum of lau
ðaiÞ and k-weighted pau

ðaiÞ is
accounted as preference value and the following objective function is applied:

6 Because it applies that lau
ðaiÞ þ mau

ðaiÞ þ pau
ðaiÞ ¼ 1, we equivalently can use the following objective

function: mau
ðaiÞ ! min

i
!.
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ðlau
ðaiÞ þ k � pau

ðaiÞÞ ! max
i

! ð9Þ

Which of the presented decision criteria a decision-maker should choose for the

solution of the formulated problem, depends on his or her ambiguity attitude. For

example, a decision-maker who has a strong aversion towards ambiguity and

perceives ambiguity as threat would rather choose the i-fuzzy-maxmin criterion. A

decision-maker who has a strongly positive perception of ambiguity would rather

apply the i-fuzzy-maxmax criterion. The i-fuzzy-Hurwicz criterion is applicable for

the formal expression of combinations of extreme attitudes towards ambiguity.

In the following, we present a numerical example to illustrate our i-fuzzy

approach and the application of the above elaborated decision criteria. For reasons

of simplification we consider four alternatives ai i ¼ 1; 2; 3; 4ð Þ and two states

sjðj ¼ 1; 2Þ. Table 3 presents the corresponding problem structure, where utility

values of the underlying consequences have already been assessed by the decision-

maker using i-fuzzy values.

Weighting the single i-fuzzy utility values with the given probabilities according

to Formula (3), we get weighted i-fuzzy utility values (rounded to two decimal

places) as presented in Table 4.

Aggregating the weighted i-fuzzy utility values for each alternative according to

Formula (1), we get the following i-fuzzy expected utility values (rounded to two

decimal places) for alternatives a1 � a4:

auða1Þ ¼ ð0:67; 0:16; 0:17Þ;
auða2Þ ¼ ð0; 0:23; 0:77Þ;
auða3Þ ¼ ð0:47; 0; 0:53Þ;

auða4Þ ¼ ð0:44; 0:34; 0:22Þ:

Table 3 Example problem structure

pðs1Þ ¼ 0:4 pðs2Þ ¼ 0:6
s1 s2

a1 ð0:3; 0:3; 0:4Þ ð0:8; 0:1; 0:1Þ
a2 ð0; 0:1; 0:9Þ ð0; 0:4; 0:6Þ
a3 ð0:2; 0:6; 0:2Þ ð0:6; 0; 0:4Þ
a4 ð0:5; 0:4; 0:1Þ ð0:4; 0:3; 0:3Þ

Table 4 Weighted i-fuzzy utility values

s1 s2

a1 ð0:13; 0:62; 0:25Þ ð0:62; 0:25; 0:13Þ
a2 ð0; 0:4; 0:6Þ ð0; 0:58; 0:42Þ
a3 ð0:09; 0:81; 0:1Þ ð0:42; 0; 0:58Þ
a4 ð0:24; 0:69; 0:07Þ ð0:26; 0:49; 0:25Þ
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Using MNO-representation (Fig. 5), we can illustrate how the i-fuzzy values for

alternatives a1 � a4 are geometrically distributed. Regarding these as reference

elements as shown in Fig. 5, we can derive that the actual expected utility of a1 is in

between 0.67 and 0.84, of a2 in between 0 and 0.77, of a3 in between 0.47 and 1 and

of a4 is in between 0.44 and 0.66.

Finally, Table 5 presents the results we get from the application of the proposed

decision criteria to the i-fuzzy expected values from the example. The bold

emphasized preference values indicate which alternative is the best and hence

chosen by the decision-maker, when applying the corresponding criterion. Figures 6

illustrate the geometrical solutions of the latter four results from Table 5.

The presented model is not limited to the formulation and solving of decision

problems where (solely) the utility values are ambiguous. Analogously, we can use

its basic concept to formalize and solve problems, where, e.g., probability

assessments or both, utility and probability assessments are imprecise. The latter

case has been examined in detail by Metzger and Spengler (2017). This work also

presents a comprehensive discussion on interdependencies between selected fuzzy

measures and i-fuzzy values, used as substitutes for probability measures.

Fig. 5 Geometric representation of i-fuzzy values for alternatives a1 � a4
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Table 5 Results

Decision concept Objective function Results

a1 a2 a3 a4

i-fuzzy ranking RðauðaiÞÞ ! min
i

! 0.194 0.885 0.403 0.341

i-fuzzy-maxmin lau
ðaiÞ ! max

i
! 0.67 0 0.47 0.44

i-fuzzy-maxmax ðlau
ðaiÞ þ pau

ðaiÞÞ ! max
i

! 0.84 0.77 1 0.66

i-fuzzy-Hurwicz (k ¼ 0:5) ðlau
ðaiÞ þ 0:5 � pau

ðaiÞÞ ! max
i

! 0.757 0.385 0.736 0.553

i-fuzzy-Hurwicz (k ¼ 0:7) ðlau
ðaiÞ þ 0:7 � pau

ðaiÞÞ ! max
i

! 0.792 0.539 0.842 0.597

Fig. 6 Geometric representation of selected example results
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5 Conclusion

In this paper, we propose a model for the formulation and solving of decision

problems under ambiguity. Therefore, we generalize the definition of ambiguous

situations, which we understand as cases, in which the decision-maker has imprecise

(uncertain or vague) knowledge that results from incomplete information and can

affect all elements of the decision field and the objective function. Adopting

decision criteria from maxmin expected utility model (Gilboa and Schmeidler 1989)

and a-maxmin expected utility model (Ghirardato et al. 2004), we develop a

decision model that combines elements of established approaches for the formal

handling of uncertainty with instruments of intuitionistic fuzzy theory. In particular,

we use intuitionistic fuzzy values as expression of decision-maker’s imprecise

assessments on utility values and provide selected approaches for the solution of

corresponding decision problems. The appropriateness of the applied criterion

depends on the ambiguity attitude of the respective decision-maker.

In this paper, we focus on the formulation and solving of decision problems

where (solely) the utility values are ambiguous. Analogously we can use its basic

concept to formalize and solve problems, where, e.g., probability assessments or

both, utility and probability assessments are imprecise. In order to elicit imprecise

utility assessments of decision-makers, it is possible to apply an adapted version of

the classical Bernoulli game [based on Ramsey’s (1926) work]. Imprecise

probability values can be derived, e.g., from interval-valued probability judgements

(see e.g., Metzger and Spengler 2017). Respective applications in intuitionistic

fuzzy contexts can be addressed in further research projects.

The presented approach provides great potential to undertake extensive decision-

supporting contribution in different (especially economic) areas. Similarly, the

intuitionistic fuzzy approach offers a basis for modeling behavioral violations of

rationality axioms of (subjective) expected utility theory. On this basis, we suggest

to assess the predictive quality of the model by means of subsequent experimental

investigations. In particular, subsequent experiments could aim an investigation of

how the decision criteria choice of a ‘‘real’’ decision-maker is affected by his or her

ambiguity attitudes.

Before that, however, it is important to further examine the model concept, which

is still at an early stage of development. For example, other possible decision

criteria should be considered and reviewed in terms of their impact on outcomes. In

addition, it is important to examine to what extent classical and adapted axioms of

rational behavior are (not) compatible with the approach presented.
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International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
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Formal Epistemology, ed. Horacio Arló-Costa, Vincent Hendricks, and Johan van Benthem,

385–439. Cham: Springer International.

Gilboa, Itzhak, and David Schmeidler. 1989. Maxmin expected utility with a non-unique prior. Journal of

Mathematical Economics 18 (2): 141–153.

Gottwald, Siegfried. 2006. Many-Valued Logics. In Philosophy of logic, ed. Dale Jacquette, 675–722.

Amsterdam: Elsevier.

Hamming, Richard W. 1950. Error detecting and error correcting codes. Bell System Technical Journal 29

(2): 147–160.

Business Research (2019) 12:271–290 289

123



Hurwicz, Leonid. 1951. Optimality criteria for decision making under ignorance, 370. Cowles

Commission Discussion Paper: Statistics, No.

Kahn, Barbara E., and Rakesh K. Sarin. 1988. Modeling Ambiguity in Decisions Under Uncertainty.

Journal of Consumer Research 15 (2): 265–272.

Kunreuther, Howard, Jacqueline Meszaros, Robin M. Hogarth, and Mark Spranca. 1995. Ambiguity and

underwriter decision processes. Journal of Economic Behavior & Organization 26 (3): 337–352.

Lauriola, Marco, Renato Foschi, Oriana Mosca, and Joshua Weller. 2016. Attitude toward ambiguity:

Empirically robust factors in self-report personality scales. Assessment 23 (3): 353–373.

McLain, David L. 1993. The MSTAT-I: A new measure of an individual’s tolerance for ambiguity.

Educational and Psychological Measurement 53 (1): 183–189.

McLain, David L., Efstathios Kefallonitis, and Kimberly Armani. 2015. Ambiguity tolerance in

organizations: definitional clarification and perspectives on future research. Frontiers in Psychology

6: 344.

Metzger, Olga, and Thomas Spengler. 2017. Subjektiver Erwartungsnutzen und intuitionistische Fuzzy

Werte. In Entscheidungsunterstuetzung in Theorie und Praxis, ed. Thomas Spengler, Wolf Fichtner,

Martin J. Geiger, Heinrich Rommelfanger, and Olga Metzger, 109–137. Berlin: Springer.

Von Neumann, John, and Oskar Morgenstern. 1947. Theory of games and economic behavior, 2nd ed.

Princeton: Princeton University Press.

Ramsey, Frank P. 1926. Truth and Probability. In The Foundations of Mathematics and Other Logical

Essays (1960), ed. Richard B. Braithwaite, 156–198. Paterson: Littlefield, Adams and Co.

Ries, Horst. 1994. Ambiguität. In Dorsch Psychologisches Wörterbuch, vol. 27, ed. Friedrich Dorsch,

Hartmut Haecker, and Kurt H. Stapf. Bern: Hans Huber.

Savage, Leonard J. 1954. The Foundations of Statistics. New York: Wiley.

Schmeidler, David. 1989. Subjective probability and expected utility without additivity. Econometrica 57

(3): 571–587.

Slovic, Paul, and Amos Tversky. 1974. Who accepts Savage’s axiom? Behavioral Science 19 (6):

368–373.

Spengler, Thomas. 2015. Ambiguitätssensitivität im Szenariomanagement. In Entscheidungstheorie und –

praxis, ed. Heike Y. Schenk-Mathes and Christian Köster, 55–70. Berlin: Springer.
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