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Abstract De- and re-levering betas is important to obtain discount rates for assets

that are not publicly traded. A de- and re-levering procedure is around for the case

of risk-free debt. The procedure for risky debt is much less clear even under very

simplifying assumptions. In this paper, I concretize and extend the procedure for de-

and re-levering of betas for companies with risky debt. I derive procedures for

different assumptions on the taxation of a cancellation of debt (COD) and for

different assumptions regarding the distribution of losses on interest and principal

payments. With a tax on the COD I obtain known results. However, without taxes

on a COD, the distribution of losses on interest and principal payments matters and

equations differ markedly for different assumptions on the assignment of losses to

interest and principal payments. Furthermore, using a procedure that does not fit the

COD treatment is likely to lead to substantial deviations for de- and re-levered betas

from their correct values.

Keywords Default risk � Tax treatment of default � Betas � Leverage

JEL Classification G12 � G31 � G32 � G33

1 Introduction

I build on the work of Krause and Lahmann (2017) and use it to extend their

analysis for a de- and re-levering procedure for equity betas. I include interest and

principal prioritization as additional cases, and I also discuss the case of constant

leverage and an infinite horizon.
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The main objective and contribution of this paper is to show how betas can be de-

and re-levered when debt is risky and when different assumptions on the treatment

of a cancellation of debt (COD) are made. The usual equations on de- and re-

levering betas with risky debt implicitly assume that a COD is taxed as for example

in Arzac and Glosten (2005). But as Krause and Lahmann (2017) mention, there are

cases in which a COD remains untaxed. Furthermore, the assumption of a taxed

COD is often not formally stated. However, presented equations change

significantly when the assumption of taxes on a COD is dropped and when debt

is risky.

The pricing framework builds mainly on the findings of Modigliani and Miller

(1958) and Modigliani and Miller (1963). Additionally, Miles and Ezzell (1980) and

Miles and Ezzell (1985) derive risk-adjusted discount rates in a multiperiod setting

with corporate taxes and with constant leverage. In the more recent literature,

several authors include the taxation of a COD into their analyses of corporations

with risky debt [see e.g., (Kruschwitz and Löffler 2006; Cooper and Nyborg 2008;

Blaufus and Hundsdoerfer 2008)].

Eventually, the de- and re-levering procedure relies on an expected return

equation from an asset pricing model. This model does not need to be the classic

mean-variance CAPM. A more general framework that relies on a stochastic

discount factor is presented in Cochrane (2005) and can also be used.

I continue to introduce the basic notation for the single-period case. I present the

beta equation for risk-free debt. Continuing with risky debt, I divide into the case of

a taxation of a COD and the one without a taxation of a COD. At the end of the next

section, I summarize the equations, discuss them and give a short example on

possible miscalculations through applying the incorrect equation. In Sect. 3, I briefly

discuss the infinite horizon case with constant leverage, which, under simplifying

assumptions, is similar to the single-period case. Section 4 summarizes the paper.

2 Levered and unlevered beta in a single-period setting

2.1 On COD taxation

According to Schwartzman and Brandstetter (2015), a US company’s forgiven or

cancelled amount of debt from a bankruptcy or insolvency has to be recognized as

gross income.1 The COD is included in taxable income. However, there are several

important exceptions from the general rule, most importantly bankruptcy and

insolvency exclusions.

For bankruptcy, which is defined as a case under Title 11 of the US Code,

discharges of indebtedness under ‘‘Chapter 11 reorganization, Chapter 7 liquida-

tions, and Chapter 13 bankruptcy proceedings’’ [see Schwartzman and Brandstetter

(2015)] are excluded from taxable COD income. The discharge has to be ordered by

a court or approved by a court. The COD is not included in gross income, but so

1 See also the publication of the IRS (IRS 2012, p. 26).
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called tax attributes ‘‘certain losses, credits, and basis of property must be reduced

by the amount of excluded income (but not below zero)’’ (IRS 2012, p. 26).

Insolvency, defined as liabilities in excess of the company’s market value at the

time right before the discharge, is also excluded from COD income. Only the

insolvent amount can be excluded, and, again, certain tax attributes must be

reduced. The reduction of tax attributes leads to a partial postponment of the tax on

a COD instead of a full forgiveness IRS (2012) p. 26 ff.

The items mentioned above can only give a general picture. For more

information please refer to the documentation from the Internal Revenue Service,

for example, to IRS (2012) or to Schwartzman and Brandstetter (2015). Following

the prior literature on pricing with and without a COD taxation, I will separately

analyze the two extreme cases, the one in which a COD is taxed whenever debt is

cancelled and the one in which it is never taxed. More elaborate models can be

developed upon what is provided here.

2.2 Basic equations

I start with a simple setting with two points in time as in Krause and Lahmann

(2017). I use the same notation and assumptions as in the mentioned paper. The

single-period analysis has the advantages that additional assumptions on what

happens after default are not necessary and that a simple notation without time

subscripts is sufficient. Using simplifying assumptions, the infinite horizon version

does not differ from the single period results as will be shown later. The starting

point of the single-period analysis is the identity of (expected) cash flows:

E½FCFL� ¼ E½ECF� þ E½Intþ PP� ¼ E½FCF� þ E½TS�: ð1Þ

Levered free cash flows FCFL are equal to the sum of equity cash flows ECF, as well

as debt cash flows, which, in turn, consist of interest payments Int and principal

payments PP. Alternatively, levered free cash flows are equal to unlevered free cash

flows FCF and tax savings TS. Taking expected values through the operator E½��
keeps the identity. Equation (1) can be restated using values and returns

S � E½RE� þ D � E½RD� ¼ ðS þ D � VTSÞ � E½RU� þ E½TS�; ð2Þ

in which

VU ¼ VL � VTS ¼ S þ D � VTS; ð3Þ

here VL is the value of the levered firm, VU the value of the unlevered firm2, S the

value of equity, D the value of debt, and VTS the value of tax savings. Furthermore,

RE is the return on (levered) equity, RD is the return on debt, and RU is the return on

unlevered equity. In the expected value operator they are the respective expected

returns. I use R for gross returns and r for net returns, where R ¼ 1þ r. Values can

be obtained by discounting expected cash flows, with S ¼ E½ECF�
E½RE� for equity, D ¼

2 The assets of the unlevered firm are the same as in the levered case, just the financing is different.
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E½IntþPP�
E½RD� for debt and VU ¼ E½FCF�

E½RU� for the value of the unlevered firm. Having defined

the basic notation and relations, I turn to the risk-free case.

2.3 Risk-free debt and risk-free tax savings

I start with the simple but least relevant practical case for corporate valuations: risk-

free debt. Since a COD will never happen with risk-free debt, its tax treatment does

not play a role. I assume that the firm generates enough taxable income before

interest payments to be able to fully deduct interest payments and to qualify for full

interest tax savings. Then, all tax savings are equal to the risk-free interest payments

times the tax rate on corporate profits s: TS ¼ s� Int ¼ s� rf � D. Debt yields the

risk-free interest rate rf . I stress here that risk-free debt is a very special case, in

which the firm is able to pay off all of its debt obligations in any future state.

Leverage potentially affects the firms profitability so that, with higher leverage, risk-

free debt becomes more and more unlikely. Compare Krause and Lahmann (2015)

for a numerical example.

When debt is risk-free and the mean-variance CAPM is used to obtain expected

returns, the following equation shows the relation of the levered and unlevered beta,

i.e., of bE;M and bU;M:

bE;M ¼ 1þ D

S
� 1þ rf � ð1� sÞ

Rf

� �
� bU;M: ð4Þ

Appendix 1 shows the derivation Eq. (4). Equation (32) in Arzac and Glosten (2005)

is similar to Eq. (4) when their rD, a discount rate for debt, is replaced by rf . Their

derivation is actually done in an infinite horizon setting. However, Eq. (4) is the

result of a single-period analysis. Adding periods does not add much to the analysis.

The term
1þrf �ð1�sÞ

Rf is due to tax savings. With a zero tax rate this term equals

one. For rf [ 0 and with the tax rate between zero and one (inclusive) this term is

less than one. For rf\0 the term is greater than one.

Equation (4) also shows that higher debt relative to equity, i.e., a higher leverage,

scales up the levered beta. With higher leverage relatively more debt payments have

to be made from the cash flows coming from the firm’s assets. The remaining

diminished cash flows go to equity holders. The return of those cash flows have a

higher absolute value of the beta than before the increase in leverage. For positive

unlevered beta the levered beta increases. If the unlevered beta is negative, the

levered beta decreases. Appendix 1 shows how this occurs.

A higher tax rate decreases the levered beta. A higher tax rate increases tax

savings and the value of them, which counters the effect of leverage, i.e., systematic

risk is decreased through the presence of risk-free tax savings. Given that debt is

risk-free, the risk-free tax savings are earned by equity holders. Therefore, tax

savings increase the value of equity.

Equation (4) can also be stated in terms of leverage. This gives
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bE;M ¼ 1

1� l
� 1� l � s� rf

Rf

� �
� bU;M: ð5Þ

A zero risk-free rate would also take out the tax effect. In this case interest payment

would be zero so that there are no tax savings—just as for a zero tax rate:

bE;M ¼ 1

1� l
� bU;M: ð6Þ

After this introduction for risk-free debt, I turn to the more relevant case in the

coporate world, the case of risky debt.

2.4 Risky debt

For risky debt the COD treatment is important. From Krause and Lahmann (2017), I

restate the pricing equations for the value of the tax savings VTS for the different

cases. Without (superscript NC) and with (superscript C) a tax on debt cancellation

the tax savings are, respectively,

TSNC ¼ s� Int; ð7Þ

TSC ¼ s� Int� s� C; ð8Þ

here s is the deterministic tax rate on corporate profits, and C is the amount of debt

that is cancelled, i.e., the losses on the principal D—the COD. When C is taxed, the

whole tax savings are reduced by s� C. Here it is assumed that s� C can actually

be paid by the defaulting firm. Furthermore, interest payments can be expressed as

Int ¼ rc � D � ðL � CÞ; ð9Þ

in which L are the total losses on debt, i.e., losses on interest LInt and on principal

payments C, and rc is the coupon rate.3 According to Krause and Lahmann (2017),

the values of the tax savings are then

VTSNC ¼ s� rf � D

Rf
þ s� pðCÞ ð10Þ

VTSC ¼ s� rf � D

Rf
: ð11Þ

The term p(C) is the price of the COD, i.e., pð�Þ is used as a pricing operator. The

basis for further derivations is the identity

S � E½RE� þ D � E½RD� ¼ ðS þ D � VTSÞ � E½RU� þ E½TS�: ð12Þ

I continue with the case of taxation of a COD.

3 For a zero coupon bond it is the implicit coupon rate.
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2.4.1 Taxes on debt cancellation

I use Eq. (12) and substitute in the respective expression for the value of the tax

shield and the tax savings from Eqs. (11) and (8):

S � E½RE� þ D � E½RD� ¼ S þ D � s� rf � D

Rf

� �
� E½RU� þ s

� ðrc � D � E½L � C�Þ � s� E½C�:
ð13Þ

The s� E½C� terms cancel on the rhs and rc � D � E½L� ¼ D � E½rD� so that the

equation turns to

S � E½RE� þ D � ð1þ E½rD� � ð1� sÞÞ ¼ S þ D � s� rf � D

Rf

� �
� E½RU�: ð14Þ

I use the expected return equation for the mean-variance CAPM4 of the form

E½Ri� ¼ Rf þ bi;M � ðE½RM� � RfÞ; ð15Þ

for the expected return, in which i stands for the return on levered equity, on

unlevered equity, on tax savings or on debt. The return RM is the return on the

market portfolio. I obtain

S � ðRf þ bE;M � ðE½RM� � RfÞÞ þ D � ð1þ ðRf þ bD;M � ðE½RM� � RfÞ � 1Þ � ð1� sÞÞ

¼ S þ D � s� rf � D

Rf

� �
� ðRf þ bU;M � ðE½RM� � Rf ÞÞ:

ð16Þ

This expression can be simplified to

S � bE;M þ D � bD;M � ð1� sÞ ¼ S þ D � s� rf � D

Rf

� �
� bU;M: ð17Þ

Rearranging yields

bE;M ¼ 1þ D

S
� 1þ rf � ð1� sÞ

Rf

� �
� bU;M � bD;M � D

S
� ð1� sÞ: ð18Þ

When debt has no systematic risk, i.e., when bD;M ¼ 0, the equation reduces to the

one with risk-free debt. Again, Arzac and Glosten (2005) have the same result in

their Equation (32). However, there is no reference to the treatment of debt can-

cellation. The following will show that the assumption of taxes on a COD is crucial

to obtain this equation. Without it, valuations change and with them the de- und re-

levering procedure. It is reasonable to expect the beta for debt to have the same sign

as the one for equity. Furthermore, we usually expect positive equity betas together

4 In (Cochrane 2005, p. 17 and p. 19) a more general equation for an expected return equation using a

stochastic discount factor is presented. In this case, the beta factor depends on how the stochastic discount

factor is specified as a function of market data. The CAPM is a special case in which the stochastic

discount factor is a linear function of the market return.
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with positive debt betas. That means when the market is doing well as whole, debt

contracts will also do better. When the market is not doing well, for example in

recessions, there will be more defaults and the return on debt will also be lower.

With a positive beta for debt, the additional debt-related term in Eq. (18) reduces the

levered beta, which counters the effect of the first term on the rhs of the equation,

which increases the levered beta with more leverage.

2.4.2 No taxes on debt cancellation

Proportional loss distribution according to contractual debt payments Krause and

Lahmann (2017) derive an equation for the tax shield value for the case of a

proportional loss distribution. Proportional loss distribution means that total losses

L are distributed proportionally or pro rata according to the contractually agreed

debt payments. Losses on interest and principal payments are, respectively, LInt ¼
L � rc

Rc and C ¼ L � 1
Rc. The equation for the value of the tax shield is

VTSNC ¼ s� rc � D

Rc
: ð19Þ

Tax savings are given by

TS ¼ s� rc � D � L � rc

Rc

� �
: ð20Þ

I substitute both equations into Eq. (12) and obtain:

S � E½RE� þ D � E½RD� ¼ S þ D � s� rc � D

Rc

� �
� E½RU� þ s� rc � D � s� E½L� � rc

Rc
:

ð21Þ

I rewrite the term on the rhs: s� rc � D � s� E½L� � rc

Rc ¼ s� rc � D � E½RD�
Rc . I

substitute this into the prior equation to obtain

S � E½RE� þ D � E½RD� � 1� s� rc

Rc

� �
¼ S þ D � s� rc � D

Rc

� �
� E½RU�:

ð22Þ

Now, I use the expected return equations from the mean-variance CAPM:

S � ðRf þ bE;M � ðE½RM� � RfÞÞ þ D � ðRf þ bD;M � ðE½RM� � RfÞÞ � 1� s� rc

Rc

� �

¼ S þ D � s� rc � D

Rc

� �
� ðRf þ bU;M � ðE½RM� � RfÞÞ:

ð23Þ

This simplifies to
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S � bE;M þ D � bD;M � 1� s� rc

Rc

� �
¼ S þ D � s� rc � D

Rc

� �
� bU;M: ð24Þ

Rearranging for the levered beta I obtain

bE;M ¼ 1þ D

S
� 1þ rc � ð1� sÞ

Rc

� �
� bU;M � bD;M � D

S
� 1þ rc � ð1� sÞ

Rc
:

ð25Þ

or

bE;M ¼ bU;M þ ðbU;M � bD;MÞ �
D

S
� 1þ rc � ð1� sÞ

Rc
: ð26Þ

In most cases, the beta for the unlevered firm is bigger than the one for debt because

of priorities of debt cash flows to be paid to debt holders. That means bU;M � bD;M is

usually positive and with that the levered beta is greater than the unlevered beta—

something that one would intuitively expect. In the less likely case, if bU;M\bD;M,
then bU;M � bD;M\0, and the levered beta is less than the unlevered beta.

Loss distribution not proportional to contractual debt payments As Krause and

Lahmann (2015) show, with a pro rata loss distribution according to contractual

interest and principal payments, the expected rate of return on debt, i.e., the discount

rate on debt E½RD�, is equal to a weighted average of the expected rates of return on

its components, i.e., the one on interest E½RInt� and the one on principal payments

E½RPP�. Notice that pðIntÞ ¼ E½Int�
E½RInt� and pðPPÞ ¼ E½PP�

E½RPP� define the discount rates for

interest and principal payments. Krause and Lahmann (2015) show that, with

interest or principal prioritization, expected rates of return on debt, interest and

principal payments regularly differ. Without a COD taxation, tax savings are just

interest payments scaled by the tax rate. Thus, the rate of return and the expected

rate of return on interest payments and on tax savings are equal: E½RTS� ¼ E½RInt�.5
The expected return on debt as a weighted average of the expected returns on

interest and principal payments is

E½RD� ¼ E½Int� þ E½PP�
D

¼ E½RInt� � pðIntÞ
D

þ E½RPP� � pðPPÞ
D

:

ð27Þ

Since D ¼ pðIntÞ þ pðPPÞ and values are positive, the weights
pðIntÞ

D
and

pðPPÞ
D

are

positive and add up to one. Due to this relation, possible relations of the three

expected returns on debt cash flows are:

E½RTS� ¼ E½RInt�\E½RD�\E½RPP� ð28Þ

E½RTS� ¼ E½RInt� ¼ E½RD� ¼ E½RPP� ð29Þ

5 This is true for a certain tax rate, which is assumed herein.
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E½RTS� ¼ E½RInt�[E½RD�[E½RPP�: ð30Þ

In the mean-variance CAPM, the only parameter that leads to different expected

returns between different assets is the beta of an asset. The risk-free rate and the

equity premium are not dependent on what kind of asset is regarded. Therefore, the

respective betas must follow the same ordering as the expected returns:6

bTS;M ¼ bInt;M\bD;M\bPP;M ð31Þ

bTS;M ¼ bInt;M ¼ bD;M ¼ bPP;M ð32Þ

bTS;M ¼ bInt;M [ bD;M [ bPP;M: ð33Þ

To derive equations for betas, I use Eq. (12). I write it down in the form

S � E½RE� þ D � E½RD� ¼ ðS þ D � VTSÞ � E½RU� þ VTS� E½RTS�: ð34Þ

Rearranging, simplifying, and using the CAPM equations leads to

bE;M ¼ S þ D

S
� bU;M � D

S
� bD;M þ VTS

S
� ðbTS;M � bU;MÞ: ð35Þ

This equation allows the beta of the tax savings to be different than the one for

total debt payments. In what follows, I establish equations that are comparable to

the case with the pro rata loss distribution. I write the equation for the tax

savings as

VTS ¼ pðTSÞ ¼ s� pðIntÞ
¼ s� pðD � rc � LIntÞ

¼ s� D � rc

Rf
� pðLIntÞ

� �

¼ s� D � rc

Rc
� Rc

Rf
� pðLIntÞ

D
� Rc

rc

� �

¼ s� Drc

Rc
þ s� pðLÞ � rc

Rc
� pðLIntÞ

� �
:

ð36Þ

The first term in the last equality is the equation for the value of the tax savings for a

pro rata loss distribution according to contractual debt payments. In case of a pro

rata loss distribution, the second term is always zero because then

pðLIntÞ ¼ pðLÞ � Rc

rc
. With loss distributions not proportional to contractual debt

payments, the second term is usually not zero. Using that in Eq. (35), I obtain

6 This assumes a positive equity premium. However, a negative premium does not make sense for risk-

averse investors.
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bE;M ¼ 1þ D

S
� 1þ rc � ð1� sÞ

Rc

� �
� bU;M � D

S
� bD;M þ D

S
� s� rc

Rc
� bTS;M

þ F

S
� ðbTS;M � bU;MÞ;

ð37Þ

with F ¼ s� pðLÞ � rc

Rc � pðLIntÞ
� �

. It turns out that additional information is

needed. The beta of the returns on tax savings, i.e., on interest payments is needed as

well as the price of losses on interest payments.7 I define bDTS;M ¼ bTS;M � bD;M. I
use this relation and restate Eq. (37) as

bE;M ¼ 1þ D

S
� 1þ rc � ð1� sÞ

Rc

� �
� bU;M � bD;M � D

S
� 1þ rc � ð1� sÞ

Rc

þ D

S
� s� rc

Rc
þ F

S

� �
� bDTS;M þ F

S
� ðbD;M � bU;MÞ:

ð38Þ

This allows for a better comparability with Eq. (26), i.e., the equation for the pro

rata loss distribution according to contractual principal and interest payments. I

continue with two prominent cases of loss distributions: interest and principal

prioritization.

Loss distribution not proportional to contractual debt payments—interest

prioritization A reasonable non-proportional loss distribution is the case of interest

prioritization. Interest prioritization means that principal payments will incur losses

first. Only if losses are greater than principal payments, interest will incur losses as

well. Relation (28) is usually what we expect in this case.8 I simplify further. I

assume that interest payments will never incur losses. This is a reasonable

assumption as long as interest payments are small relative to principal payments,

which is what we mainly observe in practice. Under this assumption, interest

payments are risk-free so that LInt ¼ 0 in any state. The price of losses on interest

payments must be zero as well. It follows that the beta of tax savings is zero. The

equation for interest payments turns to

Int ¼ rc � D: ð39Þ

and tax savings are

TSNC ¼ s� rc � D: ð40Þ

I discount this risk-free quantity at the risk-free rate, i.e., E½RTS� ¼ Rf , to obtain the

value of the tax savings

VTSNC ¼ s� rc � D

Rf
: ð41Þ

Equation (37) condenses to

7 The price of losses p(L) can be stated in terms of the debt value, the risk-free rate and the coupon rate.
8 The other two relations are possible as well but unlikely in practice. For further information refer to

Krause and Lahmann (2015).
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bE;M ¼ 1þ D

S
� Rf � s� rc

Rf

� �
� bU;M � bD;M � D

S
: ð42Þ

As for the pro rata distribution the levered beta is also a combination of the

unlevered beta and a scalar as well as the debt beta and a scalar. However, the

scalars differ here.

Loss distribution not proportional to contractual debt payments—principal

prioritization The other extreme in terms of prioritization is principal payment

prioritization. In this case losses are first assigned to interest payments. Only if loses

are greater than interest payments, the excess amount of losses is assigned to

principal payments. In this case a sensible assumption such as for interest

prioritization is not available. Instead, I use Eq. (38) and assumptions on F and the

betas.9

Given total losses on debt L, the losses on interest payments LInt must be greater

than the pro rata share of total losses: L � rc

Rc \LInt. Since this is true for any state in

which losses occur, the factor F is less than zero: F ¼ s� pðLÞ � rc

Rc � pðLIntÞ
� �

\0.

To parameterize, I assume that the price of losses on interest payments is equal to

pðLIntÞ ¼ pðLÞ � rc

RC þ a
� �

, with a 2 0; 1� rc

Rc

� �
as the percentage that the price of

interest losses is higher than the pro rata share of the price of total losses. Using this

parameter in the equation for F, I obtain

F ¼ �s� a� pðLÞ ð43Þ

¼ �s� a� D � rc � rf

Rf
: ð44Þ

The second equality follows from the equation for the coupon rate,10 which can be

rearranged for the price of losses. Equation (38) turns to

bE;M ¼ 1þ D

S
� 1þ rc � ð1� sÞ

Rc

� �
� bU;M � bD;M � D

S
� 1þ rc � ð1� sÞ

Rc

þ s� D

S
� rc

Rc
� a� rc � rf

Rf

� �
� bDTS;M þ s� a� rc � rf

Rf
� D

S
� ðbU;M � bD;MÞ:

ð45Þ

Notice that with a 2 0; 1� rc

Rc

� �
, it follows, for the term attached to bDTS;M, that

rf

Rf \ rc

Rc � a� rc�rf

Rf

� �
\ rc

Rc.
11 Furthermore, it is reasonable to assume that

bDTS;M [ 0, i.e., the beta of the returns on tax savings is greater than the one for the

returns on debt. Since the return on tax savings and on interest payments are the

same, the betas of the two figures are the same as well. With losses first assigned to

interest payments, their returns will regularly have a higher beta than the beta for

9 For further discussion on principal prioritization see Krause and Lahmann (2015).

10 The equation is rc ¼ rf þ Rf � pðLÞ
D
, which is just D ¼ pðD � ð1þ rcÞ � LÞ rearranged for the coupon

rate.

11 Notice that for risky debt rf

Rf \ rc

Rc. To see this multiply by Rf and Rc, which are both positive, and

simplify. The result is rf\rc, which must hold for risky debt due to a positive credit risk premium.
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returns on principal payments and the one for returns on debt payments as a

whole.12

In the next subsection, I will compare the differences of the equations more in

detail.

2.5 Overview and discussion

Table 1 shows an overview of the different cases treated in this paper. Some

remarks are in order. For debt returns uncorrelated with market returns bD;M ¼ 0,

the expected return on debt is equal to the risk free rate: E½RD� ¼ Rf . However, with

risky debt, the coupon rate must be greater than the risk-free rate because the

coupon rate must account for the default risk: rc [ rf . This can also be restated as

rc ¼ rf þ j, in which j[ 0 is a credit risk premium. Thus, for bD;M ¼ 0, the

equations for the risk-free case and for the risky case with taxes on a COD are the

same. Krause and Lahmann (2017) found that the value of the tax savings for risky

debt with taxed COD is the same as if debt is risk-free. However, without taxes on a

COD the equations to adjust betas differ through the involvement of the coupon rate

and possible other parameters.

A comparison of the equations in Table 1 makes most sense for the purpose of

picking the correct equation given the case of the tax treatment and loss distribution.

Then, one can evaluate the bias of picking an incorrect equation.

It does not make sense to pick a set of parameters and then try out all of the

equations for the different cases intending to evaluate what the outcome would be

given the parameters. The reason is that the different cases may be consistent only

with different sets of inputs such as leverage and the coupon rate, because the tax

assumption may influence the loss distribution.

I look at the factors scaling up and down the unlevered equity betas and the debt

betas.

For the first three equations and the fifth equation notice that

1þ D
S
� 1þrf�ð1�sÞ

Rf [ 1þ D
S
� 1þrc�ð1�sÞ

Rc . To see that I rewrite the equations to �s�
rf

Rf [ � s� rc

Rc and divide by �s to obtain rf

Rf \ rc

Rc. I multiply by Rf and Rc, which are

both positive. That leads to rf � ðRf þ jÞ\ðrf þ jÞ � Rf which simplifies to 0\j.
The credit risk premium must be positive so that the inequality always holds.

Regarding equations three and four, the inequality 1þ D
S
� 1þrc�ð1�sÞ

Rc [ 1þ D
S
�

Rf�s�rc

Rf holds only for rc [ 0.

Regarding the first two equations and the forth one, the inequality 1þ D
S
�

1þrf�ð1�sÞ
Rf [ 1þ D

S
� 1þrc�ð1�sÞ

Rf always holds. This can be seen using the same

simplifying steps as before.

12 This is the likely case. Theoretically, it is also possible that this does not hold. The prioritization rules

can be transformed into option-like payments. For a more detailed analysis of expected returns on options

see Coval and Shumway (2001), and for an analysis with respect to tax savings see Krause and Lahmann

(2015).
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I continue with the terms attached to the debt betas in equation two and three. For

those equations � D
S
� ð1� sÞ[ � D

S
� 1þrc�ð1�sÞ

Rc . To see this, I simplify to

s[ s� rc

Rc, divide by s and multiply by Rc to obtain Rc [ rc or 1[ 0, which

always holds. Regarding equations three and four, for rc [ 0 the inequality � D
S
\�

D
S
� 1þrc�ð1�sÞ

Rc holds.

Thus, for a positive coupon rate

1þ D

S
� 1þ rf � ð1� sÞ

Rf
[ 1þ D

S
� 1þ rc � ð1� sÞ

Rc
[ 1þ D

S
� Rf � s� rc

Rf
;

ð46Þ

and

�D

S
� ð1� sÞ[ � D

S
� 1þ rc � ð1� sÞ

Rc
[ � D

S
: ð47Þ

That means for a positive coupon rate and for positive betas for debt and unlevered

equity, the levered beta will be smaller going down the equations in Table 1 until

the forth equation.

For positive betas debt betas may be larger than unlevered equity betas. For high

debt betas and since the term including the debt beta is subtracted, the beta for

levered equity may even be less than the one for unlevered equity, i.e., bE;M\bU;M.

Table 1 Summary of cases and equations

Risk Tax Loss distr. Equation

None NA NA bE;M ¼ 1þ D
S
� 1þrf�ð1�sÞ

Rf

� �
� bU;M

Risky Yes Indifferent bE;M ¼ 1þ D
S
� 1þrf�ð1�sÞ

Rf

� �
� bU;M � bD;M � D

S
� ð1� sÞ

No Pro rata bE;M ¼ 1þ D
S
� 1þrc�ð1�sÞ

Rc

� �
� bU;M � bD;M � D

S
� 1þrc�ð1�sÞ

Rc

Int. prio. bE;M ¼ 1þ D
S
� Rf�s�rc

Rf

� �
� bU;M � bD;M � D

S

Pri. prio.
bE;M ¼ 1þ D

S
� 1þ rc � ð1� sÞ

Rc

� �
� bU;M � bD;M � D

S
� 1þ rc � ð1� sÞ

Rc

þ s� D

S
� rc

Rc
� a� rc � rf

Rf

� �
� bDTS;M

þ s� a� rc � rf

Rf
� D

S
� ðbU;M � bD;MÞ

The table shows the equations for de- and re-levering betas for the different cases. The column ‘‘Risk’’

indicates whether debt is risk-free or risky. The column ‘‘Tax’’ indicates whether a tax on a COD is paid

or not. The column ‘‘Loss distr.’’ indicates how total losses are assumed to be allocated to interest and

principal payments. Pro rata loss distribution means that total losses of debt are distributed to interest

payments and principal payments according to contractual interest and principal payments. Interest

prioritization means that all losses are first assigned to principal payments. The equation for interest

prioritization presented here relies on the additional assumption that interest payments never incur losses.

Principal prioritization means that all losses are first assigned to interest payments before principal

payments are affected
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I will have a quick look at bD;M when bE;M ¼ bU;M. For the second case, the case

with a taxation of a COD, I obtain

bD;M ¼ bE;M � 1þ rf � ð1� sÞ
Rfð1� sÞ ; ð48Þ

in which
1þrf�ð1�sÞ

Rf�ð1�sÞ [ 1. For example for rf ¼ 0:02 and s ¼ 0:3 the term is about 1.4

so that bD;M has to be more than 1.4 times bigger than bE;M to obtain bE;M\bU;M.
For the pro rata case the debt beta for bE;M ¼ bU;M is

bD;M ¼ bE;M; ð49Þ

so that bD;M has to be greater than bE;M to obtain bE;M\bU;M.
For interest prioritization with the assumption of certain interest payments, I

obtain

bD;M ¼ bE;M � Rf � s� rc

Rf
; ð50Þ

in which Rf�s�rc

Rf ¼ 1� s� rc=Rf is less than one for rc [ 0. For example, for

rf ¼ 0:02, s ¼ 0:3 and rc ¼ 0:06 the term is 0.98. Thus, bD;M does not even have to

be greater than the beta of unlevered equity for bE;M\bU;M.
The fifth equation treats principal prioritization. The equation requires the

additional parameters a and bDTS;M. It was constructed so that the first part of the

equation is the same as the equation for the pro rata case. Thus, the two additional

terms in the equation for principal prioritization versus the equation for the pro rata

case determine whether the resulting levered equity beta is greater, less than or

equal to the levered equity beta for the pro rata distribution, when equal inputs are

used. As was mentioned earlier, bDTS;M [ 0 is a reasonable assumption for principal

prioritization. Furthermore, for a positive risk-free rate the term s� D
S
�

rc

Rc � a� rc�rf

Rf

� �
is always positive. Assuming that bU;M [ bD;M, makes the two

additional terms positive. This leads to a levered equity beta that is greater than the

one under the assumption of a pro rata distribution.

I provide a simple numerical example with the objective to observe the potential

error from picking the incorrect procedure, i.e., the incorrect equation, given that the

betas for unlevered equity and for debt are known. For the example, I choose the

following parameters: s ¼ 0:3, l ¼ 0:6 (implying D=S ¼ 1:5), bU;M ¼ 0:9,

bD;M ¼ 0:4, rf ¼ 0:02, a ¼ 0:2, bDTS;M ¼ 0:3 and rc ¼ 0:06. Table 2 shows that

the betas for levered equity vary from 2.24 down to 1.63. That would imply

expected returns for unlevered equity from 15.45 % down to 11.76 % for this

example. The table shows that picking the incorrect equation has the potential for

substantial errors in discount rates, and thus for substantial misvaluations.

Especially assuming risk-free debt when debt is actually risky has a big impact in

this example because the additional term with the debt beta, which reduces the

levered beta, is not used for risk-free debt. The assumption of a COD taxation also
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has a significant impact on the beta and the associated expected return. In turn, the

figures presented without a COD taxation do not differ markedly. The reason is that

for those equations and for a moderate risk-free rate as well as coupon rate, all the

factors multiplied with bE;M and with bD;M do not differ a lot. Furthermore, the two

additional terms in the equation for principal prioritization are small for reasonable

parameters, such as the ones used in the example.

3 Levered and unlevered beta in an infinite period setting with constant
leverage

I take a simple approach and assume constant leverage and independently and

identically distributed (i.i.d.) returns. At any point in time and in any state debt and

equity cash flows have the same return distribution. The risk-free rate is assumed to

be constant. The firm issues only single-period debt. It adjusts debt and equity at

each point in time to keep leverage constant. Even after a default leverage is kept

constant by whoever is the (new) owner of the company.

The returns are now defined as RE
tþ1 ¼

ECFtþ1þStþ1

St
for the return on levered equity,

RU
tþ1 ¼

FCFtþ1þVU
tþ1

VU
t

for the return on unlevered equity, and RD
tþ1 ¼

DCFtþ1þDtþ1

Dt
for the

return on debt.

The following identity must hold at any time:

ECFtþ1 þ Stþ1 þ DCFtþ1 þ Dtþ1 ¼ FCFtþ1 þ VU
tþ1 þ TStþ1 þ VTStþ1: ð51Þ

The identity holds the same way taking conditional expectations:

Et½ECFtþ1� þ Et½Stþ1� þ Et½DCFtþ1� þ Et½Dtþ1�
¼ Et½FCFtþ1� þ Et½VU

tþ1� þ Et½TStþ1� þ Et½VTStþ1�:
ð52Þ

I use the definitions of returns to obtain

St � Et½RE
tþ1� þ Dt � Et½RD

tþ1� ¼ ðSt þ Dt � VTStÞ � Et½RU
tþ1� þ Et½TStþ1� þ Et½VTStþ1�:

ð53Þ

I represent the value of the tax savings as discounted next period’s tax savings and

Table 2 Summary of cases and equations

Risk COD tax Loss distrib. bE;M E½RE� (%)

Risk-free NA NA 2.24 15.45

Risky Yes Does not matter 1.82 12.93

No Pro rata 1.64 11.82

Interest prio. 1.63 11.76

Principal prio. 1.65 11.87
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discounted next period’s value of all future tax savings, in which I assign two

different discount rates to the respective figures:

VTSt ¼
Et½TStþ1�
Et½RTS

tþ1�
þ Et½VTStþ1�

Et½RVTS
tþ1 �

: ð54Þ

The first part,
Et ½TStþ1�
Et ½RTS

tþ1
� , is the value of the tax savings of the next period. This value

can be represented through the equations presented in the single-period model—

only the time subscripts need to be adjusted. The second part,
Et ½VTStþ1�

Et ½RVTS
tþ1

� , is the value

at time t of all tax savings incurred after t þ 1. An important result of Miles and

Ezzell (1985) is that for constant leverage the value of the tax shield is discounted at

the discount rate for unlevered equity. Krause and Lahmann (2015) find that this is

due to the tax shield value being proportional to the value of the unlevered firm

when leverage is constant. They also find that the result holds in an i.i.d. setting with

risky debt.

Since I assume constant leverage here, the equation for the tax shield value can

be restated with Et½RVTS
tþ1 � ¼ Et½RU

tþ1�.

St � Et½RE
tþ1� þ Dt � Et½RD

tþ1�

¼ St þ Dt �
Et½TStþ1�
Et½RTS

tþ1�
þ Et½VTStþ1�

Et½RU
tþ1�

� 	� �
� Et½RU

tþ1� þ Et½TStþ1� þ Et½VTStþ1�;

ð55Þ

Simplifying, the equation condenses to the same equation as for the single period

[Eq. (12)]:

St � Et½RE
tþ1� þ Dt � Et½RD

tþ1� ¼ St þ Dt �
Et½TStþ1�
Et½RTS

tþ1�

� �
� Et½RU

tþ1� þ Et½TStþ1�:

ð56Þ

Thus, the same equations for the de- and re-levering procedures of betas must

follow for the infinite horizon case with constant leverage in an i.i.d. world.

Equations of Table 1 can also be applied for this case.

4 Conclusion

I provide equations to re- and de-lever betas under different assumptions regarding

the riskiness of debt and the taxation of a COD. When a COD is not taxed, the

distribution of losses on interest and principal payments becomes important. I look

at five cases: the risk-free case, the risky case with a taxed COD, the risky case

without a taxed COD and pro rata distributed losses, the risky case without a taxed

COD and interest prioritization, and the risky case without a taxed COD and

principal prioritization. I find that equations differ substantially so that the

application of the incorrect procedure potentially leads to big errors in determining

the discount rate. Additionally, the same equations for de- and re-levering betas for
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a single-period setting hold for a simple i.i.d. infinite horizon setting with constant

leverage.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

Appendix A—Derivation of de- and re-levering of betas with risk-free
debt in a single period setting

For risk-free debt

VTS ¼ s� rf � D

Rf
ð57Þ

and RD ¼ Rf as well as TS ¼ s� D � rf . Cash flows turn to

S � E½RE� þ D � Rf ¼ S þ D � s� rf � D

Rf

� �
� E½RU� þ s� D � rf : ð58Þ

I use the expected return equation from the mean-variance CAPM for levered

equity, i.e., E½RE� ¼ Rf þ bE;M � ðE½RM� � RfÞ, and for unlevered equity with

E½RU� ¼ Rf þ bU;M � ðE½RM� � RfÞ. I substitute both into Equation (58) to obtain

S � ðRf þ bE;M � ðE½RM� � RfÞÞ þ D � Rf

¼ S þ D � s� rf � D

Rf

� �
� ðRf þ bU;M � ðE½RM� � RfÞÞ þ s� D � rf :

ð59Þ

Simplification leads to

S � bE;M � ðE½RM� � RfÞ ¼ S þ D � s� rf � D

Rf

� �
� bU;M � ðE½RM� � RfÞ:

ð60Þ

I divide by the equity premium and by S, which yields

bE;M ¼ 1þ D

S
� 1þ rf � ð1� sÞ

Rf

� �
� bU;M: ð61Þ

Appendix B—Higher beta with higher leverage under risk-free debt

I add a prime symbol to the symbols of cash flows, values and returns after the debt

increase. Assets remain the same. There are no taxes. I scale equity down by D so

that S0 ¼ S � S � D, with 1[D[ 0, and debt increases accordingly so that

D0 ¼ D þ D� S. After the increase debt still remains risk-free. Equity cash flows

change to ECF0 ¼ ECF� D� S � Rf . That means a risk-free part of the equity cash

flow goes away. It actually adds to debt cash flows. Debt cash flows change to
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DCF0 ¼ ðD þ D� SÞ � Rf . The return on equity before the change was

RE ¼ ECF=S. Now it turns to RE0 ¼ ðECF� D� S � RfÞ=ðS � ð1� DÞÞ. Now, I
look at the numerator of the equity beta which is a covariance of the form

CovðRE;RMÞ. The denominator is the variance of the return on the market portfolio

VarðRMÞ and does not change with the change in leverage. With the new return on

equity the covariance turns to

CovðRE0
;RMÞ ¼ Cov

ECF� D� S � Rf

S � ð1� DÞ ;RM

� �
ð62Þ

¼ Cov
ECF

S � ð1� DÞ �
D� S � Rf

S � ð1� DÞ ;RM

� �
ð63Þ

¼ Cov
RE

ð1� DÞ ;RM

� �
ð64Þ

¼ 1

1� D
� Cov RE;RM

� �
: ð65Þ

The term 1=ð1� DÞ is greater one so that the covariance is scaled up. That means,

with a positive beta, increasing leverage increases the beta. A negative beta would

be even more negative. However, this case is very unlikely for equity. This case

would be like an insurance against market risk.
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