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Abstract. A major challenge for proxy vector autoregressive analysis is the
construction of a suitable external instrument variable or proxy for identi-
fying a shock of interest. Some authors construct sophisticated proxies that
account for the dating and size of the shock while other authors consider
simpler versions that use only the dating and signs of particular shocks. It
is shown that such qualitative (sign-)proxies can lead to impulse response
estimates of the impact effects of the shock of interest that are nearly as ef-
ficient as or even more efficient than estimators based on more sophisticated
quantitative proxies that also reflect the size of the shock. Moreover, the
sign-proxies tend to provide more precise impulse response estimates than
an approach based merely on the higher volatility of the shocks of interest
on event dates.
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1 Introduction

In structural vector autoregressive (VAR) analysis, external information in
the form of instrumental variables is often used to identify the shocks of
interest. The external information is sometimes only available in qualitative
form. The goal of this study is to investigate the possible loss in estimation
efficiency for the structural parameters due to having only qualitative rather
than quantitative information.

Proxy VAR analysis has become quite popular lately, mainly as it does
not require economically problematic timing or exclusion restrictions on the
behavior of variables and the resulting impulse responses are often more in
line with economic theory than responses stemming from timing restrictions.
In proxy VAR models, all variables are free to respond simultaneously to all
structural shocks (e.g., Stock and Watson (2012), Mertens and Ravn (2013)
Gertler and Karadi (2015), Kilian and Lütkepohl (2017, Chapter 15)). How-
ever, the construction of a suitable proxy may be a main challenge because
it requires additional information from sources external to the model.

Given the difficulties in constructing suitable quantitative instruments,
proxies considered in this context sometimes use only qualitative information
on the shock of interest. For example, Budnik and Rünstler (2020) construct
a qualitative proxy for macroprudential policy shocks that takes on positive
or negative values in periods where a change in capital requirements has
occurred, depending on the sign of the corresponding shock, and it is zero
in periods with no known policy shocks. Likewise, the Romer and Romer
(1989) dummy is an indicator for monetary policy shocks that has been used
as an instrument variable in an early proxy VAR study by Beaudry and
Saito (1998). More generally, Plagborg-Møller and Wolf (2021, Appendix
B.3) point out that narrative sign restrictions of the type considered in the
literature can be used to construct instrument variables for proxy VARs
that assume values ±1 if a positive or negative shock occurs at the dates of
special events, respectively, and that are zero otherwise. All that is needed
to construct this type of sign-proxy is knowledge of the dates of the special
events and the signs of the possible shocks that may have occurred at the
event dates. Such knowledge is available for a number of shocks that have
been used in structural VAR analysis. For example, some crises in the Middle
East are known to have caused disruptions in oil supply. Such information
can be employed to construct a sign-proxy for identifying oil supply shocks.
Likewise, there are a number of events such as the 9/11 attacks on the US
that have caused increases in economic uncertainty and could be used for
constructing a sign-proxy to identify uncertainty shocks (see also Carriero
et al. (2015) for a related proposal).
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In this study, we compare the estimation precision of impulse responses
based on quantitative versus sign-proxies in a frequentist setting.2 Through
simulation, we show that, in terms of root mean squared error (RMSE),
sign-proxies may yield more precise estimates of the impact effects of the
structural shocks of interest than conventional, more sophisticated quanti-
tative proxies that are not strongly correlated with the shock of interest.
Moreover, sign-proxies may yield confidence intervals for impulse responses
which have a coverage and width of similar size as quantitative proxies.

If the dates of specific events for the emission of shocks are known but the
size and the sign of the shocks is unknown, Wright (2012) proposes to utilize
potential changes of the volatility of the shocks on event dates for identifying
and estimating the impact effects of the shock. For example, a monetary
policy shock may be more volatile at dates of central bank council meetings.
Using the additional moment conditions obtained from the heteroskedasticity
for estimation, only the dates of the specific events must be known and
there is no need to construct a proper instrument variable associated with
the specific events. As a drawback, the approach requires more restrictive
assumptions for the variances of the structural shocks than the proxy VAR
approach, which we discuss in Section 2. We also compare the estimates of the
Wright approach to the proxy VAR and sign-proxy estimates for the impact
effects of the shock of interest. The Wright estimates turn out to be less
efficient in terms of RMSE than estimators based on quantitative proxies or
sign-proxies. Moreover, the approach tends to yield wider confidence intervals
for impulse responses than its competitors.

In Wright’s approach and in the standard proxy VAR approach, the im-
pact effects of the shock of interest and, hence, its impulse responses are
typically estimated by the generalized method of moments (GMM). As us-
ing more moment conditions may lead to more efficient GMM estimators
and since the proxy VAR approach and the heteroskedasticity approach for
estimating the impact effects of the shock of interest use different sets of mo-
ment conditions, one may conjecture that combining the moment conditions
may lead to efficiency gains in estimating the impact effects of the shock.
Therefore we also consider this combination approach. It turns out, how-
ever, that in the present situation, the combination approach does not lead
to uniform improvements of estimation efficiency for the impulse responses.
We use a model from Wright (2012) to illustrate the alternative approaches
in the context of an empirical example.

The remainder of the paper is structured as follows. In the next section,

2Budnik and Rünstler (2020) report related work that compares standard proxies with
sign-proxies (sparse narrative instruments in their terminology) in a Bayesian setting.
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the general model setup is presented and the different estimators of the im-
pulse responses are discussed. In Section 3, a Monte Carlo experiment is
conducted to compare the small sample performance of the estimators. In
Section 4, an illustrative example based on a model due to Wright (2012)
is presented. Conclusions and extensions are discussed in the final section.
Additional simulation results as well as more details on the computational
methods used are available in an Online Appendix which accompanies this
article.

2 The Structural VAR Setup

A K-dimensional reduced-form VAR model

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut (1)

is considered, where ut is a zero mean, serially uncorrelated white noise pro-
cess which may be heteroskedastic. A sample yt, t ∈ T = {1, . . . , T}, and all
required presample values are assumed to be available for inference.

The structural errors, wt = (w1t, . . . , wKt)
′, are obtained from the reduced-

form errors by a linear transformation wt = B−1ut or ut = Bwt such that
the structural matrix B represents the impact effects of the structural shocks
on the variables yt. The structural errors are assumed to be instantaneously
uncorrelated, i.e., wt has a diagonal covariance matrix.

Denoting by bi the ith column of B, i.e., B = [b1, . . . ,bK ], the vector bi

contains the impact effects of the ith structural shock. As the ordering of the
observed variables and the shocks can be changed arbitrarily, it is assumed
that, without loss of generality, the first structural shock, w1t, is the shock
of specific interest and it is normalized such that it has a unit impact effect
on the first variable. This assumption is just a normalization and does not
entail a loss of generality if the impact effect of the first shock on the first
variable is nonzero.

If b1 and the reduced-form VAR parameters from equation (1) are known,
the responses of the variables yt to the first structural shock can be traced
over time using the relations

θh = Φhb1, h = 1, 2, . . . ,

where θh is a (K × 1) vector of structural impulse responses for propagation
horizon h and Φi =

∑i
j=1 Φi−jAj can be obtained recursively for h = 0, 1, . . . ,

from the VAR slope coefficients starting with Φ0 = IK and defining Aj = 0 for
j > p (Lütkepohl, 2005, Section 2.1.2). Because estimation of the reduced-
form VAR model in expression (1) and, hence, of the estimation of the Φi is

3



straightforward, the focus of interest in the following is precise estimation of
the structural parameters b1. Denoting the last K − 1 elements of b1 by b12

such that b′
1 = (1,b′

12), we focus on estimators of b12 in the following.

2.1 The Proxy VAR Approach

The proxy VAR approach assumes that a suitable instrument is available
that can be used for estimating b12. Suppose there is a proxy variable zt
satisfying

E(w1tzt) = c 6= 0 (relevance), (2)

E(wktzt) = 0, k = 2, . . . , K (exogeneity). (3)

In that case, a multiple of b1 can be estimated by using zt as an instrument
and observing that E(utzt) = cb1. This setup assumes, however, that the
covariance E(utzt) is time-invariant. In particular, it is not affected by het-
eroskedasticity of ut. If E(utzt) is time-invariant, the relations in (2) and (3)
provide moment conditions for estimating a multiple of b1. An estimator for
b1 may then be obtained by dividing all elements of the estimator of cb1 by
the first element.

More precisely, a GMM estimator is obtained by estimating the reduced-
form VAR in expression (1) by equation-wise ordinary least squares (OLS) or
some other suitable estimation method and using the proxy VAR estimator

b̂P
12 =

(∑T
t=1 û2tzt∑T
t=1 û1tzt

, . . . ,

∑T
t=1 ûKtzt∑T
t=1 û1tzt

)′

(4)

for b12. Here the ût = (û1t, . . . , ûKt)
′ are the estimated reduced-form errors.

The instrument may be suggested by the subject matter. For exam-
ple, Piffer and Podstawski (2018) use changes in the price of gold to con-
struct an instrument for uncertainty shocks and Cesa-Bianchi, Thwaites and
Vicondoa (2020) construct a time series of intra-day price variation of the
3-month Sterling future contracts around policy decisions of the Monetary
Policy Committee of the Bank of England as a proxy for monetary policy
shocks.

Note that this approach is also typically used in the proxy VAR literature
if the data exhibit changes in volatility (see, e.g., Mertens and Ravn (2013),
Piffer and Podstawski (2018), Cesa-Bianchi et al. (2020), Dias and Duarte
(2019), Gertler and Karadi (2015), Alessi and Kerssenfischer (2019)). In
that case, heteroskedasticity robust methods are often used for inference.
This approach implicitly implies that heteroskedasticity does not affect the
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covariance between the proxy and the reduced-form residuals, as pointed out
by Lütkepohl and Schlaak (2020), where also further discussion of the issue
can be found. We also make this assumption here whenever heteroskedastic
reduced-form errors are considered.

Finding a good proxy that satisfies conditions (2) and (3) for a shock
of interest is not always easy. This problem is reflected in the fact that,
in some studies, the instrument is only available for a shorter period than
the sample period of the other variables in the model (see, e.g., Gertler and
Karadi (2015)). In many cases proxies are constructed by considering only
certain dates of announcements or special events, where specific shocks were
transmitted. Suppose there are M event dates T1 = {ta1 , . . . , taM}, then one
may construct a simple dummy variable

st =

{
sgn(w1t) · 1 for t ∈ T1,

0 for t /∈ T1,
(5)

where sgn(·) denotes the sign function which assigns the sign of its argument.
Thus, st assumes a value of +1 or −1 depending on whether the special event
induces a positive or negative shock. In periods without known special events,
st = 0.3 Note that, if the shocks w1t, . . . , wKt are stochastically independent,
e.g., if they are Gaussian as sometimes assumed in the literature, st will also
be independent of w2t, . . . , wKt (see, e.g., Mood, Graybill and Boes (1974, p.
151, Theorem 3)). Hence, st qualifies as a proxy (see also the discussion of
such proxies in Plagborg-Møller and Wolf (2021, Appendix B.3)).

Constructing the sign-proxy, st, in this way assumes that the investigator
at least knows whether a positive or negative shock was induced in a specific
period. It may actually not always be clear which shocks are positive and
which ones are negative because the sign of a shock is typically linked to
some economic variable. For example, a positive (expansionary) monetary
policy shock is often associated with a reduction in the policy interest rate.
However, this indicator for monetary policy shocks is not available in times
of zero interest rates. For those periods, some other indicator is needed
to determine whether a policy shock is positive or negative. For example,
expansions in bond purchases may be linked to expansionary monetary policy
shocks. Of course, the sign of the shock may be inferred from a set of
variables. The important precondition for constructing the sign-proxy st

3For a coherent stochastic framework one may model the event dates as being generated
by i.i.d. Bernoulli random variables Dt which are independent of w1t and for which the
probability P(Dt = 1) = d and P(Dt = 0) = 1− d, i.e., Dt ∼ B(d) with 0 < d ≤ 1. Then
the sign-proxy can be represented as st = sgn(w1t)Dt. In our exposition we condition on
a specific realization of event dates because the event dates are typically given in practice.
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is that the researcher knows the date and the sign of the structural shock on
specific event dates.

It is also important to note that the signs of some proxy zt and a sign-
proxy st for the same shock may differ. As both proxies are correlated with
the first structural shock, w1t, zt and st will also be correlated with each
other. This does not mean, however, that they always share the same sign.

Actually, constructing the dummy with reverse signs makes no difference
for our purposes. We may define

st =

{
−sgn(w1t) · 1 for t ∈ T1,

0 for t /∈ T1,

instead of using the st defined in expression (5). The crucial property of st
is that it has to be correlated with w1t. Whether or not the correlation is
positive or negative is not important for its usefulness as an instrument.

In fact, we also consider the situation where a researcher does not know
the sign of the shock for some event dates for sure and, hence, may occa-
sionally assign signs incorrectly. We denote by s

(m)
t a sign-proxy for which m

signs are classified incorrectly during the sample period. Clearly, misspecify-
ing some signs may undermine the correlation between the shock of interest
and the sign-proxy and, hence, it may weaken the proxy as an instrument for
the shock. An alternative strategy would be to drop all event dates where
the sign of the shock is uncertain. In other words, the sign-proxy may only
assume nonzero values for a subset of T1. In the following, we denote the
sign-proxy by s

(−)
t if 10% of the event dates are dropped.

The sign-proxy in (5) is clearly related to the specific shocks induced by
the special events and, thus, can be used just like a regular proxy to estimate
the impact effects of the first shock, w1t. Hence, the associated sign-proxy
estimator is

b̂SP
12 =

(∑T
t=1 û2tst∑T
t=1 û1tst

, . . . ,

∑T
t=1 ûKtst∑T
t=1 û1tst

)′

. (6)

If st is replaced by s
(m)
t or s

(−)
t , the corresponding estimator is denoted by

b̂
SP (m)
12 or b̂

SP (−)
12 , respectively.

2.2 Wright’s Heteroskedasticity Approach

Wright (2012) proposes another approach to estimate the impact effects of
the shock of interest based on the potential change in volatility on event
dates. His approach has the advantage that just the dates of special events or
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announcements have to be known. No proxy variable has to be constructed
for the event dates. Wright assumes that there are two volatility regimes
associated with covariance matrices Σ0 and Σ1. The matrix Σ0 is the usual
covariance and it changes to Σ1 during the M event periods, i.e., when t ∈
T1 = {ta1 , . . . , taM}. In other words, E(utu

′
t) = Σ0 for t /∈ T1 and E(utu

′
t) = Σ1

for t ∈ T1.
Recall that the first structural shock, w1t, is the shock of specific interest

and it is normalized such that it has a unit impact effect on the first variable.
We now assume in addition that the other shocks, w2t, . . . , wKt, are normal-
ized such that they have unit variances. Then it is easy to see that wt is a
white noise process with zero mean and covariance matrix

Σw
0 =

[
σ2
0 0
0 IK−1

]
for t ∈ T \T1 and Σw

1 =

[
σ2
1 0
0 IK−1

]
for t ∈ T1. (7)

Note that this setup, where only the variance of the first structural shock
changes, is not very common in the structural VAR literature. It is, however,
the basis for Wright’s heteroskedasticity approach to work. In contrast, the
proxy VAR approach works under more general assumptions. Specifically, it
also works for homoskedastic shocks and for more general heteroskedsticity.

Denoting by bi the ith column of B, as before, the relation ut = Bwt =∑K
k=1 bkwkt implies, under the present assumptions, that

Σ0 = σ2
0b1b

′
1 +

K∑

k=2

bkb
′
k and Σ1 = σ2

1b1b
′
1 +

K∑

k=2

bkb
′
k.

Hence,

Σ1 − Σ0 = cWb1b
′
1, (8)

where cW = σ2
1 − σ2

0.
Wright (2012) suggests using the moment conditions related to the vari-

ance change in (8) for GMM estimation. More precisely, he proposes to
minimize a GMM objective function analogous to

JW (b12, cW ) =

vech(Σ̂1 − Σ̂0 − cWb1b
′
1)

′

(
Ω̂0

T −M
+

Ω̂1

M

)−1

vech(Σ̂1 − Σ̂0 − cWb1b
′
1),

with respect to the last K − 1 elements of b1 and cW . Here

Ω̂0 =
1

T −M

∑

t∈T \T1

vech
(
ûtû

′
t − ûû′

)
vech

(
ûtû

′
t − ûû′

)′

7



and

Ω̂1 =
1

M

∑

t∈T1

vech
(
ûtû

′
t − ûû′

)
vech

(
ûtû

′
t − ûû′

)′
.

The resulting estimator of b12 is denoted by b̂W
12 .

It is important to note that, although the moment conditions in equation
(8) and in (2)/(3) both specify a multiple of b1, they may not specify the
same multiple of b1. In other words, c and cW may be distinct.

2.3 Joint GMM

As more moment conditions may improve the efficiency of GMM estimators,
it may make sense to consider the joint moment conditions

m(b12, c, cW ) =

[
E(utzt)− cb1

vech(Σ1 − Σ0 − cWb1b
′
1)

]
= 0

or to consider these moments relying on the sign-proxy, provided, of course,
that the conditions underlying Wright’s approach are satisfied and assuming
that the proxy satisfies the conditions for heteroskedastic models. Under
these conditions, using

ûz =
1

T

T∑

t=1

ûtzt and ûs =
1

T

T∑

t=1

ûtst

as estimators of E(utzt) and E(utst), respectively, the GMM estimator is
obtained by minimizing the objective function

Jgen(b12, c, cW ) = m̂(b12, c, cW )′Ω̂−1
m m̂(b12, c, cW ),

where Ω̂m is a suitable weighting matrix. For example, for the proxy zt, using
a block-diagonal weighting matrix, a GMM objective function

J(b12, c, cW ) = T
(
ûz − cb1

)′
Ω̂−1

uz

(
ûz − cb1

)
+ JW (b12, cW ), (9)

may be considered, where

Ω̂uz =
1

T

T∑

t=1

(
ûtzt − ûz

) (
ûtzt − ûz

)′
.

Equivalently, one could minimize the objective function Jgen(b12, c, cW ) with
weighting matrix

Ω̂m =

[
Ω̂uz

T
0

0 Ω̂0

T−M
+ Ω̂1

M

]
.
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The resulting estimator is denoted by b̂WP
12 . Likewise, if the proxy zt is

replaced by the sign-proxy st, the corresponding estimator is denoted by
b̂WSP
12 .

In the next section, the estimators b̂P
12, b̂

SP
12 , b̂

SP (−)
12 , b̂

SP (m)
12 , b̂W

12 , b̂
WP
12 ,

and b̂WSP
12 of the impact effects of the first structural shock are compared in

a simulation study.

3 Monte Carlo Investigation of Estimator Ef-

ficiency

As we suspect that the sample size, the lag order and dimension of the
VAR process as well as the strength of the proxy and/or the difference in
the variances on event dates and non-event dates may have an impact on
the small sample properties of the different estimators, we have looked at
different data generating processes (DGPs), proxies and event dates to study
the small sample properties of the estimators. It turned out that alternative
DGPs yielded qualitatively similar results. Therefore we focus on the results
obtained for a specific DGP first and then we summarize various other results
at the end of this section.

3.1 Monte Carlo Design for DGP1

We focus on representative results for a DGP that is based on the empirical
example of Wright (2012). The model is a 6-dimensional VAR(1) process.
The precise parameter values are given in the Online Appendix, Section A.2.
The eigenvalues of the coefficient matrix have a maximum modulus of 0.994
and, hence, the DGP is stable but very persistent with several autoregressive
roots very close to the unit circle. We refer to this DGP as DGP1 and use
samples of different sizes generated with this VAR(1) DGP. VAR processes
with the true lag order p = 1 are fitted in all simulations for DGP1.

The impact effects matrix B is constructed using the Cholesky decomposi-
tion of the estimated residual covariance matrix, T−1

∑T
t=1 ûtû

′
t, and dividing

all elements by the upper left-hand element such that the first column of B
has a first element equal to one, as assumed in Section 2.

Wright (2012, Table 5) also constructs an instrument zt for a monetary
policy shock related toM = 28 event days. He uses the first principal compo-
nent of a set of bond futures traded at the Chicago Mercantile Exchange on
the announcement days and constructs a proxy for monetary policy shocks
on that basis. We construct our proxy such that it has similar properties
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using

zt =

{
w1t + vt for t ∈ T1,

0 for t /∈ T1,
(10)

where vt is a measurement error that is assumed to be independent of w1t.
This type of proxy is also assumed in other proxy VAR studies (e.g., Caldara
and Herbst (2019), Lütkepohl and Schlaak (2020)).

Note that the correlation between the proxy and the first structural shock,
corr(zt, w1t) = σ1/

√
σ2
1 + σ2

v for t ∈ T1, depends on the variance σ2
v of vt. The

implied correlation for the full sample also depends on the fraction of event
dates in the sample. More precisely, corr(zt, w1t) =

√
M/Tσ1/

√
σ2
1 + σ2

v for
t ∈ T .4 Hence, the strength of the instrument will depend on σ2

v , M and
T . In the simulations, we use Gaussian vt, i.e., vt ∼ N (0, σ2

v), and choose
values for σ2

v such that the correlation between zt and w1t is either 0.9 or 0.7
on event dates, t ∈ T1.

5 The former value represents high correlation and is
chosen to obtain a strong instrument while the second value of 0.7 results in
a weaker instrument, as we will see in the simulations where also tests for
strong instruments are reported. Values for T and M used in the simulations
are such that

√
M/T ranges from 0.2 to 0.45. Hence, for a correlation of 0.7

on T1, we get correlations between 0.14 to 0.315 for the full sample. Such
values are rather low and allow us to see the implications of using a weak
instrument. The higher correlation of 0.9 on T1 corresponds to the correlation
obtained for the benchmark study discussed in Section 4 (see Table 5).

As we suspect that the performance of the different estimators depends
to some extent on the difference between the variances in the two regimes (σ2

0

and σ2
1), we vary σ2

1 in constructing our proxy. More precisely, we construct
the first shock as

w1t =

{
N (0, σ2

1) for t ∈ T1,
N (0, σ2

0) for t ∈ T \ T1,
(11)

where we set σ2
0 = 1 and assign either the value 4 or the value 10 to σ2

1.
Thus, the standard deviations in the more volatile regimes are 2 and 3.16. In
other words, on event dates the shocks are either twice or about three times
as volatile as in other periods. The values of σ2

1 are in the range of what

4The correlation is obtained by considering Bernoulli random variables Dt with prob-
abilities P(Dt = 1) = M/T and P(Dt = 0) = 1 − M/T and evaluating the correlation
between Dtzt and w1t under the assumption that zt and Dt are stochastically indepen-
dent.

5Specifically, we use σ2

v = 1 and 2 for σ2

1
= 4 and 10, respectively, resulting in a

correlation of about 0.9 and we use σ2

v = 4 and 10 for σ2

1
= 4 and 10, respectively, which

yields a correlation of about 0.7.
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we estimated from the data for our benchmark study. More precisely, upon
appropriately scaling the process such that σ2

0 = 1, we get a value of σ2
1 = 6.68

which is in the range of the values we are using in the simulations. The other
shocks are simulated as standard normal, i.e., (w2t, . . . , wKt) ∼ N (0, IK−1).

The instruments zt and st are constructed based on w1t as in (10) and
(5), respectively. For st we also allow for the possibility that some shocks
are classified incorrectly as positive or negative. As mentioned earlier, we
denote the corresponding estimator by b̂

SP (m)
12 , where m signifies the number

of incorrect sign assignments used for the sign-proxy.
We use different numbers of event dates, M , for different sample sizes T .

The precise values of M are given in the tables with simulation results. The
event dates are chosen randomly.6

In addition, we consider the possibility that, for some event dates, the sign
of the shock is unknown and therefore the corresponding date is not treated
as an event date. In that case an incorrect zero is assigned to the sign-proxy.
In our simulations we consider the possibility that (roughly) 10% of the event

dates are ignored and denote the corresponding estimator by b̂
SP (−)
12 .

The performance criteria for comparing different estimators are linked to
the last K−1 elements of b1, i.e., to b12. We consider the root mean squared
errors (RMSEs) of the estimators for these elements relative to the RMSE

of b̂P
12. To compute the relative RMSE of an estimator such as b̂SP

12 , we

divide the RMSE of each element of b̂SP
12 by the RMSE of the corresponding

element of b̂P
12 and then add these relative RMSEs to get the relative RMSE

of the whole estimated vector b̂SP
12 . Thereby we control for differences in the

RMSEs of the individual elements of a vector. For each simulation design,
the experiment is repeated 5,000 times.

As impulse response analysis is a standard tool in structural VAR studies,
we also compare coverage rates and interval widths of confidence intervals
for impulse responses implied by the alternative estimators for selected sim-
ulation designs. The confidence intervals are constructed by a moving-block
bootstrap (MBB) as proposed by Jentsch and Lunsford (2019) who show that
it works under general conditions for inference for impulse responses in proxy
VARs. We use a block length of ℓ = 5.03T 1/4 which is the rule of thumb pro-
posed by Jentsch and Lunsford (2019). As DGP1 is very persistent, we use
bias-corrected OLS estimators in the MBB to improve the coverage proper-
ties of the bootstrap intervals in small samples (see Kilian (1998), Kilian and
Lütkepohl (2017, Section 12.3)). Details of our MBB implementation are

6For each repetition of the simulation experiment we reorder the integers 1, . . . , T with
the Matlab function randperm(.) and choose the first M values of the reordered integers
for the set of event dates, T1.
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provided in the Online Appendix. In our simulations involving bootstraps,
we use 1000 bootstrap replications and 1000 Monte Carlo replications.

3.2 Simulation Results for DGP1

Before looking at the relative RMSEs of the estimators, it may be worth
assessing the strengths of the different instruments. This should give a first
indication concerning the suitability of the different estimators for empirical
exercises.

3.2.1 Instrument Strength

We report the relative frequencies of heteroskedasticity-robust F -statistics
for weak instruments being smaller than 10 in our simulations (see Stock,
Wright and Yogo (2002) or Kilian and Lütkepohl (2017, Section 15.2.1)).7 A
threshold value of 10 is typically used in the related literature to classify an
instrument as being sufficiently strong. Since our data are heteroskedastic,
we use a robust F -statistic. In Table 1 the relative frequencies of test values
below 10 are reported for the different proxies.

As discussed earlier, the strength of a proxy as an instrument depends
on its correlation with the shock of interest. Therefore, it is not surprising
that z

(.9)
t , which denotes the instrument having correlation 0.9 with the first

shock on event dates, produces F -values less frequently below 10 than the
corresponding instrument z

(.7)
t , which has only correlation 0.7 with the first

shock. It is also not surprising that both proxies tend to yield fewer F -
values below 10 when the number of event dates, M , is greater and when the
variance σ2

1 of the first shock on event dates is larger.
Interestingly, there are fewer F -values below 10 for the sign-proxy, st, than

for the proxy z
(.7)
t in all cases considered in Table 1. Taking into account the

generating mechanism of the proxy variable in equation (10), this outcome
is not implausible because for corr(zt, w1t) = 0.7, the sign of zt differs from
that of w1t for a number of the simulated values, whereas the sign of st is
always the same as that of w1t (see equation (5)) and, hence, st becomes a

stronger instrument than z
(.7)
t . This holds even if st is replaced by s

(−)
t which

is based on 10% fewer event dates than z
(.7)
t . Moreover, st has only slightly

more F -values below 10 than the proxy z
(.9)
t . For M = 25 event dates or

more, or a sample size of T = 500, both z
(.9)
t and st never yield F -values

7The robust F -statistic is the standard heteroskedasticity-robust statistic for testing
the coefficient of zt to be zero in a regression of the first OLS estimated reduced-form
error û1t on a constant and the instrument zt. The statistic corresponds to the effective
F -statistic of Montiel Olea and Pflueger (2013).
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Table 1: Relative Frequencies of Heteroskedasticity-Robust Weak Instrument
F -test Statistics Smaller than 10 (in %)

Proxy variables

Sample size T M σ2
1 z

(.9)
t z

(.7)
t st s

(−)
t s

(1)
t s

(3)
t s

(5)
t

100 20 4 0.1 15.2 0.1 0.3 5.8 56.3 94.0
10 0.0 14.5 0.0 0.1 4.9 54.5 94.0

250 10 4 3.7 37.0 6.1 10.2 62.4 99.7 100.0
10 1.9 36.4 5.4 9.1 61.4 99.8 100.0

25 4 0.0 7.6 0.0 0.0 0.4 19.0 66.0
10 0.0 7.3 0.0 0.0 0.3 17.8 65.3

500 25 4 0.0 7.2 0.0 0.0 0.5 18.1 67.7
10 0.0 7.1 0.0 0.0 0.5 17.7 67.5

50 4 0.0 0.2 0.0 0.0 0.0 0.0 0.0
10 0.0 0.2 0.0 0.0 0.0 0.0 0.0

Note: M denotes the number of event dates, σ2
1 the variance of the structural shock

of interest on event dates, z
(.9)
t a proxy with a theoretical correlation of 0.9 with

the structural shock of interest on event dates, z
(.7)
t a proxy with a theoretical

correlation of 0.7 with the structural shock on event dates, st the sign-proxy,

s
(−)
t a sign-proxy with 10% omitted signs, and s

(m)
t denotes a sign-proxy with m

incorrectly specified signs.

below 10. In other words, in a usual proxy VAR analysis, the sign-proxy
would be classified as a strong instrument more often than the proxy z

(.7)
t

and almost as often as the proxy z
(.9)
t , which is based on quantitative rather

than just qualitative information.
The situation changes if some of the signs are assigned incorrectly, as can

be seen by looking at the frequencies reported for s
(1)
t , s

(3)
t , and s

(5)
t in Table

1. For instance, for T = 250, even the proxy z
(.7)
t produces F -values below

10 in only about 37% of the replications for M = 10 event periods, whereas a
sign-proxy with 3 incorrect signs out of 10, s

(3)
t , results in nearly all F -values

below the threshold of 10. On the other hand, when there are many event
periods with nonzero proxies, the sign-proxy maintains its strong instrument
status even with a few incorrect signs. For example, for T = 250 and M = 25
event dates, s

(3)
t is only classified as a weak instrument by the F -test in fewer

than 20% of the replications of our simulations. Not surprisingly, the sign-
proxy is not a useful instrument if half of the signs are incorrectly specified,
as can be seen by looking at the frequencies associated with s

(5)
t when there

are only M = 10 event periods. In that case, the robust F -statistic is always
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below 10. Comparing the F -test results for st and s
(−)
t shows that reducing

the number of event dates leads to a weaker instrument.
In summary, using standard diagnostics, the sign-proxy may well be clas-

sified as a strong instrument as often as a conventional quantitative proxy
even if the standard proxy has quite high correlation with the shock of inter-
est. If the proxy is not strongly correlated with the shock, then the sign-proxy
clearly dominates under this criterion. Even if some signs are misspecified,
the F -test may classify the sign-proxy as a strong instrument more often
than the standard proxy if there are sufficiently many event dates. Since
the sign-proxy with correctly specified signs typically does not have a weak
instrument problem, we do not consider weak instrument robust methods,
as discussed by Montiel Olea, Stock and Watson (2020), for any of the esti-
mators for better comparability.8

3.2.2 RMSEs

The absolute RMSEs for the two quantitative proxy estimators b̂
P (.9)
12 and

b̂
P (.7)
12 are presented in Table 2, where it can be seen that the estimation

precision declines substantially (the RMSEs increase), especially for sample

sizes T = 100 and 250 if z
(.7)
t is used instead of z

(.9)
t . In fact, some rather

large RMSEs of b̂
P (.7)
12 indicate that this estimator is not reliable for some of

the simulation designs and yields some outlying estimates far away from the
true values (e.g., for T = 250, M = 10, σ2

1 = 4).
Table 3 reports the RMSEs of the different estimators for the impact

effects of the shocks relative to the corresponding RMSEs of the estimator
b̂
P (.9)
12 . Thus, the relative RMSEs in Table 3 refer to a highly correlated

standard proxy, z
(.9)
t , which is rarely classified as a weak instrument by the

F -tests reported in Table 1. Since the quantitative proxy uses the richest
information, we expect it to provide potentially more precise estimates and,
therefore, use it as a benchmark for the other estimators.

Indeed, all of the relative RMSEs presented in Table 3 for more than 10
event dates (M > 10) are larger than 1, meaning that the RMSEs are larger

than the corresponding ones of b̂
P (.9)
12 . However, the sign-proxy estimator b̂SP

12

has relative RMSEs very close to one such that the efficiency loss relative to
the quantitative proxy is limited. Only if there are relatively few event dates
(M = 10) and, hence, even b̂

P (.9)
12 is rather unreliable, the relative RMSE of

8We have also computed F -tests without heteroskedasticity adjustment because they
may be used in practice if heteroskedasticity is not accounted for. The results are shown
in Table A.1 of the Online Appendix and convey a similar picture regarding relative
instrument strength as the F -values underlying Table 1. In general, however, the non-
adjusted F -values are often larger and thus lead to fewer values below 10.
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Table 2: Absolute RMSEs of Proxy Estimators b̂
P (.9)
12 and b̂

P (.7)
12

absolute RMSEs

Sample size T M σ2
1 b̂

P (.9)
12 b̂

P (.7)
12

100 20 4 0.170 0.707
10 0.105 0.224

250 10 4 0.266 3.181
10 0.440 0.839

25 4 0.143 0.200
10 0.089 0.126

500 25 4 0.141 0.192
10 0.087 0.121

50 4 0.097 0.124
10 0.060 0.079

Note: M denotes the number of event dates and σ2
1 is the variance of the

structural shock of interest on event dates. The RMSE is calculated as√
1
R

∑R
r=1(b̂

P (.)
12,r − b12)′(b̂

P (.)
12,r − b12), where R denotes the number of Monte Carlo

replications.

the sign-proxy estimator is even smaller than or equal to one in two cases.
In other words, it happens for cases where the number of event periods is
very small and the quantitative proxy is occasionally classified as a weak
instrument by the F -tests in Table 1.

Looking at the columns of b̂
SP (−)
12 , b̂

SP (1)
12 , b̂

SP (3)
12 , and b̂

SP (5)
12 in Table

3, it is apparent that, if the number of event dates is reduced or some of
the signs are assigned incorrectly, the efficiency of the sign-proxy estimator
deteriorates, although the increase in relative RMSEs is rather moderate in
some cases if 10% of the event dates are omitted or only one sign is incorrect.
However, note that, not surprisingly, the sign-proxy is no longer useful as an
instrument if 50%, or even 30%, of the signs are incorrect (see the RMSEs

for b̂
SP (3)
12 and b̂

SP (5)
12 when M = 10). Additionally, the F -tests in Table 1

indicate that such proxies are not sufficiently strong instruments for proper
inference. In other words, if only a small number of event dates is available
and only for a subset the sign of the shock of interest is known with certainty,
using a sign-proxy is not a good idea.

Looking at the RMSEs of Wright’s heteroskedasticity estimator b̂W
12 , it is

seen that they are usually much worse than those of the estimator based on
the quantitative proxy. In some cases, the RMSE of b̂W

12 is more than twice as

large as that of b̂
P (.9)
12 , except for T = 250, M = 10, σ2

1 = 10, where b̂
P (.9)
12 is

also a rather unreliable estimator. For all other designs reported in Table 3,
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Table 3: RMSEs of Estimators for Impact Effects of the First Shock Relative
to the Corresponding RMSEs of b̂

P (.9)
12

relative RMSEs

T M σ2
1 b̂SP

12 b̂
SP (−)
12 b̂

SP (1)
12 b̂

SP (3)
12 b̂

SP (5)
12 b̂W

12 b̂WP
12 b̂WSP

12

100 20 4 1.09 1.15 1.22 1.66 52.66 2.01 1.62 1.50
10 1.11 1.18 1.26 1.70 24.03 1.72 1.38 1.34

250 10 4 1.00 1.07 1.41 408.92 881.77 1.66 1.62 1.60
10 0.50 0.53 0.71 29.58 178.30 0.75 0.73 0.72

25 4 1.09 1.17 1.19 1.48 1.98 2.18 1.74 1.57
10 1.12 1.19 1.22 1.51 2.02 1.86 1.49 1.37

500 25 4 1.10 1.17 1.20 1.48 1.99 2.53 2.18 1.96
10 1.12 1.20 1.23 1.52 2.04 2.34 1.98 1.76

50 4 1.11 1.17 1.15 1.26 1.40 1.85 1.22 1.23
10 1.13 1.19 1.18 1.29 1.43 1.37 1.10 1.13

Note: T signifies the sample size, M denotes the number of event dates and σ2
1 is

the variance of the structural shock of interest on event dates.

the Wright estimator is considerably less precise than the quantitative proxy
estimator and it is also much less efficient than the sign-proxy estimator. In
some cases, its relative RMSE is even larger than those of the corresponding
sign-proxy estimators with fewer event dates or some incorrectly assigned
signs. Note, however, that the Wright heteroskedasticity estimator improves
with increasing variance σ2

1 of the event dates relative to b̂
P (.9)
12 .

The estimation precision also improves if the moment conditions of Wright’s
heteroskedasticity estimator are combined with the moment conditions of the
standard proxy or sign-proxy estimator (see the columns for b̂WP

12 and b̂WSP
12

in Table 3). However, the relative RMSEs are typically larger than one and,
hence, these estimators are less precise than the standard proxy estimator
and the relative RMSEs are usually also greater than those of the sign-proxy
estimator. This outcome may seem somewhat surprising, given that b̂WP

12

and b̂WSP
12 are GMM estimators based on more moment conditions than b̂P

12

and b̂SP
12 . The reason why b̂WP

12 and b̂WSP
12 are still less precise estimators may

be that the GMM objective function for these estimators is quite nonlinear
and difficult to optimize. The optimization algorithm may not always find
the global minimum. In any case, if the sign-proxy is available, there is noth-
ing or little to be gained from also including the Wright heteroskedasticity
moment conditions.

In summary, the results in Table 3 show that, in many scenarios, the
sign-proxy estimator is almost as precise as the standard proxy estimator
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Table 4: RMSEs of Estimators for Impact Effects of the First Shock Relative
to the Corresponding RMSEs of b̂

P (.7)
12

relative RMSEs

T M σ2
1 b̂SP

12 b̂
SP (−)
12 b̂

SP (1)
12 b̂

SP (3)
12 b̂

SP (5)
12 b̂W

12 b̂WP
12 b̂WSP

12

100 20 4 0.47 0.50 0.53 0.71 13.73 0.87 0.76 0.65
10 0.58 0.62 0.65 0.88 11.54 0.89 0.80 0.70

250 10 4 0.08 0.09 0.12 35.62 66.76 0.14 0.14 0.13
10 0.24 0.26 0.34 15.38 83.30 0.36 0.35 0.35

25 4 0.79 0.84 0.86 1.07 1.43 1.57 1.34 1.13
10 0.79 0.84 0.86 1.06 1.43 1.31 1.11 0.96

500 25 4 0.80 0.86 0.88 1.09 1.46 1.86 1.67 1.44
10 0.81 0.86 0.88 1.09 1.46 1.68 1.51 1.26

50 4 0.86 0.90 0.89 0.98 1.08 1.43 1.05 0.95
10 0.86 0.90 0.89 0.98 1.08 1.04 0.90 0.85

Note: T signifies the sample size, M denotes the number of event dates and σ2
1 is

the variance of the structural shock of interest on event dates.

even if the standard proxy is highly correlated with the shock of interest. In
contrast, the Wright heteroskedasticity estimator, which uses less information
than the sign-proxy estimator, is less precise.

Looking at the results in Table 4 for a quantitative proxy with lower cor-
relation of 0.7 with the shock of interest, it turns out that the sign-proxy
estimator in this case is the most precise estimator. For all scenarios pre-
sented in Table 4, b̂SP

12 has the smallest or almost the smallest relative RM-
SEs. Even if 10% of the event dates are omitted or one sign is specified
incorrectly, all the relative RMSEs of the corresponding estimators b̂

SP (−)
12

and b̂
SP (1)
12 are smaller than one and, hence, the estimators are more precise

than b̂
P (.7)
12 . These results are quite plausible, given the finding in Table 1

that st, s
(−)
t and s

(1)
t are classified as strong instruments more often than z

(.7)
t

for a number of scenarios.
Even the Wright heteroskedasticity estimator still has relative RMSEs

smaller than one if there are only M = 10 or 20 event dates in short sam-
ples. In contrast, the relative RMSEs of b̂W

12 are greater than one for all
other scenarios. Thus, even a weaker instrument will typically result in bet-
ter estimators than the Wright estimator in many cases. Again, combining
Wright’s moment conditions with those of the proxy or sign-proxy estima-
tor improves the estimation precision but typically does not result in more
precise estimators than the sign-proxy estimator.

Overall, the results in Tables 3 and 4 show that the sign-proxy estimator
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is very competitive with the quantitative proxy estimator even though it
uses only qualitative information on the shock of interest. If the quantitative
proxy is not strong, the sign-proxy estimator provides even more precise
estimates (in terms of RMSE) than the quantitative proxy estimator. If the
latter estimator is based on a strong instrument, the sign-proxy estimator
is still almost as precise as the quantitative proxy estimator. Thus, given
its limited information requirement, the sign-proxy estimator is an excellent
choice for applied work if a strong quantitative proxy is difficult to construct.
The sign-proxy estimator is clearly preferable to Wright’s heteroskedasticity
estimator if the event dates and the signs of the shock are known.

As we are using bias-adjusted VAR estimators for the following impulse
response analysis, we have also computed RMSEs for estimators based on
the corresponding reduced-form residuals and show them in Tables A.2 - A.4
in the Online Appendix. The results are very similar and convey the same
message as the RMSEs based on OLS residuals.

3.2.3 Confidence Intervals for Impulse Responses

Although our primary interest is to compare the different estimators of the
impact effects of a shock, it is also worth considering the implied impulse
response estimators for larger propagation horizons, as they are often used for
empirical analysis. In particular, confidence intervals for impulse responses
are often considered in empirical studies. Therefore we have also investigated
the coverage rates and interval widths of bootstrap confidence intervals for
impulse responses up to propagation horizon H = 20 periods. Note that
the impulse responses for all estimators are based on the same reduced-form
parameter estimates and, hence, the same reduced-form impulse responses.

Figure 1 displays empirical coverage rates and interval widths for point-
wise MBB confidence intervals with nominal 90% confidence level for the
four estimators b̂SP

12 , b̂
P (.9)
12 , b̂

P (.7)
12 , and b̂W

12 . The sample size underlying the
results in Figure 1 is T = 500, the number of event dates is M = 50 and
the event date variance σ2

1 = 4. The MBB is known to have poor properties
for small sample sizes and, thus, a sample size of T = 500 may be needed
for good coverage rates (see Lütkepohl and Schlaak (2019) for a study of a
related issue). In the Online Appendix, Figures A.1, we present results for
T = 250 which confirm the point.

In Figure 1 the coverage rates of all estimators are relatively similar and
reasonably close to 90% for the impact effects for all variables and for three
out of six variables this also holds for all propagation horizons. In contrast,
for y1t, y5t and y6t, coverage rates a bit below 80% are obtained for larger
propagation horizons. Of course, this may be partly due to the MBB which

18



0 5 10 15 20
0.7

0.8

0.9

1

y
1

Coverage

0 5 10 15 20
0

0.2

0.4

0.6
Average Width

SP

P 0.9

P 0.7

Wright

0 5 10 15 20
0.7

0.8

0.9

1

y
2

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0 5 10 15 20
0.7

0.8

0.9

1

y
3

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0 5 10 15 20
0.7

0.8

0.9

1

y
4

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0 5 10 15 20
0.7

0.8

0.9

1

y
5

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0 5 10 15 20
0.7

0.8

0.9

1

y
6

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

Figure 1: Coverage rates and average interval widths of nominal 90% confi-
dence intervals for sample size T = 500, M = 50 event dates and event date
variance of σ2

1 = 4 associated with the four estimators b̂SP
12 (SP), b̂

P (.9)
12 (P

0.9), b̂
P (.7)
12 (P 0.7), and b̂W

12 (Wright).

is used to generate the confidence intervals. As we use it here to compare
confidence intervals, they all share the same handicap.

Interestingly, the average interval widths of the confidence intervals as-
sociated with b̂

P (.9)
12 , b̂

P (.7)
12 , and b̂SP

12 are rather similar. On the other hand,

b̂W
12 yields longer intervals on average than the other estimators but often

also coverage rates closer to 90%. The greater interval lengths reflect the
larger RMSEs of the latter estimator reported in the previous subsection
and makes the estimator less attractive than the competitors with similar
coverage rates. For T = 250 and M = 25, the impulse responses based on
the four estimators are shown in the Online Appendix, Figure A.1. They
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show a similar pattern but tend to yield lower coverage rates and larger av-
erage widths. The slightly better coverage rates of b̂W

12 relative to the other
estimators go along with larger average widths.

For T = 500 and M = 50, we have also considered confidence intervals
for impulse responses associated with the joint GMM estimator which com-
bines the moment conditions of the sign-proxy and the Wright estimators
(b̂WSP

12 ) and estimators based on sign-proxies with 5 incorrect sign assign-

ments, b̂
SP (5)
12 , and with 10% fewer event dates, b̂

SP (−)
12 . Detailed results are

shown in Figures A.2 of the Online Appendix, where it can be seen that all
four estimators yield similar coverage rates. Again the coverage rates for the
impact effects are close to the nominal 90% while for some of the variables
coverage rates for larger propagation horizons are a bit smaller than 90%.
The average confidence interval lengths of the sign-proxy with 10% fewer
event dates is almost identical to its counterpart without missed events. The
intervals resulting from the sign-proxy with 5 misspecified signs and the joint
GMM estimator are somewhat larger.

Overall it is not surprising that, for larger horizons, the coverage and
widths of the confidence intervals based on all estimators become similar,
given that the impulse responses for propagation horizons h ≥ 1 are to some
extent determined by the same reduced-form estimates. The results for the
impact effects are in line with the RMSEs and confirm that the estimator
based on a sign-proxy is a strong competitor to using a quantitative proxy
or one of the other estimators in our competition.

3.3 Extensions Based on Other DGPs

In the Online Appendix we also compare the relative performance of the
estimators for alternative persistence levels, lag orders, and dimension of the
DGP. We do so based on a bivariate DGP that has been used repeatedly in
the literature in comparisons of inference procedures for impulse responses.
The details of the DGP and a set of tables with RMSEs are given in the
Online Appendix (see Section A.3 and Tables A.5 - A.12).

The overall conclusions can be summarized briefly as follows. The relative
performance of the estimators is not much affected by the dimension of the
DGP, its persistence and the lag order, although the absolute estimation
precision is, of course, affected. As the estimators for the impact effects are
based on the reduced-form errors and the proxies, the persistence of the VAR
process has almost no effect on some of the estimators for larger samples. The
absolute RMSEs of b̂

P (.9)
12 and b̂

P (.7)
12 are very similar across corresponding

processes with different persistence levels for sample sizes T = 250 and 500
(see Table A.6). Also the lag order has little impact for larger sample sizes
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(see again Table A.6). Not surprisingly, the RMSEs tend to be a little larger
for the larger VAR lag order, as one would expect.

Also the relative RMSEs shown in Tables A.7 - A.12 document that for
larger samples and larger numbers of event dates, the relative performance
of the estimators does not depend on the persistence and the lag order of
the VAR process. Only for T = 100 and T = 250 in combination with
an event date probability d = 0.1 there are some larger differences in the
relative RMSEs. Clearly, for such small samples or event date probabilities,
the reliability of some of the estimators is rather low, as we also observed for
DGP1.

As the relative performance of the estimators is the crucial dimension for
comparison, it follows that our main conclusions from the six-dimensional
DGP1 discussed in Section 3.2 are overall confirmed by the additional re-
sults in the Online Appendix. In other words, these results also confirm that
the sign-proxy is a serious competitor for a qualitative proxy. Compared to
the 6-variable system, the Wright approach and the joint GMM estimators
often yield lower RMSEs than the sign-proxy estimator. The smaller num-
ber of moment conditions simplifies the minimization of the GMM objective
function which may drive this result.

4 Monetary Policy at the Zero Lower Bound

To illustrate the implications of our results for empirical work, we consider
the benchmark model of Wright (2012) who investigates the impact of US
monetary policy on longer-term interest rates at times when the policy rate
is at the zero lower bound. As mentioned in Section 3, Wright considers a
VAR(1) model. The following six daily US interest rates are included: (1)
the 2-year nominal Treasury zero-coupon yields, (2) 10-year nominal Trea-
sury zero-coupon yields, (3) five-year Treasury Inflation Protected Securities
(TIPS) break-even rates, (4) 5-10-year TIPS break-even rates, (5) Moody’s
index of AAA corporate bond yields, and (6) Moody’s index of BAA cor-
porate bond yields. The sample period runs from November 3, 2008, to
September 30, 2011, giving a sample of size T = 729 plus one presample
value.

As mentioned in Section 3, Wright also constructs a proxy variable for a
monetary policy shock related to M = 28 announcement days based on the
first principal component of a set of Treasury futures (2, 5, 10 and 30-year)
traded at the Chicago Mercantile Exchange (see Wright’s Table 1). His iden-
tification of the measure is similar to Gürkaynak, Sack and Swanson (2005)
and relies on tick data in a short window around FOMC announcements.
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However, Wright does not use the resulting measure of monetary policy sur-
prises as a proxy for the monetary policy shock but instead directly as the
shock. Specifically, he regresses the reduced-form VAR residuals on the sur-
prise measure and interprets the regression coefficients as the impact effects
in b1. Here, in contrast, we use his measure as a proxy that is merely assumed
to be correlated with the monetary policy shock. We construct a sign-proxy
with values ±1 on event dates using the signs of Wright’s quantitative proxy.
All other elements are fixed at 0.

In his analysis, Wright also considers the possibility of using only 13 espe-
cially important event dates around new phases of quantitative easing. Since
the number of event dates, M , was found to be an important determinant of
the estimation precision in the simulations, we also consider a quantitative
proxy and associated sign-proxy with only the 13 major event dates written
in italics in Wright’s Table 1.

We present the robust F -values of the tests of the strength of both proxies
and corresponding sign-proxies in Table 5, where it can be seen that all
proxies, apart from the sign-proxy for M = 28, come with robust F -values
well above the threshold of 10. Thus, they would be classified as strong
instruments in a standard proxy VAR analysis. The sign-proxy for M = 28
yields a robust F -statistic of 9.64, slightly missing the cut-off to be regarded
as a strong instrument. Our simulation results in Section 3 suggest that the
sign-proxy based on 28 event dates may be a weaker instrument than the sign-
proxy based on 13 event dates because the former sign-proxy may include
more incorrect sign assignments or a smaller variance difference between the
variances associated with dates with and without events.

We also present the empirical correlations between the proxies and the
estimated first shocks on event dates in Table 5. Clearly, with −0.55 the
correlation between the sign-proxy and the shock of interest is relatively
small for M = 28 event dates. All other proxies have stronger (negative)
correlations with their respective shocks. This result indicates that with
M = 28, we may be in a situation where, based on our simulation results
of Section 3, the corresponding quantitative proxy can be expected to yield
more precise impulse response estimates than the sign-proxy. On the other
hand, with M = 13, where both the quantitative proxy and the sign-proxy
are classified as strong instruments, the relative performance of the estimates
b̂P
12 and b̂SP

12 is not clear a priori, although the correlation between the sign-
proxy and the shock is weaker than the correlation between the quantitative
proxy and the shock which might suggest a superior performance of the
quantitative proxy.

We estimate impulse responses of the monetary policy shock and, as in
the Monte Carlo simulations, use the MBB based on bias-corrected OLS
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Table 5: Diagnostics for Proxy Strength

M = 28 event dates M = 13 event dates
quant. proxy sign-proxy quant. proxy sign-proxy

Robust F -statistic 51.31 9.64 52.62 19.25
Corr(proxy, shock) −0.90 −0.55 −0.91 −0.75

Note: F -statistics and estimated shocks are based on bias-corrected OLS estima-
tors for the reduced-form VAR parameters.

estimators to construct confidence intervals around the impulse responses
estimated with the alternative estimators discussed in Section 2.9

In Figure 2, we compare pointwise 90% MBB confidence intervals associ-
ated with the quantitative proxy and the corresponding sign-proxy estimator
for M = 13. The shock is standardized such that it reduces the 10-year Trea-
sury yields by 25 basis points on impact. In most cases, the two estimators
yield very similar point estimates and confidence intervals. In some cases,
the confidence intervals based on the quantitative proxy are slightly smaller
than the corresponding intervals of the sign-proxy (e.g., the short-horizon
responses of the 2-year Treasury rates) and, in other cases, the situation is
reversed (e.g., the longer horizon responses of the break even rates). Overall,
there is not much to choose between the quantitative proxy and the sign-
proxy estimates. Thus, if there is any additional value from using the more
sophisticated quantitative proxy over the simple sign-proxy, it is very limited.

The impulse responses are also largely qualitatively the same as in Wright
(2012) (see, e.g., his Figure 1). The monetary policy shock does not have
much of an effect on 5-year break-even rates (i.e., short to medium-term
inflation expectations) and lowers BAA and AAA yields by less than 25 basis
points. However, the confidence intervals in Wright’s Figure 1 are partly
considerably larger than in our Figure 2. A more systematic comparison of
Wright’s heteroskedasticity approach and the sign-proxy estimates is given
below.

In Figure 3, we present the impulse response estimates obtained with
proxies based on M = 28 event dates. As expected on the basis of our
simulation results in Section 3 and the F -statistics in Table 5, in this case the

9Wright (2012) uses a slightly different bootstrap. As in our Monte Carlo study, we use
the MBB because Jentsch and Lunsford (2019) show that it yields asymptotically correct
confidence intervals under general conditions for inference for impulse responses in proxy
VARs. For the example we use a block length of ℓ = 25, which corresponds roughly to the
rule of thumb of ℓ = 5.03T 1/4 of Jentsch and Lunsford (2019). The displayed confidence
intervals are based on 2,000 bootstrap draws and look very similar for a block length of
50 or using a residual wild bootstrap instead.
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Figure 2: Quantitative proxy and sign-proxy estimates of responses to 25
basis points monetary policy shock with 90% MBB confidence intervals for
M = 13 event dates.

quantitative proxy estimator yields overall smaller confidence intervals than
the sign-proxy estimator. However, in most cases, the conclusions regarding
the responses of the variables are again qualitatively the same. Exceptions are
the initial response of the AAA yields which turns significantly negative only
after the impact when the sign-proxy is considered and the first few responses
of the 5-10-year break-even rate. For the break-even rate, the quantitative
proxy yields a prolonged significantly negative effect, although also not on
impact. Overall, the impulse response bands in Figure 3 reflect what we
find in the simulations in Section 3, namely that the decline in estimation
precision can be rather limited even if a sign-proxy is used instead of a strong
quantitative proxy, which is constructed based on additional knowledge of the
market structure.

In Figure 4, we show the impulse responses and 90% pointwise confidence
intervals of the Wright heteroskedasticity estimator and the sign-proxy es-
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Figure 3: Quantitative proxy and sign-proxy estimates of responses to 25
basis points monetary policy shock with 90% MBB confidence intervals for
M = 28 event dates.

timator based on M = 13 event dates.10 Although we obtain the same
qualitative results from both estimators for all the variables which are also
largely in line with the results in Wright (2012), the sign-proxy intervals are
a bit smaller. Thus, although the qualitative conclusions of Wright’s study
are confirmed, the precision of the inference can be improved by using the
sign-proxy estimator if we assume that the size of the confidence intervals
properly reflects the uncertainty in the estimates in the presently considered
model.

In Figure 5, the MBB confidence intervals of the two GMM estimators
b̂WP
12 and b̂WSP

12 which combine the moment conditions of Wright’s quantita-
tive proxy and the sign-proxy, respectively, with the moment conditions of
Wright’s heteroskedasticity estimator are compared for M = 28 event dates.

10Note that the Wright heteroskedasticity estimates differ slightly from those in Wright
(2012, Figure 2) because we use a different algorithm for minimizing the GMM objective
function (see also Online Appendix A.1.1).
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Figure 4: Sign-proxy and Wright heteroskedasticity estimates of responses to
a 25 basis points monetary policy shock with 90% MBB confidence intervals
for M = 13 event dates.

To compare them to the quantitative proxy, we also show 90% confidence
intervals for the quantitative proxy estimator in Figure 5. Across all es-
timators the point estimates of the impulse responses are very similar. For
lucidity, we omit them in Figure 5 and focus on the 90% pointwise confidence
intervals. The bootstrap confidence intervals of the two GMM combination
estimators are practically identical and they are also quite similar to the
confidence intervals associated with the quantitative proxy estimator. In
line with our simulation results in Section 3, the intervals of the quantita-
tive proxy estimator are slightly smaller in some cases. Judged by the size
of the confidence intervals, the GMM estimation precision of the sign-proxy
and the conventional proxy are practically the same when they are used in
combination with Wright’s heteroskedasticity moment conditions. However,
using the conventional quantitative proxy estimator without the additional
moment conditions tends to improve the precision slightly. Overall, the ex-
ample reflects what we find in our Monte Carlo simulations in Section 3.
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Figure 5: Pointwise 90% MBB confidence intervals of quantitative proxy and
GMM combination estimators of responses to a 25-basis-points monetary pol-
icy shock for M = 28 event dates. (Point estimates are omitted for lucidity.
They are all three very similar and well within the confidence intervals.)

5 Conclusions and Extensions

This study contributes to the rapidly growing literature on proxy VAR anal-
ysis. It compares quantitative to qualitative proxy variables that may be
easier to construct. Obtaining a suitable instrument for estimating the ini-
tial responses of a shock of interest is crucial in a proxy VAR analysis. The
precision of the estimates depends on the quality of the proxy, which has to
be well correlated with the structural shock and uncorrelated with all other
shocks. Such a proxy variable may be difficult to find in practice.

Based on an extensive Monte Carlo experiment, we find that an esti-
mator has considerable merit that is based on a qualitative sign-proxy that
assigns a +1 for positive shocks and a −1 for negative shocks on special
event dates only. Thus, to construct the sign-proxy, it is enough to know
the timing and direction of the shock for special dates. An estimator based
on the sign-proxy tends to provide more precise inference than the Wright
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heteroskedasticity estimator. It can even be as precise as the conventional
quantitative proxy estimator, which requires the construction of a suitable
and possibly controversial strong quantitative proxy. As the simulations
show, the sign-proxy may even dominate the quantitative proxy if the lat-
ter is a weak instrument. Thus, the sign-proxy estimator is a competitive
alternative for empirical structural VAR analyses.

Moreover, we point out that the moment conditions implied by the proxy
variable can be supplemented by moment conditions from possible volatility
changes due to the special events. The combined moment conditions can
be used for GMM estimation of the impact effects of the shocks. While
this GMM estimator does not improve the estimation precision in some of
our simulations, it may have merit if the resulting GMM objective function
can be minimized with sufficient reliability. In any case, the sign-proxy or
combination estimator tends to be more precise than an estimator that is
based only on the volatility changes induced by the special events.

We illustrate the benefits of using the sign-proxy by investigating the im-
pact of US monetary policy shocks on longer-term interest rates in times of
a zero policy interest rate. It is shown that bootstrap confidence intervals
of the impulse responses based on the sign-proxy estimator or the combina-
tion estimator tend to be smaller than their competitor based only on the
volatility changes. Thus, the simulation conclusions are reinforced. The sign-
proxy estimator is an attractive choice for empirical structural VAR analyses
if information on the shocks of interest is scarce because it requires only
qualitative information external to the VAR model.

There are a number of extensions of our work which may be of interest for
future research. First of all, local projections are sometimes applied in the
proxy VAR context. Although they were found to be less efficient in small
samples when the assumed VAR process is indeed the DGP, they may have
advantages when there is uncertainty about the model. Therefore it may
be of interest that the sign-proxies can be combined straightforwardly with
local projection estimators because they can be used as regular instruments.
It may be an interesting topic for future research to compare more recent
proposals for using external instruments in a local projection setting with an
estimator based on a sign-proxy. Note, however, that we have compared the
alternative estimators using the same reduced-form VAR estimates. Using
local projections would extend the study to different reduced-form estimators.

In some recent proxy VAR studies, a number of structural shocks are
identified jointly with a set of proxy variables. Again it may be interesting
in future research to investigate the implications of replacing or combining
quantitative proxies with sign-proxies in such a context.
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A.1 Details on Computations

A.1.1 Minimization of Nonlinear Objective Functions

The Wright heteroskedasticity estimator b̂W
12 and the two GMM combination es-

timators b̂WP
12 and b̂WSP

12 using the heteroskedasticity moment conditions and the
quantiative proxy and sign-proxy moment conditions, respectively, are estimated
with the Matlab constrained optimization routine fmincon(.). For the Wright het-
eroskedasticity estimator we have also used unconstrained Matlab minimization rou-
tines where we set cW = 1 in equation (8) following the procedure in Wright (2012).
Specifying instead a lower bound larger but close to 0 for the difference, cW , in vari-
ances of the first structural shock and then solving for cW and b12 jointly leads to
much improved RMSEs in the simulation parts for the heteroskedasticity estimator.
As initial values for the optimization algorithms we have specified the true cW and
b12 values. For the combination estimators we additionally set the initial value of
the covariance between shock and proxy, c, to 1/6 without any bounds.

A.1.2 Implementation of the Moving-Block Bootstrap

Bootstrap samples are generated by a moving-block bootstrap (MBB), as in Jentsch
and Lunsford (2019). In the following, û1, . . . , ûT are the estimated residuals of
bias-adjusted OLS estimation of the reduced-form VAR model and z1, . . . , zT are

1



the observed proxy values.
Let ℓ < T be the block length for the MBB. Denoting by [·] the smallest number

greater than or equal to the argument such that ℓs ≥ T , s = [T/ℓ] is the number of
blocks required for constructing a bootstrap sample of yt. Blocks of ℓ consecutive
residuals and proxies are arranged as follows:




(
û1

z1

) (
û2

z2

)
. . .
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ûℓ

zℓ
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û2

z2

) (
û3

z3

)
. . .

(
û1+ℓ
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...(
ûT−ℓ+1

zT−ℓ+1
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ûT−ℓ+2

zT−ℓ+2

)
. . .
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ûT
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.

From these blocks, s are drawn with replacement and these draws are joined end-
to-end, retaining only the first T residuals and proxies,

(
u∗

t

zMBB
t

)
, t = 1, . . . , T.

The u∗

t are recentered as

uMBB
jℓ+i = u∗

jℓ+i −
1

T − ℓ+ 1

T−ℓ∑

r=0

ûi+r

for i = 1, 2, . . . , ℓ and j = 0, 1, . . . , s− 1 and the bootstrap residuals and proxies are
obtained as

(
uMBB
t

zMBB
t

)
, t = 1, . . . , T.

The bootstrap samples are generated sequentially as yMBB
t = ν̂ + Â1y

MBB
t−1 + · · · +

Âpy
MBB
t−p +uMBB

t , t = 1, . . . , T , starting from p randomly chosen consecutive sample
values, yMBB

−p+1 , . . . , y
MBB
0 .

Bootstrap impulse response estimates are obtained from N bootstrap samples
y
(n)
−p+1, . . . , y

(n)
0 , y

(n)
1 , . . . , y

(n)
T and z

(n)
1 , . . . , z

(n)
T , n = 1, . . . , N , as follows:

1. Fitting a VAR(p) model to the sample yields bootstrap estimates Â(n),

Φ̂
(n)
i =

i∑

j=1

Φ̂
(n)
i−jÂ

(n)
j , i = 1, . . . , H,

and residuals û
(n)
t .

2. Bootstrap estimates b̂
(n)
1 are computed with all the alternative estimation

methods using T1 = {t|zt 6= 0} for the Wright heteroskedasticity estimator
and associated combination estimators.
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3. Bootstrap estimates of the impulse responses of interest are computed as

Θ̂(H)(n) = [b̂
(n)
1 , Φ̂

(n)
1 b̂

(n)
1 , . . . , Φ̂

(n)
H b̂

(n)
1 ]

and stored.

The N bootstrap estimates Θ̂(H)(1), . . . , Θ̂(H)(N) are used to construct pointwise
confidence intervals from the relevant quantiles of the bootstrap distributions of the
individual elements.
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A.2 Additional Information for DGP1

A.2.1 Parameter Values of DGP1

DGP1 is a VAR(1) process with intercept term obtained by estimating a 6-dimensional
model based on a dataset from Wright (2012). The estimated parameters are

ν = (0.156, 0.059, 0.030, 0.128, 0.184, 0.225)′

for the constant term and the slope coefficient matrix is

A1 =




1.028 −0.003 0.023 −0.014 0.032 −0.090
0.040 0.947 0.011 −0.008 0.022 −0.058
0.029 −0.041 1.001 −0.003 0.016 −0.039
0.019 0.000 0.006 0.947 −0.002 −0.008
0.008 0.007 0.003 −0.027 0.998 −0.028
0.046 −0.008 0.017 −0.011 0.031 0.886



.

The reduced-form errors that are added to create the different DGP1 samples are
obtained via the relationship ut = Bwt where the structural shocks are constructed
as

w1t =

{
N (0, σ2

1) for t ∈ T1,
N (0, σ2

0) for t ∈ T \ T1,

and (w2t, . . . , wKt) ∼ N (0, IK−1). The structural impact effects matrix B resulting
from the Cholesky decomposition of the estimated residual covariance matrix and a
normalization such that the upper left-hand element equals one is given by

B =




1 0 0 0 0 0
0.454 0.386 0 0 0 0
0.322 0.146 0.633 0 0 0
0.457 −0.160 0.313 0.538 0 0
0.795 −0.074 −0.035 −0.034 0.417 0
0.843 0.077 0.021 0.001 0.318 0.328



.
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A.2.2 Additional Simulation Results for DGP1

Table A.1: Relative Frequencies of Weak Instrument F -test Statistics Smaller than
10 (in %) (without heteroskedasticity adjustment)

Proxy variables

Sample size T M σ2
1 z

(.9)
t z

(.7)
t st s

(−)
t s

(1)
t s

(3)
t s

(5)
t

100 20 4 0.2 7.1 0.1 0.4 1.2 19.7 66.0
10 0.0 2.6 0.0 0.0 0.1 6.9 42.5

250 10 4 6.1 27.1 6.1 10.1 28.5 87.5 99.4
10 0.7 10.1 0.3 0.5 5.7 62.1 94.9

25 4 0.0 1.7 0.0 0.0 0.0 1.3 14.8
10 0.0 0.4 0.0 0.0 0.0 0.0 3.2

500 25 4 0.0 1.3 0.0 0.0 0.0 0.8 11.5
10 0.0 0.3 0.0 0.0 0.0 0.1 2.1

50 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Note: M denotes the number of event dates, σ2
1 the variance of the structural shock of

interest on event dates, z
(.9)
t a proxy with a theoretical correlation of 0.9 with the structural

shock of interest on event dates, z
(.7)
t a proxy with a theoretical correlation of 0.7, st the

sign-proxy, s
(−)
t a sign-proxy with 10% omitted event dates, and s

(m)
t denotes a sign-proxy

with m incorrectly specified signs.

Table A.2: Absolute RMSEs of Proxy Estimators b̂
P (.9)
12 and b̂

P (.7)
12 (with bias-

adjustment of VAR estimators)

absolute RMSEs

Sample size T M σ2
1 b̂

P (.9)
12 b̂

P (.7)
12

100 20 4 0.167 0.338
10 0.103 0.193

250 10 4 0.276 1.028
10 0.309 3.069

25 4 0.142 0.199
10 0.088 0.126

500 25 4 0.140 0.192
10 0.087 0.121

50 4 0.097 0.124
10 0.060 0.079

Note: M denotes the number of event dates and σ
2
1 is the variance of the structural shock of

interest on event dates. The RMSE is calculated as
√

1
R

∑R
r=1(b̂

P (.)
12,r − b12)′(b̂

P (.)
12,r − b12),

where R denotes the number of Monte Carlo simulations.
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Table A.3: RMSEs of Estimators for Impact Effects of the First Shock Relative to
the Corresponding RMSEs of b̂

P (.9)
12 (with bias-adjustment of VAR estimators)

relative RMSEs

T M σ2
1 b̂SP

12 b̂
SP (−)
12 b̂

SP (1)
12 b̂

SP (3)
12 b̂

SP (5)
12 b̂W

12 b̂WP
12 b̂WSP

12

100 20 4 1.09 1.15 1.22 1.65 7.96 1.98 1.61 1.49
10 1.11 1.18 1.25 1.69 6.84 1.66 1.35 1.32

250 10 4 0.96 1.03 1.67 47.25 186.50 1.62 1.57 1.56
10 0.64 0.68 1.02 66.20 90.84 0.95 0.93 0.93

25 4 1.09 1.17 1.19 1.48 1.97 2.20 1.73 1.57
10 1.12 1.19 1.22 1.51 2.02 1.83 1.47 1.37

500 25 4 1.10 1.17 1.20 1.48 1.99 2.56 2.18 1.98
10 1.12 1.20 1.23 1.51 2.04 2.33 1.96 1.75

50 4 1.10 1.17 1.15 1.26 1.39 1.84 1.21 1.23
10 1.13 1.19 1.18 1.29 1.42 1.37 1.10 1.13

Note: T signifies the sample size, M denotes the number of event dates and σ
2
1 is the

variance of the structural shock of interest on event dates.

Table A.4: RMSEs of Estimators for Impact Effects of the First Shock Relative to
the Corresponding RMSEs of b̂

P (.7)
12 (with bias-adjustment of VAR estimators)

relative RMSEs

T M σ2
1 b̂SP

12 b̂
SP (−)
12 b̂

SP (1)
12 b̂

SP (3)
12 b̂

SP (5)
12 b̂W

12 b̂WP
12 b̂WSP

12

100 20 4 0.59 0.62 0.66 0.89 4.35 1.07 0.94 0.81
10 0.62 0.66 0.70 0.94 3.59 0.93 0.82 0.74

250 10 4 0.26 0.28 0.46 12.98 55.02 0.44 0.43 0.42
10 0.18 0.19 0.27 24.27 26.26 0.26 0.26 0.26

25 4 0.79 0.84 0.86 1.07 1.43 1.59 1.35 1.14
10 0.79 0.84 0.86 1.06 1.42 1.29 1.11 0.96

500 25 4 0.81 0.86 0.88 1.09 1.47 1.88 1.68 1.46
10 0.81 0.86 0.88 1.09 1.47 1.67 1.49 1.25

50 4 0.86 0.90 0.89 0.98 1.08 1.43 1.05 0.95
10 0.86 0.90 0.89 0.98 1.08 1.04 0.90 0.85

Note: T signifies the sample size, M denotes the number of event dates and σ
2
1 is the

variance of the structural shock of interest on event dates.
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Figure A.1: Coverage rates and avearge interval widths of nominal 90% confidence
intervals for sample size T = 250, M = 25 event dates and event date variance of
σ2
1 = 4 associated with the four estimators b̂SP

12 (SP), b̂
P (.9)
12 (P 0.9), b̂

P (.7)
12 (P 0.7),

and b̂W
12 (Wright).
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A.3 Simulation Results Based on Additional DGP

A.3.1 Setup of DGP2

We have also performed simulations with a DGP that has been used in a num-
ber of other investigations of inference methods for impulse responses (e.g., Kilian
(1998), Kilian and Kim (2011), Lütkepohl, Staszewska-Bystrova and Winker (2015a,
2015b)). Our DGP2 is a two-dimensional VAR(1) process,

yt =

[
a11 0
0.5 0.5

]
yt−1 + ut, (A.1)

with a11 = 0.5 and 0.95. The parameter a11 determines the persistence of the
process. The process is more persistent if a11 is closer to one. The value a11 = 0.5
yields a process with moderate persistence and a11 = 0.95 yields a rather persistent
process.

The structural errors, wt, are Gaussian, with zero mean and covariance matrices

Σw
0 =

[
1 0
0 1

]
for t ∈ T \ T1 and Σw

1 =

[
σ2
1 0
0 1

]
for t ∈ T1,

and the reduced-form errors are obtained as ut = Bwt, where

B =

[
1 0
0.5 1.5

]
.

The initial values of the yt series are y0 ∼ N (0, I2). VAR models of order p = 1 and
p = 12 with constant term are fitted to the data. Thus, the full sample has length
T + p and ∀ t ≥ 1, yt is constructed following the DGP in (A.1).

The proxy zt is generated as

zt = Dt(w1t + vt),

where we choose the error vt to be Gaussian, vt ∼ N (0, σ2
v), in our simulations. We

use the same values for σ2
v as for DGP1. They are given in Table A.5.

The quantity Dt is a Bernoulli distributed random variable with parameter d,
B(d), which is stochastically independent of vt and w1t. Thus, E(Dt) = d and, thus,
d is the expected fraction of event dates. For d we use values 0.1 and 0.2 which
correspond to the sample fractions used for event dates for DGP1. Now, however,
the number of event dates is stochastic and so is T1, and the correlation between
the proxy zt and the first shock w1t has to be assessed for the whole sample using

corr(zt, w1t) = σ1

√
d

/√
σ2
1 + σ2

v .

Thus, the parameters d, σ2
1 and the error term vt determine the strength of the

correlation between zt and w1t. The correlations used in the Monte Carlo simulations
are given in Table A.5. For comparability with the results for DGP1, where we
condition on a fixed number of event dates, we denote estimators based on the
quantitative proxies by b̂

P (.9)
12 , if σ2

v = 1 or 2, and by b̂
P (.7)
12 , if σ2

v = 4 or 10. Clearly,
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for a given value of d, the proxy underlying b̂
P (.9)
12 has a stronger correlation with

w1t than the proxy underlying b̂
P (.7)
12 which justifies the notation because it makes

the estimates comparable to the corresponding ones for DGP1.
Instead of the sign-proxies with a fixed number of incorrect signs, we now consider

sign-proxies with 10%, 20%, and 25% incorrect signs and denote the corresponding
estimators by b̂

SP (10%)
12 , b̂

SP (20%)
12 , and b̂

SP (25%)
12 , respectively. The estimator b̂

SP (−)
12

is again based on a sign-proxy for which 10% of the event dates are omitted.

Table A.5: Correlations Between Shock and Proxies

d σ2
1 σ2

v corr(zt, w1t)
0.1 4 1 0.2828

4 4 0.2236
10 2 0.2887
10 10 0.2236

0.2 4 1 0.4000
4 4 0.3162
10 2 0.4082
10 10 0.3162

Whenever a sample of straight zeros is drawn for Dt, it is deleted and replaced
by a new one. The number of replications for each Monte Carlo design is R = 5,000.

A.3.2 Results for DGP2

Table A.6: Absolute RMSEs of Proxy Estimators b̂
P (.9)
12 and b̂

P (.7)
12 for DGP2

absolute RMSEs

p = 1 p = 1 p = 12
a11 = 0.5 a11 = 0.95 a11 = 0.95

Sample size T d σ2
1 b̂

P (.9)
12 b̂

P (.7)
12 b̂

P (.9)
12 b̂

P (.7)
12 b̂

P (.9)
12 b̂

P (.7)
12

100 0.2 4 0.214 0.379 0.215 1.036 0.247 0.386
10 0.132 0.247 0.132 0.861 0.150 0.317

250 0.1 4 0.185 0.268 0.185 0.265 0.196 0.270
10 0.114 0.168 0.114 0.166 0.120 0.172

0.2 4 0.124 0.159 0.124 0.159 0.132 0.172
10 0.077 0.100 0.077 0.101 0.081 0.108

500 0.1 4 0.125 0.161 0.125 0.161 0.124 0.164
10 0.077 0.102 0.077 0.102 0.077 0.104

0.2 4 0.087 0.111 0.087 0.111 0.087 0.112
10 0.054 0.070 0.054 0.070 0.054 0.071

Note: d denotes the probability of event dates and σ
2
1 is the variance of the structural

shock of interest on event dates. The RMSE is calculated as

√
1
R

∑R
r=1

(
b̂
P (.)
12,r − b12

)2
,

where R denotes the number of Monte Carlo replications.

10



Table A.7: RMSEs of Estimators for Impact Effects of the First Shock Relative to
the Corresponding RMSEs of b̂

P (.9)
12 for DGP2 with p = 1 and a11 = 0.5

relative RMSEs

T d σ2
1 b̂SP

12 b̂
SP (−)
12 b̂

SP (10%)
12 b̂

SP (20%)
12 b̂

SP (25%)
12 b̂W

12 b̂WP
12 b̂WSP

12

100 0.2 4 1.09 1.14 1.41 3.48 7.65 1.71 1.10 1.13
10 1.12 1.17 1.44 24.68 4.81 1.13 1.01 1.04

250 0.1 4 1.10 1.17 1.43 2.29 11.07 1.50 1.09 1.13
10 1.12 1.20 1.47 2.33 8.08 1.09 1.01 1.04

0.2 4 1.10 1.17 1.39 1.91 2.38 1.31 1.07 1.11
10 1.13 1.19 1.43 1.95 2.43 1.05 0.99 1.03

500 0.1 4 1.09 1.16 1.39 1.91 2.39 1.29 1.07 1.10
10 1.11 1.18 1.42 1.95 2.44 1.05 0.99 1.02

0.2 4 1.11 1.17 1.38 1.86 2.27 1.26 1.06 1.10
10 1.13 1.19 1.41 1.90 2.32 1.04 0.99 1.02

Table A.8: RMSEs of Estimators for Impact Effects of the First Shock Relative to
the Corresponding RMSEs of b̂

P (.9)
12 for DGP2 with p = 1 and a11 = 0.95

relative RMSEs

T d σ2
1 b̂SP

12 b̂
SP (−)
12 b̂

SP (10%)
12 b̂

SP (20%)
12 b̂

SP (25%)
12 b̂W

12 b̂WP
12 b̂WSP

12

100 0.2 4 1.08 1.14 1.41 2.65 7.46 1.79 1.10 1.13
10 1.12 1.17 1.45 2.62 640.73 1.13 1.01 1.04

250 0.1 4 1.09 1.17 1.43 2.20 4.89 1.44 1.09 1.13
10 1.12 1.20 1.46 2.27 5.68 1.09 1.01 1.04

0.2 4 1.10 1.17 1.39 1.91 2.38 1.31 1.07 1.11
10 1.13 1.19 1.43 1.95 2.43 1.05 0.99 1.02

500 0.1 4 1.09 1.16 1.39 1.91 2.39 1.29 1.07 1.10
10 1.11 1.18 1.42 1.95 2.45 1.05 0.99 1.02

0.2 4 1.11 1.17 1.38 1.86 2.27 1.25 1.06 1.10
10 1.13 1.19 1.41 1.90 2.32 1.04 0.99 1.02

Table A.9: RMSEs of Estimators for Impact Effects of the First Shock Relative to
the Corresponding RMSEs of b̂

P (.9)
12 for DGP2 with p = 12 and a11 = 0.95

relative RMSEs

T d σ2
1 b̂SP

12 b̂
SP (−)
12 b̂

SP (10%)
12 b̂

SP (20%)
12 b̂

SP (25%)
12 b̂W

12 b̂WP
12 b̂WSP

12

100 0.2 4 1.08 1.15 1.57 4.22 17.27 1.88 1.12 1.16
10 1.11 1.19 1.52 3.50 11.83 1.39 1.02 1.07

250 0.1 4 1.08 1.14 1.40 2.31 5.51 1.55 1.07 1.11
10 1.11 1.18 1.44 2.58 16.55 1.07 0.99 1.02

0.2 4 1.11 1.17 1.40 1.96 2.44 1.35 1.07 1.12
10 1.14 1.20 1.43 2.00 2.50 1.08 1.00 1.04

500 0.1 4 1.12 1.19 1.44 1.96 2.49 1.31 1.07 1.12
10 1.15 1.22 1.47 2.00 2.54 1.06 1.00 1.03

0.2 4 1.10 1.16 1.38 1.92 2.34 1.29 1.07 1.11
10 1.12 1.18 1.42 1.97 2.39 1.06 1.00 1.02
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Table A.10: RMSEs of Estimators for Impact Effects of the First Shock Relative to
the Corresponding RMSEs of b̂

P (.7)
12 for DGP2 with p = 1 and a11 = 0.5

relative RMSEs

T d σ2
1 b̂SP

12 b̂
SP (−)
12 b̂

SP (10%)
12 b̂

SP (20%)
12 b̂

SP (25%)
12 b̂W

12 b̂WP
12 b̂WSP

12

100 0.2 4 0.61 0.65 0.80 1.96 4.31 0.96 0.74 0.64
10 0.59 0.62 0.77 13.14 2.56 0.60 0.58 0.56

250 0.1 4 0.75 0.81 0.98 1.57 7.61 1.03 0.86 0.78
10 0.76 0.81 1.00 1.58 5.49 0.74 0.73 0.71

0.2 4 0.86 0.91 1.09 1.50 1.86 1.03 0.92 0.87
10 0.86 0.91 1.09 1.50 1.86 0.81 0.80 0.79

500 0.1 4 0.85 0.90 1.08 1.48 1.86 1.01 0.91 0.86
10 0.85 0.90 1.08 1.48 1.86 0.80 0.80 0.78

0.2 4 0.87 0.91 1.08 1.46 1.78 0.99 0.91 0.87
10 0.87 0.91 1.08 1.46 1.78 0.80 0.81 0.79

Table A.11: RMSEs of Estimators for Impact Effects of the First Shock Relative to
the Corresponding RMSEs of b̂

P (.7)
12 for DGP2 with p = 1 and a11 = 0.95

relative RMSEs

T d σ2
1 b̂SP

12 b̂
SP (−)
12 b̂

SP (10%)
12 b̂

SP (20%)
12 b̂

SP (25%)
12 b̂W

12 b̂WP
12 b̂WSP

12

100 0.2 4 0.23 0.24 0.29 0.55 1.55 0.37 0.27 0.24
10 0.17 0.18 0.22 0.40 98.43 0.17 0.17 0.16

250 0.1 4 0.77 0.82 1.00 1.54 3.43 1.01 0.88 0.79
10 0.77 0.82 1.01 1.56 3.91 0.75 0.74 0.72

0.2 4 0.86 0.91 1.09 1.49 1.86 1.02 0.92 0.87
10 0.86 0.91 1.09 1.50 1.86 0.81 0.80 0.78

500 0.1 4 0.85 0.90 1.08 1.49 1.87 1.01 0.91 0.86
10 0.85 0.90 1.08 1.49 1.86 0.80 0.80 0.78

0.2 4 0.87 0.92 1.08 1.46 1.78 0.98 0.91 0.87
10 0.87 0.92 1.08 1.46 1.78 0.80 0.80 0.78

Table A.12: RMSEs of Estimators for Impact Effects of the First Shock Relative to
the Corresponding RMSEs of b̂

P (.7)
12 for DGP2 with p = 12 and a11 = 0.95

relative RMSEs

T d σ2
1 b̂SP

12 b̂
SP (−)
12 b̂

SP (10%)
12 b̂

SP (20%)
12 b̂

SP (25%)
12 b̂W

12 b̂WP
12 b̂WSP

12

100 0.2 4 0.69 0.74 1.00 2.70 11.08 1.20 0.90 0.75
10 0.53 0.57 0.72 1.66 5.62 0.66 0.57 0.51

250 0.1 4 0.79 0.83 1.02 1.68 4.01 1.13 0.88 0.81
10 0.78 0.82 1.00 1.80 11.58 0.74 0.73 0.71

0.2 4 0.85 0.90 1.07 1.50 1.87 1.04 0.92 0.86
10 0.85 0.89 1.07 1.49 1.87 0.80 0.80 0.77

500 0.1 4 0.85 0.90 1.09 1.49 1.89 0.99 0.90 0.85
10 0.85 0.90 1.09 1.49 1.89 0.79 0.79 0.77

0.2 4 0.85 0.90 1.07 1.49 1.82 1.01 0.91 0.86
10 0.85 0.90 1.08 1.49 1.82 0.81 0.81 0.78
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