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When estimating fiscal policy reaction functions (FRF), the literature has well recognized

the importance of non-linearities. However, there is yet very little attempt to formally test

for the presence and potential sources of a non-linear fiscal responsiveness. In this paper

we address this gap by formally adressing model specification of the FRF in a panel of five

EU countries. Employing a Bayesian stochastic model specification search algorithm, we

provide formal evidence for time-varying fiscal prudence over the last 50 years. The primary

balance responsiveness exhibits smooth but significant variation over time and thus confirms

the necessity of a non-linear model. Moreover, the extended results show that dynamics can

be partially linked to the interest rate growth differential and the level of public debt itself.

However, no clear evidence is found in favor of the fiscal fatigue proposition.
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I. INTRODUCTION

With the policy rate at the zero lower bound the ability of monetary policy to encourage

economic growth is limited. As a result, the role of fiscal policy to stabilize the economy has

become increasingly important in recent years. Moreover, for euro area countries fiscal policy is

the only instrument that allows for country-specific economic policy. There is an extensive and

ongoing discussion in the literature on fiscal sustainability. While the importance of safe debt levels

is well recognized, recent events seriously challenge the sustainability of public finances.

To counteract the consequences of the COVID-19 induced recession, governments responded

with unprecedented spending. In the euro area, the government deficit increased to 8.8% of GDP

in 2020 and the gross public debt ratio reached a level of 101.7% of GDP. With low economic

growth and prolonged stimulus packages, these numbers are likely not to decline quickly over the

next few years. Additionally, rising age-related public expenditures and low expected potential

growth further challenge the sustainability of public finances.

In assessing sovereign vulnerabilities, stochastic debt sustainability analysis (DSA) frameworks

play an important role. They make use of simulated stochastic debt trajectories that reflect the

interplay of model-based projections for relevant macroeconomic variables with an expected fiscal

policy response, based on the estimation of a fiscal policy reaction function (FRF) that describes

how the primary balance responds to changes in public debt. Besides its importance for DSA, the

estimation of a FRF yields information on the type and strength of fiscal policy reactions govern-

ments had in the past and can be helpful in providing signals for potential future sustainability

issues. In order to obtain reliable debt projections, a correctly specified FRF is thus essential.

The FRF literature has well recognized the importance of non-linearities for correctly specifying

the FRF. Ghosh et al. (2013), for example, find strong evidence for the existence of a nonlinear

FRF that exhibits fiscal fatigue which is very well approximated by a cubic relationship between

public debt and the primary balance. When the level of inherited debt increases, the primary

balance responsiveness also increases but eventually starts to decrease and at high levels of debt

finally becomes negative. Recent studies such as Fournier and Fall (2017) attempt to derive these

thresholds endogenously by employing regime-switching models, while others such as Weichenrieder

and Zimmer (2014), explicitly link the fiscal reaction to a specific event such as Euro membership.

Despite the emerging consensus regarding the importance of correctly modeling the FRF, there

is yet very little attempt to formally test for the presence and the potential source of non-linearities.

In this paper we address this gap in the literature by formally addressing model specification of
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the FRF in a panel of five EU countries. Specifically, we employ a Bayesian model specification

search to test for time-variation in the responsiveness in the primary balance to the gross public

debt ratio. The responsiveness parameter is allowed to vary according to a random walk and thus

allows for various forms of non-linear reaction. We then test how much of the time-variation can

be explained by the interest rate growth differential and the lagged squared debt ratio. The latter

essentially tests for the fiscal fatigue proposition of Ghosh et al. (2013).

We find strong evidence for time-variation in the FRF over the last 50 years. The primary

balance responsiveness to debt exhibits smooth but significant variation over time and thus confirms

the necessity of a non-linear model. The dynamics can be partially linked to the interest rate growth

differential. Less evidence is found in favor of the fiscal fatigue proposition.

The remainder of the paper is structured as follows. In Section II, we discuss the empirical set-

up. More specifically, we focus on the role of FRFs in debt sustainability analysis and we elaborate

on our empirical specification. Section III focuses on the econometric approach for estimating our

FRF, while in Section IV results of our empirical analysis are discussed. Section V concludes.

II. EMPIRICAL SET-UP

A. Estimating a FRF: The basics

Is government policy in line with fiscal solvency? This is a question that features promintently

in the academic and policy debate and boils down to assessing whether the debt-to-GDP ratio

belongs to a dynamically stable trajectory.1

To analyze fiscal solvency, recall the public debt accumulation equation,

∆dt ≡ dt − dt−1 =
rt − gt
1 + gt

dt−1 − pbt, (2.1)

where dt and pbt respectively stand for the debt-to-GDP and the primary balance ratio in period

t. The interest rate on the outstanding amount of debt is represented by rt whereas nominal GDP

growth equals gt. From equation (2.1) one can immediately see that debt dynamics are driven by

two opposing forces, (i) the interest-rate growth differential (IRGD) (rt − gt) and (ii) the primary

balance.

If then the fiscal reaction to debt is represented by

pbt = βdt−1, (2.2)

1 A very interesting overview of key economic principles and statistical methods used in debt sustainability analysis

is given in Debrun et al. (2019). This section is indebted to their lecture.
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one can derive that to ensure a dynamically stable public debt trajectory, i. e. a mean-reverting

public debt ratio, on average the following condition needs to hold:

β >
r − g
1 + g

(2.3)

The fiscal reaction to debt - and estimating a FRF - can thus be used to assess the sustainability

of public finances.

In a seminal paper, Bohn (1998) was the first to analyze this kind of FRF. More specifically,

Bohn’s (1998) model-based sustainability test (MBS) consists of estimating

pbt = βdt−1 +Xtγ + εt, (2.4)

where X captures a set of other determinants explaining the evolution in the primary balance

and εt represents a white noise error term. Bohn (1998) showed that, under a set of regularity

conditions, a positive primary balance reaction to changes in the debt ratio (i. e. β > 0) is

sufficient evidence for an economy to be fiscally sustainable and satisfying its intertemporal budget

constraint. Applications of Bohn’s MBS differ mainly regarding the covariates included in X and

the empirical setting, i. e. the country and time coverage. Two interesting and comprehensive

overviews of existing FRF studies are given by Berti et al. (2016) and Checherita-Westphal and

Žďárek (2017).

Another major contribution to the FRF literature is the often cited paper of Ghosh et al. (2013).

In their analysis, the authors argue that an average positive fiscal reaction to debt (β > 0) should

be labeled as a “weak” sustainability criterion as this implies that an ever-increasing debt-to-GDP

ratio is not excluded.2 For instance, this is the case if the increase in the primary balance is lower

than the IRGD. They advocate a stricter sustainability criterion - the public debt ratio converging

to some finite proportion of GDP - and argue that a sufficient condition for this is a primary

balance reaction that on average exceeds the interest-rate growth differential.

A key issue in the fiscal austerity debate - and in the estimation of FRFs - is whether the degree

of fiscal responsiveness to public debt changes with the level of debt. Specifically, the hypothesis of

fiscal fatigue has been tested. Ghosh et al. (2013), for example, find strong support for a nonlinear

relationship between the primary balance and the lagged debt ratio that exhibits fiscal fatigue.

More precisely, they find a cubic relation: At low levels of debt, the relationship between the

primary balance and debt is barely existent. But as debt increases, the primary balance reacts

2 This is in contrast to Bohn (1998), who considers β > 0 - under reasonable regularity conditions - to be a sufficient

condition to meet fiscal solvency.
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positively and increases (more than proportionally) with the stock of debt. Eventually, the response

starts to weaken and even decreases at very high levels of debt. Thus, at very high debt levels, the

fiscal effort - in the form of raising extra taxes or cutting primary spending - required to “keep up”

with debt becomes unfeasable and/or undesirable. In more recent publications, Fournier and Fall

(2017) confirm the fiscal fatigue property for a group of OECD countries, while Everaert and Jansen

(2018) find it not to be a general characteristic of the FRF when allowing for country-specific fiscal

reactions to public debt.3 Testing for the presence of fiscal fatigue is important as this implies

the existence of a debt level - the debt limit - where the debt dynamics become explosive and the

government will inevitably default.4

By analyzing the fiscal fatigue property, the literature obviously recognizes that the primary

balance reaction could display significant variation over time. However, accounting for a nonlinear

relationship between the primary balance and public debt by adding potencies of the debt variable

to the regression equation - as in Ghosh et al. (2013), where squared and cubic debt terms are

added - only allows for a very specific, deterministic source of time variation. A time-varying

policy response could also be due to different sources, such as the response to a changing IRGD.

Others, like Weichenrieder and Zimmer (2014) have tried to link fiscal responsiveness to Euro

membership.5 More generally, explicitly allowing and testing for significant time variation in β

and - in a stochastic approach - linking it to a set of potential determinants could be very relevant.

In the remainder of the paper, we will analyze this type of FRF.

The importance of analyzing whether or not there is significant time variation in β is also

recognized by Debrun et al. (2019) and relates to the long-term perspective when using FRFs as

a test of fiscal sustainability. Debrun et al. (2019) state that in order for the outcome of FRF-

based sustainability tests to be meaningful, the fiscal policy response to lagged public debt must

be sufficiently systematic and stable over time. In other words, if the response is positive for a

couple of years but becomes insignificant afterwards, no clear-cut indication can be given in terms

of whether fiscal policy is sustainable or not - unless the time variation can be linked to conditions

that are in correspondence with fiscal solvency.

So far, only few studies have modeled time-varying FRFs in a stochastic way. Among the notable

exceptions are Legrenzi and Milas (2013), who employ a regime-switching model to investigate the

3 As Everaert and Jansen (2018) note, this it at least not the case for the range of debt levels observed in their

sample of 21 OECD countries over the period 1970-2014.
4 This is the case even when a risk-free interest rate is assumed and thus abstraction is made from the endogeneity

of the risk premium on government debt.
5 In their panel regression, Weichenrieder and Zimmer (2014) find a systematic reduction in fiscal prudence when

becoming a Eurozone member. However, their result is not robust to excluding Greece from the sample, which

leads to the conclusion that Eurozone membership does not significantly decrease fiscal prudence.
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relationship of the primary balance with debt and other variables for Greece, Ireland, Portugal

and Spain. More closely related to our approach is Burger et al. (2011), who cast their FRF,

featuring a time-varying fiscal response to debt, in state-space form, finding a time-dependent

fiscal reaction for their South African sample. However, they do not formally test for the presence

of time variation.

B. The empirical specification

To identify a governments’ fiscal reaction to a changing debt ratio, we employ a dynamic

specification of the FRF. As noted by, amongst others, Everaert and Jansen (2018), the highly

politicized nature of the public budgeting proces makes it hard to react immediately to changes in

debt and other economic conditions. Moreover, as the implementation of budgetary policies and

new fiscal measures takes time, the primary balance pbit is considered to be a very persistent series.

A dynamic specification is thus highly justified,6

pbit =αi + δt + φpbi,t−1 + βtdi,t−1 +Xitγ + εit, εit ∼ N(0, σ2ε ) (2.5)

where subscripts i and t respectively denote the ith country and tth period.

Country fixed effects αi are included to account for country-specific time-invariant factors that

affect the primary balance and are not included in Xit. Next to that, time-fixed effects δt are also

present to control for the impact of global economic shocks such as the Financial and Economic

Crisis of 2007-2008.

The vector Xit represents a 1xk vector of k explanatory variables that can have a direct impact

on pbit. The set of variables present in Xit resembles standard choices in the literature (see,

among others, Ghosh et al. (2013), Everaert and Jansen (2018), Berti et al. (2016), Checherita-

Westphal and Žďárek (2017)). A first variable included in Xit is a measure of the economic cycle,

the output gap (OGit), to control for the reaction of fiscal variables to the business cyle. Next

to that, a measure of inflation (πit) is added to account for bracket creep effects, i. e. in a

progressive tax system where tax brackets are not fully indexed, rising inflation induces more than

proportional changes in tax revenue (see, amongst others, Saez (2003)). An election cycle dummy

variable (elecit) is also taken into account to control for the possible presence of a political budget

cycle, meaning that governments tend to increase their spending in election years to increase the

6 By allowing for a dynamic specification, potential spurious regression issues are circumvented, i .e. by adding the

lagged dependent variable a potential random walk of the dependent variable is nested in the model, leading to

estimates that are valid even in the case of non-stationarity.
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probability of being re-elected (see for example, Debrun et al., 2008). Finally, the implicit interest

rate on the outstanding amount of public debt (rit) is included to capture potential offsetting

changes in the primary balance due to changing debt services in order to reach a nominal balance

target.

Naturally, we are mainly interested in the relation between pbit and di,t−1 which represents the

one-period-lagged debt-to-GDP ratio. We consider this relationship to be time-varying and allow

the parameter βt to change over time according to a random walk process,

βt = βt−1 + ηt, ηt ∼ N(0, σ2η). (2.6)

This specification allows for a very flexible evolution of the parameter βt over time. A ran-

dom walk process is particularly convenient to capture smooth transition and structural changes.

As such, by letting βt evolve according to a random walk, we allow for frequent changes of a

government’s fiscal reaction to the debt ratio without forcing parameters to change.7

Consequently, the model that will be estimated and tested for the presence of time variation in

the reaction of the primary balance to changes in the lagged public debt ratio is represented by

equations (2.5)-(2.6).

Conditional on finding evidence for time variation in βt, a model extension will be considered

where we account for the possibility of observed variables playing a role in the determination of

the time-varying path of βt. More specifically, the following extended model will be estimated:

pbit = αi + δt + φpbi,t−1 + βitdi,t−1 +Xitγ + εit, εit ∼ N(0, σ2ε ). (2.7)

βit = β∗t +Gitκ (2.8)

β∗t = β∗t−1 + η∗t , η∗t ∼ N(0, σ2η∗). (2.9)

In the model (2.7)-(2.9), the primary balance responsiveness to public debt (βit) is modeled as a

linear combination of a random walk component β∗t and a set of explanatory variables Git. A first

variable to be included in Git is the lagged public debt ratio (di,t−1) and its square term. By doing

so, we explicitly take into account the possible presence of nonlinearities in the relation between

public debt and the primary balance. Moreover, by including the squared debt term, which in fact

implies a cubic relation between pbit and di,t−1, we are able to test the fiscal fatigue property as

7 The fixed parameter specification constitutes a special case of the random walk process, with the time-varying

parameter βt in equation (2.6) being constant for σ2
η = 0.



8

found in the seminal paper of Ghosh et al. (2013). An advantage of our approach, compared to

Ghosh et al. (2013) and others, is that we do not consider the relationship to be deterministic but

account for it in a stochastic way, i. e. acknowledging that other factors also drive the relation

between debt and the primary balance. As such, if, empirically, a nonlinear relation is found, this

is not the result of ignoring other potential sources of time variation.

As can be seen from equation (2.1), the IRGD plays an essential role in public debt manage-

ment. A declining, but positive, IRGD differential reduces the primary surplus needed for debt

stabilization. When the IRGD becomes negative, the debt ratio can decline even when running a

primary deficit. Consequently, in this type of situation one could argue that the government’s fiscal

responsiveness to public debt fades. Therefore, the IRGD will be included in Git. More specifically,

we use the IRGD at the beginning of the period, i. e. IRGDi,t−1, as this is the relevant indicator

that impacts on the discretionary fiscal policy behavior in period t.

Note that other possible determinants of the time-varying responsiveness of the primary balance

to public debt, not present in Git, are captured by the random walk process β∗t . Testing for the

presence of significant time variation in β∗t can therefore be very interesting. If no significant time

variation is found, this implies the variables in Git fully explain the existing time variation in βt,

σ2η∗ will equal zero and β∗t becomes a constant.

C. Data and Sources

In the empirical analysis a balanced panel of yearly data is used for 5 core EMU countries,

covering a period from 1970-2019. The included countries are Austria, Belgium, France, Germany

and the Netherlands. The choice of countries is limited to - as we believe - a somewhat homoge-

neous group of countries. The reason being that as our model (2.5)-(2.6) indicates, we assume a

homogenous primary balance reaction to the included covariates (see section III for details on why

this is important). Extending the number of countries would probably contradict that assumption.

The main data source for our analysis is the AMECO database. For the fiscal variables pbit,

di,t−1 and rit, data before 1995 are retropolated using the historical public finance database pre-

pared by Mauro et al. (2015). The inflation variable πit is constructed using the GDP deflator

while the IRGD represents the difference between rit and the nominal GDP growth rate. The

OGit is also taken from AMECO and is calculated using the commonly agreed production function

methodology (for more details on this methodology, see Havik et al., 2014). Finally, data on elecit

are taken from the Database of Political Institutions (DPI) version 2017, and where necessary
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complemented with data from older versions.

III. ESTIMATION METHODOLOGY

To estimate our empirical model represented by equations (2.5) - (2.6) or the extended model,

(2.7) - (2.9), a number of methodological or econometrical choices need to be made. In what

follows, some details are provided on these choices and on the actual methodology used to estimate

the different models.

A. The choice of a homogeneous panel specification

When considering debt-to-GDP ratios, the variation over time is often limited. By increasing

the covered time period, this could, at least partially, be overcome. However, in our empirical model

the size of the time-varying parameter vector β = (β1, β2, ..., βT )′ grows linearly with the number

of time periods. As such, increasing the sample size along the time dimension generally does not

lead to an identification improvement. Hence, to mitigate the degree of uncertainty around the

estimated path of debt coefficients βt and to ensure that there is sufficient information present in

the data, the number of observations needs to be increased along the cross-sectional dimension. Of

course, to benefit from this a homogeneous reaction to debt will be assumed.

However, as shown by Everaert and Jansen (2018), unmodeled slope heterogeneity in the re-

action to lagged public debt can lead to the false conclusion that fiscal fatigue is present in the

data.8 Taking into account their results, we will therefore limit our sample to what we believe to

be a somewhat homogeneous group of countries.

B. Dealing with endogeneity issues

When estimating our empirical specification, a potential source of reverse causality or endogene-

ity is the relationship between pbit and OGit. Fiscal policy, and thus pbit, has an impact on the

state of the economy, making the output gap an endogeneous regressor. If not properly accounted

for, this might induce (severely) biased estimates. In order to deal with this endogeneity issue,

a two-step instrumental variable procedure is employed. The first step constitutes an auxiliary

regression that involves regressing OGit on the exogeneous covariates in Xit and following Berti

8 If there are countries with a weaker reaction to increases in public debt, these countries will eventually end up

with a higher debt level. Estimating a homogeneous debt reaction will therefore incorrectly capture this as the

presence of fiscal fatigue, while in fact this can be explained by unmodeled slope heterogeneity.
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et al. (2016) the first and second lag of OGit as instruments for OGit.
9 In the second step and for

the remainder of the analysis, in the vector Xit we replace OGit by the fitted values of the first-step

regression, ÔGit.

C. Cross-sectional dependencies in the error term

In macroempirical analysis cross-sectional dependencies are more likely to be the rule than the

exception, because of strong economic linkages between countries (see Westerlund and Edgerton,

2008). Empirically, this results in significant cross-sectional correlation in the error terms. To deal

with this, country and year fixed effects (αi, δt) are employed in equations (2.5) and (2.7). As

noted by Eberhardt and Teal (2011), for country and year effects to be efficacious in dealing with

cross-sectional correlated error terms, an identical impact of the existing cross-sectional dependence

across all countries in the sample needs to be assumed. As our sample is limited to a homogeneous

group of core EU countries, we believe this assumption not to be too stringent.

To test whether the included fixed effects adequately control for the presence of cross-sectional

dependencies, the average of the country-by-country cross-correlation in the estimated error terms,

ε̂it, is calculated. Next to that, we test for the presence of first-order serial correlation in εit, using

the Cumby and Huizinga (1992) test, the reason being that significant autocorrelation would render

di,t−1 and its powers endogenous.10

D. Formally testing for time variation in the baseline model

In our empirical specifications, we assume βt to be time-varying. More precisely, we assume that

βt follows a random walk process. As such, we are estimating a time-varying parameter model. A

key issue for the model specification is whether the fiscal policy responsiveness truly varies over

time or is constant.

Stated otherwise, the question whether the time variation in βt is relevant implies testing σ2η = 0

against σ2η > 0, which constitutes a non-regular testing problem as the null hypothesis lies on

the boundary of the parameter space. This motivates employing a Bayesian stochastic model

specification search (SMSS) algorithm. In a Bayesian setting, each of the potential models is

assigned a prior probability and the goal is to derive the posterior probability for each model

9 Given the rather high R2 of the auxiliary regression, the chosen instruments can be regarded as strong. Results

from the auxiliary regressions are available upon request.
10 As dit is impacted by a contemporaneous shock in the pbit.
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conditional on the data. The modern approach to Bayesian model selection is to apply Monte

Carlo Markov Chain (MCMC) methods by jointly sampling model indicators and parameters.

Frühwirth-Schnatter and Wagner (2010) developed this model selection approach for Unobserved

Components (UC) models. Their approach relies on a non-centered parameterization of the UC

model in which (i) binary stochastic indicators for each of the model components are sampled

together with the parameters and (ii) the standard inverse gamma (IG) prior for the variances of

innovations to the time-varying components is replaced by a Gaussian prior centered around zero

for the standard deviations. In what follows, the exact implementation applied to our baseline

model ((2.5)-(2.6)) is outlined.11 12

1. Non-centered parameterization

As argued by Frühwirth-Schnatter and Wagner (2010), a first piece of information on the hy-

pothesis whether the variance of innovations to a state variable is zero or not can be obtained by

considering a non-centered parameterization. This implies rearranging the random walk process

for the time-varying parameter βt, i. e. equation (2.6):

βt =β0 + σηβ̃t, (3.1)

β̃t =β̃t−1 + η̃t, β̃0 = 0, η̃t ∼ N(0, 1), (3.2)

where β0 is the initial value of βt if this coefficient varies over time (ση > 0), while being the

constant value of βt in case that there is no time variation (ση = 0).

A crucial aspect of the non-centered parameterization is that it is not identified: The signs of ση

and β̃t can be exchanged without affecting their product. This implies that (i) in the situation where

ση > 0, the marginal likelihood and therefore the marginal posterior distribution are bimodal with

modes +ση and −ση and (ii) when ση = 0, the marginal likelihood and posterior will be unimodally

centered around zero. As such, allowing for non-identification of ση provides useful insights about

the degree of time variation governing the debt ratio coefficient.

2. Parsimonious specification

In the non-centered parameterization, the question whether the fiscal responsiveness to the debt

ratio varies over time or not can be expressed as a standard variable selection problem. To this

11 This can easily be extended to the more refined specification for β, represented by equations (2.8)-(2.9).
12 The implementation and description of this approach draws heavily on earlier work from the authors, such as

Berger et al. (2016) and Everaert et al. (2017).
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end, a binary indicator that can take the values 0 or 1 is introduced and sampled together with

the model’s other parameters (see Frühwirth-Schnatter and Wagner, 2010). More precisely, (3.1)

becomes

βt =β0 + λσηβ̃t, (3.3)

where λ ∈ {0, 1} is the binary indicator. If λ = 0, the time-varying component of βt drops,

implying a constant debt ratio coefficient. That is, βt = β0 for all t. If λ = 1, the parameters

{β̃1, β̃2, ..., β̃T } and ση (together representing the time-varying component of βt) are sampled along

with the remaining parameters. We assume a uniform prior distribution for the binary indicator,

making both candidate models - the one with a time-varying and the one with a constant debt

ratio coefficient - equally likely a priori. Hence, the prior probability is set to p0 = 0.5.

3. Gaussian priors centered at zero

Our Bayesian estimation approach requires choosing prior distributions for the model parame-

ters. When using the standard inverted Gamma (IG) prior for the variance parameter, the choice

of the shape and scale hyperparameters - that define this distribution - has a strong influence on the

posterior distribution when the true value of the variance is close to zero (see Frühwirth-Schnatter

and Wagner, 2010 and Everaert et al., 2017). As a result, this choice of prior distribution has a

tendency to overstate σ2η, especially if the true value of σ2η is small.13 In other words, the actual

degree of time variation would be overstated.

When making use of the non-centered parameterization in (3.1)-(3.2) , where ση is a regression

coefficient, this issue can be resolved. In fact, this allows us to replace the standard IG prior on

the variance parameter σ2η by a Gaussian prior centered at zero on ση. As the standard deviation

ση is centered around zero both for σ2η > 0 and σ2η = 0, this makes sense. Frühwirth-Schnatter and

Wagner (2010) show that the posterior density of ση is much less sensitive to the hyperparameters

of the Gaussian distribution and is not pushed away from zero when σ2η = 0.

E. Estimating the FRF using a Markov Chain Monte Carlo algorithm

For the baseline specification, the system of equations represented by (2.5), (3.3) and (3.2)

constitutes a state-space model, where the measurement equation is represented by (2.5) and the

13 More specifically, as the IG distribution does not have probability mass at zero, using it as a prior distribution

tends to push the posterior density away from zero.
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state equation for βt by (3.3) and (3.2). Due to the presence of the time-varying parameter, βt,

and the utilization of the SMSS outlined above, this state-space model is non-standard. We follow

Everaert et al. (2017) and employ a Gibbs sampler to estimate the parameters of the state-space

model. More specifically, by simulating draws from conditional distributions, thereby breaking the

complex estimation problem into easier to handle pieces, a MCMC algorithm is used to obtain

approximations of intractable marginal and joint posterior distributions:

For convenience, define θ ≡ (β0, ση, α
′, δ′, φ, γ′)′, β ≡ (β1, β2, ..., βT )′ and β̃ ≡ (β̃1, β̃2, ..., β̃T )′,

where γ ≡ (γ1, γ2, ...γk)
′ with k being the number of control variables contained in the predictor

matrix X. Next, define a data matrix Y = (pb, d−1, X), where pb, d−1 and X contain all observa-

tions i = 1, 2, ..., N , t = 1, 2, ..., T of pbit, di,t−1 and Xit. That is, observations are stacked over cross

sections and time periods, with the cross-sectional being the slower index. The resulting MCMC

scheme is then given by the following blocks:14 15

1. Sample the binary indicator λ from p(λ|β̃, Y ), marginalizing over the parameters in θ and

σ2ε , then sample the unrestricted parameters in θ and σ2ε .

2. Sample the random walk component β̃ from p(β̃|λ, θ, σ2ε , Y )

3. Perform a random sign switch for ση and the elements in β̃. That is, draw from {−1, 1}

with equal probability of both outcomes and multiply by ση and β̃, implying a 50 percent

chance of ση and β̃ being multiplied by (-1). The time-varying parameter vector can then

be constructed from its components (based on equation (3.3)).

Given a sufficiently long burn-in phase, the MCMC scheme outlined above produces samples of

the parameters that converge to the intractable joint and marginal posterior distributions. We set

the total number of Gibbs iterations to 200,000, with a burn-in phase of 80,000. We store every

10th of the remaining 120,000 draws, leaving us with 12,000 retained draws.

IV. EMPIRICAL RESULTS

Turning to the empirical results, we first discuss our baseline model in Section IV A. In Section

IV B, the model extension is considered, where we allow observed variables to impact on the time-

varying path of the primary balance responsiveness.

14 Further details of this procedure are laid out in the appendix.
15 In a separate appendix, more details on the MCMC scheme for the extended model, represented by equation

(2.7)-(2.9), are outlined.
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A. Baseline specification

The baseline specification refers to the pure random walk model and is represented by equations

(2.5), (3.1) and (3.2). As our Bayesian estimation approach requires choosing prior distributions

for the model parameters, we will first discuss our prior choices. Then, the results of the SMSS

procedure are analyzed, followed by a discussion of the model the SMSS procedure favours, i. e.

the parsimonious model.

1. Prior choices

Summary information on the prior distributions for the unknown parameters is reported in

Table I. For the variance σ2ε of shocks hitting the primary balance in equation (2.5), an inverse

Gamma prior distribution is used, that is σ2ε ∼ IG(c0, C0), where the shape c0 = v0
2 NT and scale

C0 = c0σ
2
0 parameters are calculated from the prior belief σ20 and the prior strength v0, which are

expressed as a fraction of the sample size NT .16 Our prior belief for σε is 1.18, implying that 90%

of primary balance shocks lie between -1.99 and 1.99%.17 Note that the prior is fairly loose as the

strength of σ2ε is set to ν0 = 0.05.

For the remaining parameters, Gaussian prior distributions, N(a0, V0), are used. Technically,

we assume Gaussian parameters and the inverted Gamma distributed regression error variance to

jointly follow a dependent Normal-inverted Gamma distribution a priori. This implies the normally

distributed parameters to depend on σ2ε .
18 V0 then equals σ22A0. When discussing our Gaussian

prior choices, first consider the time-varying fiscal responsiveness to the lagged public debt ratio,

βt. For β0, the prior is given by β0 ∼ N(0, 1.182 ∗ 0.322) (with σε ≈ 1.18), which reflects our belief

that if no time variation is present in βt (i. e. ση = 0), then fiscal responsiveness ranges from

roughly −0.62 to 0.62. This covers a wide range of parameter values found in the literature.19

For the standard deviation ση of the innovations to the time-varying part in βt, a Gaussian prior

centered at zero is chosen as well (ση ∼ N(0, 1.182 ∗ 0.12)). Note that the prior standard deviation

of 0.1 implies a very loose prior as it allows that 90% of the innovations to βt lie between −0.19

and 0.19. Simulations of the random walk specification for βt, based on the prior distribution for

ση, reveal that the resulting random walk process covers all possible realistic values for the debt

16 Since the prior is conjugate, v0NT can be interpreted as the number of “fictitious” observations used to construct

the prior belief σ2
0 (see also Iseringhausen and Vierke, 2018).

17 The choice of the prior belief for the standard deviation of σ0 ≈ 1.18 is based on a standard regression for pbit,

estimated with Ordinary Least Squares, where the debt ratio coefficient, β, enters the equation as a constant.
18 More formally, it holds that θ ∼ N(a0, σ

2
εA0) and σ2

ε ∼ IG(NT ν0
2
, NT ν0

2
, where θ ≡ (β0, ση, α

′, δ′, φ, γ′)′. Details

are provided in appendix A.
19 Again, we refer the reader to the excellent literature review of Checherita-Westphal and Žďárek (2017).



15

TABLE I. Prior choices for the baseline specification

Gaussian priors

∼ N(a0, σ
2
εA0) a0

√
A0 5% 95%

Initial state β0 0 0.32 −0.62 0.62

Standard deviation state error ση 0 0.1 −0.19 0.19

AR(1) parameter φ 0.7 0.32 0.06 1.30

Parameters of control variables and fixed effects (γ′, α′, δ′)′ 0 0.32I −0.62 0.62

Inverted Gamma prior

∼ IG(NT ν0
2 , NT

ν0
2 σ

2
0) σ0 ν0 5% 95%

Measurement error variance σε 1.18 0.05 0.90 2.36

Notes: For the inverted Gamma prior, we display the prior belief about standard deviation σ0 instead of

the corresponding variance parameter as this is easier to interpret. Likewise, we report
√
A0 instead of A0

for the Gaussian priors. For the priors on γ, 0 is a K x 1 vector of zeros, and I is the identity matrix of

dimension KxK, with K being the number of control variables and fixed effects.

ratio coefficient.20

For the coefficient on the lagged primary balance, φ, a Gaussian prior centered around 0.7 is

chosen, roughly in line with estimates found in the literature (see for example Everaert and Jansen,

2018). Although the prior is not centered around 0, we are equally uninformative for φ, implying a

90% prior density interval that roughly ranges from 0.06 to 1.30. For the other parameters, i. e. the

coefficients on the control variables and the country and time fixed effects, the prior distribution

is centered around zero, with the prior standard deviation
√
A0 being 0.32. As a result, the 90%

prior density interval spreads from approximately −0.62 to 0.62, thereby covering a wide range of

parameter values found in the literature.

2. Stochastic model specification search

First, we estimate the unrestricted model, represented by equations (2.5), (3.1) and (3.2). That

is, we set the binary indicator λ in (3.3) to 1 to generate a posterior distribution for the standard

deviation (ση) of the shocks to βt. If this distribution is bimodal, with low or no probability mass

at zero, this can be taken as a first indication of a time-varying primary balance reaction to public

debt. Figure 1 presents the resulting posterior distribution. Obviously, a clear-cut bimodality in

20 The simulation results are available upon request.
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FIG. 1. Posterior distribution for ση, when the binary indicator λ = 1.

the posterior distribution, with almost no probability mass at zero, is present. This indicates that

σ2η indeed appears to be greater than zero.

As a more formal test for the presence of time variation, we next sample the stochastic binary

indicator λ along with the unknown parameters. For the binary indicator λ, we choose a Bernoulli

prior distribution with a prior probability p0 of being included in the model, i. e. p(λ = 1) = p0.

As our benchmark, we set p0 to 0.5, implying indifference between a time-varying and a constant

debt ratio coefficient a priori. We further analyze results for the more informative priors p0 = 0.25

and p0 = 0.75. The posterior inclusion probability for the binary indicator is then calculated as the

average selection frequency over all iterations of the Gibbs sampler.21 By looking at the posterior

inclusion probability, we obtain valuable information on the question whether time variation is

present in the debt ratio coefficient or not.

Table II displays posterior inclusion probabilities for λ for different prior variances of ση and

different prior inclusion probabilities. In the baseline case (see Table I), A0 is set to 0.01 and

p0 = 0.5. The posterior inclusion probability of the stochastic binary indicator clearly exceeds

50% and is almost equal to 1. Clearly, based on this result, time variation is present in the fiscal

responsiveness to public debt. As a first robustness check, we further consider other values for A0,

21 In other words, the posterior inclusion probability is the ratio of iterations in which λ = 1 relative to the absolute

number of draws.
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TABLE II. Posterior inclusion probabilities for the binary indicator λ

Priors Posterior

p0 A0,ση
λ

0.25 0.001 0.9992

0.25 0.01 0.9979

0.25 0.1 0.9938

0.25 1 0.9772

0.25 10 0.9399

0.5 0.001 0.9999

0.5 0.01 0.9991

0.5 0.1 0.9985

0.5 1 0.9925

0.5 10 0.9835

0.75 0.001 0.9999

0.75 0.01 0.9997

0.75 0.1 0.9994

0.75 1 0.9978

0.75 10 0.9928

Note: Results are based upon var-

ious prior inclusion probabilities

for λ, including a non-informative

prior, i. e. p0 = 0.5.

given the non-informative prior inclusion probability of λ, p0 = 0.5: For a somewhat stricter prior

variance A0 = 0.001, i. e. when placing more weight on values near zero, and a variety of looser

prior variances of 0.1, 1 and 10, results are almost equal. In particular, being less informative

with respect to ση by increasing A0 hardly brings down the probability of a time-varying fiscal

reaction to debt. Thus, even for the very uninformative prior, where A0 = 10, the posterior

inclusion probability still amounts to 98.35%. Moreover, the high probability of a time-varying

fiscal reaction remains when being more informative with respect to p0: As expected, when setting

p0 = 0.75, posterior inclusion probabilities for λ are even higher. Even when we set p0 = 0.25, so

that our model favors the finding of no time variation in the fiscal reaction to debt a priori, the

posterior inclusion probability clearly exceeds 90% for all four values of A0. Our evidence regarding
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time variation in βt is thus very convincing.22

3. Results parsimonious model

As can be seen from the results in Table II, the SMSS procedure clearly favors a model with

the stochastic binary indicator λ set to 1, and where the debt ratio coefficient is allowed to vary

over time. In what follows, results of this parsimonious model are discussed.23

Table III shows the estimation results for our set of control variables included in Xit. More

precisely, as coefficients are sampled along with the other parameters, we report the posterior

means as well as the 5th and 95th percentiles of the marginal posterior distributions. The results

are broadly in line with the existing literature on FRFs. In particular, we find a positive reaction

of the primary balance to an increasing output gap, indicating that fiscal policy is on average

countercyclical and thus can be considered to be an effective stabilization tool.24 Moreover, inflation

is found to have a positive impact on the primary balance, which could be linked to bracket creep

effects. Somewhat counterintuitive, according to our results an increase in the interest cost on

servicing the public debt would lead to a lower primary balance. As this implies interest costs to

rise, one would expect an offsetting impact of the primary balance - as our set of core EU countries

is bounded by the nominal deficit rule. Although the mean of the coefficient on the election cycle

variable shows that governments tend to increase their spending in election years, the 90% highest

posterior density interval clearly encompasses zero. We thus refrain from statements on the effect

of a potential political budget cycle. Finally, the posterior distribution for the lagged primary

balance coefficient clearly indicates a pronounced sluggishness in the budgeting process.

Note that the bottom of table III contains information on the possible presence of autocorre-

lation and cross-sectional dependence in the error term. We follow Everaert and Jansen (2018) in

employing the Cumby and Huizinga (1992) test to examine first-order serial correlation in the error

terms. An advantage of this test is that it is valid even in the presence of instrumented regressors

(and heteroscedasticity). The results suggest that there is no first-order autocorrelation present

in the residuals. Related to instrument validity, this implies the lagged endogenous variables are

22 While in this paper we focus on a group of what we labeled “core” EU countries, we additionally tested whether

a time-varying fiscal response to debt was present in a sample of Southern EU countries, namely Greece, Italy,

Portugal and Spain. However, for this sample, the finding of time variation is mixed at best, with a posterior

inclusion probability of the stochastic binary indicator being approximately 0.36 in the baseline model. Results

are available upon request.
23 The model is labeled the “parsimonious” model as λ is fixed and thus not sampled along with the other parameters.
24 From a policy point of view, we can make no inference on the relative strength of automatic stabilizers and

discretionary fiscal policy. When interested in the relative importance of discretionary fiscal policy as a stabilization

tool, one could opt to use the cyclically adjusted primary balance as a dependent variable. This is, however, not

the scope of this paper.
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TABLE III. Posterior distribution of main parameters in the parsimonious baseline model

Sample: 1970-2019, 5 core EU countries

Parameter Posterior mean 5% 95%

Slope parameters

Output gap γ1 0.347 0.224 0.468

Inflation γ2 0.142 0.066 0.218

Election cycle γ3 -0.134 -0.388 0.122

Implicit interest rate γ4 -0.186 -0.275 -0.096

Lagged primary balance φ 0.522 0.435 0.608

Variance parameters

State error variance σ2
η 3.5e−5 1.0e−5 7.5e−5

Measurement error variance σ2
ε 1.339 1.149 1.550

Residual diagnostics

Cumby-Huizinga autocorrelation test statistic 0.824 (0.36)

Average pairwise cross-sectional correlation coefficient -0.076

Note: For the Cumby-Huizinga test, the corresponding p-value is put in brackets.

predetermined. Moreover, and equally important, the presence of serial correlation would have

rendered dt−1 and its powers endogenous. Next to that, the calculated average pairwise correlation

in the estimated errors is relatively small, indicating that including country and time fixed effect

is sufficient to deal with the possible presence of cross-sectional correlation in the errors.

Of course we are mainly interested in the estimated time-varying path of the debt ratio pa-

rameter, βt, which is displayed in Figure 2. The blue line represents the average of the posterior

distribution of the time-varying fiscal responsiveness to the public debt ratio, with the shaded area

showing the evolution of the 90% highest posterior density interval. The average fiscal respon-

siveness over time is displayed as a gray line and amounts to 0.013, indicating that Bohn (1998)’s

weak sustainability criterion has been fulfilled on average. It should be noted that this value is

clearly located near the lower end of the spectrum of debt ratio coefficient estimates found in the

literature.

The path shows a weak fiscal reaction to debt in the seventies - with fiscal policy barely re-

sponding to changes in debt, as indicated by the 90% highest posterior density interval. However,

starting in the beginning of the eighties, the fiscal reaction picked up substantially, with a first peak

in the mid-eighties. Subsequently, fiscal responsiveness seemed to stabilize for a certain period,
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FIG. 2. Time-varying βt in the baseline specification

Notes: The blue line represents the posterior mean of βt with the 90% highest posterior density interval as

shaded area (left y-axis), while the green line represents the interest-rate growth differential in percent

(sample country average, right y-axis). The average debt ratio coefficient is depicted as a gray line. Some

milestones of European integration have been added as vertical lines, including the Maastricht Treaty, the

Stability and Growth Pact (SGP) as well as the more recently implemented Fiscal Treaty.

followed by a small increase towards the end of the nineties. The small growth in fiscal respon-

siveness seems to coincide with the period between signing the Maastricht Treaty and the start of

the common currency, a possible explanation being that countries needed to fulfill the convergence

criteria for adopting the Euro. Afterwards, while the Stability and Growth Pact required contin-

ued fiscal efforts from goverments, it seems that fiscal responsiveness dropped signficantly. This

preliminary finding confirms the results of Weichenrieder and Zimmer (2014), who relate the drop

in fiscal responsiveness after entering the Eurozone to the frequent breaches of the 3% deficit rule,

the implicit weakening of the rules and the moral hazard effects from implicit bailout guarantees.

The Fiscal Treaty, enforced in 2013, does not appear to have reinforced fiscal prudence, at least

according to our anecdotal evidence.

The European Monetary Union has led to a narrowing of spreads among member countries (see

amongst others, Turner and Spinelli, 2011), resulting in a downward effect on the IRGD. As such,

the downward trend in fiscal responsiveness after Eurozone acceptance could be due to a decreasing
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IRGD. We therefore also plot the IRGD - averaged over our sample countries - in figure 2 in green,

with the corresponding values on the right y-axis. Comparing its evolution with the path of the

debt ratio coefficient is instructive: In particular, one might argue that the unsubstantial fiscal

responsiveness in the seventies might stem from the negative IRGDs at that time. Likewise, the

increase in fiscal responsiveness in the eighties as well as the fall after the introduction of the Euro

is roughly accompanied by movements of the IRGD in the same direction. A notable exception to

this apparent correlation is the spike in IRGDs in the aftermath of the Financial and Economic

Crisis of 2007-2008, implied by both lower growth rates and higher refinancing costs in the sample

countries as spreads widened. This was due to a sharp increase in public debt ratios and growing

concerns from financial markets regarding countries’ ability to pay back their debts.

B. Model extension: Drivers of a time-varying debt coefficient β

As results from the baseline specification show, there is clear evidence of significant time varia-

tion in βt. In a model extension, represented by equations (2.7), (2.8) and (2.9), we therefore model

the time-varying fiscal reaction to public debt as a linear combination of a random walk component

and a set of covariates (see Section II B for more details.), which leads to a country-specific βit.

This enables us to shed some light on potential drivers of the observed time-variation in a country’s

fiscal responsiveness to public debt.

Moreover, by formally testing for time variation in the random walk component by means of

the SMSS algorithm, we are able to determine whether there is significant time variation left that

cannot be explained by the variables included in Git.

1. Choice of variables included in Git

As elaborated upon in Section II B, our analysis focuses on the role of (i) the IRGD and (ii)

the level of the public debt ratio in explaining the time variation in fiscal responsiveness to public

debt.

• IRGD: Focusing on the IRGD is an obvious choice as it plays an essential role in public debt

management.25 If the implicit interest rate on the outstanding amount of debt increases,

and thus if debt service costs rise, governments are forced to react stronger to rising public

25 As argued in Section II B, we will employ the IRGD at the beginning of period t, IRGDi,t−1, as this is the relevant

indicator that impacts on the discretionary fiscal policy behavior in t.
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debt ratios in order to prevent an explosive debt path. On the contrary, a higher nominal

GDP growth rate tends to lower the debt-to-GDP ratio by increasing the denominator. A

lower primary balance will thus be needed to stabilize the public debt ratio. All in all, higher

economic growth makes any public debt position more sustainable (ceteris paribus), which

justifies a lower fiscal responsiveness to debt. In our empirical analysis, we also allow for

an asymmetric government reaction to positive and negative IRGDs. If the IRGD < 0, and

nominal interest rates are expected to remain below growth rates for a long time, public

debt may have no fiscal costs and only limited welfare costs (see Blanchard (2019) for an

interesting discussion on this topic). On the contrary, a positive and increasing IRGD will

lead to a higher primary surplus needed to stabilize or reduce debt. As such, this should

lead to an increase in fiscal responsiveness.

• Lagged debt ratio: As stated before, an important element in the fiscal austerity debate is

whether fiscal responsiveness is impacted by the level of debt itself. By including the lagged

debt ratio in Git we actually allow for the presence of nonlinearities in the relation between

pbit and di,t−1, that are caused by the level of public debt itself. More specifically, taking

into account the level of the lagged debt ratio as a covariate in Git implies in fact a parabolic

relationship between pbit and di,t−1.

To see this, first consider the non-centered parameterization for equation (2.9),

β∗t = β∗0 + λση∗ β̃t, (4.1)

β̃t = β̃t−1 + η̃t, β̃0 = 0, η̃t ∼ N(0, 1). (4.2)

The extended model is then represented by equations (2.7), (2.8), (4.1) and (4.2), as elaborated

upon more thoroughly in appendix B. Now assuming that di,t−1 is the only covariate contained in

Git, we can write

pbit =αi + δt + φpbi,t−1 + (β∗0 + λση∗ β̃t + di,t−1κ)︸ ︷︷ ︸
βt

di,t−1 +Xitγ + εit.

Thus, in this case β∗0 captures the constant, linear component of the debt ratio coefficient while

κ captures the impact of the quadratic term. A positive but decreasing response of the primary

balance to rising debt - and thus a first indication of fiscal fatigue, would show up as κ < 0.

Next, and in line with Ghosh et al. (2013), we will allow for a cubic specification to test for the

presence of fiscal fatigue in our sample. Analogously to the explanation above, this can be done by
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including the square of di,t−1 in Git. A negative coefficient on the squared debt term in Git could

be seen as evidence for fiscal fatigue.

Finally, recall that an advantage of our approach - compared to Ghosh et al. (2013) and others

- is that we also acknowledge that other factors have an impact on βt. They are captured by the

random walk component. As such, possible nonlinearities caused by the actual level of public debt

are not the result of ignoring other sources of time variation.

2. Prior choices

As for the baseline model, our Bayesian estimation approach requires choosing prior distribu-

tions for the model parameters in the extended specification. For the parameters already present

in the baseline specification, the prior choices are retained. For the new parameter vector κ, a

Gaussian prior centered around zero is chosen with the prior standard deviations
√
A0 being ap-

proximately 0.32. Hence, for κ we are also highly uninformative for these parameters as the 90%

prior density interval ranges from approximately −0.62 to 0.62.

3. Stochastic model specification search

As already mentioned, using the SMSS algorithm allows us to make inferences about the impor-

tance of including the random walk component in the extended specification for β, i. e. equation

(2.8). Results for the SMSS are reported in the upper panel of Table IV. Various specifications are

estimated, which differ in the variables included in Git. Results show that for all specifications, the

posterior inclusion probability p(λ|data) of the stochastic binary indicator clearly exceeds 50% and

even fluctuates around 90%. This indicates that there is significant time variaton left in the fiscal

responsiveness to the public debt ratio that cannot be explained by the variables in Git. However,

note that in all specifications, the posterior inclusion probability p(λ|data) drops with respect to

the baseline model, due to the inclusion of covariates explaining a share of the time variation in

βt. Similarly, the posterior mean of the variance of innovations to the random walk component,

σ2η, falls for most specifications. Both can be interpreted as preliminary signs that the variables

included in Git are indeed explaining part of the observed time variation in fiscal prudence.
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4. Results parsimonious model

The discussion above shows that the SMSS obviously favors a model where the stochastic binary

indicator is set to 1 in (4.1). The lower panel of Table IV reports the results for this parsimonious

model. More precisely, it presents the posterior mean and the 5th and 95th percentile of the

marginal posterior distributions of the impacts, κ, - over different combinations of variables included

in Git - on βit.

When looking at the results, one immediately notices that the posterior distributions of the

coefficients κ are centered around small numbers. This, however, does not imply that the impact

of the included variables is negligible. As the determinants included in Git are trying to explain

part of the time variation in β - which is on average equal to 0.013 in our baseline model - it is

logical that coefficients are much smaller.26

Our empirical results show that the IRGD seems to have no clear impact on a government’s

fiscal responsiveness. Although the posterior mean has the right positive sign, over the different

specifications the 90% highest posterior density interval contains zero (see specifications 1, 5 and

7). However, as the distribution is not centered around zero, this could still be taken as a weak

sign that an increase in the IRGD leads to a higher fiscal responsiveness. Moreover, this result

could be due to an asymmetric reaction of governments to positive and negative IRGDs. When the

IRGD is negative, results clearly show no impact of this determinant on fiscal responsiveness. On

the contrary, when the IRGD is positive, an increase in it leads to a rise in fiscal responsiveness.

This is expected as a growth in a positive IRGD enlarges the cost for governments of being fiscally

irresponsible. This can mainly be seen in specification 2, while in specification 6 and 8 the posterior

distribution includes zero but is firmly skewed to the right, with the majority of the probability

mass located in the positive area.

Finally, results on potential nonlinearities in the fiscal reaction to the public debt ratio show

that - at least for our sample - governments tend to respond more when the debt ratio is high.

This is clearly confirmed when only including the level of the debt ratio in Git (see specification

3, 5 and 6). When explicitly testing for fiscal fatigue, and thus including a squared debt term in

Git, our findings do not provide evidence for the fiscal fatigue proposition of Ghosh et al. (2013)

(see specifications 4, 7 and 8). Our results are closer to Everaert and Jansen (2018), who also do

not find fiscal fatigue to be a robust characteristic of the fiscal reaction function. However, this

does not imply that there is no such debt threshold from where fiscal effort becomes unfeasible or

26 More precisely, the coefficient vector κ measures the impact on β of a one %-point increase in the corresponding

variable.
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TABLE IV. Results extended model

Sample: 1970-2019, 5 core EU countries

Specification 1 Specification 2 Specification 3 Specification 4

Stochastic model specification search

σ2
η̃ 3.4e−5 9.0e−6 7.6e−5 3.9e−5 1.1e−5 8.5e−5 2.9e−5 6.5e−6 6.7e−5 3.0e−5 6.8e−6 6.8e−5

p(λ|data) 0.978 0.988 0.891 0.887

Results posterior distributions for κ in the parsimonious model

Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95%

IRGD 0.0007 -0.0005 0.002 - - - - - - - - -

IRGD<0 - - - -0.0008 -0.0036 0.0022 - - - - - -

IRGD>0 - - - 0.001 0.000 0.003 - - - - - -

Debt - - - - - - 0.0002 4.2e−5 0.0003 -0.0005 -0.0013 0.0003

Debt2 - - - - - - - - - 3.8e−6 -3.7e−7 7.9e−6

Table IV, continued

Specification 5 Specification 6 Specification 7 Specification 8

Stochastic model specification search

σ2
η̃ 2.9e−5 6.1e−6 6.6e−5 3.5e−5 8.4e−6 7.9e−5 2.9e−5 6.4e−6 6.8e−5 3.6e−5 9.0e−6 8.0e−5

p(λ|data) 0.820 0.911 0.805 0.895

Results posterior distributions for κ in the parsimonious model

Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95%

IRGD 0.0002 -0.0011 0.0015 - - - 0.0002 -0.0011 0.0015 - - -

IRGD<0 - - - -0.0019 -0.005 0.001 - - - -0.0018 -0.0048 0.0012

IRGD>0 - - - 0.0008 -0.0008 0.0023 - - - 0.0007 - 0.0008 0.0022

Debt 0.0002 2.5e−5 0.0003 0.0002 4.6e-5 0.0004 -0.0005 -0.0014 0.0003 -0.0005 -0.0013 0.0003

Debt2 - - - - - - 3.8e−6 -3.1e−7 7.9e−6 3.6e−6 −5.4e−7 7.7e−6

Notes: p(λ|data) represents the posterior inclusion probability for the random walk component of the non-

centered parameterization. Further, posterior moments are displayed for the variance of the random walk

component and for the set of parameters κ in the parsimonious model.

undesirable. But for the debt ratios observed in our homogeneous sample of core EU countries -

and when allowing for other determinants driving fiscal responsiveness - we do not find any signs

of the fiscal fatigue property.
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V. CONCLUSION

The fiscal policy response to the COVID-19 crisis has put severe pressure on public finances

in the EU. Against the backdrop of low expected potential economic growth and sharply rising

age-related public expenditures, this has revived the debate on the sustainability of public finances.

Estimating FRFs and empirically analyzing whether countries react to a growing public debt ratio

by tightening the fiscal policy stance can shed light on a country’s degree of fiscal prudence.

The FRF literatue has well recognized the importance of non-linearities for correctly specifying

the FRF. A key issue is whether the degree of fiscal responsiveness changes with the level of debt.

Specifically, as introduced by Ghosh et al. (2013), the hypothesis of fiscal fatigue has been tested,

implying that at a certain debt level the fiscal response starts to weaken and even decreases.

In this paper, we formally test for the presence and potential sources of non-linearities by

allowing for a time-yvaring fiscal responsiveness to debt. This approach is related to commonly

used FRF specifications that embed the fiscal fatigue proposition, but is more flexible as it allows

nonlinearities in the fiscal reaction to debt to arise stochastically by means of a time-varying

parameter model.

Having employed a Bayesian SMSS testing procedure to formally test for the presence of time

variaton in the responsiveness in the primary balance to the gross public debt ratio, we find strong

evidence for time-variation in the FRF over the last 50 years. Governments’ fiscal stance to debt

exhibits smooth but significant variation over time and thus confirms the necessity of a non-linear

model.

In a model extension, we explicitly try to make inferences about potential driving forces of the

time varyings fiscal responsiveness. As such, we are able to test for the presence of fiscal fatigue

in a stochastic way, i. e. acknowledging the potential presence of other sources of time variation.

Our results provide preliminary evidence that the fiscal response to debt seems to be partly

explained by changes in the IRGD, at least when the IRGD is positive. In that case, an increase

in the IRGD reinforces the cost of being fiscally irresponsible. Governments will therefore react by

tightening their fiscal policy stance.

When allowing for nonlinearities caused by the level of public debt, our model does not provide

robust evidence of the fiscal fatigue proposition of Ghosh et al. (2013). On the contrary, the results

indicate that - for our sample - governments tend to increase fiscal responsiveness when the debt

ratio increases. As such, these results are more in line with the findings of Everaert and Jansen

(2018), who also do not find fiscal fatigue to be a robust characteristic of the FRF. However, this
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does not imply that no such debt threshold exists from which the fiscal effort becomes unfeasible

or undesirable. It is just not observed in our sample of public debt ratios.

Our findings further indicate that a significant fraction of the time variation governing the fiscal

reaction coefficient is not explained by our set of predictors. Future research on potential other

sources of the observed time variation could therefore be very clarifying and help in explaining

countries’ fiscal stances to debt. More precisely, it could be interesting to look explicitly into the

relevance of financial market pressure and the role of political economy determinants, such as the

political orientation of governments.

Given their prominence in stochastic DSA, a correctly specified FRF is of utmost importance.

In our analysis, we propose a careful assessment of whether potential parameter instability should

be accounted for in the sample of interest. Our results clearly indicate that time-varying FRFs

appear to be an adequate choice.



28

Berger, T., Everaert, G., and Vierke, H. (2016). Testing for time variation in an unobserved components

model for the u.s. economy. Journal of Economic Dynamics and Control, 69:179 – 208.

Berti, K., Colesnic, E., Desponts, C., Pamies, S., and Sail, E. (2016). Fiscal Reaction Functions for European

Union Countries. European Economy - Discussion Papers 2015 - 028, Directorate General Economic and

Financial Affairs (DG ECFIN), European Commission.

Blanchard, O. (2019). Public debt and low interest rates. American Economic Review, 109(4):1197–1229.

Bohn, H. (1998). The Behavior of U. S. Public Debt and Deficits*. The Quarterly Journal of Economics,

113(3):949–963.

Burger, P., Stuart, I., Jooste, C., and Cuevas, A. (2011). Fiscal sustainability and the fiscal reaction function

for south africa. IMF Working Papers, pages 1–27.

Carter, C. K. and Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika, 81(3):541–553.
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Appendix A: Gibbs sampling procedure pure random walk model

In this section, we provide details on the Gibbs sampling algorithm for the “pure random walk

model”. The full model in this case consists of the equations (2.5), (3.3) and (3.2), restated here

for convenience (with the slight notational difference that the regressor matrices corresponding to

the fixed effects are now contained in X, the parameters α ≡ (α1, α2, ..., αN )′ and δ ≡ (δ2, δ3..., δT )′

thus contained in γ):

pbit =φpbi,t−1 + βtdi,t−1 +Xitγ + εit, εit ∼ N(0, σ2ε ), (A1)

βt =β0 + λσηβ̃t, (A2)

β̃t =β̃t−1 + η̃t, β̃0 = 0, η̃t ∼ N(0, 1), (A3)

In what follows we provide details on the MCMC algorithm employed to jointly sample the

time-varying parameter vector β, the hyperparameters collected in θ and σ2ε and the stochastic

binary indicator λ. The outlined procedure is based on Frühwirth-Schnatter and Wagner (2010)

and Berger et al. (2016).

1. Sampling the stochastic binary indicator and the hyperparameters

In this block, we sample the stochastic binary indicator λ and the hyperparameters, collected

in θ and σ2ε . For notational convenience, define a general regression model

y = χmθm + e, e ∼ N(0,Σ), (A4)

where y is the dependent variable vector and χ is an unrestricted predictor matrix corresponding

to the parameter vector θ ≡ (β0, ση, φ, γ
′)′. For both y and χ, observations are stacked over cross-

sectional and time units, that is, over i = 1, 2, ..., N and t = 1, 2, ..., T , with i being the slower index.

Correspondingly, χm and θm are the restricted predictor matrix and parameter vector, where ση

and its associated predictor vector are excluded from θ and χ if the binary indicator λ is zero. The

covariance matrix of the error term e is a diagonal matrix simply given by Σ = diag
(
σ2ε INT

)
, where

INT is the identity matrix of dimension NT with N and T being the numbers of cross-sectional

and time units in the sample, respectively. σ2ε is a scalar. Thus, we assume homoscedasticity.

Note that simply drawing from p(λ|θ, σ2ε , β̃, y, χ) and p(θ, σ2ε |λ, β̃, y, χ) does not yield an irre-

ducible Markov chain as a draw of λ = 0 implies that ση will also be zero, which leads to the
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Markov chain having absorbing states. We follow Frühwirth-Schnatter and Wagner (2010) in re-

solving this by marginalizing over the parameters in θ and σ2ε when drawing λ and subsequently

sampling from p(θ, σ2ε |λ, β̃, y, χ).

The posterior distribution of λ is obtained from Bayes’ rule:

p(λ|β̃, y, χ) ∝ f(y|λ, β̃, χ)p(λ), (A5)

where f(y|λ, β̃, χ) is the marginal likelihood of the regression model in (A4), having integrated out

θ and σ2ε , and p(λ) is the prior distribution of λ.

Given homoscedasticity, a dependent Normal-inverted Gamma prior with θm ∼ N(am0 , A
m
0 σ

2
ε )

and σ2ε ∼ IG(c0, C0), with c0 and C0 being the shape and scale parameters of the prior distribution

for the measurement error variance, is conjugate, implying the closed form solution of the marginal

likelihood27

f(y|λ, β̃, χ) ∝
|AmT |0.5

|Am0 |0.5
Γ(cT )Cc00

Γ(c0)
(
CmT
)cT , (A6)

where

amT =AmT
(
(χm)′y + (Am0 )−1am0

)
, , (A7)

AmT =
(
(χm)′χm + (Am0 )−1

)−1
, (A8)

cT =c0 +
NT

2
, (A9)

CT =C0 + 0.5
(
y′y + (am0 )′ (Am0 )−1 am0 − (amT )′ (AmT )−1 amT

)
. (A10)

The above can then be applied to the state-space model in equations (A1), (A2) and (A3).

Inserting (A2) into (A1) yields

pbit =φpbi,t−1 + β0di,t−1 + λσηβ̃tdi,t−1 +Xitγ + εit, εit ∼ N(0, σ2ε ), (A11)

which can be written as

pbit︸︷︷︸
yit

=
[
di,t−1 λβ̃tdi,t−1 pbi,t−1 Xit

]
︸ ︷︷ ︸

χmit


β0

ση

φ

γ


︸ ︷︷ ︸
θm

+εit. (A12)

27 Note that we follow Berger et al. (2016) in employing a dependent Normal-inverted Gamma prior due to the

assumption of homoscedasticity. Hence, the prior variance parameters V0 ≡ σ2
εA0 cannot simply be interpreted

as the prior covariance matrix of the normally distributed parameters, as V0 depends on σ2
ε . Details can be

found in Koop (2003), who uses precision instead of variance parameters, however (and therefore works with

Normal-Gamma, not Normal-inverted Gamma distributions).
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Note that the second elements of χmit and θm are excluded (set to zero) if λ = 0, while for λ = 1, ση

is sampled along with the other parameters in θ. The marginal likelihood f(y|λ, β) is then given

by (A6), and the stochastic binary indicator λ can be sampled from the Bernoulli distribution:

p(λ = 1|β, y, χ) =
f(λ = 1|β, y)

f(λ = 0|β, y) + f(λ = 1|β, y)
. (A13)

Given λ, θm and σ2ε can then be sampled jointly from θm, σ2ε ∼ NIG(amT , A
m
T , cT , CT ), where

the posterior moments are given by (A7), (A8), (A9) and (A10).

2. Sampling the time-varying parameter

In this block, we employ the forward-filtering backward-sampling procedure of Carter and Kohn

(1994) to sample the time-varying component β̃ given θ, σ2ε and λ. Our conditional linear Gaussian

state-space model is given by:

yt = Hm
t s

m
t + et, et ∼MN(0N , R), (A14)

st = Fst−1 +Ktvt, s0 ∼ N(b0, V0), vt ∼ N(0, Q), (A15)

where yt is an N x 1 vector of observations and Hm
t is the restricted version of the predictor

matrix, with smt being the corresponding time-varying parameter vector, for which Hm
t = Ht and

smt = st in the unrestricted case. The matrices χ, F,K,R,Q as well as the expected value and

variance of the initial state s0, that is, b0 and P0, are assumed to be known (conditioned upon).

The disturbances et and vt are assumed to be serially uncorrelated and independent of each other

for t = 1, 2, ..., T . For details on the linear Gaussian state-space model, we refer to Durbin and

Koopman (2012).

We can then employ the Kalman filter on this linear Gaussian state-space model to filter the

unknown state st (forward-filtering). st can then be sampled from its conditional distribution

(backward-sampling), as described in Carter and Kohn (1994).

Rearranging terms in equation (A11) and restating the state equation (A3) yields the unre-

stricted conditional state-space model for β̃t:

yit︷ ︸︸ ︷
pbit − φpbi,t−1 − di,t−1β0 −Xitγ =

Hm
t︷ ︸︸ ︷

di,t−1λση

smt︷︸︸︷
β̃t +

eit︷︸︸︷
εit , εit ∼ N(0,

R︷︸︸︷
σ2ε ), (A16)

β̃t︸︷︷︸
st

= 1︸︷︷︸
F

β̃t−1︸︷︷︸
st−1

+ 1︸︷︷︸
Kt

η̃t︸︷︷︸
vt

, η̃t ∼ N(0, 1︸︷︷︸
Q

), (A17)

Notice that smt is a scalar as we assume the time-varying parameter to be homogeneous across

countries, as outlined above. Stacking observations over i = 1, 2, ..., N , this can be written as
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yt︷ ︸︸ ︷
pb1t − pb1,t−1φ− d1,t−1β0 −X1tγ

...

pbNt − pbN,t−1φ− dN,t−1β0 −XNtγ

 =

Hm
t︷ ︸︸ ︷

d1,t−1λση
...

dN,t−1λση


smt︷︸︸︷
β̃t +

et︷ ︸︸ ︷
ε1t
...

εNt

, (A18)

et︷ ︸︸ ︷
ε1t
...

εNt

 ∼



0
...

0

 ,
R︷ ︸︸ ︷

σ2ε


1

. . .

1




(A19)

β̃t︸︷︷︸
st

= 1︸︷︷︸
F

β̃t−1︸︷︷︸
st−1

+ 1︸︷︷︸
Kt

η̃t︸︷︷︸
vt

, (A20)

η̃t︸︷︷︸
vt

∼N(0, 1︸︷︷︸
Q

), (A21)

The time-varying component β̃t is initialized with mean and variance b0 = 0 and P0 = 0.00001.

By doing so, we ensure that the time-varying parameter βt is initialized with its first value, β0.

The unobserved state vector β̃ is then extracted using standard forward-filtering and backward-

sampling. Instead of taking the entire N x 1 observational vector yt as the item of analysis, we

follow the univariate treatment of the multivariate series approach of Durbin and Koopman (2012),

in which each of the elements in yt is brought into the analysis individually. This offers signifi-

cant computational gains and reduces the risk of the prediction error variance matrix becoming

nonsingular during the Kalman filter procedure.

In the restricted model, that is, for λ = 0, χm and sm are empty. Thus, no forward-filtering

and backward-sampling is applied. In this case, β̃t is sampled directly from its prior, that is, from

(A3).

Lastly, given its components β0, ση and β̃, the time-varying parameter vector β can be con-

structed from (A2).
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Appendix B: Gibbs sampling procedure extended model

In this section, we lay out the Gibbs sampling procedure for the “extended model”, where the

time-varying parameter equation contains a set of covariates G. Formally, this entails employing

the non-centered parameterization for β̃t and introducing a stochastic binary indicator, sampled

along with the other parameters, analogous to the model in equations (2.5), (3.3) and (3.2) referred

to in section III E and appendix A (we will refer to this model as the “simpler model” below). This

implies that the extended model is comprised of the following set of equations (analogous to the

notation in appendix A):28

pbit = pbi,t−1φ+ di,t−1βit +Xitγ + εit, εit ∼ N(0, σ2ε ), (B1)

βit = β∗t +Gitκ, (B2)

β∗t = β∗0 + λση∗ β̃t, (B3)

β̃t = β̃t−1 + η̃t, η̃t ∼ N(0, 1), (B4)

where (2.9) has been replaced by (B3) and (B4) and G is a set of covariates potentially driving

the time variation in the fiscal reaction to debt. By sampling the stochastic binary indicator λ

along with the other parameters, we obtain useful information as to whether the time-varying

component ση∗ β̃t contains any further information beyond that in the covariates G.

To simplify notation, we now include the parameters of the covariates G, that is κ, in the

parameter vector θ, so that θ ≡ (β0, ση, φ, γ
′, κ′)′, with κ ≡ (κ1, κ2, ..., κs), where s is the number

of explanatory variables included in the state equation, and β̃ ≡ (β̃1, β̃2, ..., β̃T )′. Analogous to

the simpler model, the MCMC scheme splits the estimation problem into three blocks where the

parameters are drawn from conditional distributions:

1. Sample the binary indicator λ from p(λ|β̃, Y ), marginalizing over the parameters in θ and

σ2ε , then sample the unrestricted parameters in θ and σ2ε .

2. Sample the time-varying parameter vector β̃ from p(β̃|λ, θ, σ2ε , Y )

3. Perform a random sign switch for ση∗ and the elements in β̃. That is, draw from {−1, 1}

with equal probability of both outcomes and multiply by ση∗ and β̃, implying a 50 percent

chance of ση∗ and β̃ being multiplied by (-1). β∗ and β can then be constructed from their

components.

28 In addition to the sources mentioned in appendix A, this section draws from Iseringhausen and Vierke (2018).
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In what follows, we lay out this MCMC scheme in more detail. Given the similarity of this approach

with that of the simpler model, the following sections are mainly concerned with elaborating on

the differences between the two.

1. Sampling the stochastic binary indicator and the hyperparameters

Analogously to the procedure in the pure random walk case, insert (B2) in (B1), using the

expression for β∗t in (B3) to obtain

pbit︸︷︷︸
yit

=
[
di,t−1 di,t−1λβ̃t di,t−1Git pbi,t−1 Xit

]
︸ ︷︷ ︸

χmit



β∗0

ση∗

κ

φ

γ


︸ ︷︷ ︸
θm

+εit. (B5)

Thus, θm now additionally contains the parameters of the covariates in the state equation κ,

and the sampling scheme laid out in section A 1 can be employed.

2. Sampling the time-varying parameter

As before, in this block we set up the conditional state-space model for β∗t :

yit︷ ︸︸ ︷
pbit − φpbi,t−1 − di,t−1β∗0 − di,t−1Gitκ−Xitγ =

Hm
t︷ ︸︸ ︷

di,t−1λση∗

smt︷︸︸︷
β̃t +

eit︷︸︸︷
εit , εit ∼ N(0,

R︷︸︸︷
σ2ε ), (B6)

β̃t︸︷︷︸
st

= 1︸︷︷︸
F

β̃t−1︸︷︷︸
st−1

+ 1︸︷︷︸
Kt

η̃t︸︷︷︸
vt

, η̃t ∼ N(0, 1︸︷︷︸
Q

), (B7)

for each i = 1, 2, ..., N and t = 1, 2, ...T . Given this conditional state-space model, the time-

varying parameter β̃t is sampled just as in the baseline model in section A 2.

Lastly, given β∗0 , ση∗ and β̃, β∗ and β can be constructed from their components.

As for the simpler model, we set the total number of Gibbs iterations to 200,000, with a burn-in

phase of 80,000, keeping every 10th draw of the remaining 120,000, which leaves us with 12,000

retained draws.
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