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Abstract We consider a novel generalization of the resource-constrained project

scheduling problem (RCPSP). Unlike many established approaches for the RCPSP

that aim to minimize the makespan of the project for given static capacity con-

straints, we consider the important real-life aspect that capacity constraints can often

be systematically modified by temporarily assigning costly additional production

resources or using overtime. We, furthermore, assume that the revenue of the

project decreases as its makespan increases and try to find a schedule with a profit-

maximizing makespan. Like the RCPSP, the problem is NP-hard, but unlike the

RCPSP, it turns out that an optimal schedule does not have to be among the set of

so-called active schedules. Scheduling such a project is a formidable task, both from

a practical and a theoretical perspective. We develop, describe, and evaluate

alternative solution encodings and schedule decoding mechanisms to solve this

problem within a genetic algorithm framework and we compare the solutions

obtained to both optimal reference values and the results of a commercial local

search solver called LocalSolver.
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1 Introduction

Many models and procedures for resource-constrained project scheduling problems

(RCPSPs) assume that the capacities of the renewable resources that are required to

perform the project’s activities are exogenously given and that the objective is to

find a (feasible) schedule with a minimal project makespan or duration. In reality,

the renewable resources like human labor or machinery are often temporarily

assigned to a project and decisions on additional resources or overtime are made to

achieve a short project duration. A short project duration may be economically

attractive for different reasons. Consider, for example, software development

projects or construction projects for factories. In such cases, a shorter project

duration may permit an earlier market entry. This desire to achieve a short project

duration can, e.g., lead to contractual penalty clauses or other incentive schemes that

relate actual payments to project durations. In such cases, the revenue from a project

typically decreases as its duration increases. This immediately leads to the question

how to use overtime and how to schedule such projects with flexible capacity

constraints and makespan-dependent revenues in the most profitable way.

The remainder of this paper is organized as follows: in Sect. 2, we describe the

assumptions of the resource-constrained project scheduling problem with make-

span-specific revenues and option of overcapacity (RCPSP-ROC), give real-world

examples, demonstrate basic problem and solution properties, and provide an

overview of the related literature. In Sect. 3, we develop a formal mathematical

decision model for the RCPSP-ROC and discuss properties of solutions that guide

the development of solution procedures. The design rationales and detailed

descriptions of different solution encodings for this problem are given in Sect. 4.2.

On this basis, we propose various genetic algorithms and local search procedures in

Sects. 4.3 and 4.4. Section 5 is devoted to the test design and the results from a

numerical study to evaluate the different proposed methods to solve the RCPSP-

ROC. Sect. 6 concludes this paper by giving a short summary of the results and

suggestions for future research.

2 Problem and literature

2.1 Projects with flexible capacity constraints, makespan-dependent
revenues, and overtime cost

The problem studied in this paper is a modification and extension of the well-

established RCPSP, cf., e.g. Pritsker et al. (1969). In a project, there are given

activities j 2 J ¼ f0; 1; . . .; J; J þ 1g that have to be executed to complete the

project. Activities 0 and J þ 1 denote the dummy start and the dummy end activity,

respectively. Each activity has to be executed exactly once. Between activities, there

can be precedence restrictions preventing an activity j to start unless all its

predecessor activities i 2 Pj have been completed. Activities and precedence
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relations can be visualized as an activity-on-node network like the one depicted in

Fig. 1.

During the duration dj of activity j, it requires kjr units of a renewable resource r,

see the data in Table 1 for the example project in Fig. 1 using a single renewable

resource r ¼ 1.

A feasible schedule for such a project is completely characterized by the starting

times STj (or, due to non-preemption, alternatively by the finishing times

FTj ¼ STj þ dj) of all activities j, so that all precedence constraints are respected

and that the project is feasible with respect to the capacities of the resources

required to perform these activities. The capacity Kr of resource r is often assumed

to be exogenously given and constant over time, and one seeks a schedule that

minimizes the project duration or makespan STJþ1 ¼ FTJþ 1.

We extend this well-known problem setting by adding the possibility to use

overtime capacity zrt at resource r in period t, up to a limit zr, i.e., zrt� zr in all

periods, at a cost of jr monetary units per period and capacity unit of overtime. If

in some periods, overtime zrt is used, it may be possible to perform activities in

parallel that would have to be scheduled sequentially if no overtime capacities

were available. If overtime is used, it may hence be possible to achieve a shorter

project makespan. A distinction between internal and external resources is not

made.

We now further assume that a project’s economic value depends on the

project’s makespan. This value is reflected, for example, by a customer’s

willingness to pay. In particular, we assume that it is non-increasing as the

makespan increases. In Table 2, we show the values for three such hypothetical

customers for the project in Fig. 1. This directly leads to the question how to

schedule the project in a profit-maximizing way and how to use overtime most

efficiently, taking the individual customer’s perspective and sensitivities into

account.

For the example project in Fig. 1, we assume that the capacity of the single

renewable resource amounts to K1 ¼ 4 units and that it is possible to use z1 ¼ 2

units of overtime per period at an overtime cost of j1 ¼ 10 monetary units per

0

2

1

4

3 5

6 7

Fig. 1 Activity on node graph

Table 1 Activity durations and capacity requirements

Activity j 0 1 2 3 4 5 6 7

Duration dj 0 3 2 2 3 1 2 0

Capacity requirement kj;1 0 3 2 2 1 2 1 0
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period and unit of overtime. For customer A in Table 2, the schedule presented in

Fig. 2 with a makespan of 10 periods and no overtime is profit-maximizing.

Note that in this special case of customer A, our problem setting bears a

resemblance to the resource overload problem with ‘‘total overload cost function’’,

as stated in Neumann and Zimmermann (1999), p. 594, because in this special case,

the objective is effectively reduced to minimizing the cost of overtime for a given

deadline d, which is shown to be NP-hard by Neumann et al. (2003), p. 242.

If, by contrast, there are more strongly decreasing revenues as for the time-

sensitive customer B, then the schedule in Fig. 3 with a duration of only 8 periods

is profit-maximizing. We use two units of the comparatively cheap overtime, but are

able to decrease the makespan by two periods and, therefore, increase the revenue

by 30 units and the profit from 15 to 25 units compared to the schedule in Fig. 2.

For Customer C, it is neither optimal to minimize overtime as for Customer A nor

to minimize the makespan as for Customer B. Instead, in this case, the schedule in

Fig. 4 with a makespan of 9 periods, 1 unit of overtime and a resulting profit of 5

units is profit-maximizing.

In general, let T denote the shortest possible makespan making potentially ample

use of overtime irrespective of overtime cost but within overtime bounds zr. In a

similar way, let T denote the shortest possible makespan using only the regular

capacity Kr, i.e., without any use of overtime. Then, the potentially optimal, i.e.,

profit-maximizing, project durations, should lie in the time interval ½T; T �, since a

Table 2 Makespan-dependent willingness to pay (revenue) of different customers

Makespan \ 8 8 9 10 11 [ 11

Customer A 10 10 10 10 10 0

Customer B 60 45 30 15 0 0

Customer C 20 20 15 0 0 0

6

4

1 2 3 4 5 6 7 8 9 10 11
t

r

K

1

K+z

3 5

2

Fig. 2 Optimal schedule without overtime usage for customer A
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makespan below T is impossible and a makespan exceeding T unnecessarily leads

to possibly decreasing revenues. In other words, we assume that the cost and

revenue structures are roughly, as shown in Fig. 5, to lead to a non-trivial problem.

Typical real-world examples for projects with these features include aircraft

engine remanufacturing projects undertaken by a service contractor, software

development projects, and construction projects. Jet engines of commercial aircraft

are extremely valuable and durable goods that are routinely overhauled and

remanufactured, often after significant wear and tear. Aircraft engine remanufac-

turing is executed by independent service contractors or original equipment

manufacturers. In either case, this complex process typically has a project character,

see Kellenbrink and Helber (2015) and Kellenbrink and Helber (2016), as the state

of the engines as well as the chosen repair or replace options differ from case to

case. The customers are typically airlines that are interested in short remanufac-

turing processes. For them, it is neither attractive to operate with a large number of

reserve engines nor to reduce flight operations due to lengthy engine overhaul

processes. The service provider may hence use overtime to increase his capacity for

these overhaul processes. Similar situations can exist in software development

6
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1 2 3 4 5 6 7 8 9 10 11
t

r

K

1
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2

Fig. 3 Schedule with maximum amount of overtime utilized
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Fig. 4 Schedule with some overtime usage
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projects when additional (freelance) programmers are temporarily hired to speed up

software development processes. In construction projects, it is not unusual that

companies obtain additional capacities by temporal hiring of additional manpower

or by renting additional machinery to speed up projects. In many of these cases, the

decision maker faces the fundamental problem outlined above to use these

additional resources in the most profitable way. However, as far as we know, there is

no solution approach available dealing with this problem setting in a systematic

way.

2.2 Related literature

The problem described in Sect. 2.1 bears similarities to the well-known and widely

researched single-mode single-project RCPSP without preemption, shortly charac-

terized by PSjprecjCmax using the notation introduced by Brucker et al. (1999).

Recent overviews of the RCPSP and its extensions were given by Hartmann and

Briskorn (2010) and Demeulemeester and Herroelen (2006). Additional literature

surveying the state of the art in RCPSP research was published by Kolisch and

Padman (2001), Brucker et al. (1999), Herroelen et al. (1998), and Özdamar and

Ulusoy (1995). Kolisch and Hartmann (2006) evaluated and differentiated various

heuristic solution approaches for the standard RCPSP. Artigues et al. (2015) provide

a survey as well as a theoretical and experimental comparison of linear

programming formulations for the RCPSP.

The trade-off between a shorter duration and lower costs may seem similar to the

discrete-time–cost trade-off problem (DTCTP). However, unlike the RCPSP-ROC,

the DTCTP is a multi-mode problem with modes defining activity durations and

resource consumptions, as formulated by Hindelang and Muth (1979). In the

RCPSP-ROC, activities can only be executed in a single mode and, therefore, with

one specific value for duration and resource consumptions. Furthermore, the

DTCTP minimizes total costs from resource usage and not the excess of a resource

Cost 
Revenue 
Profit

Makespan TT

C

Fig. 5 Relationship between makespan, overtime cost, revenue and profit
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threshold. Therefore, unlike the RCPSP-ROC, it does not take into account the

availability of ‘‘free’’ normal capacity.

The most important difference between the standard RCPSP and the variant

treated in this paper is the objective function. An objective function is regular if and

only if it is monotonically non-decreasing in the activity starting times, cf., e.g.,

Brucker and Knust (2012), p. 12. Minimizing the makespan is an example of such a

regular objective function for the RCPSP. A detailed description and analysis of

different objective functions for RCPSPs can be found in the extensive scheduling

fundamentals book by Schwindt (2005).

In our paper, we consider a profit objective in which the project’s profit is the

difference between the makespan-dependent revenue and the associated overtime

cost. The objective function of this problem is a linear combination of both a regular

part and a non-regular part. Minimizing the makespan is equivalent to maximizing

the revenue, since the revenue function is assumed to be monotonically decreasing

in the makespan, i.e., ut � utþ1 8 t. For any strictly decreasing revenue ut, revenue

maximization even matches the makespan minimization objective. Hence, this part

is a regular function. However, minimizing overtime cost is a non-regular objective,

since decreasing the overtime typically leads to longer project durations as fewer

activities can be performed in parallel.

Focusing on this behavior of the revenue and the cost function, two decompo-

sition approaches involving different RCPSP aspects known from the literature

seem to suggest themselves. On the one hand, the makespan can be minimized for

the (potentially extremely large) set of all possible fixed overtime profiles. The

remaining problems of revenue maximization are similar to many makespan-

oriented objective functions if we do not consider the possible difference between

the given overtime profile and the actually used overtime in the resulting schedule.

(This difference may lead to an overestimation of the overtime cost.) These

subproblems are equivalent to the RCPSP with time-varying capacities, which was

introduced in Hartmann (2012) and more elaborately described in Hartmann (2015).

A more general RCPSP extension which also includes time-varying capacities was

introduced by Klein (2000). This is a well-researched problem for which many

powerful algorithms are available. Unfortunately, the set of all the possible overtime

profiles can be extremely large.

On the other hand, the overtime cost can be minimized for the set of all possible

fixed deadlines. This set of fixed deadlines can also be very large depending on the

structure and size of the problem instance. The remaining problem for any given

deadline resembles the following problems with resource-oriented objective

functions, which are non-regular. For an overview, see Neumann et al. (2003).

• Resource investment problem: Peak resource utilization must be minimized

without taking into account neither the threshold of free normal capacity nor the

duration of utilization, cf., e.g., Drexl and Kimms (2001).

• Resource-leveling problems: Negative and positive deviations from a given

resource usage threshold have to be minimized, cf., e.g., Easa (1989).
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• Resource overload problem: Only positive deviations are minimized, but no

upper bound for the total resource consumption is considered, cf., e.g., Neumann

and Zimmermann (1999), p. 594, and Neumann et al. (2003), p. 242.

• Project scheduling problem with given deadline (PSPDL): This is similar to the

resource overload problem, but overtime is limited to a percentage of normal

capacity, cf., e.g., Kolisch (1995) and Deckro and Hebert (1989).

Of all the related scheduling problems with cost-based objective functions presented

above, the PSPDL in the single-mode variant is the only one matching all key

aspects of the remaining subproblems acquired when decomposing the RCPSP-

ROC into cost-minimization problems with fixed deadlines. The percentage of

normal capacity additionally available as overtime in the PSPDL can be derived

from the upper bound of overtime in the RCPSP-ROC and vice versa. Unfortu-

nately, if we treat the remaining problem for a given fixed deadline as a PSPDL, the

issue arises that the practically required makespan of a resulting schedule may be

shorter than the given deadline. (This difference may lead to an underestimation of

the revenues.) As mentioned above, to solve the master problem, solving one

PSPDL instance for each possible deadline is required.

Both ideas to relate our problem to those previously presented approaches in the

literature appear to be problematic, given the potentially large number of

subproblems that are themselves hard to solve. We are, therefore, not aware of

any procedure to solve the problem type presented above. For this reason, we now

state it formally and present newly developed algorithmic solution approaches.

3 Formal description and analysis of the RCPSP with revenues
and overtime cost

3.1 Mathematical model

We now formally define the resource-constrained project scheduling problem with

revenues and overtime cost, as described in Sect. 2.1. This linear programming

formulation is based on the widely used discrete-time formulation with ‘‘pulse’’ end

variables for the RCPSP, see Artigues et al. (2015). The use of this formulation is

only valid if the starting times of all activities in an optimal schedule are integer.

Therefore, we assume that all activity durations are integer and that overtime usage

always affects entire (but potentially very small) time periods t.

We use the so-called dummy activities 0 and J þ 1 with a duration of 0 periods

and no resource consumption to represent the distinct start and end of the project. In

a preprocessing step, we compute for each activity j earliest finish times EFTj and

latest finish times LFTj by standard forward and backward pass calculations, see,

e.g., Demeulemeester and Herroelen (2006), p. 96ff. In this process, earliest

possible finishing times EFTj can easily be determined by constructing an earliest

start schedule, thereby ignoring any capacity constraints. In a similar way, a tight

and efficient upper bound for the latest finishing time LFTJþ1 for the dummy ending

activity J þ 1 can be determined by constructing a feasible schedule with regular
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capacity using any heuristic procedure for the RCPSP. From this latest finishing

time LFTJþ1, the other latest finishing times can then be derived in a backward pass.

The central binary decision variable xjt of the discrete-time model equals one if

activity j is finished at the end of period t and zero otherwise. The implied amount of

overtime used in period t at resource r is tracked in the derived decision variable zrt.

Using the notation as given in Table 3, we now define the RCPSP-ROC as follows:

Model RCPSP-ROC

max F ¼
XLFTJþ1

t¼EFTJþ1
ut � xJþ1;t �

X

r2R

X

t2T
jr � zrt ð1Þ

subject to

XLFTj

t¼EFTj

xjt ¼ 1; j 2 J ð2Þ

XLFTi

t¼EFTi

xit � t �
XLFTj

t¼EFTj

xjt � t � dj; j 2 J ; i 2 Pj ð3Þ

XJ

j¼ 1

Xtþdj�1

s¼ t

kjr � xjs�Kr þ zrt; r 2 R; t 2 T ð4Þ

zrt � zr; r 2 R; t 2 T ð5Þ

xjt 2 f0; 1g; j 2 J ; t 2 T ð6Þ

zrt � 0; r 2 R; t 2 T ð7Þ

The objective function (1) maximizes the contribution to the profit. It is the revenue

related to the finishing period of the dummy-activity J þ 1 minus the total amount

of overtime cost resulting from the schedule. Equations (2) enforce that each

activity is finished exactly once between its earliest and latest finishing times. The

precedence restrictions between activities are modeled via constraints (3). Capacity

limits for the renewable resources are enforced and overtime usage is determined

through constraints (4). An upper bound zr for overtime usage is established via

restrictions (5).

3.2 Complexity analysis, structural characteristics, and algorithmic
considerations

The RCPSP-ROC is a generalization of the RCPSP, which itself has been proven to

be anNP-hard problem by Blazewicz et al. (1983). Since there is a polynomial time

reduction for RCPSP instances to RCPSP-ROC instances (that is RCPSP � p

RCPSP-ROC), it follows that RCPSP-ROC is also an NP-hard problem. The

reduction can be achieved by setting the revenue function to any strictly

monotonically decreasing function (e.g., ut ¼ � t) and by preventing any usage
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of overtime by setting the overtime limit to zero, i.e., zr ¼ 0; 8 r. Given the NP-
hardness of the RCPSP-ROC, we do not expect to be able to develop an exact

algorithm for the RCPSP-ROC that runs in polynomial time. We also observed that

the computation time using the Gurobi MIP solver, see http://www.gurobi.com/,

even for small RCPSP-ROC instances can be substantial. For this reason, we turned

to heuristic methods to determine at least sub-optimal schedules in acceptable time.

To (hopefully) find good solutions of a scheduling problem in a systematic

manner, the structural properties of good or even optimal solutions to this problem

have to be identified. To this end, Schwindt (2005) introduced the term

‘‘characteristic points’’. Characteristic points of a specific scheduling problem form

a set of feasible schedules which is guaranteed to include at least one optimal

schedule for that problem, see Neumann et al. (2000), who already described the

underlying idea. For scheduling problems with regular objective functions, e.g.,

makespan minimization, this is the set of so-called active schedules AS. A schedule

is active if no activity can start earlier without delaying another one, i.e., no local or

global left shift is possible in such a schedule. As a consequence, it is sufficient to

consider ‘‘only’’ all active schedules to find the optimal solution. Many algorithmic

approaches take this property into account. Unfortunately, for scheduling problems

with objective functions that combine regular and non-regular components, such as

the RCPSP-ROC with revenues and overtime cost, it is not sufficient to only

consider the set of active schedules, see Ballestin and Blanco (2015), p. 418. It can

be possible to improve a given schedule without changing its makespan by delaying

Table 3 Notation of the RCPSP-ROC

Indices and (ordered) sets

j 2 J Activities J ¼ f0; 1; . . .; J; J þ 1g
t; s 2 T Periods T ¼ f0; 1; . . .;Tg
r 2 R Renewable resources R ¼ f1; . . .;Rg
Pj � J Set of immediate predecessors of activity j

Parameters

dj Duration of activity j

EFTj Earliest finishing time of activity j

LFTj Latest finishing time of activity j

kjr Required units of resource r while executing activity j

Kr Capacity of resource r

zr Overtime limit of resource r

jr Per-unit cost for overtime of resource r

ut Revenue for project completion at the end of period t

Decision variables

xjt ¼ 1; if activity j is finished at the end of period t

0; otherwise

�

zrt Amount of overtime of resource r used in period t
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an activity, thereby reducing overtime usage and cost. It is hence not sufficient or

advisable to limit the search to the set of active schedules.

One might also consider to operate on the set of quasi-stable schedules QSS that

have to be examined for problems in which resource usage deviations from a certain

threshold are minimized, see Neumann et al. (2003), p. 210. However, one can find

RCPSP-ROC instances for which none of the optimal schedules is quasi-stable, and

hence, it is not even sufficient to limit the search to the set of quasi-stable schedules

QSS, see Fig. 6. For the problem instance with two interchangeable symmetric non-

dummy activities depicted in Fig. 6a, with a revenue function shown in Fig. 6b and

per-unit overtime cost of j ¼ 1
2
monetary units, the schedule ST6c

j ¼ ð1; 1Þ in

Fig. 6c and the pair of schedules ST6e
j ¼ ð1; 3Þ � ð3; 1Þ in Fig. 6e are quasi-

stable but only the non-quasi-stable schedule pair ST6d
j ¼ ð1; 2Þ � ð2; 1Þ in Fig. 6d

is optimal.

As the set of quasi-stable schedules QSS is the largest set of characteristic points

defined in the literature, we are not able to classify our problem class into any

known class of schedules. This implies that optimal schedules for the RCPSP-ROC

have other and so far unknown properties than optimal schedules of established

RCPSP variants. For this reason, it is not at all obvious how to systematically

construct potentially optimal schedules.

4 Heuristic algorithmic approaches

4.1 General considerations: genetic algorithms vs. LocalSolver

To develop algorithms for the RCPSP-ROC, two different approaches appear to be

very promising. On the one hand, population-based genetic algorithms (see Holland

(1975)) turned out to be very powerful to solve RCPSPs, in particular with respect to

1

2

30

(a) Activity on node graph

t 1 2 3 4
ut 2 2 2 1

(b) Revenue function

1 2 3 4
t

r
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K+z

(c) π = 1

1 2 3 4
t
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K
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(d) π = 1.5

1 2 3 4
t

r
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K+z

(e) π = 1

Fig. 6 Example of optimal schedule being outside of QSS
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the makespan minimization objective, see, e.g., the results reported in Kolisch and

Hartmann (2006). If one follows this approach, the central question is how solutions

are encoded and how schedules are derived from this encoding, so that the operators

of genetic algorithms can lead to new and still feasible schedules. (Note that a direct

representation based on a possibly extremely large number of decision variables

from the RCPSP-ROC model in Sect. 3 does not meet this fundamental

requirement.) However, such a solution representation and corresponding schedule

generation scheme can also be used within a (heuristic) local search algorithm. A

commercial solver named LocalSolver, see http://www.localsolver.com, has

recently gained attention as it offers a flexible modeling interface to define in

particular combinatorial optimization problems, for example, vehicle routing

problems. The solver is based on a hybrid approach combining local search, con-

straint propagation, and inference, see Benoist et al. (2011). It turned out to be

relatively easy to use LocalSolver to solve our problem; given the solution repre-

sentation and decoding mechanisms, we developed for the genetic algorithms.

Furthermore, LocalSolver easily beat the Gurobi MIP solver operating on the

RCPSP-ROC formulation in Sect. 3. For those reasons, we used a relatively light-

weight LocalSolver implementation based on the solution representations for the

genetic algorithms as a surprisingly strong benchmark.

4.2 Alternative solution encodings and corresponding schedule generation
schemes

4.2.1 The serial schedule generation scheme based on an activity list k

In the context of the RCPSP, the serial schedule generation scheme (SSGS) is

widely used to decode a solution representation based on an activity list k into a

schedule, see Kolisch and Hartmann (1999), p. 150ff. In an activity list k, all jobs
(including the dummy activities) are included once. If an activity i in the project has

to precede another activity j, then this order has to be respected in the activity list as

well. Hence, the first and last entries of the activity list are always the (dummy) start

and end activities. Using the SSGS, one iteratively schedules activities in the order

implied by the activity list. Starting with the first activity on this list k, one

determines its earliest starting point that is feasible both with respect to capacity

constraints and activity precedence relations.

Consider, for example, the project depicted in Fig. 1 requiring a single resource

r ¼ 1 with a period capacity of K1 ¼ 4 capacity units (and no overtime capacity,

that is zr ¼ 0; 8 r). Then, the activity list

k1 ¼ 0; 1; 3; 2; 5; 4; 6; 7ð Þ ð8Þ

is decoded into the schedule in Fig. 2. Note that the SSGS is not injective, meaning

different activity lists can lead to the same schedule. For details on this established

procedure, see Kolisch and Hartmann (1999).

This serial schedule generation scheme operating on an activity list k only

generates active schedules AS which are a subset of the quasi-stable schedules, i.e.,
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AS � QSS, when enumerating over all possible activity lists k as input data. As

mentioned before, it is not even sufficient to consider (only) the set of QSS
schedules to find an optimal solution for the RCPSP-ROC. We are hence not aware

of any established construction rule operating on an activity list k and the SSGS to

build promising schedules for the RCPSP-ROC, due to its specific objective

function.

For this reason, we developed several extended solution representations and

modified decoding mechanisms that can all be seen as generalizations of the

established SSGS approach for the RCPSP. We describe these below in detail.

The basic reasoning is that when constructing a schedule, it is (with respect to

revenues) essentially attractive to schedule activities as early as possible. This tends

to be achieved by the SSGS. However, in the RCPSP-ROC, there is the additional

question of when or for which activities overtime should be used. We present below

three different approaches in which this decision is directly determined by the

solution representation.

4.2.2 Solution encoding ðkjẑrÞ

One possible solution encoding for the RCPSP-ROC is the representation ðkjẑrÞ.
Here, ẑr denotes a column vector specifying the maximum permissible overtime

usage for resource r. When decoding a solution via the SSGS, we hence operate on

a modified and time invariant period capacity Kmod
rt ¼ Kr þ ẑr for each resource

r and period t.

For the project introduced in Fig. 1 requiring a single resource r ¼ 1 with a

regular period capacity of K1 ¼ 4 capacity units, the representation

ðkjẑrÞ ¼ ð0 1 3 2 5 4 6 7 j ½0�Þ ð9Þ

(without overtime permission) is decoded into the schedule in Fig. 2, whereas the

representation

ðkjẑrÞ ¼ ð0 1 3 2 5 4 6 7 j ½2�Þ ð10Þ

leads to the schedule in Fig. 3. In this case, the additional decision on a fixed upper

bound ẑ1 ¼ 2 for overtime throughout the entire planning horizon is a component

of the encoded solution. Please note that ẑr only gives the maximum permissible

overtime and that the amount of overtime actually used has to be derived from the

schedule to compute the objective function value related to this schedule.

For a single resource r, the set of possible (integer) ẑr values is rather small and

contains zr þ 1 elements f0; . . .; zrg. However, even a full state space enumeration

for this representation does not necessarily yield an optimal schedule, since this

representation only explores a subset of the entire set of all possible overtime

profiles. An obvious advantage of this representation is that it is quite lean.
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4.2.3 Solution encoding ðkjẑrtÞ

The ðkjẑrtÞ representation is quite similar to the ðkjẑrÞ representation. It generalizes
the ðkjẑrÞ representation by deciding on a per-period basis on the allowed amount of

overtime and, therefore, inducing a time-varying profile. Here ẑrt denotes a matrix of

permissible overtime capacities. When applying the SSGS, the modified and time-

variant period capacity Kmod
rt ¼ Kr þ ẑrt for each resource r and period t is

considered.

For the project introduced in Fig. 1, the representation:

ðkjẑrtÞ ¼ ð0 1 3 2 5 4 6 7 j 0 0 0 2 2 2 0 0 0 0½ �Þ
ð11Þ

with permission of two units of overtime in periods four, five, and six is decoded

into the schedule in Fig. 2 (in which no overtime is actually used), whereas the

representation

ðkjẑrtÞ ¼ ð0 1 3 2 5 4 6 7 j 0 0 1 1 0 0 0 0 0 0½ �Þ
ð12Þ

with permission of one unit of overtime in periods three and four leads to the

schedule in Fig. 4.

Since this representation can be used to explore the entire set of possible

overtime profiles, it is in principle guaranteed to find an optimal solution when

doing a full state space exploration. However, this is of course not practical, since it

is still anNP-hard problem and the matrix of permissible overtime capacities ẑrt can

get very large very quickly, requiring a high-dimensional search process in

combination with all possible activity lists.

4.2.4 Solution encoding ðkjbÞ

In the ðkjbÞ representation, the need to use overtime is tied to activities j as opposed

to resources r as assumed in the ðkjẑrÞ representation or resource-period

combinations (r, t) in the ðkjẑrtÞ representation. The idea behind this representation

is that some activities may be especially critical, for example, due to the fact that

they have many successors or a long duration. The ðkjbÞ representation hence

explicitly contains the information whether an activity is allowed to be scheduled

with or only without additional overtime usage. When the activity list k is being

decoded and an activity j is being treated given a partial schedule, the original

capacity Kr is used with respect to resource r if bj ¼ 0, i.e., if activity j is not

allowed to use overtime while being inserted into the partial schedule. However, if

bj ¼ 1, i.e., if activity j is allowed to use overtime, the modified capacity Kmod
rt ¼

Kr þ zr is being used.

For the project depicted in Fig. 1 requiring a single resource r ¼ 1 with a regular

period capacity of K1 ¼ 4 capacity units the representation
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k

b

� �
¼

0 1 3 2 5 4 6 7

0 0 0 1 0 0 1 0

� �
ð13Þ

with permission of overtime for activities two and six is decoded into the schedule

in Fig. 3, whereas the representation:

k

b

� �
¼

0 1 3 2 5 4 6 7

0 0 1 0 1 0 0 0

� �
ð14Þ

with permission of overtime for activities three and five leads to the schedule in

Fig. 2. Note that even a full state space enumeration along this representation is not

guaranteed to yield an optimal solution as it may be optimal to use overtime during

only a part of the execution of an activity (see Fig. 6d).

4.2.5 Iterative forward–backward improvement without cost increase

Since hybrid genetic algorithms incorporating a neighborhood search based

additional improvement step are shown to be efficient for solving the RCPSP in

the literature, see Kolisch and Hartmann (2006), we adapted the so-called iterative

forward–backward improvement technique by Li and Willis (1992) for the RCPSP-

ROC. In its original form, this technique tries to decrease the project duration by

subsequently shifting and aligning all activities to the right and afterwards to the

left. This is iteratively repeated until there is no improvement as opposed to the

more widespread double justification variant with just two shifting passes. The

approach tends to decrease makespan while maintaining the feasibility of the

schedule. For a more detailed description of this procedure, see Valls et al. (2005).

We modified the procedure by allowing only such shifts that do not increase

overtime consumption, therefore, leading to schedules with possibly both decreased

makespan and lowered overtime costs. We apply this improvement step to each

given schedule for all decoding schemes introduced.

4.3 Genetic algorithms for the RCPSP-ROC

4.3.1 Basis solution approach of genetic algorithms

Genetic algorithms are nature-inspired meta-heuristics that have been successfully

applied to many different combinatorial optimization problems. They were first

presented by Holland (1975) and are now widely and successfully used in computer

science and operations research. As shown in Kolisch and Hartmann (2006), they

are the dominating heuristic method in the literature to solve the RCPSP as they can

often find high-quality solutions for challenging problems very quickly.

Genetic algorithms for an optimization problem operate on a population of

individuals or candidate solutions over a sequence of generations with reproduction

and selection mimicking the ‘‘survival of the fittest’’. A candidate solution can in

principle contain a complete set of numerical values as assignment for the decision

variables of an underlying optimization model as the binary xjt and the integer zrt
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variables in the RCPSP-ROC model presented in Sect. 3. However, it is often more

convenient and efficient to use a more compact encoding like the activity list k
introduced before. The objective function value of the schedule then serves as a

fitness value for the particular activity list of that individual.

The individuals of one generation are taken as parents, combined in the so-called

crossover operation, and potentially mutated to hopefully create better child

individuals. Out of the set of parents and children, a new generation of parents for

the next generation is selected. This process is repeated iteratively until a specified

termination criterion is met.

To characterize our genetic algorithms, we hence have to specify the solution

representation, the decoding scheme and the fitness computation as well as the

structure of the initial population, the combination of solutions, and finally the

mutation and selection operators. As representations, we use the encodings

introduced in Sect. 4.2 together with their corresponding schedule generation

schemes. For each of these considered representations, we specify the remaining

elements of the genetic algorithm in the following subsections.

4.3.2 Generation of the initial population

All our solution representations contain activity lists as a substantial element. We

construct each activity list in the initial population step by step, starting with the first

position of that list. For each position, we determine the set of activities j 2 D that

have not yet been assigned to the activity list, while all immediate predecessor

activities i 2 Pj have already been assigned to that particular list. Each such activity

j 2 D can hence be selected for the currently considered position of the activity list

without violating any precedence constraint between activities. One of these

activities j 2 D is chosen randomly following a distribution, where the selection

probability positively correlates with the priority value of that activity (biased

sampling). The chosen activity is then appended to the activity list and this

procedure repeats until all activities are included.

In our case, we are using the latest finishing times LFTj of the activities as

priority values, so that the priority of activities decreases with increasing latest

finishing times. This is a useful priority rule, since delaying an activity j with a small

LFTj value is likely to postpone project completion. Based on these priorities, the

weight wj ¼ maxi2D LFTi � LFTj is the relative regret of not selecting activity j,

i.e., the difference between highest overall priority value for the assignable activities

i 2 D and priority value of activity j. To randomly select one of the schedulable

activities j 2 D, we use non-uniform selection probabilities

Probj ¼
ðwj þ 1ÞP

i2Dðwi þ 1Þ

in a regret-based biased random sampling (RBBRS) as proposed by Kolisch and

Drexl (1996) and Tormos and Lova (2001).

In the ðkjẑrÞ representation, an additional initial limit on the permissible overtime

ẑr for each resource r has to be assigned for each individual. We draw it randomly
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from a uniform distribution over the integer values in the set f0; 1; 2; :::; zr � 1; zrg
for each resource r. In the case of the ðkjẑrtÞ representation, we use this limit for

resource r over all periods t, so that initially, we have ẑr;1 ¼ ẑr;2 ¼ ::: ¼ ẑr;T for

each resource r of an individual. In the ðkjbÞ representation, the binary parameter bj
which indicates whether activity j may be scheduled using overtime is set to 0 or 1

with probabilities of 0.5 each.

4.3.3 Crossover

During each iteration of the genetic algorithm, we build pairs of individuals by

randomly matching distinct individuals from the current parent set until each

individual has been matched with one other individual from that set. Denote one

individual from such a pair as the mother ‘‘M’’ and the other as the father ‘‘F’’.

Let kM be the mother’s activity list and kF be the father’s activity list. Following

Hartmann (1998), we perform a one-point crossover on those activity lists. We pick

a random number q between 1 and J. A daughter is characterized by choosing the

first q elements from the mother. The remaining elements, not yet chosen from the

mother, are taken in the order of the father. The son is determined analogously by

switching the roles of mother and father. With this approach, all precedence

restrictions are always met, so that each activity list is feasible. For the ðkjbÞ
representation containing an additional overtime decision per job, the overtime

decision for each job is linked to the overtime decision from the passing parent.

We describe this procedure using an example for the ðkjbÞ representation of the

sample project in Fig. 1 (considering only the non-dummy activities) with the

crossover point q ¼ 3:

IM ¼
1 2 3 4 5 6

1 1 0 0 0 0

� �
IF ¼

1 3 5 2 4 6

1 0 1 0 1 0

� �

ID ¼
1 2 3 5 4 6

1 1 0 1 1 0

� �
IS ¼

1 3 5 2 4 6

1 0 1 1 0 0

� �

The first three positions on the activity list for the daughter ‘‘D’’ are taken in the

sequence given by the mother. It is not possible to simply take the last three

elements from the father as activity two would be implemented twice and activity

five never. For this reason, we only take the sequence of the remaining activities

from the father: five, four, and six. The bj values for the first three positions are

inherited from the mother. For the other activities, the values are inherited from the

father. The son ‘‘S’’ analogously inherits in the opposite direction.

In the ðkjẑrÞ and ðkjẑrtÞ representations, a second one-point crossover is

performed. The crossover of the ẑr and ẑrt components is independent of the

crossover of the activity lists. The reason is that there exists no direct relationship

between the elements of an activity list and the entries of the matrix ẑrt or vector ẑr.

We show the procedure for the case of two resources r and six periods t and first

assume that the crossover is performed periodwise between periods four and five.

For clarity reasons, the activity lists as part of the complete ðkjẑrtÞ-genotypes were
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omitted in this example. Their crossover again follows the procedure from

Hartmann (1998):

ẑMrt ¼
3 3 3 3 3 3

1 1 4 4 4 4

� �
ẑFrt ¼

2 2 2 2 6 6

0 0 1 1 1 1

� �

ẑDrt ¼
3 3 3 3 6 6

1 1 4 4 1 1

� �
ẑSrt ¼

2 2 2 2 3 3

0 0 1 1 4 4

� �

The result shows, e.g., for the son individual and resource r ¼ 1, that the per-

missible overtime is two units for the first four periods (as inherited from the father)

and three units for the remaining two periods (as inherited from the mother). In a

similar way, the crossover can be performed resourcewise between resources, in this

case the only two resources one and two:

IMẑrt ¼
3 3 3 3 3 3

1 1 4 4 4 4

� �
IFẑrt ¼

2 2 2 2 6 6

0 0 1 1 1 1

� �

IDẑrt ¼
3 3 3 3 3 3

0 0 1 1 1 1

� �
ISẑrt ¼

2 2 2 2 6 6

1 1 4 4 4 4

� �

In the case of the ðkjẑrtÞ representation, we either perform the crossover periodwise

or resourcewise (with probabilities of 0.5 each). For the ðkjẑrÞ representation, it can
only be performed resourcewise.

4.3.4 Mutation

Mutation is only applied with a certain small mutation probability Pmutate. For

activity lists, we apply a so-called adjacent pairwise interchange, see Hartmann

(1999), p. 90, and Brucker and Knust (2012), p. 130. With probability Pmutate an

activity j ¼ ki on position i of list k is exchanged with the activity kiþ 1 on the next

position i þ 1 (if available) unless this would result in an infeasible activity list.

Therefore, feasibility-violating swaps are avoided.

In the case of the ðkjẑrÞ or the ðkjẑrtÞ representation, we mutate the overtime

capacities ẑr and zrt by randomly either increasing or decreasing all values by one

capacity unit (unless this would violate the limits 0 and zr, respectively). For the

ðkjbÞ representation, we mutate by flipping a randomly selected bit, i.e., by setting

bj  1 � bj.

4.3.5 Selection

In the selection step, individuals with low fitness values get discarded. For our

implementation, we chose to discard the 50% worst individuals out of the set of all

parents and all children of the current generation, i.e., we use an elite selection

scheme.
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4.4 Central elements of the local search implementation using LocalSolver

The commercial general-purpose local search solver LocalSolver offers as its front

end a descriptive modeling language. It can be used to declare and define the

elements of an optimization model such as variables, parameters, objective function,

and constraints. The exploration of the search space is completely done in a

proprietary black-box fashion by LocalSolver.

In principle, it is possible to use a direct solution representation based on the

binary xjt variables, as defined in the RCPSP-ROC. However, this representation is

neither suitable for a local search algorithm nor for a genetic algorithm. Swapping

two jobs in a schedule, for example, is conceptually rather simple and easily

implemented in an activity list encoding, whereas in a direct binary encoding of a

schedule, potentially, many different variables must be modified and it can be

difficult to achieve feasibility again.

Listing 1: Model definition in the LocalSolver language
1 LocalSolver ls;
2 LSModel model = ls.getModel ();
3
4 // Plug in native C++ function into model as LocalSolver expression
5 auto nativeFunction = model.createNativeFunction(decoder );
6 LSExpression objective = model.call(nativeFunction );
7
8 // Declare list permutation variable with fixed length #jobs
9 LSExpression activityList = model.listVar(project.numJobs );

10 model.constraint(model.count(activityList) == project.numJobs );
11
12 // Generate handles for each list element , insert as objective function operands
13 vector <LSExpression > listElems(project.numJobs );
14 for ( int i = 0; i < project.numJobs; i++) {
15 listElems[i] = model.at(activityList , i);
16 objective.addOperand(listElems[i]);
17 }
18
19 // Declare boolean decision vector for overtime and insert as objective function operands
20 vector <LSExpression > betaVar(project.numJobs );
21 for ( int i = 0; i < project.numJobs; i++) {
22 betaVar[i] = model.boolVar ();
23 objective.addOperand(betaVar[i]);
24 }
25
26 model.addObjective(objective , OD_Maximize );
27 model.close ();

Fortunately, the descriptive LocalSolver language contains not only the modeling

elements commonly used in MIP models like the RCPSP-ROC in Sect. 3, but also

other language elements like if–then clauses, maximum or minimum operators, and

so-called list variables that can be used to describe problems in a very compact way.

In particular, this list variable can be used to directly model an activity list and

perform a local search over this activity list using the black-box LocalSolver search

engine, i.e., its back end.

Using a list variable to directly model, the activity list turned out to be very

simple and effective. A list variable in LocalSolver holds a permutation of numbers

in a certain range ½0; n� 1� \N0 of n elements. The upper limit n� 1, and

therefore, the cardinality n of this range can be externally specified. For our problem

setting, we set n ¼ J þ 2. LocalSolver explores possible solutions by permuting

this list.
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When using an indirect encoding via an activity list in a modeling language, a

corresponding decoding procedure must be implemented. The current version of the

LocalSolver language is well suited for descriptive programming but not yet

suitable for highly efficient algorithmic procedural programming. However, the

LocalSolver Software Development Kit (SDK) offers an Application Programming

Interface (API) for implementing parts of the model as function callbacks written in

another general-purpose programming language. With these so-called native

functions, a custom algorithm can be integrated in a LocalSolver model and the

respective search process. This allows us to reuse and plug in the schedule

generation and decoding procedures described in Sect. 4.2 and already implemented

in the genetic algorithm.

The additional effort to use LocalSolver within our C?? program is hence very

limited. The main component for the case of the ðkjbÞ representation is shown in

Listing 1. This short code fragment is sufficient to declare the model’s data object

(code lines 1 and 2), embed the native decoding function (code lines 5 and 6), and

establish the activity list augmented by the binary bj vector (code lines 9–24) using
a list variable. This way, additional data representing the decisions on overtime is

integrated into LocalSolver.

Note that the list variable, i.e., the activity list, is not guaranteed to be

topologically ordered after a position swap performed by LocalSolver. There are

two ways to resolve this issue. First, one could add an additional constraint to the

model, which enforces that list elements (i.e., activities) can only occur at a certain

list position if all predecessors are at earlier positions on that list. In this case, the

local search via the LocalSolver engine is forced to generate only feasible activity

lists. Alternatively, one could omit this constraint and instead modify the decoding

procedure to be usable with all possible permutations. To this end, it is sufficient to

delay scheduling an activity on the list until all its immediate predecessors have

been scheduled when decoding the activity list. Numerical experiments show that

the second option is more efficient on average, because LocalSolver performs worse

when using a model with order constraints. This negative effect overcompensates

the advantage of the topologically ordered list.

In summary, LocalSolver only needs a trivial model consisting of the list

variable, setting its length to the number of jobs and possible additional decision

variables for overtime. LocalSolver decides on the assigned values of the decision

variables and then passes these variables to the native function facilities of the

LocalSolver API. The called decoding procedure maps the list and overtime

decisions to a schedule and an objective function value, as described in Sect. 4.2.

The local search stops when a pre-determined clock time has elapsed. Contrasting it

with the genetic algorithm, we observe that we now operate on a single solution as

opposed to a population of solutions and that all the modification and selection is

done by a black-box engine as opposed to the crossover, mutation, and selection

operators required in the genetic algorithms.
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5 Numerical analysis of the different solution methods

5.1 Test design

We performed a set of numerical experiments to evaluate the relative quality of the

different solution approaches, as presented in Sect. 4. To this end, the widely used

PSPLIB problem library of heterogeneous and challenging RCPSP instances

presented in Kolisch and Sprecher (1996) was used and modified to match the

specific characteristics of our problem. In particular, we defined additional

parameters not already included in the classical RCPSP. These are resource-

specific overtime cost of jr ¼ 1
2
monetary units per capacity unit and period, upper

bounds for overtime zr ¼ 1
2
Kr, and the makespan-dependent revenue function ut.

The revenue function has to be constructed carefully to avoid that the optimal

solutions either always have zero overtime or always use overtime whenever

possible. In these two trivial cases, a standard RCPSP procedure to minimize the

makespan would be sufficient after adjusting the capacities to K 0r ¼ Kr þ zr or

K 0r ¼ Kr, respectively.

Thus, interesting problem instances have a certain structure with their optimal

makespan being between those two extreme points T and T , as shown in Fig. 5.

Ideally, T should be the shortest possible makespan that can be achieved within the

overtime limits zr. In a similar way, T should be the shortest possible makespan that

is possible without any overtime. However, to determine these two values, two NP-
hard problems would have to be solved, which is entirely impractical. In a fast and

simple (but admittedly crude) approximation, we took advantage of the fact that in

the PSPLIB, the activities for each project are always topologically ordered. For this

reason, the SSGS can always be used to decode the canonical activity list k ¼
ð0; 1; 2; 3; 4; :::; J � 2; J � 1; J; J þ 1Þ into a feasible schedule without overtime.

The makespan of this schedule is an upper bound of the duration of the shortest

feasible schedule without overtime. Furthermore, the makespan of the earliest start

schedule delivers an efficiently computable lower bound for the shortest schedule

with arbitrary legitimate amount of overtime. We call these the T- and the T-

schedules, respectively. The makespans of those two schedules were then used as

the T and T limits of the interesting makespan interval for the respective revenue

function. To roughly match the structure of the profit curve in Fig. 5, the revenue

function has to be determined in a suitable way. We decided to use a partially

parabolic function defined as follows:

ut ¼

C; if t\T

C � C

T � T
� �2 � t � Tð Þ2; if T � t� T

0; if T\t:

8
>>><

>>>:
ð15Þ

Here, C denotes the actual cost of overtime associated with the earliest start

schedule T as defined above, thus representing an upper bound for overtime cost.

Note that the revenue function is concave and monotonically decreasing in the
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relevant makespan interval from T to T . This decreasing marginal utility of

makespan reductions is reasonable as penalty cost typically increase with advancing

delay and tardiness. Due to the definition of the revenue function (15), we know that

at least one schedule exists with a profit of at least 0 monetary units for each project.

We extended all 480 PSPLIB instances from the set j30 with 30 real activities

and two dummy activities as described. We omitted 151 instances in which the

makespan of the schedule computed using the SSGS with the canonical activity list

and K 0r ¼ Kr þ zr equals the makespan of the schedule computed with K 0r ¼ Kr. This

is a rough heuristic to decide whether overtime potentially has relevance for this

instance. We, furthermore, excluded 59 instances for which the Gurobi MIP solver

could not find a proven optimal solutions within 1800 s of CPU time on a single

processor with a clock rate of 2.50 GHz and 32 GB of RAM. This resulted in 270

interesting problem instances with known optimal solutions. With this preparation,

we were able to compute meaningful relative profit deviations when comparing our

heuristic results to optimal solutions.

In a similar way, we examined j120 instances from the PSPLIB, where the total

number of 600 instances got reduced to 585 projects relevant for our problem

setting. We were unable to determine proven optimal solutions using Gurobi for this

problem class of much larger project networks with 120 activities each. We hence

evaluated the different heuristics against each other, using the best known solution

per instance as a benchmark.

The activity list decoding schemes and the genetic algorithm were implemented

in C?? to achieve computational performance and interoperability with the

LocalSolver API. Based on numerical tests, we chose a mutation probability

Pmutate ¼ 5% and population size (size of one generation) NI ¼ 80. The results were

obtained on a single processor with a clock rate of 3.40 GHz and 16 GB of RAM

workstation using one thread.

5.2 Results

For the 270 comparatively small projects with 30 non-dummy activities in

conjunction with a time limit of 30 s, we generated the results, as shown in Table 4.

This table shows the chronological progression of the relative gap of each

solution method averaged over all instances. For each instance and method, the

relative gap is a result of computing the deviation between the known optimal

reference solution computed by Gurobi and the solution that method discovered up

to that point in time. More precisely, this deviation is defined as p	�p
p	 , where p is the

profit considered and p	 is the optimal profit. Please note that Gurobi is both used in

a first run to compute optimal reference values, and in a second run with time limit

of 30 s to benchmark, it as exact method against the heuristic methods.

The cells showing average gaps are colored using a palette between red for high

gaps and green for low gaps. This helps following and discerning the comparative

progression of gaps visually. All methods start from an initial seed solution with no

profit and, therefore, a relative gap of 100% to the optimal solution.
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The last three rows of Table 4 summarize further information for each method,

again aggregated over all instances. These values reflect the results obtained when

reaching the time limit. Consequently, they do not represent values averaged over

time. The first of these rows is equal to the row containing the average gap for the

time limit of 30 s. The remaining rows show the highest relative gap of any

individual problem instance and the percentage of instances which were solved to

optimality, respectively.

Table 4 Numerical results over time for small projects with 30 non-dummy activities

(λ|β) (λ|ẑr) (λ|ẑrt) (λ|β) (λ|ẑr) (λ|ẑrt)
0 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.01 100.00% 67.60% 64.66% 69.72% 82.50% 88.46% 82.51%
0.02 100.00% 4.41% 4.41% 3.59% 36.14% 50.68% 45.57%
0.03 97.41% 1.86% 1.84% 1.30% 5.30% 5.41% 20.82%
0.04 95.02% 1.26% 1.22% 0.95% 3.29% 2.20% 16.23%
0.05 90.44% 1.04% 1.06% 0.74% 2.04% 1.72% 13.75%
0.06 79.52% 0.82% 0.90% 0.58% 1.45% 1.46% 12.09%
0.07 70.58% 0.69% 0.77% 0.49% 1.25% 1.23% 10.59%
0.08 64.21% 0.63% 0.65% 0.42% 1.06% 1.15% 9.40%
0.09 57.38% 0.57% 0.53% 0.36% 1.00% 1.04% 8.53%
0.1 50.64% 0.53% 0.50% 0.32% 0.91% 0.93% 6.92%

0.11 46.77% 0.52% 0.47% 0.29% 0.86% 0.89% 6.01%
0.12 43.71% 0.47% 0.43% 0.28% 0.79% 0.83% 5.38%

0.32 21.20% 0.19% 0.35% 0.14% 0.46% 0.47% 1.53%

0.54 15.59% 0.16% 0.33% 0.12% 0.30% 0.38% 0.84%

1 9.62% 0.13% 0.32% 0.11% 0.19% 0.31% 0.53%
2 6.58% 0.13% 0.31% 0.09% 0.14% 0.25% 0.28%
3 5.26% 0.12% 0.31% 0.09% 0.10% 0.23% 0.21%
4 4.55% 0.12% 0.31% 0.09% 0.09% 0.20% 0.18%
5 3.96% 0.11% 0.31% 0.09% 0.09% 0.17% 0.12%

28 1.51% 0.10% 0.28% 0.08% 0.02% 0.12% 0.03%
29 1.51% 0.10% 0.28% 0.08% 0.02% 0.12% 0.03%
30 1.46% 0.10% 0.28% 0.08% 0.02% 0.12% 0.03%

ØGap 1.46% 0.10% 0.28% 0.08% 0.02% 0.12% 0.03%
%Optimal 38.80% 39.49% 36.92% 41.03% 43.93% 42.56% 43.59%
Max Gap 100.00% 3.07% 20.00% 2.20% 1.00% 20.00% 2.98%

Genetic Algorithm LocalSolver
GurobiTime
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Overall, the gaps show that with a time limit of just 30 s, all heuristic solution

methods are able to generate good solutions and are able to move towards them

rather quickly with gaps of only 0:02% to about 0:28%.

The table also includes the behavior of the MIP solver Gurobi. One can see that

on average all heuristics outperform the exact reference method Gurobi during the

considered timespan. Gurobi still has a gap of 1:46% after computation is

terminated in its time limited run. Even though Gurobi is outperformed by the

heuristics, this still shows that the direct binary encoding xjt yields acceptable results

for such small instances when used as encoding for a MIP solver. This is in accord

with the results from the experimental comparison of different RCPSP formulations

in Artigues et al. (2015).

When comparing the heuristic solution methods, it becomes apparent that the

genetic algorithm yields very good results in short time and with a small amount of

schedules, respectively. This behavior is due to the fact that the problem-specific

configuration of the genetic algorithm enables very good results by selecting

promising schedules and combining them in a constructive way. However, after a

few seconds, there is no further improvement observable.

In contrast to this, LocalSolver is not able to find such good solutions in the

beginning due to the initially quite arbitrary creation of new schedules. However,

the results by LocalSolver improve steadily, so that they dominate the genetic

algorithm for all representations after 9 s. The number of schedules visited at a

certain point in time will be roughly the same in case of both LocalSolver and the

genetic algorithms. The decoding procedures used in conjunction with LocalSolver

might be even slightly slower due to being robust against non-topologically sorted

lists, which are avoided as inputs of the fitness functions of the genetic algorithms.

Hence, the superior performance of LocalSolver after a few seconds is caused by

more flexible neighborhood movement rules of this generalized local search

solver.

The number of schedules generated is a widespread termination criteria in the

scheduling literature. In Table 5, average gaps towards optimal solutions are shown for

limits of 1000, 5000, and 50,000 schedules. Thereby, each iteration of the forward–

backward improvement is counted as one schedule both in the GA and LocalSolver.

These results are in accord with the results obtained with a time limit of 30 s.

The results for the 585 large projects with 120 non-dummy activities with a time

limit of 120 s and up to 50,000 schedules are shown in Tables 6 and 7, respectively.

Since even for the simpler RCPSP there exist many j120 instances, which are not

Table 5 Numerical results for small projects with 30 non-dummy activities

#Schedules Genetic algorithm LocalSolver

ðkjbÞ ðkjẑrÞ ðkjẑrtÞ ðkjbÞ ðkjẑrÞ ðkjẑrtÞ

1000 1:60% 1:52% 1:31% 3:00% 2:57% 15:31%

5000 0:50% 0:57% 0:32% 0:67% 0:76% 4:51%

50,000 0:14% 0:33% 0:12% 0:15% 0:29% 0:33%
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Table 6 Numerical results over time for largeprojects with 120 non-dummy activities

(λ|β) (λ|ẑr) (λ|ẑrt) (λ|β) (λ|ẑr) (λ|ẑrt)
0 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

0.01 100.00% 69.93% 68.84% 69.14% 100.00% 100.00% 100.00%
0.02 100.00% 45.43% 45.72% 45.94% 73.63% 71.17% 71.95%
0.03 100.00% 36.51% 36.50% 36.29% 53.25% 46.56% 56.16%
0.04 100.00% 31.25% 32.28% 31.66% 48.22% 39.92% 51.52%

0.34 97.58% 5.32% 4.60% 4.61% 29.56% 9.27% 38.36%

0.52 93.87% 4.39% 3.81% 3.84% 25.66% 6.68% 36.46%

0.78 87.98% 3.74% 3.16% 3.22% 21.98% 5.40% 34.85%

1 85.65% 3.24% 2.69% 2.72% 19.60% 4.58% 33.99%
2 81.76% 2.46% 1.92% 1.90% 13.76% 3.56% 31.22%
3 77.53% 2.11% 1.57% 1.57% 11.21% 3.25% 28.77%
4 76.09% 1.88% 1.35% 1.35% 9.50% 3.00% 26.76%
5 74.03% 1.73% 1.20% 1.20% 8.51% 2.80% 25.00%
6 71.93% 1.61% 1.09% 1.08% 7.77% 2.69% 23.55%
7 71.10% 1.53% 1.02% 1.00% 7.27% 2.61% 22.22%
8 70.17% 1.45% 0.96% 0.92% 6.84% 2.54% 21.13%
9 69.33% 1.38% 0.92% 0.87% 6.58% 2.50% 20.10%

10 68.33% 1.33% 0.87% 0.82% 6.32% 2.46% 19.11%

60 52.39% 0.65% 0.63% 0.38% 3.81% 1.73% 9.29%

80 50.39% 0.57% 0.61% 0.35% 3.43% 1.64% 8.71%

100 48.67% 0.50% 0.60% 0.33% 3.26% 1.58% 8.23%

120 47.34% 0.45% 0.59% 0.32% 3.09% 1.55% 7.91%
ØGap 47.34% 0.45% 0.59% 0.32% 3.09% 1.55% 7.91%
%Best 29.57% 46.84% 35.04% 52.31% 27.35% 30.94% 25.13%

Max Gap 100.00% 2.94% 4.17% 3.60% 46.47% 7.39% 38.91%

Time Gurobi
Genetic Algorithm LocalSolver

Table 7 Numerical results for large projects with 120 non-dummy activities

#Schedules Genetic Algorithm LocalSolver

ðkjbÞ ðkjẑrÞ ðkjẑrtÞ ðkjbÞ ðkjẑrÞ ðkjẑrtÞ

1000 4:97% 4:17% 4:19% 31:22% 11:73% 39:26%

5000 3:40% 2:73% 2:82% 16:33% 3:83% 32:70%

50,000 1:39% 0:86% 0:85% 5:29% 2:00% 14:22%
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optimally solved yet, we did not attempt to compute optimal reference values for

this set of large instances. Instead, the relative deviation is computed referencing the

best known solution of all methods. These best known solutions represent lower

bounds for the optimal profit. To tighten these bounds, we additionally computed

profits using the most promising ðkjẑrtÞ representation in a genetic algorithm on a

computing cluster with a time limit of 30 min per instance.

For large projects with 120 activities, the exact method is not able to produce any

reasonably useful results within a 2 min time limit. The heuristic methods still yield

fairly good solutions with small gaps towards the best known solutions. The

dominance of LocalSolver models using indirect solution encodings over the

problem-specific genetic algorithm counterparts is now broken and flipped. The

specific genetic algorithms clearly beat all other procedures considered when

solving larger problem instances. Therefore, the low-effort solution method of using

a standard solver is not advisable for large instances. In addition, it seems that the

ðkjẑrtÞ representation is not very well suited for solving large problem instances in

conjunction with LocalSolver. This may be due to LocalSolver not being able to

efficiently traverse different ẑrt assignments, of which there are many.

In summary, the problem-specific procedures on average outperform the black-

box generic methods for large problem instances. This relationship is reversed when

considering small instances, though. A generalized standard software beating a

custom heuristic may not be intuitive at first sight. Although algorithmically the

problem-specific approach is very likely to be superior, the generalized local search

implementation is a commercial software product with years of development and

effort by a team of programmers, whereas the genetic algorithm was implemented in

shorter time from scratch. This might explain why a black-box heuristic solver is

able to outperform a problem-specific genetic algorithm for small problem

instances. For large instances, the algorithmic advantages from problem knowledge

in the genetic algorithms seem to dominate any implementation issues in

comparison to a commercially developed and optimized general-purpose software.

6 Conclusion and outlook

In this paper, we presented an extension of the RCPSP with overtime cost and a

revenue function monotonically decreasing with project duration. We formalized

the scheduling problem as a mixed-integer linear program and designed encodings

as preparation step for the development of efficient solution procedures. We then

developed a genetic algorithm for the problem, computed and interpreted results for

a problem library based on a widely used RCPSP test set. We further investigated

the use of a general local search heuristic, thus offering numerical results for both

problem specific as well as generic black-box heuristic solution methods. The

results are very promising. For larger projects with many activities, heuristic

problem-specific solution methods beat generic black-box inexact solvers. For small

size projects, using a heuristic black-box method worked best.

For future research, it is promising to use modified operators of the genetic

algorithm to achieve better results, for example, the peak crossover operator
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proposed by Valls et al. (2008). This operator considers the fitness of the individuals

in the crossover.

In addition, the activity list as the core of all representations evaluated may be

exchanged with another widespread encoding for inducing activity priorities, the so-

called standardized random key representation, Debels et al. (2006).

However, it is expected that the general solution behavior remains the same even

with such improvements. Therefore, it would be even more interesting to use

entirely different solution procedures or representations. A suitable and ideally more

compactsolution encoding may speed up the solution process by removing more

redundant points in the solution space. One idea is to evaluate a representation based

on quasi-stable schedules known for resource-leveling problems with a heuristically

defined makespan. Again, the goal is to explore the smallest possible set guaranteed

to contain an optimal solution. However, to this end and also to develop an exact

algorithm, it would be extremely helpful to identify and formalize properties of

optimal solutions.
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