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Abstract

This paper examines optimal monetary policy under heterogeneous expectations. To this
end, we develop a stochastic New Keynesian model with a cost-push shock and coexistence
of one-step-ahead rational and adaptive expectations in decentralized markets. On the one
side, heterogeneous expectations imply an amplification mechanism that has many adverse
consequences missing under the rational expectations paradigm. On the other side, even
discretionary optimal monetary policy can manipulate expectations via a novel channel. We
argue that the incorporation of heterogeneous expectations in both the design and implemen-
tation of discretionary optimal monetary policy to exploit this channel lowers macroeconomic
volatility. We find that: (1.) surprisingly, a more hawkish policy can reduce losses due to
volatility, but an overly hawkish policy does not; (2.) overestimating the share of rational
expectations in the design and implementation of policy creates additional losses, while the
underestimation does not; (3.) credible commitment eliminates or mitigates many of the
ramifications of heterogeneous expectations.
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1. INTRODUCTION

Leading central bankers conclude that the New Keynesian inflation targeting framework
developed in the last decades has been an effective tool for macroeconomic stabilization
policy before and throughout the Great Recession. One reason often mentioned is that the
framework provides guidance on how to manage expectations, which appears to be crucial
for stabilization policy.

However policymakers also conclude that the framework is missing important features.
One of the frequently demanded extensions is to abandon the paradigm of the rational
expectations hypothesis (REH) and to incorporate heterogeneous expectations. The reason
is that policymakers regard heterogeneous expectations as a potential source of business
cycle amplification (King, 2012; Carney, 2013; Yellen, 2016).

The perceived need to incorporate heterogeneous expectations into the framework is not
borne out of theoretical curiosity, but is grounded in the ample empirical and experimental
evidence on the presence of heterogeneous expectations in private sector (see, Branch and
McGough, 2018; Hommes, 2021, and the references therein). One conclusion that can be
drawn from this evidence is that the diversity of available forecasting models in private
sector is manifold. Thus, a precise description of the expectation formation mechanism
of private sector is difficult. In light of this difficulty, we presume that policymakers are
not only interested in a New Keynesian inflation targeting framework that incorporates
heterogeneous expectations consistent with one specific piece of evidence. Instead, given the
uncertainty surrounding the precise nature of heterogeneous expectations, policymakers may
be interested in insights on how the trade-offs faced by monetary policy in an economy with
aggregate shocks vary with the degree of expectations heterogeneity.

Based on this idea, our paper seeks to provide an understanding of the implications
of heterogeneous expectations for the inflation output variability trade-off faced by central
bankers.1 For this purpose we extend the approach developed in Branch and McGough
(2009) and derive a micro-founded and stochastic New Keynesian model with extrinsic het-
erogeneous expectations. Households are ex-ante identical and only differ in the way they
form expectations. Households with one-step ahead model-consistent, or, rational expecta-
tions (RE) coexist with households that have adaptive expectations (AE).2 In consequence,

1This trade-off is also often referred to as Taylor (1979) curve, as the concept was introduced therein.
2An alternative would be to incorporate intrinsic heterogeneity. Then one would assume that agents face

a cost for acquiring model-consistent expectations. In addition, following the seminal work of Brock and
Hommes (1997), agents may evaluate the forecasting performance of both model-consistent expectations
and AE. Then, in each period agents would compare the cost and benefits of each model of expectation
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households with RE use a correctly specified forecasting model, while households with AE
use a misspecified forecasting model.3

We use our model to show how a central bank can design and implement optimal monetary
policy under heterogeneous expectations. In this context, we argue that there are two im-
portant and novel insights. First, a time-consistent design should incorporate heterogeneous
expectations even under discretion. This is a key difference compared to optimal monetary
policy design in models with (asymptotically) model-consistent homogeneous expectations.
Incorporating heterogeneous expectations in the policy design opens a new channel for ma-
nipulating private sector expectations that is similar under discretion and commitment, but
absent under the REH. In particular, the central bank can exert influence on AE. As a result,
in response to a cost-push shock, the larger the policy induced contraction of aggregate de-
mand on impact, the more pessimistic are AE in the subsequent period. In consequence, the
optimal contraction of aggregate demand consistent with the central bank’s inflation target
is larger than the contraction without incorporating heterogeneous expectations and helps
to counteract the model’s heterogeneous expectations amplification mechanism. Therefore,
the inflation output variability trade-off under both discretion and commitment improves.
Second, recall that gains from commitment under the REH result from manipulating model-
consistent RE. We argue that this channel of manipulating RE has to lose traction under
heterogeneous expectations. The reason is that there is a smaller portion of agents with RE,
whose expectations can be manipulated. Building on these insights, we derive several novel
results and implications for optimal monetary policy that we discuss in detail below.

The key novelty of our model is that households and firms interact in decentralized mar-
kets. Hence, the heterogeneity in expectations in our model stems ultimately from households
that own the firms. Firms expectations are the average of their owners expectations. Given
their expectations, households and firms make inter-temporal decisions. The aggregation
allows to establish a mapping from these individual decisions under aggregate uncertainty
to the behavior of macroeconomic variables such as inflation and output. Admittedly the
aggregate demand and supply relationships turn out to be broadly equivalent to the ones
in Branch and McGough (2009) and Massaro (2013). However, our environment is micro-
founded and stochastic with shocks to aggregate demand and supply. Thus, our model offers
two advantages: first, it allows for a novel and intuitive interpretation of the transmission

formation. However, then the cost and the intensity of choice would emerge as free parameters that pin
down the distribution of model-consistent and AE.

3We limit the analysis to RE and AE for two reasons. First, the presence of a significant share of AE in
private sector is a robust finding in both empirical and experimental work (again, see Branch and McGough,
2018, and the references therein). Second, our model nests the representative agent model under the REH
as a natural benchmark.
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of aggregate shocks and monetary policy in decentralized markets. Second, we can rank
policies based on losses due to macroeconomic volatility.

In more detail, households make utility maximizing decisions on consumption, savings
and labor supply given their type of expectations. Firms set prices to maximize profits
subject to a nominal rigidity à la Calvo (1983). Moreover, price setting depends on the
average of individual household inflation forecasts. As the perceived law of motion (PLM) of
households with RE accounts for the economy’s inflation persistence induced by households
with AE, there is an expectations-based amplification mechanism. For instance, consider
a transitory cost-push shock and assume that policymakers fully accommodate the shock.
Under the REH, firms raise prices on impact, but their homogeneous expectations about
future inflation are zero. Thus, inflation increases on impact and returns immediately to
zero. In contrast, under heterogeneous expectations, firms raise prices by more than would
be the case under the REH even on impact, because on average they expect future price
changes due to the influence of AE. Moreover, average expectations are persistently high,
which implies a persistent response of aggregate inflation. As a result, the heterogeneous
expectations model exhibits more price dispersion. Impact effects and the transition toward
the steady state are amplified and the inflation output variability trade-off is less favorable.

Next, the central bank is assumed to implement the optimal policy via an expectations-
based reaction function.4 A key objective of this paper is then to compare the resulting infla-
tion output variability trade-off and the implications of expectations-based reaction functions
for the central bank’s loss function depending on the degree of expectations heterogeneity.
However, as we are explicit about the reaction function that the central bank uses to imple-
ment the optimal monetary policy, the determinacy properties of the reaction function have
to be examined. Determinacy throughout the parameter space cannot be taken for granted.
The reason is that, in principle, a reaction function can be associated with possibly infinitely
many different equilibria, including the one consistent with the optimal monetary policy
(see, Woodford, 1999). We address this ‘stability problem for optimal monetary policies’
(Evans and Honkapohja, 2003b) by following Evans and McGough (2007). We constrain the
optimal interest rate rules to yield a determinate equilibrium under three commonly used
calibrations. This ensures that our results remain valid among several calibrations.

Our main results can be summarized as follows: (i) without commitment, determinacy
can only be obtained in part of the structural parameter space; (ii) relative to the REH

4Evans and Honkapohja (2003b, 2006) show that this reaction function leads to a determinate REE
that is stable under adaptive learning in homogeneous expectations models throughout the entire range of
structural parameters. Moreover, Gasteiger (2014) has shown that the determinacy result carries over to the
deterministic Branch and McGough (2009) model for the commitment case.
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benchmark, the amplification mechanism under heterogeneous expectations increases central
bank losses due to aggregate shocks irrespective of the particular policy; (iii) the inflation
variability trade-off moves outward in a non-monotonic manner with the share of AE; (iv)
the higher the central bank’s preference for output stabilization the larger the losses for the
central bank; (v) commitment is less effective under heterogeneous expectations than under
the RE benchmark, but still, many of the potential hazards of heterogeneous expectations
can be either eliminated or mitigated, and, most surprisingly, determinacy is guaranteed
throughout the structural parameter space among all calibrations. Overall our analysis
confirms the conjecture by Eusepi and Preston (2018, p.52) that ‘[t]he efficacy of monetary
policy might be compromised by heterogeneous expectations...’.

We reach several policy implications from our findings. First, a policy design should incor-
porate expectations heterogeneity, because ignoring this heterogeneity is not time-consistent
and inefficient. Second, the use of ad hoc loss functions under heterogeneous expectations
has many practical advantages relative to a model-consistent loss function, but the resulting
optimal policy does not guarantee determinacy. Third, obtaining credibility to be able to
commit is highly important for a benevolent central bank as discretion is outperformed by
commitment along several new dimensions. Commitment has a stabilizing effect, as it allows
to manipulate RE and to counteract the heterogeneous expectations amplification mecha-
nism to some extent. Fourth, under discretion, it is always optimal for the central bank to
hire a central banker that is more hawkish than the central bank itself, but not overly hawk-
ish. The latter can result in worse outcomes of the loss function relative to not hiring such
central banker. Fifth, if the central bank overestimates the share of households with RE in
the design and implementation of policy, losses increase. The opposite is true if the central
bank underestimates this share. Finally, our results suggest that welfare analyses under the
REH understate the true welfare losses in a world with heterogeneous expectations.

The remainder of this paper is organized as follows. Section 2 outlines the model and
discusses the amplification mechanism implied by heterogeneous expectations. All consider-
ations regarding the design and implementation of optimal monetary policy are elaborated
in Section 3. The main results and their policy implications are discussed in Section 4. We
connect our paper to the related literature in Section 5, while Section 6 concludes.

2. THE MODEL

2.1. Households

The economy is populated with a continuum of infinitely lived households. All households
are ex ante identical except the way they form expectations. For practical purposes, we
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assume that each household i ∈ [0, 1] can be of one of the two types γ ∈ {1, 2}. Similar to
the Euler Equation approach (see Honkapohja et al., 2013), both types form one-step ahead
subjective expectations. Average expectations for the output gap, xt, and inflation, πt, are

Êtxt+1 ≡ χE1
t xt+1 + (1− χ)E2

t xt+1 = χEtxt+1 + (1− χ)θ2xt−1, and (1)

Êtπt+1 ≡ χE1
t πt+1 + (1− χ)E2

t πt+1 = χEtπt+1 + (1− χ)θ2πt−1, (2)

with coefficient θ > 0 and χ ∈ [0, 1] is the share of agents with expectations of type γ = 1.
Following Branch and McGough (2004), one can think of type γ = 1 as anticipatory or
forward-looking behavior. In particular, these agents have one-step ahead RE, i.e., their
PLM is model-consistent. Expectations γ = 2 show reflective or backward-looking behav-
ior. The latter may be purely adaptive/mean-reverting (0 < θ < 1), naïve (θ = 1), or
extrapolative/trend-setting (θ > 1).

A household i consists of two decision makers, a worker and a consumer. The worker
supplies one differentiated type of labor, Nt(i), on a perfectly competitive labor market in
order to earn labor income in each period t. The consumer is responsible for the inter-
temporal decisions of the household. This involves the optimal choice of real consumption,
Ct(i), and bond holdings, Bt(i). Households are also the shareholders of the continuum of
firms in the economy, i.e., a household i earns nominal lump-sum profits denoted Υt(i) from
the non-tradable share in firms.

Households have a life-time utility function of the form

Eγ
0

{
∞∑
t=0

βtU (Ct(i), Nt(i))

}
,

where β ∈ (0, 1) is the period discount factor. As is common in the learning literature,
both types of agents do not observe contemporaneous aggregate endogenous variables. They
hold subjective expectations about unobserved variables and given these expectations they
choose (Ct(i), Bt(i), Nt(i))

∞
t=0 to satisfy their perceived Euler equations (see, e.g., Branch and

McGough, 2009, p.1039).5 Each household’s instantaneous utility is given by

U (Ct(i), Nt(i)) =
Ct(i)

1−σ

(1− σ)
− Nt(i)

1+ϕ

(1 + ϕ)
,

5An alternative modelling approach is the Infinite Horizon approach as applied in Massaro (2013). The
approach assumes that agents have an infinite horizon for forecasts and decision rules. This enables aggre-
gation under less restrictive assumptions on higher-order beliefs of agents. Thus, the approach in Massaro
(2013) can be viewed as a generalization of the approach in Branch and McGough (2009) and herein.
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where σ ≥ 0 is the inverse of the inter-temporal elasticity of substitution of consumption
and ϕ ≥ 0 is the inverse of the Frisch elasticity of labor supply.

Ct(i) denotes the usual Dixit and Stiglitz (1977) continuum of differentiated goods, with
individual good j ∈ [0, 1], defined as

Ct(i) ≡
(∫ 1

0

Ct(i, j)
ε−1
ε dj

) ε
ε−1

,

where Ct(i, j) is real consumption of good j by household i and ε > 1 is the price elasticity
of demand. The corresponding aggregate price index can be defined as

Pt ≡
(∫ 1

0

Pt(j)
1−εdj

) 1
1−ε

,

where Pt(j) is the price of good j. Likewise the demand for good j by a household i, that
maximizes his consumption basket for any given level of consumption expenditures, is (e.g.,
Walsh, 2017, p.321ff.)

Ct(i, j) =

(
Pt(j)

Pt

)−ε
Ct, ∀j ∈ [0, 1]. (3)

In what follows, we will consider the cashless limit as in Woodford (2003a, p.31ff.),
abstract from government spending, and assume that dividends are lump-sum, i.e., Υt(i) =

Υt. Thus, household i is constrained by the nominal flow budget constraint

PtCt(i) + Eγ
t {Qt|t+1}Bt(i) + IC,t(i) ≤ WtNt(i) +Bt−1(i) + IP,t(i) + Υt. (4)

In real terms this is

Ct(i) + Eγ
t {Qt|t+1}

Bt(i)

Pt
+
IC,t(i)

Pt
≤ Wt

Pt
Nt(i) +

Bt−1(i)

Pt−1

Π−1
t−1,t +

IP,t(i)

Pt
+

Υt

Pt
, (5)

where Πt−1,t ≡ Pt/Pt−1 is the gross inflation rate from period t− 1 to t.

Constraint (4) suggest that household i earns income from labor, one-period bond hold-
ings, insurance payments, IP,t(i), and profits respectively. This income is spent on consump-
tion, one-period bond holdings at price Qt|t+1 (the nominal stochastic discount factor), and
insurance contributions, IC,t(i).

In Appendix B we demonstrate that assuming complete financial markets is not sufficient
for perfect risk sharing among agents. In fact, agents face two kinds of uncertainty, aggregate
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shocks and the idiosyncratic labor income risk due to the Calvo (1983) pricing assumed below.
This implies that agents may have differing expectations about their expected real income.
As a consequence, the model would lose tractability. In particular, the analysis could no
longer focus on two agents, each one representative for their type γ 6= γ′. This can be
avoided by introducing an insurance mechanism.6

We will assume that at the outset of period t = 0 the household’s consumer signs a
contract with an actuarially fair insurance agency. The contract obliges the household to
contribute its dividends, i.e., IC,t(i) = Υt. In return, the agency guarantees each household
the average nominal income of their type γ via an individual payment. This payment depends
on the individual labor income, i.e., IP,t(i) = PtΦ

γ
t −WtNt(i), where Φγ

t is the average real
income of type γ.7 The latter is given by

Φγ
t =


(
∫ χ
0 Υt(i)di+

∫ χ
0 WtNt(i)di)

χPt
=

(χΥt+
∫ χ
0 WtNt(i)di)
χPt

for γ = 1, and

(
∫ 1
χ Υt(i)di+

∫ 1
χ WtNt(i)di)

(1−χ)Pt
=

((1−χ)Υt+
∫ χ
0 WtNt(i)di)

(1−χ)Pt
for γ = 2.

It follows that aggregate nominal income can be expressed as the sum of dividends and the
aggregate wage bill

PtΦt = Pt
(
χΦ1

t + (1− χ)Φ2
t

)
= Υt +Wt

(∫ χ

0

Nt(i)di+

∫ 1

χ

Nt(i)di

)
= PtYt,

which makes use of Υt = PtYt −WtNt, i.e., nominal income stems from dividends or labor.
Notice that the insurance contract has further implications. The payment that a household’s
consumer receives, given his type, is

Φγ
t (i) =


Υt +

Wt
∫ χ
0 Nt(i)di

χ
−WtNt(i) = Υt +Wt

(∫ χ
0 Nt(i)di

χ
−Nt(i)

)
for γ = 1, and

Υt +
Wt

∫ 1
χ Nt(i)di

(1−χ)
−WtNt(i) = Υt +Wt

(∫ 1
χ Nt(i)di

(1−χ)
−Nt(i)

)
for γ = 2.

(6)

For each type in (6), the payment consists of the sum of the share in aggregate profits and
the difference between type-dependent average and individual labor income. The second

6Such insurance mechanisms are often used in sticky information models that base the derivation of
the New Keynesian Phillips Curve on the assumption of inattentive agents instead of sticky prices. Some
remarks regarding the insurance mechanism we are going to use are provided in Mankiw and Reis (2007). An
alternative way of providing income insurance would be to assume that each household consists of infinitely
many members with a similar type of expectations and these members pool the incomes.

7Notice that one could alternatively assume that IC,t(i) = Υt +WtNt(i) and then IP,t(i) = PtΦ
γ
t .
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term captures the key of the risk-sharing mechanism implemented via the insurance contract.
Thus, while (5) is the relevant constraint for the household’s worker, the relevant flow budget
constraint for the household’s consumer can be rewritten as

Ct(i) + Eγ
t {Qt|t+1}

Bt(i)

Pt
≤ Bt−1(i)

Pt−1

Π−1
t−1,t + Φγ

t . (7)

Households are assumed to maximize their utility subject to a sequence of flow budget
constraints. As we detail in Appendix A.1, the optimal choices of a household’s consumer,
Ct(i) and Bt(i)/Pt, and worker, Nt(i), imply a household Euler condition

Eγ
t {Qt|t+1} = Eγ

t

{
β

(
Ct+1(i)

Ct(i)

)−σ
Pt
Pt+1

}
, ∀t (8)

and a consumption-leisure trade-off

Wt

Pt
= Nt(i)

ϕCt(i)
σ, ∀t. (9)

These are the perceived optimality conditions of households from solving the utility maxi-
mization problem under subjective expectations. These are behavioral rules and household
choices also have to satisfy the subjective transversality condition

lim
k→∞

Eγ
t

{
βt+kCt(i)

−σQt+k|t+k+1
Bt+k(i)

Pt+k

}
= 0, (10)

and the ex-post inter-temporal household budget constraint.8 Initially households have zero
bond holdings, i.e., B0(i) = 0.

Next, around the steady state B(i) = 0, C(i) = Y = Φγ, Π = 1, the flow budget
constraint (7) can be log-linearized as

ct(i) = bt−1(i)− βbt(i) + φγt ≡ cγt ,

where ct(i) ≡ (Ct(i)− C(i))/Y , φγt ≡ (Φγ
t − Φγ)/Y , bt(i) ≡ ((Bt(i)/Pt)− (B(i)/P ))/Y and

cγt is consumption of type γ in period t. Thus,

cγt = Eγ
t {c

γ
t+1} − σ−1 (it − Eγ

t {πt+1} − ρ) for γ ∈ {1, 2}. (11)

8In contrast, in the Infinite Horizon approach in Massaro (2013), agents have infinite horizon forecasts
and their decisions satisfy the inter-temporal budget constraint ex-ante. As shown by Massaro (2013), both
the Infinite Horizon and Euler Equation approach yield qualitatively similar results.
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Note that, in equilibrium, (11) must be satisfied for both types of households and therefore
there is no need to explicitly consider individual bond holding (see, Branch and McGough,
2009, p.1041). Next, we can iterate (11) forward to obtain9

cγt = Eγ
t {cγ∞} − σ−1Eγ

t

{
∞∑
k=0

(it+k − πt+k+1 − ρ)

}
. (12)

2.2. Firms

There exists a unit continuum of firms where a typical firm i ∈ [0, 1] consists of two
decision makers, one for hiring and one for sales. The typical firm produces a differentiated
good j ∈ [0, 1], and operates under monopolistic competition. Price setting follows Calvo
(1983). Thus, in each period t a fraction of firms 1− θp receives a signal to reset its optimal
price, P ∗t . The remaining fraction θp cannot reset its price. This implies that the aggregate
price level dynamics are given by

Pt =
[
θpP

1−ε
t−1 + (1− θp)P ∗t

1−ε]1/1−ε .
Each firm i operates with the identical technology and produces its output of variety j,

Yt(i, j) = Yt(i), according to

Yt(i, j) = Yt(i) = AtNt(i)
1−α. (13)

Multi-factor productivity, At, is assumed to follow the exogenous process

at = ρaat−1 + εat ,

where at ≡ (At − A)/A, 0 < |ρa| < 1, and εat ∼ iid(0, σ2
a).

Firms take wages as given and their cost-minimizing hiring decision is given by

MCt(i) =
Wt

PtMPNt(i)
=

WtNt(i)

Pt(1− α)Yt(i)
, where

MPNt(i) = (1− α)AtNt(i)
−α is the marginal product and MCt(i) are real marginal cost.

Each household owns an equal share in each firm and a firm has to take into account each
shareholders expectations according to his share. This assumption allows us to elaborate the
optimal price setting behavior of a firm i’s sales department under expectations operator Êt.

9See Appendix A.2 for the details.
9



A firm i receiving the random signal to reset its price, takes into account that the price
will be in place for k periods. Thus, it faces the problem of choosing the profit-maximizing
price for its good P ∗t (i), level of employment Nt+k|t(i) and quantity of output Yt+k|t(i) given
its constraints, i.e.,

max
Nt+k|t(i),Yt+k|t(i),P

∗
t (i)

∞∑
k=0

θkpÊt
{
Qt,t+k

(
P ∗t (i)Yt+k|t(i)−Wt+kNt+k|t(i)

)}
s.t.

Yt+k|t(i) =

(
P ∗t (i)

Pt+k

)−ε
Yt+k

Yt+k|t(i) = At+kNt+k|t(i)
(1−α).

It follows that profit maximization in period t, given its constraints, requires that

Êt

{
∞∑
k=0

(βθp)
k

(
Ct+k
Ct

)−σ
Π−1
t,t+kYt+k|t(i)

(
P ∗t (i)

Pt
−MΠt,t+kMCt+k|t(i)

)}
= 0, (14)

whereM ≡ ε/(ε − 1) is the desired constant mark-up and MCt+k|t(i) are period t + k real
marginal cost of a firm that last reset its price in period t. Linearization of (14) yields

p∗t (i)− pt = (1− βθp)Êt

{
∞∑
k=0

(βθp)
k
(
πt,t+k + m̂ct+k|t(i)

)}
. (15)

Note that deriving (14) and (15) involves exactly the same steps as discussed in Galí (2015,
pp.56-57). Moreover, Assumption A1 of Branch and McGough (2009) was invoked for ar-
riving at (15), i.e., subjective expectations fix observables.

2.3. Equilibrium

In equilibrium, all decisions of households and firms need to be consistent with each other
and all markets need to clear. The goods market clearing condition is

Yt = Ct, ∀t. (16)

Bond market clearing requires that all bonds issued by agents of type γ must be held by
agents of type γ′ 6= γ and vice versa. In linearized terms, this condition is given by

χb1
t = −(1− χ)b2

t ∀t.

Furthermore, in steady state, expectations of all types coincide and B1(i) = B2(i) = 0 holds.
10



Therefore, the average real wealth in period t can be expressed as

χc1
t + (1− χ)c2

t = χ
(
b1
t−1 − βb1

t + φ1
t

)
+ (1− χ)

(
b2
t−1 − βb2

t + φ2
t

)
= χφ1

t + (1− χ)φ2
t = yt. (17)

The latter allows one to show that the Dynamic IS equation is given by

yt = Êt {yt+1} − σ−1
(
it − Êt {πt+1} − ρ

)
, (18)

as outlined in Appendix A.3.

Labor market clearing in this model is known to imply

yt = at + (1− α)nt (19)

up to a first-order linear approximation (see, Galí, 2015, p.59).

Next, we derive the aggregate supply relationship. As we show in Appendices A.4 and
A.5 the inflation equation is given by

πt = κm̂ct + βÊt {πt+1} , (20)

where κ ≡ (1−βθp)(1−θp)

θp
Θ.

The model, as outlined so far, has the property of divine coincidence (see, Blanchard and
Galí, 2007), as it is free of any real rigidities. Thus, in order to introduce a trade-off between
stabilizing inflation and the welfare relevant output gap, we will assume a time-varying
exogenous aggregate wage markup along the lines of Galí et al. (2007, p.46), i.e.,

µwt ≡ (wt − pt)−mrst.

Appendix A.5 shows that average real marginal cost in log deviations can be written as10

m̂ct = mct −mc =

[
σ +

(ϕ+ α)

(1− α)

]
(yt − ynt ) + (µwt − µw), (21)

where ynt denotes the output under flexible prices. The New Keynesian Phillips Curve is

10We assume that there exists a subsidy to neutralize the distortions caused by market power. Thus, ynt
is efficient and Appendix A.6 contains its computation.
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therefore obtained by applying (21) to (20), i.e.,

πt = βÊt {πt+1}+ λ(yt − ynt ) + κ(µwt − µw),

where λ ≡ κ
[
σ + (ϕ+α)

(1−α)

]
. Let us define xt ≡ yt − ynt as the relevant output gap for policy-

makers and ut ≡ κ(µwt − µw) as the cost-push shock, which is assumed to follow

ut = ρuut−1 + εut , (22)

where 0 < |ρu| < 1 and εut ∼ iid(0, σ2
u). Then it follows that

πt = βÊt {πt+1}+ λxt + ut. (23)

Finally, using Assumption A3 and the definition from above yields

xt = Êt {xt+1} − σ−1
(
it − Êt {πt+1}

)
+ gt, (24)

where gt ≡ σ−1ρ+ ∆Êt
{
ynt+1

}
can be thought of as the natural rate of interest. Given that

at is a AR(1) process, we can assume that

gt = ρggt−1 + εgt , (25)

where 0 < |ρg| < 1 and εgt ∼ iid(0, σ2
g).11

Under an assumption for the monetary policy instrument it, the aggregate economy
summarized by equations (22) to (25), (1) to (2) states a stochastic second-order difference
system

yt = AEtyt+1 + Cyt−1 + Dzt (26)

zt = Rzt−1 + εt, (27)

where yt ≡ [xt, πt]
′, zt ≡ [gt, ut]

′, εt ≡ [εgt , ε
u
t ]
′, and suitable matrices A, C, D, and R.

System (26) can be interpreted as an associated RE model and then the results of Branch
and McGough (2004) imply that standard solution methods for models under the REH can
be applied. A minimum state variable solution to this system can be obtained by applying

11Notice that this economy is similar to the aggregate stochastic economy considered in Branch and Evans
(2011), however their specification of expectations is different.
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Klein’s (2000) method and is given by

yt = Ωyt−1 + Λzt, (28)

where Ω and Λ are the solution matrices.

2.4. The Private Sector Amplification Mechanism

We have not yet specified policy, nevertheless, in order to understand the transmission
of monetary policy later on, it is instructive to describe the effect of a cost-push shock on
private sector behavior in isolation, i.e., without an endogenous response of monetary policy.
In our framework, one can think of it as it = 0, which can also be interpreted as a central
bank that fully accommodates a cost-push shock.

Consider a transitory cost-push shock and its effect under the REH, χ = 1. Moreover,
assume that the model is locally determinate. Because there is no persistence in the economy,
and households with RE have a model-consistent PLM, it holds that average expectations
of aggregate variables are zero, i.e., Êtπt+1 = E1

t πt+1 = 0 and Êtxt+1 = E1
t xt+1 = 0. The

PLM is of the form (28), but due to χ = 1 with Ω = 0 and C = 0.

In our model the shock means a positive deviation of the exogenous wage markup, which
raises marginal costs for firms. This creates inflationary pressures, because firms that can
reset their price, will raise their price, P ∗t (i). In consequence, inflation exhibits the same
transitory increase as the cost-push shock. The output gap is unaffected.

If the central bank were to respond to the shock by raising the nominal interest rate, it,
then it would increase the real interest rate for given expectations. This would in turn lower
aggregate demand, which tends to lower marginal cost. The result would be less inflationary
pressure compared to it = 0. As can be seen from (24), the output gap would decline on
impact. Accordingly, via (23), inflation would increase by less than the cost-push shock.

Next, consider the very same transitory cost-push shock and its effect under heteroge-
neous expectations, i.e., χ ∈ (0, 1). Now, there is persistence in the economy due to the
presence of households with AE. As a direct consequence, households with RE account for
this persistence due to the presence of AE in their model-consistent PLM. Now we have
Ω 6= 0 due to C 6= 0 as χ < 1.

When monetary policy again fully accommodates the shock, i.e., it = 0, given the above
described inflationary pressures, inflation will definitely rise. However, on impact households
with RE now expect inflation to rise also in the subsequent period due to their PLM, i.e.,
E1
t πt+1 > 0. As AE are zero on impact by assumption, we know that average inflation
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expectations are positive, i.e., E1
t πt+1 = Êtπt+1 > 0. Moreover, aggregate demand will be

higher as the real interest rate for households with RE will be lower, compare (24). This also
implies higher expected demand, i.e., E1

t xt+1 = Êtxt+1 > 0 and higher aggregate demand.

In sum, higher aggregate demand and higher average inflation expectations results in
even more inflationary pressure, which results in larger price increases and inflation on im-
pact via (23). This states an amplification mechanism. Due to the presence of AE, the
model-consistent expectations of households imply larger impact effects relative to the REH
benchmark with χ = 1. Only in the periods after impact AE are different from zero, affect
the average expectations, and imply persistent deviations from steady state.

Again, if the central bank were to respond to the shock by raising the nominal interest
rate, it, then it would increase the real interest rate. The output gap would fall on impact
and inflation would still rise on impact. Still average expectations would differ from zero,
i.e., E1

t πt+1 = Êtπt+1 > 0 and E1
t xt+1 = Êtxt+1 < 0, and the transition would be affected by

AE. The potential effect of this policy is to mute the amplification mechanism, but due the
existence of heterogeneous expectations, policy cannot entirely shut down this mechanism.

The presence of heterogeneous expectations in our model results in an amplification mech-
anism absent in a homogeneous REH benchmark model. This mechanism creates higher price
dispersion. Therefore the inflation output variability trade-off should be less favorable. The
policy issue is then to manipulate current and eventually expected future aggregate demand
such that the economy is stabilized around the steady state is such a heterogeneous expecta-
tion environment. Moreover, we highlight that the inflation persistence due to expectations
heterogeneity also amplifies the impact effects of the cost-push shock. Such impact effects
stand in contrast to what is known for other forms of inflation persistence such as price
indexation modeled under the REH (see, e.g., Steinsson, 2003; Woodford, 2003a, p.499ff.).

3. ROBUST OPTIMAL CONSTRAINED MONETARY POLICY

3.1. The Design of Optimal Monetary Policy under Heterogeneous Expectations

For the design of optimal monetary policy, the central bank’s objective is to minimize
the ad hoc loss function

Et

{
∞∑
s=0

βs
1

2

(
π2
t+s + ωxx

2
t+s

)}
, (29)

where ωx ≥ 0 is the weight that a central bank assigns to output gap stabilization relative to
inflation stabilization. We interpret ωx as the central bank’s exogenous preference parameter.
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Such loss functions are common in the literature, see, for instance, Evans and Honkapohja
(2003b, 2006), Gasteiger (2014).12 Our first objective in this section is to show how the
assumed heterogeneity in expectation formation affects the design of optimal monetary policy
under both discretion and commitment.

3.1.1. Discretion

Under discretion, as shown in Appendix C, the first-order necessary conditions are

Etκ2|t+s =− Etπt+s + β2(1− χ)θ2Etκ2|t+s+1 (30)

0 =− ωxEtxt+s + λEtκ2|t+s, (31)

where κ2|t+s is a Lagrange multiplier. From (30) to (31) one can eliminate the Lagrange
multipliers and arrives at a specific targeting rule

πt = −ωx
λ

(
xt − β2(1− χ)θ2Etxt+1

)
. (32)

In order to satisfy (32) in response to a cost-push shock, the central bank needs to
contract output sufficiently such that both output and inflation satisfy this rule. Thus, it is
not optimal for the central bank to fully accommodate cost-push shocks.

However notice that there is an important difference compared to the case of homogeneous
expectations. Optimal stabilization policy under discretion means that the central bank takes
expectations heterogeneity in private sector into account.

In order to clarify this point, recall the above thought experiment of a transitory cost-
push shock. First, consider the REH benchmark with χ = 1. Then (32) collapses to
πt = −(ωx/λ)xt. Inflation is allowed to rise only by (ωx/(ωx+λ2))εut instead of εut on impact.
The consequences of the contraction in aggregate demand are less inflationary pressures and
price dispersion on impact. Average expectations of inflation and output gap coincided with
RE and remain unchanged at zero. The thick solid line in Figure 1 illustrates this policy.13

However, in the case of heterogeneous expectations, χ ∈ (0, 1), the presence of households
with AE plays an important role as can be seen directly from (32). The central bank is
still required to contract aggregate demand in response to a cost-push shock. However, the

12An alternative would be to utilize the model-consistent loss function for our model as derived by Di
Bartolomeo et al. (2016), which involves eight additional terms. We discuss the practical advantages of our
approach in Subsection 3.2 below.

13The simulated IRFs are for illustrative purposes. We use the W calibration. The IRFs are qualitatively
similar in the MN and CGG calibration. All calibrations are detailed in Table 1 below.
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central bank now takes into account the effect of a fall in output on impact on AE one period
ahead. The contraction will induce pessimism reflected in a decrease in average output gap
expectations one period ahead. In addition, this pessimism has consequences for the impact
effects. Households with RE will account for this pessimism one period ahead via their PLM
and will be more pessimistic on impact. The expectations of households with RE imply a
reduction in inflationary pressures and expected future average inflation on impact.

We can show this formally by considering a solution for inflation of the form14

πt = Ω2,2πt−1 + Λ2,2ut. (33)

As we show in Appendix C, for ut serially uncorrelated, i.e., ρu = 0, from (33) follows
that (32) implies

xt = −
(

λ

ωx [1− β2(1− χ)θ2Ω2,2]

)
πt. (34)

Two remarks regarding (34) are in order. First, our discussion that lead up to (34)
does not imply that optimal stabilization policy under heterogeneous expectations yields a
more favorable inflation output variability trade-off compared to the REH benchmark. In
contrast, under heterogeneous expectations the above described amplification mechanism is
in place and the trade-off is worse than under the REH. Figure 1 illustrates the amplification
mechanism yielding to larger impact effects and more persistent deviations from steady state.

Second, (34) suggests that optimal policy under heterogeneous expectations needs to
explicitly account for expectations heterogeneity. In face of the amplification mechanism, as
long as [1− β2(1− χ)θ2Ω2,2] < 1, stabilizing inflation requires a larger contraction in output
compared to the case where expectations heterogeneity is ignored in the policy design, i.e.,
xt = −(λ/ωx)πt. A benevolent central bank has an incentive to incorporate expectations
heterogeneity in order to face an improved trade-off under heterogeneous expectations. As
monetary policy affects current output and inflation, the central bank has also an effect on
AE in the subsequent period. The central bank can manipulate AE and it should do so.
This is seems natural as otherwise an issue of time-inconsistency would emerge. The central
bank would have to credibly ignore structural information that it could exploit in the current
period to reduce losses by affecting future behavior.15

14We detail the solution of the model in Appendix D below. The subscripts of coefficients Ω2,2 and Λ2,2

denote rows and columns of their position in the respective matrices Ω and Λ.
15Ideally, one would no turn to a comparison of outcomes under (32) relative to it = 0 in order to assess
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In the main analysis below, we consider implementation of the central bank’s specific
targeting rule by an expectations-based reaction function as the existing literature on im-
plementation strategies in homogeneous and heterogeneous expectations models has shown
that this reaction function has many desirable properties.16

The reaction function under discretion is given by

it = δxEtxt+1 + δπEtπt+1 + δdLxxt−1 + δLππt−1 + δuut + δggt, (35)

where δx ≡ σ [χ− (ωx/(ωx + λ2))(1− χ)(βθ)2], δπ ≡ [1 + (λσ/(ωx + λ2))β]χ, δdLx ≡ σ(1 −
χ)θ2, δLπ ≡ [1 + (λσ/(ωx + λ2))β] (1− χ)θ2, δu ≡ [σλ/(ωx + λ2)], and δg ≡ σ.17

3.1.2. Commitment

Next, before we characterize the model’s inflation output variability trade-off in greater
detail, we examine the potential implications of heterogeneous expectations for the commit-
ment case. Given that the central bank can credibly commit to its optimality conditions
from a timeless perspective to overcome the problem of time-inconsistency the first-order
necessary conditions are

Etκ2|t+s =− Etπt+s + χEtκ2|t+s−1 + β2(1− χ)θ2Etκ2|t+s+1 (36)

0 =− ωxEtxt+s + λEtκ2|t+s, (37)

for each date s ≥ 0 and initial condition κ2|−1 = 0.18 Gasteiger (2014) derives the specific
targeting rule under commitment from a timeless perspective in this model via (36)-(37) as

πt = −ωx
λ

(
xt − χxt−1 − β2(1− χ)θ2Etxt+1

)
. (38)

A comparison of (32) to (38) shows the additional implication of commitment via the addi-
tional term involving xt−1. For the sake of clarity, let us first consider the REH benchmark
with χ = 1. Then (38) collapses to πt = −(ωx/λ)(xt − xt−1). The fact that the targeting
rule has inertia in the output gap introduces persistence in the economy.

effectiveness of optimal policy. However, this is not feasible as it = 0 does not generate determinacy for
χ ∈ (0, 1] for standard calibrations (see, e.g., Branch and McGough, 2009; Gasteiger, 2011). Nevertheless,
we compare optimal policy and alternatives below in Section 4.3.3.

16An alternative would be to consider implementation via fundamentals-based reaction functions. For
instance, Gasteiger (2014) has shown that the latter do not generate determinacy in this model for a large
share of the parameters space under commitment. The same can be shown for the case of discretion.

17Branch and Evans (2011, p.388ff.) derive this reaction function in the context of a model with hetero-
geneous expectations, where both types of expectations are misspecified.

18See Appendix C.
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Consider the thought experiment of a transitory cost-push shock. Under discretion, the
economy does not have any kind of persistence and inflation and output gap just deviate
on impact in order to satisfy (32). RE of households remain unaffected by the cost-push
shock. However, under (38) the central bank induces persistence due to the inertia in the
output gap. As a consequence, under the REH, model-consistent expectations of households
incorporate this persistence and deviate from zero. In particular, in response to a cost-push
shock, the central bank will contract aggregate demand in order to mitigate inflationary
pressures. Inflation will rise on impact. However, the persistence induced by the central
bank will render expectations about future inflation and output gap pessimistic. Thus, one
can think of this as the manipulation of RE. The commitment can be thought of as a credible
threat by the central bank to contract output in the subsequent periods until inflation reaches
its target. The pessimism in expectations feeds back into household responses on impact.
Firms perceive less inflationary pressure compared to the case of discretion and therefore
inflation will rise by less. Thus, the deviations of inflation and the output gap on impact
are smaller compared to discretionary policy and both variables remain off target for an
extended period of time. The thick solid line in Figure 2 illustrates optimal monetary policy
under the REH.19 In sum, this policy is known to improve the inflation output variability
trade-off under the REH.

How do heterogeneous expectations, i.e., χ ∈ (0, 1), affect the inflation output variability
trade-off under commitment? First, heterogeneous expectations imply the amplification
mechanism described above. Therefore one can expect a deterioration of the inflation output
variability trade-off compared to the REH benchmark. Second, notice the term in (38) that
captures the central bank’s commitment is multiplied by χ. Therefore, the lower the share of
households with RE, the less households RE can be manipulated and in consequence the effect
of commitment on average expectations shrinks. Thus, heterogeneous expectations reduce
the central bank’s ability to manipulate average expectations via this channel. Third, (38)
calls for the incorporation of expectations heterogeneity in the same way as under discretion,
as the central bank can and should manipulate AE as discussed above. Ignoring expectations
heterogeneity does again yield larger losses.

In sum, we conclude that optimal stabilization policy under heterogeneous expectations
in the commitment case is more effective in stabilizing the economy compared to the case
of discretion. However, again, this does not imply the resulting inflation output variability
trade-off more favorable compared to the REH benchmark due to the heterogeneous expecta-

19Depending on ωx and λ, commitment can have such a strong negative effect on E1
t πt+1 that the nominal

interest rate is in fact lowered.
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tions amplification mechanism. The simulations in Figure 2 support this conclusion. Under
heterogeneous expectations, the impact effects are amplified relative to the REH benchmark.
Moreover, the impulse response functions converge faster than in the REH benchmark. Both
observations are consistent with the view that expectations heterogeneity curbs the central
banks ability to manipulate expectations in the sense that it can manipulate less households
with RE and therefore commitment has less effect on average expectations. The effects of
the cost-push shock under commitment are more similar to the ones under discretion. In
particular, notice that the price level may change permanently and that there is no under-
shooting of the steady state. This observation is typical for models with inflation persistence
(see, Woodford, 2003a, p.499ff.).

Finally, similar to the case of discretion, in the subsequent analyis we will assume that
optimal monetary policy is implemented via an expectations-based reaction function, i.e.,

it = δxEtxt+1 + δπEtπt+1 + δLxxt−1 + δLππt−1 + δuut + δggt, (39)

where δLx ≡ σ [(1− χ)θ2 − (ωx/(ωx + λ2))χ] and coefficients δx, δπ, δLπ, δu, and δg are the
same as under discretion.

3.2. A Practical Perspective on the Loss Function

This section argues that the optimal monetary analysis based on the ad hoc loss function
(29) is of high practical relevance. Such an ad hoc loss function involving only output gap
and inflation deviations can be justified as a reasonable approximation of a second-order
approximation of a standard utility function in the homogeneous expectations benchmark.

Compared to this benchmark, the model-consistent loss function for our model has two
additional components (see Di Bartolomeo et al., 2016). One component is due to the higher
price dispersion caused by adaptive agents, similar to a model with price indexation (see
Steinsson, 2003). The second component is due to the dispersion in consumption. The two
components imply eight additional terms with two types of agents as in our model. In case of
three or more types of expectation formation, the number of terms in such a model-consistent
loss function grows further. Therefore such a loss function raises several practical issues.

First, as with any welfare-based loss function, the conduct of fully optimal policy requires
that the relative weights cannot be freely chosen, but rather should be the result of the
estimation of the structural parameters. This stands in contrast with policymakers that
frequently interpret the trade-off as a policy menu in practice.

Second, effectively communicating a loss function with a total of ten different terms
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involving aggregate and average consumption levels for different types of agents is certainly
challenging. In case of ineffective communication, there is a risk of in-transparency with
regard to the loss function. Moreover, in the Branch and McGough (2009) model, one
of the underlying axioms structures higher-order beliefs. It is assumed that agents are
not explicitly aware of the presence of heterogeneous expectations. Thus, a central bank
that communicates a loss function that explicitly depends on heterogeneous expectations
undermines the consistency of the axiom within the context of this model.

Third, the extent to which this loss function is operational is unknown. Assume that a
specific targeting rule can be derived. This will most likely depend on average consumption
levels for different types of agents. Paralleling the debate on reliable measures of aggregate
variables, the issue is whether reliable measures of these dis-aggregate consumption levels are
available, or, can be obtained in the near future. The same concern applies to potential im-
plementation strategies. Suppose that such a strategy next to private sector expectations on
aggregate variables also conditions on private sector expectations on dis-aggregate consump-
tion. The issue is then, to what extent these private-sector expectations on dis-aggregate
consumption can be tracked by the central bank.

Fourth, while the loss function obtained by Di Bartolomeo et al. (2016) is consistent
with the Branch and McGough (2009) model, it is not consistent with any other model of
the economy. This point applies to any model-specific loss function. In the presence of
model uncertainty, this point raises the issue of whether such a loss function remains to have
favorable properties in extended versions of the same model, or, in distinct models.

Thus, we conjecture that most of the applied policy considerations may be centered
around an ad hoc loss function. This view is consistent with a central bank thinking of the
inflation output variability trade-off as a policy menu, where the relative weights reflect the
preferences of the central bank. However, in light of the findings of Di Bartolomeo et al.
(2016), an ad hoc loss function will understate the model-consistent welfare losses. To what
extent this understatement matters is ultimately an empirical question: are the coefficients
on the eight additional terms in the model-consistent loss function of Di Bartolomeo et al.
(2016) significantly different from zero?

3.3. Definition of Robust Monetary Policy and Measures of Loss

As our analysis also takes a stand on the implementation of optimal policy, the determi-
nacy properties of the considered reaction function have to be examined. The reason is that,
in principle, a reaction function can be associated with possibly infinitely many different
equilibria, including the one consistent with the optimal monetary policy (see, Woodford,
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1999). For instance, there may exist policy preferences ωx that lead to indeterminacy or
explosiveness. Furthering on this point, general conditions for determinacy in this set-up are
not available. Thus, we rely on numerical methods, which require a calibration. Moreover,
the use of numerical methods is also required for a more detailed characterization of the
inflation output variability trade-off.

However, a numerical analysis is generically subject to robustness concerns. One peculiar
concern is structural parameter uncertainty and the implications for determinacy raised in
Evans and McGough (2007). A policy preference ωx may yield determinacy and rather low
losses under one particular combination of λ and σ, whereas the very same policy prefer-
ence may yield indeterminacy or explosiveness and therefore rather high losses for different
values. Thus, as suggested by Evans and McGough (2007) we constrain the implementation
strategies in the sense that we analyze them only for the policy preferences ωx that generate
determinacy across the widely used calibrations of Woodford (2003b), Clarida et al. (2000),
McCallum and Nelson (1999), henceforth W, MN, CGG, for (λ, σ). In our context, uncer-
tainty regarding λ is particularly important. λ measures the degree of price stickiness and
therefore the degree to which the central bank can influence inflation and inflation expecta-
tions via affecting aggregate demand. In short, λ is crucial for characterizing the inflation
output variability trade-off faced by the central bank.

Another particular concern may be the uncertainty regarding expectations heterogeneity.
It seems fairly unlikely that a central bank is able to exactly measure χ and θ, even if our
model would perfectly approximate the true structure of expectations heterogeneity. We
address this concern, by computing the different measures of loss in our analysis for different
degrees of expectations heterogeneity. Later on, when discussing the policy implications of
our main results, we will elaborate the consequences of expectations mismeasurement.

Consistent with (29), the long-run losses are computed as

L ι(χ, θ, ωx) = (1− β)−1 [Var(π) + ωxVar(x)] (40)

for each reference model (or calibration) ι ∈ {W,MN,CGG}, where Var(·) denotes the
unconditional long-run variance of a variable. A robust optimal constrained monetary policy
under heterogeneous expectations is then defined as a policy that yields determinacy across
reference models for given χ and θ.

As an alternative for accounting for parameter uncertainty, we also compute the Bayesian
loss as done in Evans and McGough (2007) and Levin and Williams (2003). This implies that
the central bank has a prior, i.e., a subjective probability distribution over reference models
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ι ∈ {W,MN,CGG} and compute a weighted average of the losses in the three reference
models, i.e.,

L B(χ, θ, ωx) = ωWLW (χ, θ, ωx) + ωMNLMN(χ, θ, ωx) + ωCGGL CGG(χ, θ, ωx). (41)

For simplicity, we assume that ωι = 1/3 for ι ∈ {W,MN,CGG}.

4. MAIN RESULTS

4.1. The Case of Discretion

For now, the central bank designs optimal monetary policy under discretion and imple-
ments it via reaction function (35). The reduced form matrices in (26) are given by

A =

[
ωx(1−χ)(βθ)2

ωx+λ2 − λβχ
ωx+λ2

λωx(1−χ)(βθ)2
ωx+λ2

ωxβχ
ωx+λ2

]
, C =

[
0 −λβ(1−χ)θ

2

ωx+λ2

0 ωxβ(1−χ)θ2
ωx+λ2

]
, D =

[
0 − λ

ωx+λ2

0 ωx

ωx+λ2

]
, and R =

[
ρg 0

0 ρu

]
.

(42)

Notice that we have relegated all further details regarding the reduced form and the solution
of the model to Appendix D.

Our calibration is detailed in Table 1. Inspection of the matrices in (42) makes clear
that the matrices are independent of σ. Thus, all else equal, differences in results among
the three reference models W, MN, and CGG are related to the choice of λ and therefore
related to the degree of price stickiness. Comparing the values for λ in the W, MN, and CGG
calibration, we observe that the degree of price rigidity in the W and CGG calibration is
much higher than in the MN calibration, as λ is much larger in the latter case. The larger λ,
the more flexible are prices, the lower is the potential for relative prices dispersion for a given
cost-push shock. Thus, we expect a more favorable inflation output variability trade-off in
the MN calibration.

Next, the properties of the exogenous shocks are taken from Evans and Honkapohja
(2003a, p.1059). The range for the expectations set-up, χ and θ, includes the values used in
Branch and McGough (2009, p.1046ff.), Di Bartolomeo et al. (2016), or, Gasteiger (2014),
and is arguably large. Finally, while we vary ωx ∈ (0, 2], the tables below report solely results
within an empirically relevant range, ωx ∈ (0, 0.05] (see, e.g., Dennis, 2006; Givens, 2012) due
to space constraints. The empirical literature, overall, appears to support small values for
ωx. Moreover, the range of micro-founded weights as discussed in Woodford (2003a, p.401)
is usually also close to zero.

Our main results hold among the three reference models W, MN, and CGG unless stated
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otherwise. Comparisons between the REH benchmark and heterogeneous expectations are
constrained by the requirement that both economies are determinate. The results can be
summarized as follows.

RESULT 1. For discretionary optimal monetary policy under heterogeneous expectations,
implemented via expectations-based reaction function (35), we find that:

1.1 when AE are purely adaptive and naïve θ ≤ 1, the model is determinate. When AE
are extrapolative, θ > 1, the model is indeterminate or explosive for a large share of
the parameter space;

1.2 Losses are strictly larger compared to the REH benchmark for the W and CGG cali-
bration as well as the Bayesian case;

1.3 The inflation output variability trade-off shifts out in non-monotonic way, depending
on the share of AE;

1.4 A higher preference for output stabilization, ωx, implies higher losses;

Result 1.1 is based on Figure 3a. One can see that determinacy prevails for the entire
parameters space considered for ωx close to zero. When AE are purely adaptive and naïve
expectations, i.e., θ ≤ 1 this result generalizes to ωx ∈ (0, 2]. In contrast, when AE are
extrapolative, i.e., θ > 1, but not too large, then indeterminacy and explosiveness is possible
for a wide range of ωx ∈ (0, 2]; this finding is robust for χ ∈ (0, 1). An intuitive explanation
for this result is that the central bank faces a dilemma due to its preference ωx. In response to
a cost-push shock, given ωx, the contraction in aggregate demand on impact consistent with
the targeting rule (32) is not large enough to mitigate the acceleration mechanism described
in Section 2.4 sufficiently to ensure determinacy. Put differently, a contraction in output
sufficiently large to ensure determinacy would violate the targeting rule for given ωx.20

Result 1.2 follows from Table 3. All else equal, the losses L ι(χ, θ, ωx) defined in (40) are
the lowest under the REH in the reference models ι ∈ {W,CGG} and for Bayesian model
averaging L B(χ, θ, ωx) defined in (41). This result is due to the amplification mechanism
implied by heterogeneous expectations and confirms that heterogeneous expectations imply
a deterioration of the inflation output variability trade-off resulting in higher losses.

Result 1.3 stems from Figures 4 and 5 as well as Table 3.21 Conditional on determinacy,
the relationship between the loss L ι(χ, θ, ωx) and the share of AE (1−χ) is non-monotonic
∀ι ∈ {W,MN,CGG,B}. L ι(χ, θ, ωx) peaks when χ ≈ [0.4, 0.6]. In order to gain some
intuition for the result, focus on Panel 4a. With an increase in the share of AE, i.e., declining

20Table 2 compares our determinacy findings to the literature. We also verified numerically that our results
hold if we assume that agents with RE are instead behaving like econometricians. For this verification we
use the E-stability conditions from Evans and Honkapohja (2006).

21Notice that the horizontal axes in Figure 5 depicts 1− χ from the left to the right.
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χ, the amplification mechanism is gaining strength. Compared to the REH benchmark, this
implies higher inflationary pressure and higher price dispersion. The trade-off shifts outward.
Consistent with the nature of the amplification mechanism, the increase in Var(π) is larger
than the increase in Var(x). Recall that at the heart of the mechanism are households with
RE amplifying the impact effects of a cost-push shock because of the persistence induced
by households with AE. For some χ, the share of households with RE is so low that the
amplification mechanism must lose strength. Therefore the trade-off shifts back inward to
some extent.

Result 1.4 can be seen from Figure 6 and Table 3. L ι(χ, θ, ωx) and ωx, ∀ι ∈ {W,MN,

CGG,B}, are positively related to each other, i.e., the higher ωx, the larger L ι(χ, θ, ωx).
This is intuitive as a higher ωx gives more potential to the amplification mechanism due to
heterogeneous expectations resulting in a worse volatility outcome. While the reduction in
output volatility due to a higher ωx is relatively small, there is a relatively large increase
in inflation volatility. However, this interpretation can be questioned on the grounds of
the normalisation of weights in loss function (40). In particular, for a given inflation and
output volatility, a higher ωx has to result in a larger loss. Therefore, in order to corroborate
our interpretation of results, we have carried out an additional exercise where we take the
variances generated by any ω̄x ∈ (0, 2] and compute the losses L ι(χ, θ, ωx|ω̄x) for ωx ∈ [ω̄x, 2]

∀ι ∈ {W,MN,CGG}. Then we search the resulting matrices for the ωx ≥ ω̄x that minimizes
the loss and find that this is ω̄x for each reference model, which confirms Result 1.4.22

4.2. Gains from Commitment

Commitment from a timeless perspective is known to generate determinacy throughout
the parameter space and smaller losses in homogeneous expectations models. Thus, it is
straight-forward to ask, to what extent this finding carries over to the heterogeneous expec-
tations model?

Recall from our discussion in Section 3.1.2 that commitment introduces persistence in
the output gap. This can be seen in the targeting rule (38) and the related implementation
(39). As a consequence, the dynamics of the economy can be described by reduced form
(26), where all system matrices are as in the case of discretion except for

C =

[
ωxχ
ωx+λ2

−λβ(1−χ)θ2

ωx+λ2

ωxλχ
ωx+λ2

ωxβ(1−χ)θ2

ωx+λ2

]
. (43)

22We are grateful to an anonymous referee for highlighting this issue and suggesting the additional exercise.
Results for the additional exercise are available upon request.
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Matrix (43) allows two observations. First, the reduced form is again independent of σ and
potential differences among reference models must again stem from λ. Second, consistent
with the specific targeting rule under commitment (38), there is persistence in output that
depends on χ. The first column in matrix C is now different from zero. Moreover, as it is
multiplied by χ, one can see that heterogeneous expectations curb the potential gains from
commitment.

Consistent with these observations, our findings are as follows.

RESULT 2. For optimal monetary policy with commitment from a timeless perspective
under heterogeneous expectations, implemented via expectations-based reaction function (39),
we find that:

2.1 the model is determinate throughout the parameter space;
2.2 Losses are strictly higher compared to the REH benchmark, but strictly lower compared

to the case of discretion;
2.3 The inflation output variability trade-off shifts out in non-monotonic way, depending

on the share of AE;
2.4 A higher preference for output stabilization, ωx, implies higher losses;

Result 2.1 is based on Figure 3b and generalizes this finding of Gasteiger (2014) in
the sense that it holds among several reference models. Consistent with our arguments in
Subsection 3.1, commitment enables the central bank to manipulate RE. In response to
a cost-push shock, this ability to manipulate RE provides scope for the central bank to
satisfy the targeting rule and to mitigate the acceleration mechanism in price setting due to
heterogeneous expectations at any preference for output stabilization.23

Result 2.2 can be seen from Table 4 and extends our result 1.2 for discretion. All else
equal, the losses L ι(χ, θ, ωx) defined in (40) are the lowest under the REH in all reference
models ∀ι ∈ {W,MN,CGG} and for Bayesian model averaging L B(χ, θ, ωx) defined in
(41). The explanation is again the amplification mechanism introduced by heterogeneous
expectations. However, the effect of commitment is worthwhile. Commitment lowers losses
as the amplification mechanism can always be mitigated to some extent via manipulating
RE. This explains, why losses are lower compared to the case of discretion. However, the
gains from commitment in terms of losses are lower, when the share of agents with RE, χ,
is lower. We illustrate this in Table 5. This shows that expectations heterogeneity can curb
the central bank’s ability to manipulate average expectations.

Result 2.3 can be seen from Figures 7 and 8 as well as Table 4. Conditionally on de-
terminacy, the relationship between the loss L ι(χ, θ, ωx) and the share of AE (1 − χ) is

23Again compare Table 2: our results are plausible from an adaptive learning viewpoint.
25



non-monotonous ∀ι ∈ {W,CGG,B} if θ ≤ 1. L ι(χ, θ, ωx) peaks when χ ≈ 0.2. Compared
to discretion, the peak is at a lower level, consistent with the beneficial effect of commitment.

For an intuition, focus on Panel 7a. With a declining share of households with RE,
χ, the amplification mechanism is strengthened as in the case of discretion, which raises
both Var(π) and Var(x), therefore the trade-off shifts outward. However, there is now an
additional effect. A decline in χ also implies that the central bank’s ability to manipulate
RE is reduced, which implies that Var(x) increases at a faster rate compared to the case of
discretion. At some share of AE, (1−χ), the amplification mechanism then becomes weaker,
as the share of households with RE is getting lower. In consequence, the trade-off shifts back
toward to the origin.

Next, when AE are extrapolative, then L ι(χ, θ, ωx) increases monotonically when χ

declines. The latter is consistent with destabilizing properties of extrapolative expectations
in backward-looking models.

Result 2.4 stems from Figure 9 and Table 4 and extends result 1.4 to the case of com-
mitment. L ι(χ, θ, ωx) and ωx, ∀ι ∈ {W,MN,CGG,B}, are positively related to each other,
i.e., the higher the central bank’s preference ωx, the larger losses L ι(χ, θ, ωx). Again, this is
due to the fact that more weight on output stabilization strengthens the amplification effect
is initiated by inflationary pressures.24

4.3. Policy Implications

We now turn to the policy implications of heterogeneous expectations. We will first elab-
orate the implications of a more hawkish monetary policy. Next, we examine the implications
of mismeasuring expectations in the design and implementation of monetary policy. Finally,
we discuss straightforward implications emerging from our results above. The former two
exercises can be motivated by inspecting (32). All else equal, either a lower ωx or a lower
χ imply that the contraction in output required to satisfy (32) is relatively larger. This
can imply a better exploitation of the novel channel described in Section 3.1 to counteract
the heterogeneous expectations amplification mechanism and therefore can have important
consequences for central bank losses.

4.3.1. A more hawkish monetary policy

Point of departure is the finding that losses increase with the preference of the central
bank for output gap stabilization, ωx. As the central bank’s preference is given, one may

24We have done a similar exercise as related to Result 1.4 to corroborate our interpretation of results.
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wonder whether there exists an incentive for the central bank with preference ωx to hire a
more ‘conservative’ central banker that implements ω∗x ≤ ωx. This question is also addressed
in Orphanides and Williams (2008). We compute the losses for this scenario as

L ι(χ, θ, ωx|ω∗x) = (1− β)−1 [Var(π|ω∗x) + ωxVar(x|ω∗x)] . (44)

An incentive for the central bank to hire a more ‘conservative’ central banker then exists if

%∆L ι(χ, θ, ωx|ω∗x) =

[(
L ι(χ, θ, ωx|ω∗x)
L ι(χ, θ, ωx)

)
− 1

]
× 100 < 0.

One can find (44) by (1.) taking the variances from Tables 8 (or 9 in case of commitment)
and interpreting them as the outcome of a candidate central banker; (2.) computing losses
for ωx ∈ (0, 2] for each pair of variances resulting from a candidate central banker; (3.)
running a grid search over all losses to find L ι(χ, θ, ωx|ω∗x) and ω∗x.25

The results for discretion and commitment in the empirical plausible range of ωx are
displayed in the last four columns of Tables 3 and 4 respectively. A negative sign suggests that
in this particular case the central bank has an incentive to hire a more ‘conservative’ central
banker. Our computations show that under discretion this incentive is present throughout,
but is not present in the case of commitment. Inspecting the values of ω∗x in Table 3 also
shows that it is not optimal to have a central banker that is too conservative. As ωx → 0, the
right-hand side in (32) (or (C.4) for serially correlated shocks) approaches −∞. Thus, the
variance of the output gap and losses become potentially infinitely large. This mechanism
counteracts the reduction of the inflation variance and losses due to a smaller ωx that also
exploits the novel channel to manipulate heterogeneous expectations.

We conclude that under heterogeneous expectations and discretionary policy, it is always
optimal for the central bank to hire a central banker that is more hawkish than the central
bank itself. However, hiring an overly hawkish central banker can result in worse outcomes
of the loss function relative to not hiring such central banker.26 Finally, when the central
bank has a very large preference for output stabilization, ωx and AE are extrapolative, but
not too large, there is always an incentive to hire a very ‘conservative’ central banker, as
otherwise the economy is indeterminate or explosive (recall Panel 3a).

25In a previous version of this paper, we just considered one particular ‘conservative’ central banker with
preference ω∗

x = 0.01. We are grateful to an anonymous referee for suggesting the improved exercise.
26We have found this in the previous version of this paper, when we only examined the case of ω∗

x = 0.01.
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4.3.2. Mismeasuring expectations

So far the analysis has assumed that policymakers can perfectly measure heterogeneous
expectations. However, in practice there may be mismeasurement of expectations. Such
mismeasurement affects both the design and implementation of optimal monetary policy.
As can be seen from (32), the central bank’s measure of χ affects size of the output gap
contraction in response to a cost-push shock and therefore also the extent to which the
central bank exploits the novel channel to manipulate heterogeneous expectations. At least
under discretion it is therefore natural to ask what the losses and policy implications of a
mismeasurement of χ are?27 We address the mismeasurement issue by computing

L ι(χ, θ, ωx|χ̄) = (1− β)−1 [Var(π|χ̄) + ωxVar(x|χ̄)]

for ι ∈ {W,MN,CGG}. χ̄ denotes the share of households with RE as measured by the
central bank. Table 6 has results for the case of θ = 0.9 and ωx = 0.05 and considers situa-
tions where both χ̄ and χ ∈ {0.2, 0.4, 0.6, 0.8}. For instance, when the central bank measures
χ̄ = 0.6 and the true share is χ = 0.8, it underestimates χ. For prices sufficiently sticky,
i.e., in case of the W and CGG calibration, the consequence is that losses are mostly lower
than in the case of correct measurement. Exceptions can be explained with the strength of
the amplification mechanism that peaks around χ = 0.4. In contrast, in case of overestimat-
ing χ, the opposite is true. Thus, the policy implication is that overestimating the share
of households with RE is costly in terms of losses. Notice that the last column contains
the loss from a Bayesian perspective, where the policymaker assigns equal probability to
χ ∈ {0.2, 0.4, 0.6, 0.8}, but designs and implements policy based on a particular χ̄. One can
observe that when prices are sufficiently sticky, the Bayesian loss tends to be lower than the
loss if χ̄ = χ were true unless χ is rather high.

Intuitively, as χ̄→ 1, the right-hand side in (32) (or (C.4) for serially correlated shocks)
becomes more similar to the optimal policy under homogeneous RE. This implies that a
central bank that overestimates the share of RE makes less use of the novel channel to
manipulate heterogeneous expectations as it actually should. Relative to χ̄ = χ, a smaller
output gap and larger inflation variance translate into a larger central bank loss. Contrary,
a central bank that underestimates the share of RE makes more use of the novel channel
to manipulate heterogeneous expectations. Similar to a more hawkish policy in Subsection
4.3.1, this can generate the opposite effect: a larger output gap and smaller inflation variance

27In contrast, under commitment mismeasurement would imply that policy is time-inconsistent (see
Gasteiger, 2014, p.1548) and cannot lead to an equilibrium.
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translate into a lower central bank loss.28

4.3.3. Implications emerging from our main results

There are a couple of further novel implications for our results in Subsections 4.1 and
4.2. One is that an alternative way of rendering the economy determinate is to obtain the
ability to commit, as we have found that commitment always yields determinacy throughout
the parameter space for all considered calibrations. Therefore commitment is even more
desirable, when concerns of robustness with regard to the calibration of structural param-
eters are taken seriously and the nature of heterogeneity is unknown, because commitment
allows the central bank to obtain determinacy irrespective of the reference model. Moreover,
commitment also outperforms discretion on the grounds of generating lower losses.

Next, following the arguments in Subsections 3.1 regarding the design and implemen-
tation of optimal monetary policy under heterogeneous expectations, ignoring expectations
heterogeneity in the design of discretionary optimal monetary policy is not time consistent
and raises losses. Thus, policymakers should take heterogeneous expectations into account
in the design of discretionary optimal monetary policy. The same is true under commit-
ment. In order to support our claims, we consider the ignorance case xt = −(λ/ωx)πt as
an example of inappropriate policy for a comparison with (32) regarding outcomes under
discretion. Table 7 presents the results, which show that policy design that accounts for
expectations heterogeneity generates outcomes that are closer to the RE benchmark relative
to the ignorance case. Depending on χ, the difference in losses can become substantial.

Finally, there are more policy implications that follow directly from the results in the
above Sections 4.1 and 4.2. First, our results support the view that welfare analyses un-
der the REH, as carried out by many modern central banks, understate the true losses.
Second, optimal policy design and implementation based on an ad hoc loss function has
several practical advantages, but bears a risk of destabilizing the economy as it does not
necessarily guarantee determinacy under discretion. This finding stands in contrast to the
findings for discretionary optimal policy either based on an ad hoc loss function in related
homogeneous expectations models (see Evans and Honkapohja, 2003b, p.814) or based on a
model-consistent loss function in this model (see Di Bartolomeo et al., 2016), where deter-
minacy prevails throughout the parameter space.

28Equivalently, consider the coefficients of reaction function (35). If the central bank overestimates χ, then
the feedback to RE (AE) in (35), δπ (δLπ), is larger (lower) than it should actually be. So the central bank
is leaning too much against the less relevant type of inflation expectations.
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5. RELATED LITERATURE

Our findings regarding the inflation output variability trade-off are broadly consistent
with the ones for the imperfect knowledge case in Orphanides and Williams (2005, 2008)
or Gaspar et al. (2006), which has become a standard result in the literature on bounded
rationality (Eusepi and Preston, 2018): the optimal response of the central bank to a cost-
push shock is to put more weight on inflation stabilization than under the REH. Moreover,
Orphanides and Williams (2005) show that the trade-off can shift out in a non-monotonic
fashion under imperfect knowledge. However, the mechanism generating their results is
that a temporary rise in inflation makes homogeneous agents conclude from their regression
model that inflation will be higher in the long-run. In contrast, in our model the mechanism
is based on agents with heterogeneous expectations, which is favored by the data.

Ilabaca and Milani (2021) estimate the model developed herein with a rolling-window
approach. They show that the data favours the heterogeneous expectations version over
homogeneous RE. This may be explained by the heterogeneous expectations amplification
mechanism discussed herein. They also find that the expectations coefficients χ and θ are
time varying which reinforces the arguments in favor of a robustness approach pursued herein.
Another important aspect of their work is that they carry out a test of a novel and testable
asymmetry hypothesis emerging from our model as discussed right below. Next, Elias (2020)
estimates a heterogeneous expectations model under the assumption of adaptive learning and
coexistence of correctly and misspecified PLMs. He also finds that the data favors heteroge-
neous expectations over (asymptotically) model-consistent homogeneous expectations.

Our modelling approach builds on Branch and McGough (2009) and is also related to
Massaro (2013). It is an alternative way of obtaining similar aggregate demand and supply
relations.29 However, our model is a novelty as it is a stochastic and decentralized markets
version of the Branch and McGough (2009) model with distinct households and firms. To-
gether with the introduction of aggregate uncertainty, the approach states a stark contrast
to the widely used yeoman farmer model. An advantage of the approach is that household
labor income is dependent on household effort and there is no free-rider problem as in the
yeoman farmer model that requires fully enforceable contracts. Furthermore, the separation
between households and firms implies that the expectations heterogeneity is related to the
households. The latter own the firms. Therefore firms have average expectations that de-
pend on the distribution of households among RE and AE. Thus, the model also implies a
novel and testable hypothesis: there is a general asymmetry between expectation formation

29Notice that we use an insurance mechanism to keep the model tractable. This route was suggested by
Branch and McGough (2009, p.1041), but not pursued therein.
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between households and firms. Ilabaca and Milani’s (2021) results support this hypothe-
sis. Moreover, this asymmetry is a potential narrative to explain the differing forecasting
behavior of households and firms documented in Fuhrer (2015).30

This paper is also connected to the literature that examines the design and implementa-
tion of optimal monetary policy in a representative agent framework under the REH (e.g.,
Clarida et al., 1999) or under adaptive learning (Evans and Honkapohja, 2003b, 2006; Duffy
and Xiao, 2007). A key conclusion from this literature is that expectations-based reaction
functions generate determinacy under both discretion and commitment throughout the pa-
rameter space. Gasteiger (2014) has shown that this finding extends to the deterministic
Branch and McGough (2009) model of heterogeneous expectations when the central bank
considers an ad hoc loss function and is able to commit. Moreover, Gasteiger (2014) shows
that the central bank should take heterogeneous expectations into account when design-
ing and implementing optimal monetary policy under commitment. This paper extends
Gasteiger (2014) in several directions. First, the model herein is a micro-founded stochastic
decentralized economy that addresses several modelling shortcomings of a yeoman farmer
model and allows for a more intuitive interpretation of results based on individual behavior.
Second, considering a stochastic set-up gives scope to richer policy implications. Without
stochastic shocks the losses converge to zero asymptotically, and the central bank’s problem
is just to bring about determinacy and it is impossible to rank the performance of any two
equilibria due to different preferences of the policymaker with regard to losses. Third, this
paper elaborates the design and implementation of optimal monetary policy under discretion
and contrasts this with the findings under commitment. The case of discretion is important
as not all central banks may have the ability to commit, but undoubtedly central banks
conduct policy under heterogeneous expectations.

This paper is also related to Di Bartolomeo et al. (2016) who focus on how to obtain the
fully optimal policy from a second-order approximation to household utility in the Branch
and McGough (2009) yeoman farmer model, which precludes an intuitive explanation of
results based on the interaction of households and firms on decentralized markets. Di Bar-
tolomeo et al. (2016) append a shock to the aggregate Phillips curve and numerically analyse
the case of discretion and commitment under this model-consistent loss function and also
report that, in both the case of discretion and commitment, determinacy prevails throughout
the parameter space. However, these findings are obtained without elaborating implemen-
tation strategies. In consequence, the determinacy properties of implementation strategies

30Notice that the coexistence of RE and AE in our model is also consistent with Fuhrer’s (2015) conclusion
that ‘[...] individuals who do not possess full information about the economy link their own expectations to
previous aggregate expectations[...].’
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under discretion in a model with heterogeneous expectations are unknown. Therefore, in
light of the reasoning in Woodford (1999), our examination of the determinacy properties of
the expectations-based reaction function as a possible implementation strategy of optimal
policy under discretion addresses a concern of high interest for policymakers. It turns out
that our determinacy results for discretionary policy contrast Di Bartolomeo et al.’s (2016)
results. Determinacy does not prevail throughout the parameter space.

A further important difference to Di Bartolomeo et al. (2016) is that we use an ad hoc loss
function for practical reasons that we have discussed above. On the one hand this choice most
likely implies that our analysis understates the true losses due to heterogeneous expectations.
This is illustrated in Di Bartolomeo et al. (2016) or Hagenhoff (2018). Hagenhoff (2018) also
shows that, depending on the share of AE, (1 − χ), these losses can become substantial.
On the other hand, we are able to show how to implement optimal monetary policy under
heterogeneous expectations. More generally, we think that the case of ad hoc loss functions
is important as in practice policymakers may use large models with many different features,
which makes the use of model-consistent loss functions infeasible. Thus, policymakers may
actually use an ad hoc loss function.

As regards our findings more generally, we are confident that most of them are robust to
the use of the model-consistent loss function. When calibrating the structural parameters,
Hagenhoff (2018) finds that the term with the relative weight on inflation deviations is
much larger in the model-consistent loss function than the corresponding term in the ad hoc
loss function. Also the weights on the additional inflation terms are larger. In turn, the
relative weight on the output gap deviations are relatively smaller. The model-consistent
loss function then yields lower losses relative to the ad hoc loss function. Overall, this is
consistent with our finding that a more hawkish stance toward inflation, e.g., because of a
conservative central banker (ω∗x < ωx) or an underestimated share of RE (χ̄ < χ), reduces
central bank losses, because in such cases the central bank exploits the novel channel to
manipulate heterogeneous expectations to a further extent.

Finally, it is important to emphasize that our model of heterogeneous expectations in-
troduces macroeconomic persistence. However, it should not be confused with models that
incorporate widely used ‘bells and whistles’ in order to improve the fit to certain features
of the data. Examples are rule-of-thumb households (see, e.g., Galí et al., 2004), rule-of-
thumb firms with price indexation (see, e.g., Steinsson, 2003), or, households with external
additive habit formation in consumption (see, e.g., Smets and Wouters, 2003). For instance,
the design of optimal monetary policy based on an ad hoc loss function is not affected by
the existence of rule-of-thumb households or habit formation. Next, the implications for the
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design of optimal monetary policy emerging from firms with price indexation are different
to the ones emerging from heterogeneous expectations. Moreover, there is another crucial
difference compared to rule-of-thumb consumers and firms. The nominal interest rate has
no direct effect on the inter-temporal decisions of such rule-of-thumb households or firms as
they do not make inter-temporal decisions. In contrast, in our model all agents take mone-
tary policy into account and make inter-temporal decisions. In fact, each type of household
faces a distinct ex ante real interest rate, which is a crucial part of the unique amplification
mechanism mentioned above. Thus, the presumption that the heterogeneous expectations
model developed herein is equivalent to a homogeneous model with ‘bells and whistles’ and
therefore exhibits similar properties and yields similar policy implications is misleading.

6. CONCLUSIONS

This paper develops a stochastic version of the New Keynesian model with heterogeneous
expectations. The novelty is that it can be used to analyze the transmission of aggregate
shocks and monetary policy on households and firms that interact in decentralized markets.

Our analysis calls for the incorporation of heterogeneous expectations in both the de-
sign and implementation of optimal monetary policy to manipulate expectations via a novel
channel. Naive policy design that does not incorporate heterogeneous expectations leads to
inefficient outcomes. The reason is that heterogeneous expectations also imply an amplifica-
tion mechanism absent in homogeneous expectations models. This amplification mechanism
poses several challenges for policymakers. Under discretion, determinacy only prevails in
part of the structural parameter space. Relative to the benchmark of the rational expec-
tations hypothesis, the mechanism also raises losses and implies that the inflation output
variability trad-off shifts out in a non-monotonic way with the share of adaptive expecta-
tions. The potential pitfalls of a high preference for output stabilization are exacerbated
under heterogeneous expectations. A more hawkish monetary policy can lower central bank
losses, but an overly hawkish policy does not. Moreover, overestimating the share of ra-
tional expectations in the design and implementation of monetary policy increases losses.
In sum, our findings render a central banks’ ability to commit highly desirable as optimal
monetary policy under commitment can eliminate or alleviate many of the ramifications of
heterogeneous expectations.

Our results also raise questions on the implications of interest rate stabilization in the
loss function or simple monetary policy rules with interest rate smoothing. For instance,
our findings suggest that in order to render the economy determinate under expectations
heterogeneity, a larger contraction of aggregate demand is necessary in response to a cost-
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push shock. However, a preference for interest rate stabilization or interest rate smoothing
then clearly seems counterproductive and leads to the conjecture that a preference for interest
rate stabilization or interest rate smoothing implies unnecessary losses under heterogeneous
expectations. We take up such considerations in future research.
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Figure 1: Effect of a transitory cost-push shock under discretion with W calibration.
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Figure 2: Effect of a transitory cost-push shock under commitment with W calibration.
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(a) EBRF1D (b) EBRF1C

Figure 3: Region of determinacy across the W, MN, and CGG calibrations for the Expectations-Based
Reaction Function in the ωx-θ-space for χ = 0.6.
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Figure 4: Taylor (1979) curves for the W, MN, and CGG calibrations for the Expectations-Based Reaction
Function under discretion. We depict ωx ∈ (0, 2] as smaller values imply a very large Var(x). The ∗ on the
curve indicates ωx = 0.05, smaller (larger) values of ωx are to the left (right) along the curve.
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Figure 5: Losses for the W, MN, and CGG calibrations for the Expectations-Based Reaction Function under
discretion.
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Figure 6: Losses for the W, MN, and CGG calibrations for the Expectations-Based Reaction Function under
discretion.
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Figure 7: Taylor (1979) curves for the W, MN, and CGG calibrations for the Expectations-Based Reaction
Function under commitment. The ∗ on the curve indicates ωx = 0.05, smaller (larger) values of ωx are to
the left (right) along the curve.
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Figure 8: Losses for the W, MN, and CGG calibrations for the Expectations-Based Reaction Function under
commitment.
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Figure 9: Losses for the W, MN, and CGG calibrations for the Expectations-Based Reaction Function under
commitment.
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TABLES

Table 1: Calibrations used in the numerical analyses, quarterly frequency

Parameter Description Value

χ Share of agents with RE ∈ {1.00, ..., 0.10}
θ Forecasting coefficient of type γ = 2 agentsa ∈ {0.10, ..., 2.00}
β Period discount factor 0.99

(ρg, ρu) Coefficients of exogenous shocksb (0.40, 0.40)

(σg, σu) Standard deviations of exogenous shocksb (1.00, 0.50)

W MN CGG
λ Parameter relating to the degree of price stickinessc 0.024 0.300 0.075

σ Inverse of the inter-temporal elasticity of substitutionc 0.157 1/0.164 1/4
a The range includes the values used in Branch and McGough (2009, p.1046ff.) and is arguably large.
b Taken from Evans and Honkapohja (2003a, p.1059).
c Taken from: W = Woodford (2003b), MN = McCallum and Nelson (1999), CGG = Clarida et al. (2000).
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Table 2: Overview on Results

Policy Implementation
and Calibration Expectations Set-Up

E1
t = Et E1

t = E∗t

χ = 1 χ < 1 χ = 1 χ < 1

(35)) EH2003a This Paper EH2003 This Paper

θ ≤ 1 θ > 1 θ ≤ 1 θ > 1

Wb, MN, CGG Dc D D / I / E E-stable E-stable if D

(39)) EH2006 This Paper EH2006 This Paper

θ ≤ 1 θ > 1 θ ≤ 1 θ > 1

W, MN, CGG D D D E-stable E-stable if D

a EH2003 = Evans and Honkapohja (2003b), EH2006 = Evans and Honkapohja (2006).
b W = Woodford (2003b), MN = McCallum and Nelson (1999), CGG = Clarida et al. (2000).
c D = determinate, I = indeterminate, or, E = explosive.
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Table 3: Results for the Expectations-Based Reaction Function under discretion

Central Bank Expectations L ι(χ, θ, ωx) ω∗x and L ι(χ, θ, ωx|ω∗x) %∆L ι(χ, θ, ωx|ω∗x)
preferences parameters evaluated in evaluated in evaluated in
ωx θ χ W MN CGG B W MN CGG B W MN CGG B

0.01 1 71.91 3.23 34.18 36.44 0.01 71.91 0.01 3.23 0.01 34.18 36.44 0 0 0 0
0.9 0.8 101.81 3.21 37.28 47.43 0.01 101.81 0.01 3.21 0.01 37.28 47.43 0 0 0 0

0.6 139.17 3.19 38.65 60.34 0.01 139.17 0.01 3.19 0.01 38.65 60.34 0 0 0 0
0.4 152.52 3.18 37.86 64.52 0.01 152.52 0.01 3.18 0.01 37.86 64.52 0 0 0 0
0.2 131.85 3.16 35.8 56.94 0.01 131.85 0.01 3.16 0.01 35.8 56.94 0 0 0 0

1 0.8 123.49 3.22 39.42 55.38 0.01 123.49 0.01 3.22 0.01 39.42 55.38 0 0 0 0
0.6 235.84 3.21 42.55 93.87 0.01 235.84 0.01 3.21 0.01 42.55 93.87 0 0 0 0
0.4 306.34 3.2 42.31 117.28 0.01 306.34 0.01 3.2 0.01 42.31 117.28 0 0 0 0
0.2 245.94 3.19 40.28 96.47 0.01 245.94 0.01 3.19 0.01 40.28 96.47 0 0 0 0

1.1 0.8 160.39 3.23 42 68.54 0.01 160.39 0.01 3.23 0.01 42 68.54 0 0 0 0
0.6 728.63 3.22 47.19 259.68 0.01 728.63 0.01 3.22 0.01 47.19 259.68 0 0 0 0
0.4 926.91 3.22 47.06 325.73 0.01 926.91 0.01 3.22 0.01 47.06 325.73 0 0 0 0
0.2 428.35 3.22 44.75 158.77 0.01 428.35 0.01 3.22 0.01 44.75 158.77 0 0 0 0

0.03 1 78.1 9.17 56.41 47.89 0.02 77.53 0.02 8.85 0.02 54 46.8 -0.73 -3.4 -4.28 -2.29
0.9 0.8 116.75 9.14 70.72 65.54 0.02 114.5 0.02 8.87 0.02 65.04 62.8 -1.92 -2.96 -8.04 -4.17

0.6 175.46 9.06 82.55 89.02 0.01 162.55 0.02 8.86 0.01 73.61 81.67 -7.36 -2.18 -10.83 -8.26
0.4 206.65 8.96 83.37 99.66 0.01 189.56 0.02 8.85 0.02 75.43 91.28 -8.27 -1.16 -9.52 -8.41
0.2 176.44 8.84 75.01 86.76 0.02 171.08 0.02 8.84 0.02 71.98 83.97 -3.04 -0.02 -4.04 -3.22

1 0.8 146.67 9.22 80.05 78.65 0.01 140.23 0.02 8.93 0.01 71.65 73.6 -4.39 -3.13 -10.5 -6.41
0.6 381.71 9.21 106.35 165.76 0.01 283.59 0.02 8.98 0.01 83.79 125.45 -25.7 -2.41 -21.22 -24.31
0.4 729.93 9.15 111.7 283.59 0.01 417.29 0.02 9.02 0.01 91.82 172.71 -42.83 -1.37 -17.8 -39.1
0.2 549.89 9.07 99.15 219.37 0.01 415.61 0.02 9.05 0.02 92.83 172.49 -24.42 -0.24 -6.38 -21.37

1.1 0.8 - - - - 0.01 183.68 0.02 9 0.01 77.49 90.06 - - - -
0.6 - - - - 0.01 929.92 0.01 9.25 0.01 96.8 345.32 - - - -
0.4 - - - - 0.01 1538.42 0.01 9.34 0.01 109.17 552.31 - - - -
0.2 2015.81 9.3 125.99 717.03 0.01 998.86 0.02 9.26 0.01 115.87 374.66 -50.45 -0.41 -8.03 -47.75

0.05 1 79.46 14.42 64.5 52.79 0.03 79.08 0.03 13.75 0.03 62.35 51.73 -0.47 -4.66 -3.32 -2.01
0.9 0.8 120.26 14.52 85.93 73.57 0.02 118.25 0.03 13.86 0.03 79.29 70.47 -1.67 -4.55 -7.72 -4.22

0.6 185.2 14.44 107.72 102.45 0.02 175.61 0.03 13.92 0.02 92.79 94.11 -5.18 -3.58 -13.86 -8.14
0.4 222.97 14.21 112.26 116.48 0.02 208.47 0.03 13.93 0.02 99.09 107.17 -6.5 -1.9 -11.73 -7.99
0.2 190.11 13.91 98.92 100.98 0.03 185.52 0.04 13.82 0.03 94.39 97.91 -2.42 -0.68 -4.58 -3.04

1 0.8 152.35 14.76 100.55 89.22 0.02 147.51 0.03 14.03 0.02 88.45 83.33 -3.18 -4.99 -12.03 -6.6
0.6 438.65 14.85 154.87 202.79 0.01 331.35 0.03 14.23 0.02 115.13 153.57 -24.46 -4.17 -25.66 -24.27
0.4 1045.79 14.72 173.89 411.47 0.01 528.24 0.03 14.36 0.02 130.56 224.39 -49.49 -2.45 -24.92 -45.47
0.2 787.26 14.51 147.88 316.55 0.02 563.03 0.04 14.4 0.03 134.1 237.18 -28.48 -0.77 -9.32 -25.07

1.1 0.8 - - - - 0.02 201.22 0.02 14.36 0.02 100.58 105.39 - - - -
0.6 - - - - 0.01 1131.2 0.01 15.27 0.01 146.4 430.96 - - - -
0.4 - - - - 0.01 2149.93 0.01 15.47 0.01 171.29 778.9 - - - -
0.2 7100.56 15.1 208.75 2441.47 0.01 1569.37 0.04 14.98 0.02 180.6 588.32 -77.9 -0.8 -13.48 -75.9
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Table 4: Results for the Expectations-Based Reaction Function under commitment

Central Bank Expectations L ι(χ, θ, ωx) ω∗x and L ι(χ, θ, ωx|ω∗x) %∆L ι(χ, θ, ωx|ω∗x)
preferences parameters evaluated in evaluated in evaluated in
ωx θ χ W MN CGG B W MN CGG B W MN CGG B

0.01 1 50.28 2.94 22 25.08 0.01 50.28 0.01 2.94 0.01 22 25.08 0 0 0 0
0.9 0.8 71.65 3.02 26.17 33.61 0.01 71.65 0.01 3.02 0.01 26.17 33.61 0 0 0 0

0.6 102.09 3.09 30.43 45.2 0.01 102.09 0.01 3.09 0.01 30.43 45.2 0 0 0 0
0.4 126.66 3.13 33.61 54.47 0.01 126.66 0.01 3.13 0.01 33.61 54.47 0 0 0 0
0.2 124.86 3.15 34.69 54.23 0.01 124.86 0.01 3.15 0.01 34.69 54.23 0 0 0 0

1 0.8 77.29 3.03 26.84 35.72 0.01 77.29 0.01 3.03 0.01 26.84 35.72 0 0 0 0
0.6 128.59 3.1 32.23 54.64 0.01 128.59 0.01 3.1 0.01 32.23 54.64 0 0 0 0
0.4 189.8 3.15 36.68 76.55 0.01 189.8 0.01 3.15 0.01 36.68 76.55 0 0 0 0
0.2 208.96 3.18 38.78 83.64 0.01 208.96 0.01 3.18 0.01 38.78 83.64 0 0 0 0

1.1 0.8 83.52 3.04 27.58 38.04 0.01 83.52 0.01 3.04 0.01 27.58 38.04 0 0 0 0
0.6 162.86 3.11 34.2 66.72 0.01 162.86 0.01 3.11 0.01 34.2 66.72 0 0 0 0
0.4 276.12 3.17 39.92 106.4 0.01 276.12 0.01 3.17 0.01 39.92 106.4 0 0 0 0
0.2 325.85 3.21 42.93 123.99 0.01 325.85 0.01 3.21 0.01 42.93 123.99 0 0 0 0

0.03 1 61.53 7.41 35.62 34.85 0.03 61.53 0.03 7.41 0.03 35.62 34.85 0 0 0 0
0.9 0.8 93.14 7.9 46.41 49.15 0.03 93.14 0.03 7.9 0.03 46.41 49.15 0 0 0 0

0.6 143.17 8.32 59.41 70.3 0.03 143.17 0.03 8.32 0.03 59.41 70.3 0 0 0 0
0.4 182.49 8.61 69.61 86.9 0.03 182.49 0.03 8.61 0.03 69.61 86.9 0 0 0 0
0.2 170.1 8.76 71.32 83.39 0.03 170.1 0.03 8.76 0.03 71.32 83.39 0 0 0 0

1 0.8 103.53 7.95 48.63 53.37 0.03 103.53 0.03 7.95 0.03 48.63 53.37 0 0 0 0
0.6 208.15 8.43 67.05 94.54 0.03 208.15 0.03 8.43 0.03 67.05 94.54 0 0 0 0
0.4 372.55 8.79 84.57 155.3 0.03 372.55 0.03 8.79 0.03 84.57 155.3 0 0 0 0
0.2 413.41 8.98 91.5 171.3 0.03 413.41 0.03 8.98 0.03 91.5 171.3 0 0 0 0

1.1 0.8 114.35 8.01 51.12 57.83 0.03 114.35 0.03 8.01 0.03 51.12 57.83 0 0 0 0
0.6 303.27 8.55 75.94 129.25 0.03 303.27 0.03 8.55 0.03 75.94 129.25 0 0 0 0
0.4 723.64 8.96 101.62 278.07 0.03 723.64 0.03 8.96 0.03 101.62 278.07 0 0 0 0
0.2 895.81 9.21 113.93 339.65 0.03 895.81 0.03 9.21 0.03 113.93 339.65 0 0 0 0

0.05 1 65.69 10.81 42.16 39.55 0.05 65.69 0.05 10.81 0.05 42.16 39.55 0 0 0 0
0.9 0.8 101.35 11.84 57.22 56.81 0.05 101.35 0.05 11.84 0.05 57.22 56.81 0 0 0 0

0.6 159.3 12.76 76.84 82.96 0.05 159.3 0.05 12.76 0.05 76.84 82.96 0 0 0 0
0.4 203.55 13.41 92.49 103.15 0.05 203.55 0.05 13.41 0.05 92.49 103.15 0 0 0 0
0.2 185.12 13.71 93.58 97.47 0.05 185.12 0.05 13.71 0.05 93.58 97.47 0 0 0 0

1 0.8 114.31 11.97 60.7 62.32 0.05 114.31 0.05 11.97 0.05 60.7 62.32 0 0 0 0
0.6 250.32 13.04 90.43 117.93 0.05 250.32 0.05 13.04 0.05 90.43 117.93 0 0 0 0
0.4 497.33 13.85 121.33 210.84 0.05 497.33 0.05 13.85 0.05 121.33 210.84 0 0 0 0
0.2 552.77 14.29 132.41 233.16 0.05 552.77 0.05 14.29 0.05 132.41 233.16 0 0 0 0

1.1 0.8 127.18 12.1 64.57 67.95 0.05 127.18 0.05 12.1 0.05 64.57 67.95 0 0 0 0
0.6 391.38 13.34 106.89 170.54 0.05 391.38 0.05 13.34 0.05 106.89 170.54 0 0 0 0
0.4 1152.96 14.3 156.33 441.2 0.05 1152.96 0.05 14.3 0.05 156.33 441.2 0 0 0 0
0.2 1454.4 14.86 179.08 549.45 0.04 1454.4 0.05 14.86 0.05 179.08 549.45 0 0 0 0
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Table 5: Gains from commitment for the Expectations-Based Reaction Function

Central Bank Expectations LW (χ, θ, ωx) LMN(χ, θ, ωx) L CGG(χ, θ, ωx) L B(χ, θ, ωx)

preferences parameters
ωx θ χ Discr. Comm. %∆ Discr. Comm. %∆ Discr. Comm. %∆ Discr. Comm. %∆

0.01 1 71.91 50.28 -30.08 3.23 2.94 -8.79 34.18 22 -35.61 36.44 25.08 -31.18
0.9 0.8 101.81 71.65 -29.63 3.21 3.02 -5.85 37.28 26.17 -29.79 47.43 33.61 -29.13

0.6 139.17 102.09 -26.65 3.19 3.09 -3.39 38.65 30.43 -21.27 60.34 45.2 -25.09
0.4 152.52 126.66 -16.96 3.18 3.13 -1.53 37.86 33.61 -11.22 64.52 54.47 -15.58
0.2 131.85 124.86 -5.31 3.16 3.15 -0.39 35.8 34.69 -3.1 56.94 54.23 -4.75

1 0.8 123.49 77.29 -37.41 3.22 3.03 -5.88 39.42 26.84 -31.92 55.38 35.72 -35.49
0.6 235.84 128.59 -45.47 3.21 3.1 -3.41 42.55 32.23 -24.25 93.87 54.64 -41.79
0.4 306.34 189.8 -38.04 3.2 3.15 -1.55 42.31 36.68 -13.29 117.28 76.55 -34.73
0.2 245.94 208.96 -15.04 3.19 3.18 -0.39 40.28 38.78 -3.71 96.47 83.64 -13.3

1.1 0.8 160.39 83.52 -47.92 3.23 3.04 -5.91 42 27.58 -34.35 68.54 38.04 -44.49
0.6 728.63 162.86 -77.65 3.22 3.11 -3.44 47.19 34.2 -27.53 259.68 66.72 -74.31
0.4 926.91 276.12 -70.21 3.22 3.17 -1.56 47.06 39.92 -15.17 325.73 106.4 -67.33
0.2 428.35 325.85 -23.93 3.22 3.21 -0.39 44.75 42.93 -4.07 158.77 123.99 -21.9

0.03 1 78.1 61.53 -21.22 9.17 7.41 -19.14 56.41 35.62 -36.86 47.89 34.85 -27.23
0.9 0.8 116.75 93.14 -20.22 9.14 7.9 -13.5 70.72 46.41 -34.38 65.54 49.15 -25

0.6 175.46 143.17 -18.4 9.06 8.32 -8.19 82.55 59.41 -28.03 89.02 70.3 -21.03
0.4 206.65 182.49 -11.69 8.96 8.61 -3.83 83.37 69.61 -16.51 99.66 86.9 -12.8
0.2 176.44 170.1 -3.6 8.84 8.76 -0.98 75.01 71.32 -4.91 86.76 83.39 -3.89

1 0.8 146.67 103.53 -29.41 9.22 7.95 -13.72 80.05 48.63 -39.25 78.65 53.37 -32.14
0.6 381.71 208.15 -45.47 9.21 8.43 -8.42 106.35 67.05 -36.96 165.76 94.54 -42.96
0.4 729.93 372.55 -48.96 9.15 8.79 -3.95 111.7 84.57 -24.29 283.59 155.3 -45.24
0.2 549.89 413.41 -24.82 9.07 8.98 -1.01 99.15 91.5 -7.72 219.37 171.3 -21.92

1.1 0.8 - 114.35 - - 8.01 - - 51.12 - - 57.83 -
0.6 - 303.27 - - 8.55 - - 75.94 - - 129.25 -
0.4 - 723.64 - - 8.96 - - 101.62 - - 278.07 -
0.2 2015.81 895.81 -55.56 9.3 9.21 -1.03 125.99 113.93 -9.57 717.03 339.65 -52.63

0.05 1 79.46 65.69 -17.32 14.42 10.81 -25.02 64.5 42.16 -34.64 52.79 39.55 -25.08
0.9 0.8 120.26 101.35 -15.72 14.52 11.84 -18.44 85.93 57.22 -33.41 73.57 56.81 -22.79

0.6 185.2 159.3 -13.99 14.44 12.76 -11.62 107.72 76.84 -28.67 102.45 82.96 -19.02
0.4 222.97 203.55 -8.71 14.21 13.41 -5.58 112.26 92.49 -17.61 116.48 103.15 -11.44
0.2 190.11 185.12 -2.62 13.91 13.71 -1.45 98.92 93.58 -5.4 100.98 97.47 -3.48

1 0.8 152.35 114.31 -24.97 14.76 11.97 -18.95 100.55 60.7 -39.63 89.22 62.32 -30.15
0.6 438.65 250.32 -42.93 14.85 13.04 -12.18 154.87 90.43 -41.61 202.79 117.93 -41.85
0.4 1045.79 497.33 -52.44 14.72 13.85 -5.9 173.89 121.33 -30.23 411.47 210.84 -48.76
0.2 787.26 552.77 -29.79 14.51 14.29 -1.54 147.88 132.41 -10.46 316.55 233.16 -26.34

1.1 0.8 - 127.18 - - 12.1 - - 64.57 - - 67.95 -
0.6 - 391.38 - - 13.34 - - 106.89 - - 170.54 -
0.4 - 1152.96 - - 14.3 - - 156.33 - - 441.2 -
0.2 7100.56 1454.4 -79.52 15.1 14.86 -1.58 208.75 179.08 -14.21 2441.47 549.45 -77.5
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Table 6: Mismeasuring expectations

LW (χ, θ = 0.9, ωx = 0.05|χ̄) L B(χ, θ = 0.9, ωx = 0.05|χ̄)

χ̄ χ

0.8 0.6 0.4 0.2
0.8 120.26 206.98 243.92 203.23 193.60
0.6 115.11 185.20 236.12 200.06 184.12
0.4 118.21 171.93 222.97 195.41 177.13
0.2 126.08 170.88 209.60 190.11 174.17

LMN (χ, θ = 0.9, ωx = 0.05|χ̄) L B(χ, θ = 0.9, ωx = 0.05|χ̄)

χ̄ χ

0.8 0.6 0.4 0.2
0.8 14.52 14.16 15.36 17.02 15.27
0.6 16.17 14.44 14.22 15.50 15.08
0.4 17.64 15.79 14.21 14.19 15.46
0.2 18.64 17.12 15.20 13.91 16.22

L CGG(χ, θ = 0.9, ωx = 0.05|χ̄) L B(χ, θ = 0.9, ωx = 0.05|χ̄)

χ̄ χ

0.8 0.6 0.4 0.2
0.8 85.93 120.34 123.13 105.59 108.75
0.6 77.56 107.72 120.40 104.86 102.63
0.4 74.41 96.12 112.26 103.02 96.45
0.2 74.13 90.68 102.77 98.92 91.63
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Table 7: Gains from incorporating expectations heterogeneity in policy design under discretion

Central Bank Expectations LW (χ, θ, ωx) LMN(χ, θ, ωx) L CGG(χ, θ, ωx) L B(χ, θ, ωx)

preferences parameters
Design with Design with Design with Design with

ωx θ χ χ = 1 χ ≤ 1 %∆ χ = 1 χ ≤ 1 %∆ χ = 1 χ ≤ 1 %∆ χ = 1 χ ≤ 1 %∆

0.01 1 71.91 71.91 0 3.23 3.23 0 34.18 34.18 0 36.44 36.44 0
0.9 0.8 102.79 101.81 -0.96 3.22 3.21 -0.45 38.17 37.28 -2.34 48.06 47.43 -1.31

0.6 145.64 139.17 -4.44 3.22 3.19 -0.82 41.29 38.65 -6.39 63.38 60.34 -4.81
0.4 170.77 152.52 -10.69 3.21 3.18 -1.11 42.59 37.86 -11.09 72.19 64.52 -10.62
0.2 154.14 131.85 -14.46 3.2 3.16 -1.26 41.72 35.8 -14.18 66.35 56.94 -14.19

1 0.8 125.57 123.49 -1.66 3.24 3.22 -0.57 40.81 39.42 -3.4 56.54 55.38 -2.05
0.6 270.66 235.84 -12.86 3.24 3.21 -1.1 47.55 42.55 -10.53 107.15 93.87 -12.4
0.4 511.35 306.34 -40.09 3.25 3.2 -1.55 52.54 42.31 -19.48 189.05 117.28 -37.96
0.2 554.43 245.94 -55.64 3.25 3.19 -1.87 54.39 40.28 -25.94 204.02 96.47 -52.72

1.1 0.8 165.42 160.39 -3.05 3.25 3.23 -0.72 44.17 42 -4.91 70.95 68.54 -3.4
0.6 - 728.63 - - 3.22 - - 47.19 - - 259.68 -
0.4 - 926.91 - - 3.22 - - 47.06 - - 325.73 -
0.2 - 428.35 - - 3.22 - - 44.75 - - 158.77 -

0.03 1 78.1 78.1 0 9.17 9.17 0 56.41 56.41 0 47.89 47.89 0
0.9 0.8 117.2 116.75 -0.38 9.24 9.14 -1.11 72.13 70.72 -1.96 66.19 65.54 -0.99

0.6 179.06 175.46 -2.01 9.27 9.06 -2.25 88.76 82.55 -7 92.36 89.02 -3.62
0.4 218.51 206.65 -5.43 9.26 8.96 -3.26 97.1 83.37 -14.15 108.29 99.66 -7.97
0.2 190.83 176.44 -7.54 9.2 8.84 -3.9 92.11 75.01 -18.57 97.38 86.76 -10.9

1 0.8 147.67 146.67 -0.68 9.36 9.22 -1.46 82.62 80.05 -3.11 79.88 78.65 -1.55
0.6 415.17 381.71 -8.06 9.51 9.21 -3.16 124.09 106.35 -14.29 182.92 165.76 -9.39
0.4 1213.61 729.93 -39.85 9.61 9.15 -4.82 164.25 111.7 -31.99 462.49 283.59 -38.68
0.2 1331.07 549.89 -58.69 9.66 9.07 -6.1 174.59 99.15 -43.21 505.11 219.37 -56.57

1.1 0.8 - - - - - - - - - - - -
0.6 - - - - - - - - - - - -
0.4 - - - - - - - - - - - -
0.2 - 2015.81 - - 9.3 - - 125.99 - - 717.03 -

0.05 1 79.46 79.46 0 14.42 14.42 0 64.5 64.5 0 52.79 52.79 0
0.9 0.8 120.55 120.26 -0.24 14.75 14.52 -1.55 87.25 85.93 -1.52 74.18 73.57 -0.82

0.6 187.63 185.2 -1.29 14.94 14.44 -3.39 114.74 107.72 -6.12 105.77 102.45 -3.14
0.4 231.32 222.97 -3.61 14.98 14.21 -5.14 129.6 112.26 -13.38 125.3 116.48 -7.04
0.2 200.23 190.11 -5.06 14.85 13.91 -6.31 120.32 98.92 -17.78 111.8 100.98 -9.68

1 0.8 153 152.35 -0.43 15.08 14.76 -2.09 103.13 100.55 -2.51 90.41 89.22 -1.31
0.6 465.73 438.65 -5.82 15.61 14.85 -4.92 180.91 154.87 -14.39 220.75 202.79 -8.14
0.4 1654.4 1045.79 -36.79 15.98 14.72 -7.89 273.53 173.89 -36.43 647.97 411.47 -36.5
0.2 1821.04 787.26 -56.77 16.16 14.51 -10.21 293.62 147.88 -49.64 710.27 316.55 -55.43

1.1 0.8 - - - - - - - - - - - -
0.6 - - - - - - - - - - - -
0.4 - - - - - - - - - - - -
0.2 - 7100.56 - - 15.1 - - 208.75 - - 2441.47 -
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Table 8: Details for Table 3

Central Bank Expectations Unconditional Variances under Calibration:
preferences parameters W MN CGG
ωx θ χ xt πt xt πt xt πt

0.01 1 3.916 0.68 2.904 0.003 12.303 0.219
0.9 0.8 6.54 0.953 2.926 0.003 14.815 0.225

0.6 11.691 1.275 2.948 0.002 17.479 0.212
0.4 18.522 1.34 2.97 0.002 19.836 0.18
0.2 24.659 1.072 2.991 0.002 21.769 0.14

1 0.8 8.372 1.151 2.942 0.003 16.112 0.233
0.6 23.876 2.12 2.979 0.002 20.62 0.219
0.4 55.475 2.509 3.014 0.002 24.757 0.175
0.2 84.834 1.611 3.048 0.001 28.113 0.122

1.1 0.8 11.646 1.487 2.96 0.003 17.744 0.243
0.6 100.644 6.28 3.013 0.002 24.803 0.224
0.4 305.754 6.212 3.061 0.002 31.059 0.16
0.2 285.256 1.431 3.104 0.001 35.559 0.092

0.03 1 0.49 0.766 2.291 0.023 2.969 0.475
0.9 0.8 0.873 1.141 2.362 0.02 4.285 0.579

0.6 1.76 1.702 2.429 0.018 6.164 0.641
0.4 3.166 1.972 2.49 0.015 8.096 0.591
0.2 4.536 1.628 2.545 0.012 9.694 0.459

1 0.8 1.162 1.432 2.404 0.02 5.065 0.649
0.6 4.796 3.673 2.51 0.017 9.012 0.793
0.4 19.409 6.717 2.607 0.013 13.653 0.707
0.2 36.268 4.411 2.693 0.01 17.474 0.467

1.1 0.8 - - - - - -
0.6 - - - - - -
0.4 - - - - - -
0.2 462.342 6.288 2.843 0.008 29.926 0.362

0.05 1 0.181 0.786 1.854 0.051 1.304 0.58
0.9 0.8 0.327 1.186 1.962 0.047 2.027 0.758

0.6 0.679 1.818 2.064 0.041 3.227 0.916
0.4 1.266 2.166 2.154 0.034 4.604 0.892
0.2 1.853 1.808 2.233 0.027 5.776 0.7

1 0.8 0.439 1.502 2.021 0.047 2.49 0.881
0.6 2.038 4.285 2.182 0.039 5.413 1.278
0.4 10.9 9.913 2.325 0.031 9.63 1.257
0.2 22.557 6.745 2.448 0.023 13.237 0.817

1.1 0.8 - - - - - -
0.6 - - - - - -
0.4 - - - - - -
0.2 1025.123 19.749 2.671 0.017 28.598 0.658
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Table 9: Details for Table 4

Central Bank Expectations Unconditional Variances under Calibration:
preferences parameters W MN CGG
ωx θ χ xt πt xt πt xt πt

0.01 1 11.651 0.386 2.635 0.003 11.42 0.106
0.9 0.8 21.395 0.503 2.777 0.002 15.682 0.105

0.6 38.936 0.632 2.892 0.002 20.642 0.098
0.4 52.911 0.737 2.972 0.002 24.472 0.091
0.2 46.019 0.788 3.013 0.001 25.33 0.094

1 0.8 25.002 0.523 2.79 0.002 16.515 0.103
0.6 63.27 0.653 2.919 0.002 23.231 0.09
0.4 122.474 0.673 3.013 0.001 29.221 0.075
0.2 136.08 0.729 3.066 0.001 31.724 0.071

1.1 0.8 28.759 0.548 2.803 0.002 17.442 0.101
0.6 98.018 0.648 2.947 0.002 26.145 0.081
0.4 235.984 0.401 3.054 0.001 34.365 0.056
0.2 292.773 0.331 3.12 0.001 38.415 0.045

0.03 1 3.016 0.525 1.912 0.017 4.303 0.227
0.9 0.8 5.918 0.754 2.163 0.014 6.882 0.258

0.6 11.53 1.086 2.386 0.012 10.652 0.275
0.4 15.136 1.371 2.546 0.01 13.725 0.284
0.2 11.036 1.37 2.617 0.009 13.573 0.306

1 0.8 7.491 0.811 2.193 0.014 7.565 0.259
0.6 26.756 1.279 2.455 0.011 13.644 0.261
0.4 71.741 1.573 2.653 0.008 20.344 0.235
0.2 78.993 1.764 2.758 0.007 22.513 0.24

1.1 0.8 8.785 0.88 2.226 0.013 8.327 0.261
0.6 52.084 1.47 2.528 0.01 17.325 0.24
0.4 216.497 0.741 2.763 0.007 28.489 0.161
0.2 279.717 0.567 2.897 0.005 33.46 0.135

0.05 1 1.552 0.579 1.514 0.032 2.535 0.295
0.9 0.8 3.042 0.861 1.8 0.028 4.329 0.356

0.6 5.851 1.3 2.07 0.024 7.228 0.407
0.4 7.346 1.668 2.268 0.021 9.609 0.444
0.2 4.948 1.604 2.347 0.02 9.086 0.482

1 0.8 4.059 0.94 1.839 0.028 4.876 0.363
0.6 16.955 1.655 2.167 0.022 10.109 0.399
0.4 54.365 2.255 2.424 0.017 16.695 0.379
0.2 59.429 2.556 2.553 0.015 18.546 0.397

1.1 0.8 4.73 1.035 1.883 0.027 5.476 0.372
0.6 36.395 2.094 2.271 0.02 13.869 0.375
0.4 212.443 0.907 2.585 0.014 26.33 0.247
0.2 277.611 0.663 2.758 0.011 31.673 0.207
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Appendix
Optimal Constrained Interest-Rate Rules under Heterogeneous Expectations.

Emanuel Gasteiger, urleiwand.com

April 21, 2021

A. MODEL DERIVATIONS

Assumptions A1 to A7 are taken from Branch and McGough (2009).

A.1. Household Lagrangian

The household’s problem can be solved by the Lagrangian

L(·, i) = Eγ
t

{
∞∑
k=0

βt+k
[
Ct+k(i)

1−σ

(1− σ)
− Nt+k(i)

1+ϕ

(1 + ϕ)
− λHt+k

(
Ct+k(i) +Qt+k|t+k+1

Bt+k(i)

Pt+k

+
IC,t+k(i)

Pt+k
− Wt+k

Pt+k
Nt+k(i)−

Bt+k−1(i)

Pt+k−1

Π−1
t+k−1,t+k −

IP,t+k(i)

Pt+k
− Υt+k

Pt+k
,

)]}
,

where λHt+k is the Lagrange multiplier. This yields the first-order necessary conditions

∂L(·, i)
∂Ct+k(i)

!
= 0⇔Eγ

t

{
βt+k

[
Ct+k(i)

−σ − λHt+k
]} !

= 0, (A.1.1)

∂L(·, i)

∂
(
Bt+k(i)

Pt+k

) !
= 0⇔Eγ

t

{
βt+k

[
−λHt+kQt+k|t+k+1

]
+ βt+k+1

[
λHt+k+1Π−1

t+k,t+k+1

]} !
= 0,(A.1.2)

∂L(·, i)
∂Nt+k(i)

!
= 0⇔Eγ

t

{
βt+k

[
−Nt+k(i)

ϕ − λHt+k
Wt+k

Pt+k

]}
!

= 0. (A.1.3)

Combining (A.1.1) and (A.1.2) yields (8), likewise (A.1.1) and (A.1.3) yield (9). Moreover,
(A.1.1) and (A.1.2) also imply the subjective transversality condition (10).

Log-linearization of (8) and (9) around a steady state, together with definitions ρ ≡
− ln(β), it ≡ − ln(Eγ

t {Qt|t+1}), ct(i) ≡ (Ct(i) − C(i))/Y , where C(i) = Y , and πt ≡ (Πt −
Π)/Π yields

ct(i) = Eγ
t {ct+1(i)} − σ−1 (it − Eγ

t {πt+1} − ρ) , and

wt − pt = ϕnt(i) + σct(i) ≡ mrst(i),

i.e., the real wage equals the marginal rate of substitution, mrst(i). Furthermore, wt ≡
(Wt −W )/W , pt ≡ (Pt − P )/P , and nt(i) ≡ (Nt(i)−N(i))/N .
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A.2. Forward Iteration of Household Wealth

Equation (11) one period ahead is

Eγ
t+1{c

γ
t+1} = Eγ

t+1

{
cγt+2 − σ−1 (it+1 − πt+2 − ρ)

}
,

which by Assumptions A1 and A3 is

cγt+1 = Eγ
t+1

{
cγt+2

}
− σ−1

(
it+1 − Eγ

t+1 {πt+2} − ρ
)
. (A.2.1)

Combining (11) with (A.2.1) and applying Assumptions A1 and A3 again yields

cγt = Eγ
t

{
Eγ
t+1

{
cγt+2

}}
− σ−1

(
Eγ
t {it+1} − Eγ

t

{
Eγ
t+1 {πt+2}

}
− ρ
)
− σ−1 (it − Eγ

t {πt+1} − ρ) ,

which, by using Assumptions A5 can be rewritten as

cγt = Eγ
t {c

γ
t+2} − σ−1

1∑
k=0

Eγ
t {(it+k − πt+k+1 − ρ)} .

Using Assumptions A4 and A5 as well as repeating the steps outlined above yields

cγt = lim
k→∞

Eγ
t {c

γ
t+k+1} − σ

−1Eγ
t

{
∞∑
k=0

(it+k − πt+k+1 − ρ)

}
.

Finally, defining limk→∞E
γ
t {c

γ
t+k+1} ≡ Eγ

t {cγ∞} yields (12).

A.3. Equilibrium: Derivation of Dynamic IS Curve

On the goods market, each firm i will supply sufficient goods to meet demand for its
variety j, i.e.,

Yt(j) = Ct(j), ∀t. (A.3.1)

Moreover, demand (3) and the definition of aggregate output,

Yt ≡
(∫ 1

0

Yt(j)
ε−1
ε dj

) ε
ε−1

,

imply the goods market clearing condition (16).
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Given (17), we can use (12) to get

yt = χE1
t {c1
∞}+ (1− χ)E2

t {c2
∞} − σ−1Êt

{
∞∑
k=0

(it+k − πt+k+1 − ρ)

}
. (A.3.2)

One period ahead this is

Êt {yt+1} = χE1
t {c1
∞}+ (1− χ)E2

t {c2
∞} − σ−1Êt

{
∞∑
k=1

(it+k − πt+k+1 − ρ)

}
, (A.3.3)

where we rule out terms of higher order beliefs by Assumption A6 of Branch and McGough
(2009). Finally, subtracting (A.3.3) from (A.3.2) and applying Assumptions A6 and A7 of
Branch and McGough (2009) yields (18).

A.4. Equilibrium: Labor Market and Marginal Costs

Next, we consider labor market clearing. Aggregate employment is defined as

Nt ≡
∫ 1

0

Nt(i)di.

Together with technology (13), condition (A.3.1) and demand (3), employment is given by

Nt =

(
Yt
At

) 1
1−α
∫ 1

0

(
Pt(i)

Pt

)− ε
1−α

di.

A first-order linear approximation to the latter expression is given by (19), (see, Galí, 2015,
p.59).

Next, average real marginal costs in logs are

mct = (wt − pt)−mpnt
= (wt − pt)− (at − αnt − log(1− α)) , (A.4.1)

where (A.4.1) follows from (13) and

mpnt = at − αnt + log(1− α).

labor market clearing condition (19) and rearranging terms yields

mct = (wt − pt)−
1

(1− α)
at +

α

(1− α)
yt − log(1− α).
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Next, we combine

mct+k|t(i) = (wt+k − pt+k) +mpnt+k|t

= (wt+k − pt+k)−
1

(1− α)
at+k +

α

(1− α)
yt+k + log(1− α)

+
α

(1− α)

(
yt+k|t(i)− yt+k

)
= mct+k −

αε

(1− α)
(p∗t (i)− pt+k) .

In terms of log deviations from steady state mc we have

m̂ct+k|t(i) = mct+k|t(i)−mc

= m̂ct+k −
αε

(1− α)
(p̂∗t (i)− p̂t+k) . (A.4.2)

A.5. Equilibrium: Forward Iteration of the Firm’s FOC, Wage Markup and Marginal Cost

Using (15) together with (A.4.2) yields

p∗t (i)− pt = (1− βθp)Êt

{
∞∑
k=0

(βθp)
k

(
Θm̂ct+k +

βθp
(1− βθp)

πt+k+1

)}
, (A.5.1)

where Θ ≡ (1−α)
1+α(ε−1)

≤ 1. By Assumption A1, (A.5.1) can be written as

Êt {p∗t (i)− pt} = (1− βθp)Êt

{
∞∑
k=0

(βθp)
k

[
Θm̂ct+k +

βθp
(1− βθp)

πt+k+1

]}
. (A.5.2)

One period ahead, (A.5.2) is given by

Êt+1

{
p∗t+1(i)− pt+1

}
= (1− βθp)Êt+1

{
∞∑
k=0

(βθp)
k

[
Θm̂ct+k+1 +

βθp
(1− βθp)

πt+k+2

]}
,(A.5.3)

or

(βθp)Êt+1

{
p∗t+1(i)− pt+1

}
= (1− βθp)Êt+1

{
∞∑
k=0

(βθp)
k+1

[
Θm̂ct+k+1 +

βθp
(1− βθp)

πt+k+2

]}
.

(A.5.4)
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Evaluation of (A.5.4) with Êt{·} and invoking Assumption A5 of Branch and McGough
(2009) yields

(βθp)Êt
{
p∗t+1(i)− pt+1

}
= (1− βθp)Êt

{
∞∑
k=0

(βθp)
k+1

[
Θm̂ct+k+1 +

βθp
(1− βθp)

πt+k+2

]}
.(A.5.5)

Subtracting (A.5.5) from (A.5.3) and applying Assumption A4 of Branch and McGough
(2009) allows us to arrive at

p∗t (i)− pt = (1− βθp)Êt
{[

Θm̂ct +
βθp

(1− βθp)
πt+1

]}
+ βθpÊt

{
p∗t+1(i)− pt+1

}
.

Finally, Assumptions A1 and A3 of Branch and McGough (2009) yield

p∗t (i)− pt = (1− βθp)Θm̂ct + βθpÊt {πt+1}+ βθpÊt
{
p∗t+1(i)− pt+1

}
.

Recall that all firms make similar decisions, thus

p∗t − pt = (1− βθp)Θm̂ct + βθpÊt {πt+1}+ βθpÊt
{
p∗t+1 − pt+1

}
.

Moreover, from Calvo’s (1983) aggregate price stetting assumption follows that or, linearized
around the steady state

p∗t − pt =
θp

1− θp
πt.

Therefore

θp
(1− θp)

πt = (1− βθp)Θm̂ct + βθpÊt {πt+1}+ βθp
θp

(1− θp)
Êt {πt+1} ,

which can be simplified to the inflation equation (20).

Assuming an efficient consumption-leisure choice (9), we can express average marginal
cost in the economy as

mct = (wt − pt)−mpnt
= (µwt +mrst)− (at − αnt + log(1− α))

= µwt + (ϕnt + σct)− (at − αnt + log(1− α))

= µwt + σct + (ϕ+ α)nt − at − log(1− α).

5



Imposing labor market clearing (19), goods market clearing (16), and collecting terms yields

mct = µwt +

[
σ +

(ϕ+ α)

(1− α)

]
yt −

[
(1 + ϕ)

(1− α)

]
at − log(1− α),

Likewise, in steady state it holds that

mc = µw +

[
σ +

(ϕ+ α)

(1− α)

]
ynt −

[
(1 + ϕ)

(1− α)

]
at − log(1− α),

where ynt is the natural level of output, i.e., the level in absence of nominal rigidities under a
constant price and wage markup.

A.6. Flexible Price Equilibrium

The profit maximization problem of a monopolistically competitive firm i facing given
aggregate price, wage, and constant wage markup can be solved by the Lagrangian

L(·, i) = P ∗t (i)Yt(i)−MwWtNt(i)− λF1,t
[
Yt(i)− AtNt(i)

1−α]
− λF2,t

[
Yt(i)−

(
P ∗t (i)

Pt

)−ε
Yt

]
,

where λF1,t and λF2,t are the Lagrange multipliers and Mw is the constant aggregate wage
markup. This yields the first-order necessary conditions

∂L(·, i)
∂P ∗t (i)

!
= 0 ⇔ Yt(i)− λF2,t

[
−(−ε)

(
P ∗t (i)

Pt

)−ε−1
1

Pt
Yt

]
!

= 0, (A.6.1)

∂L(·, i)
∂P ∗t (i)

!
= 0 ⇔ Yt(i)− λF1,t − λF2,t

!
= 0,

∂L(·, i)
∂Nt(i)

!
= 0 ⇔ −MwWt − λF1,t

[
−At(1− α)Nt(i)

−α] !
= 0. (A.6.2)

Conditions (A.6.1) to (A.6.2) can be summarized by

Wt

Pt
= (MMw)−1 (1− α)AtN

α
t , (A.6.3)

where we also impose symmetry among the firms and we defined M−1 ≡ (ε − 1)/ε as the
constant markup over the price of consumption goods. A linear approximation to (A.6.3) is

(wt − pt) = at − αnt.
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Imposing goods market clearing (16) and labor market clearing (19) yields the natural level
of output

ynt =

[
(1 + ϕ)

[σ(1− α) + (α + ϕ)]

]
at = ψnyaat.

B. RISK SHARING

In this section, we closely follow Ljungqvist and Sargent (2012, ch.8.8, p.268ff.) and
consider sequential-trading of Arrow (1964) securities. The household’s problem is to choose
Ct(i, s

t), Nt(i, s
t), Bt(i), and {At+1(i, st+1, s

t)}, where the latter is a vector of claims on time
t+1 units of the numeraire, i.e., currency. Hereby st = [s0, s1, ..., st] is the history of realized
states and potential realizations in period t + 1 are denoted by st+1 ∈ S. Furthermore,
qt(st+1|st) is the price of one unit of the numeraire in t + 1, contingent on history st the
realization of state st+1. πt(i, st) is the unconditional subjective probability which agent i
assumes for the realization of history st.

The problem can be solved by the Lagrangian

L(·, i) =
∞∑
t=0

∑
st

{
βtU(Ct(i, s

t), Nt(i, s
t))πt(i, s

t)

+λHt (i, st)

(
Wt

Pt
Nt(i, s

t)− Tt
Pt

+
At(i, st)
Pt

+
Bt−1(i)

Pt

−Ct(i, st)−
∑
st+1

qt(st+1|st)
At+1(i, st+1, s

t)

Pt
−Rt

Bt(i)

Pt

)}
.

The first-order conditions with respect to Ct(i, st), Nt(i, s
t), Bt(i), and At+1(i, st+1, s

t) are
given by

βtUC,t(i, s
t)πt(i, s

t)− λHt (i, st) = 0, or

βt+1UC,t+1(i, st+1)πt+1(i, st+1)− λHt+1(i, st+1) = 0, (B.1)

βtUN,t(i, s
t)πt(i, s

t) + λHt (i, st)
Wt

Pt
= 0, (B.2)

λHt (i, st)[−RtP
−1
t ] + λHt+1(i, st+1)[P−1

t+1(st+1)] = 0, (B.3)

λHt (i, st)[−qt(st+1|st)P−1
t ] + λHt+1(i, st+1)[P−1

t+1(st+1)] = 0, (B.4)

which have to hold ∀t, st, and st+1 ∈ S.

Next, define the subjective probability of agent i for the realization of state st+1 condi-
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tional on the realized history st as πt(i, st+1|st) ≡ πt+1(i, st+1)/πt(i, s
t) and combine (B.4)

and (B.1) to derive

qt(st+1|st) = β

(
UC,t+1(i, st+1)

UC,t(i, st)

)(
Pt+1(st+1)

Pt

)−1

πt(i, st+1|st). (B.5)

Defining Qt(i, st+1|st) ≡ qt(st+1|st)/πt(i, st+1|st) and summing over all potential states leads
to

∑
st+1

qt(st+1|st) =
∑
st+1

β

(
UC,t+1(i, st+1)

UC,t(i, st)

)(
Pt+1(st+1)

Pt

)−1

πt(i, st+1|st)

∑
st+1

πt(i, st+1|st)Qt(i, st+1|st) =
∑
st+1

β

(
UC,t+1(i, st+1)

UC,t(i, st)

)(
Pt+1(st+1)

Pt

)−1

πt(i, st+1|st).

Ei
{
Qt(st+1|st)|st

}
= Ei

{
β

(
UC,t+1(i, st+1)

UC,t(i, st)

)(
Pt+1(st+1)

Pt

)−1

|st
}
.

For notational convenience, we define

Ei
t

{
Qt|t+1

}
≡ Ei

{
Qt(st+1|st)|st

}
Ei
t

{
β

(
UC,t+1(i)

UC,t(i)

)(
Pt+1

Pt

)−1
}
≡ Ei

{
β

(
UC,t+1(i, st+1)

UC,t(i, st)

)(
Pt+1(st+1)

Pt

)−1

|st
}
.

Thus, we can derive a general Euler condition

Ei
t

{
Qt|t+1

}
= Ei

t

{
β

(
UC,t+1(i)

UC,t(i)

)(
Pt+1

Pt

)−1
}
.

Furthermore, (B.1) and (B.2) imply

−UC,t(i, s
t)

UN,t(i, st)
=
Wt

Pt
,

and from (B.3) and (B.4) it follows that

λHt (i, st)P−1
t Rt = λHt+1(i, st+1)P−1

t+1(st+1),

λHt (i, st)P−1
t qt(st+1|st) = λHt+1(i, st+1)P−1

t+1(st+1),∑
st+1

Rt =
∑
st+1

qt(st+1|st)−1.

Rt = Ei
t

{
Qt|t+1

}
.
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Next, for two agents i 6= j equation (B.5) implies

UC,t(i, s
t)

UC,t(j, st)
=
UC,t+1(i, st+1)πt(i, st+1|st)
UC,t+1(j, st+1)πt(j, st+1|st)

(B.6)

∀t, st, st+1 ∈ S.

Under the REH, it holds that subjective and objective probabilities coincide, i.e., πt(i, st+1|st) =

πt(j, st+1|st) = πt(st+1|st) and iterating backwards yields

UC,t(i, s
t)

UC,t(j, st)
=
UC,0(i, s0)

UC,0(j, s0)
.

It follows, that, if initial wealth is the same for all agents and s0 is observed, i.e., π0(s0) = 1,
we have C0(i) = C0(j) = C0, which in turn implies that Ct(i) = Ct(j) = Ct,∀t. This
result means that all agents can plan current and future consumption optimally across time
and state by fully insuring themselves via trading state-contingent claims, i.e., perfect risk-
sharing.

However, in the present paper subjective probabilities differ among types of agents, i.e.,
πt(i, st+1|st) 6= πt(j, st+1|st), thus the general (B.6) holds ∀t, st, st+1 ∈ S. Summing over all
st+1 ∈ S results in

∑
st+1

πt(i, st+1|st)UC,t+1(i, st+1) =
UC,t(i, s

t)

UC,t(j, st)

∑
st+1

πt(j, st+1|st)UC,t+1(j, st+1).

The latter implies that

Ei
t {UC,t+1(i)}

Ej
t {UC,t+1(j)}

=
UC,t(i, s

t)

UC,t(j, st)
.

Thus, given a complete market for state-contingent claims, there is imperfect risk-sharing
due to heterogeneity in expectations.

C. THE OPTIMAL MONETARY POLICY PROBLEM

The Lagrangian of this problem is given by

L(·) =Et

{
∞∑
s=0

βs
[

1

2

(
π2
t+s + ωxx

2
t+s

)
+ κ2|t+s

[
πt+s − βχπt+s+1 − β(1− χ)θ2πt+s−1 − λxt+s − ut+s

]]}
.
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The related first-order necessary conditions are given by

∂L(·)
∂πt+s

!
= 0 ⇔ Et

{
βs
[
πt+s + κ2|t+s

]
+ βs−1

[
κ2|t+s−1[−βχ]

]
+ βs+1

[
κ2|t+s+1[−β(1− χ)θ2]

]} !
= 0

(C.1)
∂L(·)
∂xt+s

!
= 0 ⇔ Et

{
βs
[
ωxxt+s + κ2|t+s[−λ]

]} !
= 0, (C.2)

for each date s ≥ 0 and initial conditions κ2|−1 = 0, given that the central bank employs a
commitment to its optimality conditions from a timeless perspective to overcome the problem
of time-inconsistency. We can equivalently express (C.1) to (C.2) as

Etκ2|t+s =− Etπt+s + χEtκ2|t+s−1 + β2(1− χ)θ2Etκ2|t+s+1

0 =− ωxEtxt+s + λEtκ2|t+s,

which corresponds to (30) and (31) in the paper. Notice that (30) follows from setting
Etκ2|t+s−1 to zero. In our set-up this is equivalent to choosing the loss-minimizing policy at
a generic time t, where the central bank accounts for the equilibrium response of endogenous
variables in period t+ 1 under the optimal policy.

In order to examine the consequences of optimal monetary policy design under discretion,
one can iterate (30) forward and obtains

κ2|t =−
S∑
s=0

[
β2(1− χ)θ2

]s
Etπt+s +

[
β2(1− χ)θ2

]S+1
Etκ2|t+S+1.

Using (31) and considering the limit of S → ∞ and assuming |β2(1 − χ)θ2| < 1, which is
true for 0 < θ ≤ 1, but not necessarily true for θ ≥ 1, one obtains

ωx
λ
xt =−

∞∑
s=0

[
β2(1− χ)θ2

]s
Etπt+s

ωx
λ
xt =− πt −

∞∑
s=1

[
β2(1− χ)θ2

]s
Etπt+s. (C.3)

Then from (33) follows

∞∑
s=1

Etπt+s =
∞∑
s=1

Ωs
2,2πt +

s∑
τ=1

Ωs−τ
2,2 Λ2,2ρ

τ
uut =

∞∑
s=1

Ωs
2,2πt +

ρu
(
ρsu − Ωs

2,2

)
(ρu − Ω2,2)

Λ2,2ut,
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and in consequence, we can write (C.3) as

ωx
λ
xt = −πt −

∞∑
s=1

[
β2(1− χ)θ2

]s [
Ωs

2,2πt +
ρu
(
ρsu − Ωs

2,2

)
(ρu − Ω2,2)

Λ2,2ut

]
ωx
λ
xt = −

[
[1− β2(1− χ)θ2ρu] πt + β2(1− χ)θ2Λ2,2ρuut

[1− β2(1− χ)θ2ρu] [1− β2(1− χ)θ2Ω2,2]

]
⇔ xt =− λ

ωx

[
[1− β2(1− χ)θ2ρu] πt + β2(1− χ)θ2Λ2,2ρuut

[1− β2(1− χ)θ2ρu] [1− β2(1− χ)θ2Ω2,2]

]
. (C.4)

Assume that ut is serially uncorrelated, i.e., ρu = 0. Then (C.4) collapses to (34).

D. MODEL SOLUTION AND LONG-RUN VARIANCE

Combining (27) and (28) yields[
yt

zt

]
=

[
Ω ΛR

0 R

][
yt−1

zt−1

]
+

[
Λ

I

]
εt.

More compact this is

Yt = GYt−1 + Kεt

where G is (m+n)× (m+n), and K is (m+n)×n. Finally, in the long-run we assume that
Var(Yt) = E[YtY

′
t] ≡ Ξ and Var(εt) = E[εtε

′
t] ≡ Σ ∀t. Moreover Ξ is (m + n) × (m + n)

and Σ is n× n. It follows that

Ξ = GΞG′ + KΣK′

vec (Ξ) = [I− (G⊗G)]−1 vec (KΣK′) , (D.1)

where vec (Ξ) is (m + n)2 × (m + n)2. The long-run variances for the variables of interest
can then be found in the respective entry in this vector (D.1).
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