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Abstract

We propose a dynamic semi-parametric framework to study time variation in tail pa-

rameters. The framework builds on the Generalized Pareto Distribution (GPD) for

modeling peaks over thresholds as in Extreme Value Theory, but casts the model in

a conditional framework to allow for time-variation in the tail shape parameters. The

score-driven updates used improve the expected Kullback-Leibler divergence between

the model and the true data generating process on every step even if the GPD only fits

approximately and the model is mis-specified, as will be the case in any finite sample.

This is confirmed in simulations. Using the model, we find that Eurosystem sovereign

bond purchases during the euro area sovereign debt crisis had a beneficial impact on

extreme upper tail quantiles, leaning against the risk of extremely adverse market out-

comes while active.
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1 Introduction

This paper proposes a novel semi-parametric framework to study time variation in tail fatness

for long univariate time series, applied to high-frequency government bond returns during

times of unconventional central bank policies. The new method builds on ideas from Ex-

treme Value Theory (EVT) by using a conditional Generalized Pareto Distribution (GPD)

to approximate the tail beyond a given threshold, and endowing this conditional GPD dis-

tribution with time-varying parameters. The GPD is an appropriate tail approximation for

most heavy-tailed densities used in econometrics and actuarial sciences; see, for example,

Embrechts et al. (1997), Coles (2001), and McNeil et al. (2010, Chapter 7). As a result, the

GPD plays a central role in the study of extremes, comparable to the role the normal distri-

bution plays when studying observations in the center of the distribution. Our framework

allows us to study the time-variation in tail parameters associated with time series observa-

tions from a wide class of heavy-tailed distributions; see Rocco (2014) for a recent survey

of EVT methods in finance. We discuss the handling of non-tail time series observations,

inference on deterministic and time-varying parameters, and ways to relate time-varying

parameters to observed covariates. In this context we also study the effect of time-varying

pre-filtering methods possibly applied to the data before the dynamic GPD model is fitted.

In our model, the time-varying tail shape and tail scale parameters of the GPD are driven

by the score of the local (time t) objective function; see e.g. Creal et al. (2013) and Harvey

(2013). In this approach, the time-varying parameters are perfectly predictable one step

ahead. This makes the model observation-driven in the terminology of Cox (1981). The

log-likelihood is known in closed form, facilitating parameter estimation and inference via

standard maximum likelihood methods. Simulation evidence reveals that our model and

estimation approach is able to recover the time-varying tail shape and tail scale parameters

sufficiently accurately, as well as EVT-based market risk measures such as Value-at-Risk

(VaR) and Expected Shortfall (ES) at high confidence levels (say, 99%). This is the case

even if the model is misspecified or the GPD approximation is not exact. The latter is

particularly important in our finite sample setting, where the limiting result of the GPD can
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only hold approximately given the choice of a finite exceedance threshold in any particular

sample.

We apply our modeling framework to study the location, scale, and upper tail impact of

bond purchases undertaken by the Eurosystem – the European Central Bank (ECB) and its

17 national central banks at the time – during the euro area sovereign debt crisis between

2010 and 2012. We focus on bond purchases within the Eurosystem’s Securities Markets

Programme (SMP), which targeted sovereign bonds of five euro area countries: Greece,

Ireland, Italy, Portugal, and Spain. Based on high-frequency data for five-year benchmark

bonds, and explicitly accounting for time-variation in fat tails, we find that purchases lowered

the conditional location (mean) of future bond yields by up to -2.9 basis points (bps) per e1

bn of purchases. The impact estimates for the two largest SMP countries, Italy and Spain,

are -1.5 bps and -2.6 bps per e1 bn of purchases, respectively. These impact estimates are

marginally smaller in absolute value than earlier estimates based on different methodologies;

see Eser and Schwaab (2016), Ghysels et al. (2017), and Pooter et al. (2018).

In addition, we find that SMP purchases had a beneficial impact on the extreme upper

tail quantiles of yield changes. This suggests that central bank bond purchases lean against

the risk of extremely adverse market outcomes while they are active. The beneficial impact is

mostly explained by moving the center of the predictive distribution to the left and narrowing

it. Beneficial secondary effects come about via the SMP’s effect on tail shape and tail scale

for large economies such as Spain and Italy. The impact of purchases on tail quantiles is

larger than their impact on the conditional location (mean). We estimate that the 97.5%

VaR was reduced by 3.8, 6.0, 5.9, 2.1, and 6.9 bps per e1 bn Eurosystem intervention

in Spanish, Greek, Irish, Italian, and Portuguese five-year benchmark bonds, respectively.

The impact grows with the extremeness of the VaR. We estimate that the 99.5% VaR was

reduced, respectively, by 5.1, 10.1, 12.5, 2.9, and 15.4 bps per e1 bn of Eurosystem purchases

in the above bonds. The tail impact of the SMP purchases is economically relevant because

extreme tail risks alone can force dealer banks and market makers to retreat from supplying

liquidity to important segments of the sovereign bond market, particularly when their own

VaR constraints are binding; see Vayanos and Vila (2009) and Adrian and Shin (2014). In
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turn, malfunctioning sovereign bond markets can impair the transmission of the common

monetary policy to all parts of the euro area. Pelizzon et al. (2013, 2016) provide evidence

that market makers withdrew from trading Italian debt securities in 2011.

Our paper is related to at least two strands of literature: one on modeling time-variation

in tail parameters and one on assessing the effectiveness of central bank unconventional

monetary policy measures. Regarding the first, several papers propose methodology to study

time variation in the tail index. Davidson and Smith (1990), Coles (2001, Chapter 5.3),

and Wang and Tsai (2009), among others, also index the GPD tail parameters with time

subscripts and equip them with a parameterized structure. Our approach is different in that

their “tail index regression” approach requires conditioning variables that explain (all of) the

tail variation. Such variables are not always available. By contrast, our “filtering approach”

does not require such conditioning variables, and is arguably better suited for the real-time

monitoring of extreme risks. Second, Quintos et al. (2001), Einmahl et al. (2016), Hoga

(2017), and Lin and Kao (2018) derive formal tests for a structural break in the tail index.

A number of subsequent studies applied such tests to financial time series data. Werner

and Upper (2004) identify a break in the tail behavior of high-frequency German Bund

future returns. Galbraith and Zernov (2004) argues that certain regulatory changes in U.S.

equity markets have altered the tail index dynamics of equities returns, and Wagner (2005)

demonstrates that changes in government bond yields appear to exhibit time-variation in

the tail shape for both the U.S. and the euro area. de Haan and Zhou (2020) propose a

non-parametric approach to estimating the extreme value index locally. Our paper adds

to this strand of conditional EVT literature by proposing a model that allows us to study

both the tail shape and tail scale dynamics directly in a semi-parametric way. Explanatory

covariates can be included in the dynamics of both parameters, and likelihood ratio tests

are available to test economically relevant hypotheses. Finally, unlike Patton et al. (2019),

our tail VaR and ES dynamics explicitly account for fat tail shape beyond a threshold as

emerging from EVT. The dynamics based on the score for the GPD contain weights for

extreme observations. Such weights are absent in the elicitable score functions of Patton

et al.. The resulting dynamics in our model are, as a result, more robust, particularly for
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the ES.

A second strand of literature assesses the impact of central bank asset purchases on bond

yields and yield volatility. For example, Ghysels et al. (2017) study the yield impact of SMP

bond purchases by considering bond yields and purchases at 15-minute intervals. In this way

they mitigate a bias that unobserved factors could have introduced. The authors estimate

that SMP interventions had an impact on the conditional mean of 10-year maturity bonds

of between -0.2 and -4.2 bps per e1 bn of purchases. Eser and Schwaab (2016) study yield

impact based on daily data. In their framework, identification is based on a panel model

that exploits the cross-sectional dimension of the data. They find that, in addition to large

announcement effects, purchases of 1/1000 of the respective outstanding debt had an impact

of approximately -3 bps at the five-year maturity. Pooter et al. (2018) use the published

weekly data of aggregate SMP purchases to test for an impact on country-specific sovereign

bond liquidity premia. The authors find an average impact of -2.3 bps for purchases of

1/1000 of the outstanding debt. Our paper adds to the growing literature on assessing the

effectiveness of central bank asset purchase programs by developing methodology for the

extreme tail of the distribution.

Whereas de Haan and Zhou (2020) take a non-parametric perspective, the methodologi-

cal part of this paper is closest to Massacci (2017), who also proposes a dynamic parametric

model for the GPD parameters. Our framework is different in that we specify both param-

eters as functions of their respective scores, and adopt a non-diagonal scaling function. We

cover inference on both deterministic and time-varying parameters, explain how to intro-

duce additional conditioning variables, and provide Monte Carlo evidence. Owing to a novel

autoregressive specification of the EVT threshold following Patton et al. (2019), our model

can be fitted to both prefiltered and non-prefiltered time series data.1

We proceed as follows. Section 2 presents our statistical model. Section 3 discusses our

simulation results. Section 4 studies the tail impact of Eurosystem asset purchases. Section

5 concludes. A Web Appendix derives the score and scaling function for the tail shape model

1For computer code and an enumeration of recent work on score-driven models see http://www.

gasmodel.com/code.htm.
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and provides further technical and empirical results.

2 Statistical model

2.1 Time-varying tail shape and scale

This section introduces our model with time-varying tail shape and tail scale for a univariate

time series yt, t = 1, . . . , T , where T denotes the number of observations. We assume

yt = µt + σt εt, (1)

where g(εt | Ft−1) is the conditional probability density function (pdf) of εt, µt and σt are the

conditional location and scale of yt, and Ft−1 = {yt−1, yt−2, . . . , y1} denotes the information

set. The parameters µt and σt can take on many forms ranging from constant values to

specifications with autoregressive and conditional volatility dynamics. Key, however, is that

these parameters are typically mainly used to describe well the center of the distribution.

In this paper, by contrast, we concentrate on the tail of the distribution using a dynamic

extension of arguments from extreme value theory, similar to Patton’s (2006) extension of

copula theory to the dynamic, observation driven setting.

We assume the conditional pdf g(εt | Ft−1) has heavy tails with time-varying tail index

αt > 0. A prime example is the univariate Student’s t distribution with νt = αt degrees of

freedom. Other examples include the Pareto, inverse gamma, log-gamma, log-logistic, F ,

Fréchet, and Burr distribution with one or more time-varying shape parameters. Rather,

however, than modeling the (dynamic) tail shape by an arbitrarily chosen parametric family

of distributions, we appeal to well-known results from the extreme value theory (EVT)

literature. From EVT, we know that the conditional cumulative distribution function (cdf)

G(εt | Ft−1) of εt can under very general conditions be approximated by G(et | Ft−1) =

G(τ | Ft−1) + (1 − G(τ | Ft−1))P (xt; δt, ξt) with xt = et − τ for sufficiently high thresholds
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τ ∈ R+, or more precisely,

lim
τ→∞

sup
et≥τ
|P [εt ≤ et + τ | εt > τ, Ft−1]− Pξt,δt(et − τ)|

= lim
τ→∞

sup
et≥τ

∣∣∣∣G(et + τ | Ft−1)−G(et | Ft−1)
1−G(et | Ft−1)

− Pξt,δt(et − τ)

∣∣∣∣ = 0, (2)

for parameters ξt = α−1t and δt, both possibly depending on τ . Here, P (xt; δt, ξt) denotes

the cdf of the Generalized Pareto Distribution (GPD), with cdf and pdf given by

P (xt; δt, ξt) = 1−
(

1 + ξt
xt
δt

)−ξ−1
t

, p(xt; δt, ξt) = δ−1t ·
(

1 + ξt
xt
δt

)−ξ−1
t −1

, (3)

respectively (see, for example, McNeil et al., 2010). The quantity xt = εt − τ > 0 is

the so-called peak-over-threshold (POT), or exceedance, of heavy-tailed data εt over a pre-

determined threshold τ , and δt > 0 and ξt > 0 are the scale and tail shape parameter of

the GPD, respectively. Most continuous distributions used in statistics and the actuarial

sciences lie in the Maximum Domain of Attraction (MDA) of the GPD (see McNeil et al.,

2010, Chapter 7.1), meaning that they allow for the above tail shape approximation. By

focusing on the tail area directly using EVT arguments, we avoid having to make more

ad-hoc assumptions on the parametric form of the tail.

The result in (2) is a limiting result. In any finite sample, the threshold τt has to be

set to a specific, finite value, such that the GPD approximation will be inexact and the

distribution is in that sense misspecified. This will also be the case in our setting. The

score-driven updates that we define later on for ξt and δt, however, still ensure that the

expected Kullback-Leibler divergence between the approximate GPD model and the true,

unknown conditional distribution P [εt ≤ et + τ | εt > τ, Ft−1] is improved every time for

sufficiently small steps, even if the GPD model is misspecified; see Blasques et al. (2015).

The choice of the threshold τ is subject to a well-known bias-efficiency trade-off; see, for

instance, McNeil and Frey (2000). In theory, the GPD tail approximation only becomes

exact for τ → +∞. A high threshold, however, also implies a smaller number of exceedances

εt > τ , and more estimation error for the parameters of the GPD. Common choices for τ from
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the literature are the 90%, 95%, and 99% empirical quantiles of εt; see Chavez-Demoulin

et al. (2014). We return to the choice, and modeling, of the threshold further below.

A key step in (3) is that we use the conditional probabilities based on the information

set Ft−1. As a result, the tail shape parameters become time-varying. To capture this time-

variation, we model (ξt, δt)
′ using the score-driven (GAS) dynamics introduced by Creal et al.

(2013) and Harvey (2013). In our time series setting, that implies that both δt and ξt are

measurable with respect to Ft−1. We ensure positivity of δt and ξt by using an (element-wise)

exponential link function (ξt, δt)
′ = exp(ft) for ft = (f ξt , f

δ
t )′ ∈ R2.2 The transition dynamics

for ft are given by so-called GAS(p, q)-dynamics as

ft+1 = ω +

p−1∑
i=0

Aist−i +

q−1∑
j=0

Bjft−j, (4)

st = St∇t, ∇t = ∂ ln p(xt | Ft−1; ft, θ)/∂ft,

where vector ω = (ωξ, ωδ)′ = ω(θ) and matrices Ai = Ai(θ) and Bj = Bj(θ) depend on the

deterministic parameter vector θ, which needs to be estimated. The scaling matrix St may

depend both on θ, ft, and Ft−1. Effectively, the recursion (4) updates ft at every time point

in time via a scaled steepest ascent step to improve the fit to the GPD. The score of (3)

required in (4) is given by

∇t =


ξ−1t · log

(
1 + ξt δ

−1
t xt

)
−
(
1 + ξ−1t

) ξtxt

δt + ξtxt

xt − δt
δt + ξtxt

 , (5)

where log(·) denotes the natural logarithm; see Appendix A.1 for a derivation. We take Ai

and Bj as diagonal matrices.

Following Creal et al. (2014) we select the square-root inverse conditional Fisher infor-

mation of the conditional observation density to scale (5), i.e., St = L′t, with Lt the choleski

decomposition of the inverse conditional Fisher information matrix It = (LtL
′
t)
−1 = E[∇t∇′t |

2Given that ξt > 0 ∀t, (3) is also the cdf and pdf of a Pareto type-II distribution with two time-varying
parameters αt = ξ−1

t and σt = δtξ
−1
t .
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Figure 1: News impact curves
The first element (left panel) and second element (right panel) of st in (7) is plotted against xt for different
values of ξt and δt.

Ft−1; ft, θ] = E[−∂∇t/∂f
′
t | Ft−1; ft, θ], such that the conditional variance of st is equal to

the unit matrix. For the GPD, we have

Lt =

1 + ξ−1t 0

−1
√

1 + 2ξt

 , (6)

see Appendix A.2 for a derivation. Combining terms yields the scaled score as

st = L′t∇t =


ξ−2t (1 + ξt) · log

(
1 + ξt δ

−1
t xt

)
+
δt − (ξt + 3 + ξ−1t ) · xt

δt + ξtxt

√
1 + 2ξt

xt − δt
δt + ξtxt

 . (7)

Though the scaled score in (7) seems unstable at first sight for ξt near zero, the expression

actually has a finite limit equal to limξt↓0 s1,t = 1− 2δ−1t xt + 1
2
δ−2t x2t .

Figure 1 plots the two elements of (7) as a function of xt for different values of ξt and δt.

The behavior of the scaled score is intuitive: Large xt imply that ft is adjusted upwards. For

high realization of xt the adjustments are greatest when the current tail shape and tail scale

are low. The function shapes become increasingly concave as x → ∞ in line with robust

updates of the time-varying parameters. This distinguishes our current set-up sharply from
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an approach directly based on quantile functions; see Patton et al. (2019) and Catania and

Luati (2019), in particular for risk measures such as ES. In Patton et al. (2019), ES reacts

linearly to the VaR exceedance.This can result in noisy or unstable ES estimates. Using the

GPD shape as emanating from EVT, Figure 1 shows that ξt and δt react more modestly to

large POT observations. This makes sense, as we expect such ‘outliers’ to occur more often

for higher values of ξt. For extremely high ξt ≥ 1, the ES even ceases to exist. We also note

that small realizations of xt imply downward adjustments of both elements of ft, up to the

point where xt becomes very small. In that case f ξt is adjusted upward, as observations near

the center of a fat-tailed distribution signal increased peakedness (=leptokurtosis); see also

Lucas and Zhang (2016). The score-driven steps in (7) can thus result in more stable and

interpretable parameter paths due to the concavity of the news impact curves.

When there is no tail observation, i.e. xt = εt − τ ≤ 0, then the new observation carries

no information about ξt and δt; see McNeil et al. (2010, Chapter 7). In such cases we set the

score to zero, and continue to use (4) to update ft.
3 Long consecutive stretches of zero scores

can lead to erratic paths for ft and thus (ξt, δt). In addition, such stretches of zero scores can

be problematic for inference on θ; see Blasques et al. (2018). Both issues can be addressed by

taking into account lagged values of the scaled score via the exponentially-weighted moving

average specification

ft+1 = ω + As̃t +Bft, (8)

where s̃t = (1 − λ)st + λs̃t−1, λ ∈ (0, 1) is an additional parameter to be estimated, and st

is given by (7). While st is most often zero, s̃t is not. Clearly, (4) is a special case of (8) for

λ→ 0. Specification (8) leads to a GAS(1,2) specification for ft,

(
I2 −B L

)
(1− λ)−1

(
1− λL

)
ft+1 = ω + Ast,

where L is the lag operator. To see this, first rewrite (8) to (I2 − B L)ft+1 = ω + As̃t, and

then multiply both sides by (1− λL)/(1− λ), using (1− λL)s̃t = (1− λ)st. The smoothing

3If ω = 0, B = I2, and p = q = 1 in (4), then a zero score implies that both tail parameters retain their
current values. We adopt this specification in Section 4 below.
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approach in (8) is similar to the approach in Patton (2006) that uses up to ten lags of the

driver (in our case the score) to smooth the dynamics of the time-varying parameter.

The transition equation for ft can be extended further if additional conditioning variables

are available. For example, central bank sovereign bond purchases may help explain the time-

variation in the tail shape and tail scale parameters associated with changes in sovereign bond

yields; see Section 4. Such additional variables can be taken into account in a straightforward

way via the modified transition equation,

ft+1 = ω + As̃t +Bft + C · zt, (9)

where all explanatory variables are stacked into vector zt, and C is a conformable matrix of

impact coefficients that needs to be estimated.

We consider three different ways to set the relevant thresholds. The thresholds can

be either time-invariant (τ) or time-varying (τt). The construction of the thresholds can be

important in practice because τt determines whether an observation lies in the tail, and, if so,

what is the magnitude of the exceedance xt = εt− τt > 0. The κ-quantile Qκ
1:T ({ε1, . . . , εT})

associated with the full sample is an obvious first candidate, κ ∈ (0, 1). In this case, τ =

Qκ
1:T ({ε1, . . . , εT}) is time-invariant. Alternatively, we can compute the quantile recursively

up to time t and set τt = Qκ
1:t ({ε1, . . . , εt}), such that τt is time-varying. Finally, we consider

a dynamic specification as suggested by Patton et al. (2019), according to which

τt+1 = τt + aτ · (1{εt > τt} − (1− κ)) , (10)

where aτ is a parameter to be estimated, and τ1 = Qκ
1:T is used to initialize the process.

The recursive specification (10) is a martingale since E[1{εt > τt} | Ft−1, θ] = (1− κ). The

threshold τt can now respond to changes in the underlying location, scale, and higher-order

moments of εt in a straightforward way. This is particularly relevant if the data yt is not

pre-filtered based on an appropriate location–scale model in a first step, for instance if we

set µt = 0 and σt = 1 in (1), thus modeling the conditional extreme tail shape of yt directly.
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We close this section with a brief comment on parameter interpretability. The tail shape

parameter ξt can always be interpreted as observation yt’s contemporaneous inverse tail

index α−1t . By contrast, the estimated scale parameter δt need not have a straightforward

interpretation in terms of yt’s conditional variance. For example, assume that yt were GPD

distributed with time-varying tail shape parameter α−1t and scale σt. We can then show that

the derived POT xt also has an exact GPD-distribution, with the same tail shape parameter

ξt = α−1t , but a different scale parameter δt,τ = σt + α−1t · τ ; see Web Appendix B.1 for

details. As a result, δt,τ increases with the threshold, varies positively with the tail shape

parameter ξt, and, importantly, should not be expected to provide a consistent estimate of

σt. A similar result can be derived if the time series data yt were Student’s t-distributed with

scale σt and tail index αt; see Web Appendix B.2. We return to this issue in our simulation

Section 3, where we consider pseudo-true values of both parameters to benchmark how well

the model can estimates these.

2.2 Confidence bands for tail shape and scale

Confidence (or standard error) bands allow us to visualize the impact of estimation uncer-

tainty associated with the maximum likelihood estimate θ̂ on the filtered estimates f̂t(θ̂),

and, by extension, also (ξ̂t, δ̂t)
′ = exp(f̂t(θ̂)). Quantifying the uncertainty about these param-

eter paths is important, as classical EVT estimators of time-invariant tail shape parameters

are already typically associated with sizeable standard errors; see e.g. Hill (1975) and Huis-

man et al. (2001). Our confidence bands are based on the variance of f̂t, which we denote

Vt = Var(f̂t). There exist two possible ways to construct these bands. Delta-method-based

bands can be devised using a linear approximation of the non-linear transition function for

ft, thus extending Blasques et al. (2016, Section 3.2) to the case of multiple lags. We provide

the equations in Web Appendix C. In our empirical application below, however, the linear

approximations are typically insufficient to capture the uncertainty in the highly non-linear

dynamics for some countries. As a result, delta-method-based bands can become unstable.

Therefore, we instead use simulation-based bands as in Blasques et al. (2016, Section 3.3).

Simulation-based confidence bands build on the asymptotic normality of θ̂. In particular,
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we draw S parameter values θ̂s, s = 1, . . . , S from the distribution N(θ̂, Ŵ ), where Ŵ is the

estimated covariance matrix of θ̂, e.g., a sandwich covariance matrix estimator. If the finite-

sample distribution of θ̂ were known, that could be used instead. For each draw θ̂s we now

run the filter for ft from t = 1 to t = T , thus obtaining S paths f̂ st , for s = 1, . . . , S and

t = 1, . . . , T . These paths account automatically for all non-linearities in the dynamics for ft.

The simulated bands can now be obtained directly by calculating the appropriate percentiles

for each t over the S draws of the paths f̂ st for s = 1, . . . , S.

2.3 Parameter estimation

Parameter estimates can be obtained in a standard way by numerically maximizing the log-

likelihood function. Observation-driven time series models such as (3) – (10) are attractive

because the log-likelihood is known in closed form. For a given set of time series observations

x1, . . . , xT , the vector of unknown parameters θ can be estimated by maximizing the log-

likelihood function with respect to θ. The average log-likelihood function is given by

L (θ|FT ) = (T ∗)−1
T∑
t=1

1{xt > 0} · ln p(xt; δt, ξt)

= (T ∗)−1
T∑
t=1

1{xt > 0} ·
[
− ln(δt)−

(
1 +

1

ξt

)
ln

(
1 + ξt

xt
δt

)]
, (11)

where T ∗ =
∑T

t=1 1{xt > 0} is the number of POT values in the sample. Maximization of

(11) can be carried out using a conveniently chosen quasi-Newton optimization method.

Blasques et al. (2020) provide conditions under which the maximum likelihood estimator

of θ is consistent and asymptotically normally distributed within the class of correctly-

specified score-driven models. They also prove that (quasi-)maximum likelihood estimation

of θ can remain consistent (to pseudo-true values) and asymptotically normal even if the

score-driven model is misspecified in terms of ln p(xt; ft). This is reassuring since the GPD is

never exact for any finite value of τ <∞. In the presence of misspecification, score updates

continue to minimize the local Kullback-Leibler divergence between the true conditional

density and the model-implied conditional density, and remain optimal in this sense; see
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Blasques et al. (2015). The asymptotic covariance matrix W = Var(θ̂) then takes its usual

sandwich form; see e.g. Davidson and MacKinnon (2004, Ch. 10) and Blasques et al. (2020).

The autoregressive parameter aτ in (10) cannot be estimated using (11). Another objec-

tive function is needed in this case. We suggest using the average quantile regression check

function of Koenker (2005, Ch. 3). The optimization problem can be formulated as

min
{aτ}

T−1
T∑
t=1

ρκ (εt − τt) ⇐⇒ min
{aτ}

T−1
T∑
t=1

(εt − τt) (κ− 1{εt < τt})

⇐⇒ max
{aτ}

T−1
T∑
t=1

(εt − τt) ((1− κ)− 1{εt > τt}) , (12)

where ρκ(ut) = ut (κ− 1{ut < 0}), and τt evolves as in (10). See also Engle and Manganelli

(2004) and Catania and Luati (2019) for the use of this objective function in a different

dynamic context. In practice, we estimate all thresholds τt via (12) before maximizing (11).4

2.4 A conditional location–scale–df model

This section introduces a score-driven location–scale–df model that can be used to pre-filter

univariate time series data yt that is arbitrarily fat-tailed, where df denotes the degrees of

freedom. The model modifies the setting of Lucas and Zhang (2016) with a Student’s t

distribution with time-varying volatility and degrees of freedom parameters to a setting that

also allows for a time-varying location µt parameter and to more extreme tails (νt < 2), in

which case the volatility no longer exists, but a time varying scale parameter σt > 0 does

exist. Since all parameters are time-varying, using this model minimizes the risk of mistaking

time-variation in the center of the distribution for time-variation in the tail, and vice versa.

The restriction νt > 0 aligns closely with the assumption αt > 0 and ξt > 0 in Section 2.1.

4Numerical gradient-based optimizers, such as e.g. MaxBFGS, may only indicate weak convergence at
the optimum of (12). This is due to the piecewise linear objective function. The optimizer at hand may
not be suited for such a function, and will end up in a kink. This is not a problem, assuming we are not
interested in standard errors for aτ . Alternatively the interior point algorithm of Koenker and Park (1996)
could be used.
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For the purposes of pre-filtering, in this section yt is assumed to be generated by

yt ∼ t(yt;µt, σt, νt), (13)

where µt = E[yt | Ft−1] if νt > 1, and
√
νt/(νt − 2)σt is the conditional volatility of yt if

νt > 2. All time-varying parameters are modeled in a score-driven way as

µt+1 = ωµ + aµsµt + bµµt + cµzt + dµyt, (14)

lnσt+1 = ωσ + aσsσt + bσ lnσt + cσzt + dσ1{yt > µt}sLevt , (15)

νt+1 = ων + aνsνt + bννt + cνzt, (16)

where ω(·), a(·), b(·), c(·), and d(·) are scalar parameters to be estimated, and zt is a vector of

additional conditioning variables which may be available. The required scaled scores are

sµt =
(νt + 3)(yt − µt)
νt + σ−2t (yt − µt)2

, (17)

sσt =
νt + 3

2νt
·
(

(νt + 1)(yt − µt)2

νtσ2
t + (yt − µt)2

− 1

)
, (18)

sνt =
1

2

[
νt
4
γ′′
(
νt + 1

2

)
− νt

4
γ′′
(νt

2

)
+

1

2

νt + 5

(νt + 1)(νt + 3)

]−1
[

1

νt
+ γ′

(νt
2

)
− γ′

(
νt + 1

2

)
+ ln

(
1 +

(yt − µt)2

νtσ2
t

)
− νt + 1

νt

(yt − µt)2

νtσ2
t + (yt − µt)2

]
, (19)

where the functions γ′ (x) and γ′′ (x) are the first and second derivatives of the log-gamma

function. We refer to Web Appendix D for a derivation of (17) – (19).

The “leverage” term dσ · 1{yt > µt}sLevt in (15) allows lnσt+1 to be higher (or lower,

depending on the sign of dσ) when yt is above its location µt. The term sLevt = sσt (yt)−sσt (µt)

is constructed such that the score is continuous at µt. Leverage specifications are often

found to be valuable in many empirical applications; see e.g. Engle and Patton (2001). The

deterministic parameters in (14) – (16) can be estimated by (quasi-)maximum likelihood

methods in line with the discussion in Section 2.3.
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2.5 Market risk measures

Market risk measurement is a major application of EVT methods in practice; see Manganelli

and Engle (2004) and McNeil et al. (2010). We consider the conditional VaR and conditional

ES as measures of one-step-ahead market risk. The GPD approximation (2) – (3) yields

useful closed-form estimators of the VaR and ES for high upper quantiles γ > G(τ | Ft−1);

see McNeil and Frey (2000) and Rocco (2014). We can estimate the 1− γ tail probability of

yt based on the GPD cdf for xt, obtaining

VaRγ(εt | Ft−1, θ) = τt + δtξ
−1
t

[(
1− γ
t∗/t

)−ξt
− 1

]
,

VaRγ(yt | Ft−1, θ) = µt + σtVaRγ(εt | Ft−1, θ), (20)

where µt and σt are defined below (1), and t∗ is the number of observations of xt > 0 up to

time t, i.e., the number of observations ys for s = 1, . . . , t for which ys > τs. Put differently,

t∗/t is an estimator of the tail probability κt = G(τt | Ft−1).

The conditional ES is the average conditional VaR in the tail across all quantiles γ (see

McNeil et al., 2010, Chapter 2), provided ξt < 1. The closed-form expressions are

ESγ(εt | Ft−1, θ) =
1

1− γ

∫ 1

γ

VaRγ̃(εt | Ft−1, θ)dγ̃

=
VaRγ(εt | Ft−1, θ)

1− ξt
+
δt − ξtτt
1− ξt

,

ESγ(yt | Ft−1, θ) = µt + σtESγ(εt | Ft−1, θ); (21)

see Web Appendix E for a derivation of (20) – (21). The ESγ(yt| · ) is strictly higher than the

VaRγ(yt| · ) at the same confidence level, as it “looks further into the tail.” It can be shown

that the ratio ESγ(yt| · )/VaRγ(yt| · ) increases monotonically in ξt for γ → 1, indicating

that expected losses beyond the VaR become increasingly worse for heavier-tailed (higher

ξt) distributions. Maximum likelihood estimators of the conditional VaR and conditional ES

can be obtained by inserting filtered estimates of µt, σt, ξt and δt into (20) and (21).
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For later reference, the sensitivity of VaRγ(yt) to bond purchases zt−1 is given by

dVaRγ(yt)

dzt−1
=
∂VaR

∂µt

dµt
dzt−1

+
∂VaR

∂σt

dσt
d lnσt

d lnσt
dzt−1

+
∂VaR

∂δt

dδt
df δt

df δt
dzt−1

+
∂VaR

∂ξt

dξt

df ξt

df ξt
dzt−1

.

The expression is intuitive: extreme upper quantiles can change if bond purchases zt−1 affect

the conditional location µt, the conditional scale σt, the tail scale δt, or the tail shape ξt.

The derivative is given by

dVaRγ(yt)

dzt−1
=cµ + σtVaRγ(εt)c

σ + σt (VaRγ(εt)− τt) cδ

−σt

{
VaRγ(εt)− τt + δt

(
1− γ
t∗/t

)−ξt
ln

(
1− γ
t∗/t

)}
cξ, (22)

where µt and σt are given by (14) and (15), f ξt and f δt are given by (9) with C = (cδ, cξ)′.

3 Simulation study

This section studies the question whether our score-driven modeling approach can reliably

recover the time series variation in tail shape and tail scale in a variety of potentially chal-

lenging settings. In addition, we are interested in how to best choose the thresholds τt, as

well as the accuracy of EVT-based market risk measures when used in combination with our

modeling approach.

3.1 Simulation design

Our simulation design considers D = 2 different densities (GPD and t), P = 4 different

parameter paths for tail shape and tail scale, and H = 3 different ways to obtain the

appropriate thresholds τt. This yields 2 × 4 × 3 = 24 simulation experiments. In each

experiment, we draw S = 100 univariate simulation samples of length T = 25, 000. We focus

on the upper 1− κ = 5% tail. As a result, approximately 25, 000 · 0.05 = 1, 250 observations

are available in each simulation to compute informative POTs xt > 0. The time series

dimension T is chosen to resemble that of the empirical data considered in Section 4.
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GPD and t-densities: We first simulate yt from a GPD distribution with time-varying tail

shape α−1t and tail scale σt, yt ∼ GPD(α−1t , σt). We then consider a Student’s t distribution

with time-varying scale σt and degrees of freedom αt, yt ∼t(0, σt, αt). POT values xt are

obtained as xt = yt − τt.

Parameter paths: We consider four different paths for the tail shape α−1t and tail scale σt

parameters. For both GPD and t densities we consider

(1) Constant: α−1t = 0.5, σt = 1;

(2) Sine and constant: α−1t = 0.5 + 0.3 sin(4πt/T ), σt = 1;

(3) Slow sine and frequent sine: α−1t = 0.5 + 0.3 sin(4πt/T ), σt = 1 + 0.5 sin(16πt/T );

(4) Synchronized sines: α−1t = 0.5 + 0.3 sin(4πt/T ), σt = 1 + 0.5 sin(4πt/T ).

Path (1) considers the special case of time-invariant tail shape and scale parameters. Natu-

rally, we would want our dynamic framework to cover constant parameters as a special case.

Path (2) allows the tail shape to vary considerably between 0.2 and 0.8, while keeping the

scale (volatility) of the data constant. This parameter path corresponds to the empirical

practice of working with volatility pre-filtered data. Path (3) stipulates that both parame-

ters vary over time. Finally, Path (4) considers the case of synchronized variation in both

parameters. This setting may be particularly challenging for two reasons. First, the tail

observations occur most frequently when both tail shape and scale are high, making it po-

tentially difficult to disentangle the two effects. Second, less information about the tail is

available when both parameters are low simultaneously.

Different thresholds: We consider three thresholds τt. First, we use the true time-varying

95%–quantile based on our knowledge of the true density and of αt and σt. This constitutes

an infeasible best benchmark. Second, we construct τt as the 95%–quantile of the expanding

window of data up to time t, i.e. τt = Q0.95
1:t ({ε1, . . . , εt}). Finally, we use the recursive

specification (10), with aτ fixed at 0.25, and initialized at τ1 = Q0.95
1:T .

Evaluation metrics: Our main metric for evaluating model performance is the root

mean squared error RMSE = 1
S

∑S
s=1

√
1
T

∑T
t=1(ξ̂st − ξ̄st)2, where ξ̂st is the estimated tail
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shape parameter in simulation s, ξ̄st is the corresponding (pseudo-)true tail shape, s =

1, . . . , S denotes the simulation run, and t = 1, . . . , T is the number of observations in

each draw. The RMSE for the tail scale parameter δt is obtained analogously, RMSE =

1
S

∑S
s=1

√
1
T

∑T
t=1(δ̂st − δ̄st)2, where δ̄st denotes the pseudo-true value of δst. The pseudo-true

values ξ̄st and δ̄st are obtained by numerically minimizing the Kullback-Leibler divergence

between the GPD and the data generating process beyond the true time-varying 95% quan-

tile τt. As the true conditional density is known at all times in a simulation setting, these

pseudo-true benchmarks are easily computed. We note that particularly the GPD scale pa-

rameter δ̄t may have very different dynamics from σt, as it combines dynamics in αt and σt

via the EVT limiting expression in (2).

3.2 Simulation results

Table 1 presents root mean squared error (RMSE) statistics for tail shape ξ̂s,t, tail scale δ̂s,t,

and Value-at-Risk V̂aRs,t estimates. Figures F.1 and F.2 in Web Appendix F.1 compare

median estimated parameter paths for ξ̂t, ξ̂t, V̂aR
0.99

, and ÊS
0.99

to their (pseudo-)true

values. Figure 2 is a representative example of the simulation outcomes when yt is generated

by a Student’s t distribution.

We focus on three main findings. First, all models seem to work well in recovering the

true underlying ξt and δt dynamics. The median estimates in Figures F.1 and F.2 tend to

be close to their (pseudo-)true values. Particularly the sometimes highly non-linear patters

of δt are recovered well. The model also captures well the peaks of ξt, so the fattest tails.

The model needs some time to recognize that the extreme tail has become more benign, i.e.,

that ξt has gone down. The good fit is corroborated by Table 1. Both estimation methods

for τt only loose about 10% RMSE for ξt and δt compared to the use of the true (infeasible)

τt.

Second, when comparing the recursive estimate τ̂t versus the dynamic τ ∗t of Patton et al.

(2019) in Table 1, differences are mostly small and insignificant. If there is no time-variation

(path (1)), the recursive estimate does slightly better, as expected. The converse is true for

δt if the true parameters vary over time.
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Table 1: Simulation RMSE results

Root mean squared error (RMSE) statistics for two different distributions (GPD and t, in columns) and
for four different parameter paths for tail shape ξt and tail scale δt (paths (1) – (4), in rows). Thresholds
τt, τ̂t, and τ̂∗t denote i) the infeasible true time-varying threshold, ii) the empirical quantile associated
with an expanding window of observations y1, . . . , yt, and iii) the estimated conditional quantile using
(12) with aτ = 0.25, respectively. We consider 100 simulations for each DGP, and a time series of 25, 000
observations in each simulation. Model performance is measured by the RMSE from the true ξ̄t and δ̄t in
each draw. For VaR, model performance is measured in relative terms as RMSE rescaled by the squared VaRt.

Model GPD(τt) GPD(τ̂t) GPD(τ̂∗t ) t(τt) t(τ̂t) t(τ̂∗t )
(infeasible) (infeasible)

RMSE ξ̂s,t
(1) 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
(2) 0.171 0.177 0.178 0.182 0.188 0.189

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
(3) 0.182 0.188 0.189 0.190 0.197 0.197

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
(4) 0.177 0.186 0.183 0.188 0.195 0.192

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

RMSE δ̂s,t
(1) 0.005 0.014 0.068 0.005 0.010 0.034

(0.003) (0.006) (0.013) (0.002) (0.004) (0.006)
(2) 1.646 1.774 1.753 0.580 0.589 0.588

(0.034) (0.040) (0.036) (0.013) (0.012) (0.013)
(3) 2.421 2.913 2.813 0.836 0.960 0.924

(0.054) (0.054) (0.049) (0.015) (0.020) (0.017)
(4) 2.608 2.904 2.844 0.925 0.970 0.964

(0.057) (0.059) (0.059) (0.020) (0.020) (0.022)

RMSE V̂aRs,t

(1) 0.001 0.003 0.016 0.124 0.124 0.149
(0.001) (0.002) (0.003) (0.001) (0.001) (0.002)

(2) 0.924 0.987 0.964 0.249 0.243 0.257
(0.027) (0.032) (0.031) (0.003) (0.003) (0.003)

(3) 1.063 1.304 1.209 0.322 0.344 0.349
(0.025) (0.041) (0.033) (0.004) (0.005) (0.004)

(4) 1.020 1.120 1.083 0.302 0.297 0.319
(0.027) (0.028) (0.028) (0.003) (0.003) (0.003)

Third, Figure 2 as well as Figures F.1 and F.2 in Web Appendix F.1 corroborate that our

EVT-based market risk measures, such as VaR and ES at a high confidence level γ = 0.99,

tend to be estimated sufficiently accurately when used in combination with our modeling

approach. The low and high frequency dynamics of the VaR and ES are both captured

well. There only appears some under-estimation of the ES at its very peak where tails

are extremely fat. Overall, we conclude that the model captures well the dynamics of the
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Figure 2: Simulation results: a representative example

Time series data is here generated as yt ∼t(0, σt, αt), where α−1
t = 0.5 + 0.3 sin(4πt/T ) and σt = 1 +

0.5 sin(16πt/T ). This is Path 3 in Section 3.1. Pseudo-true parameter values are reported in solid red. The
four panels report estimates of ξt, δt, VaRt, and ESt, respectively. Median filtered values are plotted in solid
black. The first two panels also indicate the lower 5% and upper 95% quantiles of the estimates (black dots).
The time-varying threshold τ̂t is estimated based on the recursive specification (10) in conjunction with the
objective function (12).
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tails, even if the model does not coincide with the data generating process and is therefore

misspecified.

4 The tail impact of Eurosystem asset purchases

4.1 Data

4.1.1 High-frequency data on bond yields

We obtain high-frequency data on changes in euro area sovereign bond yields from Thomson

Reuters/Datastream, focusing on Spanish (EN), Greek (GR), Irish (IE), Italian (IT), and

Portuguese (PT) five-year sovereign benchmark bonds. These market segments were among

the most affected by the euro area debt crisis; see e.g. ECB (2014). SMP bond purchases

undertaken during the debt crisis predominantly targeted the two- to ten-year maturity

bracket, with the five-year maturity approximately in the middle of that spectrum. We

focus on the impact on five-year benchmark bonds for this reason. We model the midpoint

between ask and bid prices. Bond prices are expressed in yields-to-maturity and are obtained

from continuous dealer quotes.
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Our sample ranges from 04 January 2010 to 31 December 2012, covering the most in-

tense phase of the euro area sovereign debt crisis. The bond yields are sampled at the

15-minute frequency between 8AM and 6PM. Following Ghysels et al. (2017) we do not

consider overnight changes in yield, such that the first 15-minute interval covers 8AM to

8:15AM. This yields 40 intra-daily observations per trading day. This yields 40 intra-daily

observations per day, with T ≈ 3× 260× 40 ≈ 31, 000 observations per country.

The Greek data are an exception. Greek bonds experienced a credit event on 09 March

2012. In January and February 2012 the five-year benchmark bond continued trading, infre-

quently and at low prices, until approximately one week before the credit event. Our Greek

data sample ends on 02 March 2012 for this reason. We include the Greek pre-default data

as a truly extreme case, allowing us to “stress-test” our EVT estimation methodology.

Figure F.3 in the Web Appendix F.2 plots the yield-to-maturity of our five benchmark

bond yields in levels and in first differences. All five yields exhibited large and sudden moves,

leading to volatility clustering and extreme realizations of yield changes during the euro area

sovereign debt crisis.

Table 2 provides summary statistics for changes in our five benchmark bond yields sam-

pled at the 15-minute frequency. All time series have significant non-Gaussian features under

standard tests and significance levels. In particular, we note the non-zero skewness and large

values of kurtosis for almost all time series in the sample. Yield changes are covariance sta-

tionary according to standard unit root (ADF) tests. Most yield changes are below one bps

in absolute value. This suggests that the data are not only heavy-tailed, but also extremely

peaked around zero in the center. The pronounced non-Gaussian data features strongly

suggest a non-Gaussian empirical framework for modeling conditional location, dispersion,

and higher-order moments.

4.1.2 High–frequency data on Eurosystem bond purchases

We study the impact of SMP bond purchases between 2010 and 2012 for five euro area coun-

tries: Greece, Ireland, Italy, Portugal, and Spain. At the end of our sample, the Eurosystem

held e99.0 bn in Italian sovereign bonds, e30.8 bn in Greek debt, e43.7 bn in Spanish debt,
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Table 2: Data descriptive statistics

Summary statistics for changes in five-year sovereign benchmark bond yields measured in percentage points.
Columns labeled EN, GR, IE, IT, and PT refer to Spanish, Greek, Irish, Italian, and Portuguese five-year
benchmark bond yields. The sample ranges from 04 January 2010 to 28 December 2012. The Greek
sample ends on 02 March 2012. Reported p-values for skewness and kurtosis refer to D’Agostino et al.
(1990)’s test. The last row reports the fraction of yield changes smaller than one basis point in absolute value.

EN GR IE IT PT

Median 0.00 0.00 0.00 0.00 0.00
Std. dev. 0.02 0.46 0.06 0.03 0.08
Minimum -0.74 -20.73 -0.91 -0.39 -1.15
Maximum 0.47 14.77 1.45 0.43 1.20
Skewness -42.29 -104.76 34.11 14.91 12.40
Skew. p-value 0.00 0.00 0.00 0.00 0.00
Kurtosis 357.94 195.05 301.26 293.40 279.44
Kurt. p-value 0.00 0.00 0.00 0.00 0.00
Fraction yt < 1 bp 81% 77% 81% 81% 77%

e21.6 bn in Portuguese debt, and e13.6 bn in Irish bonds; see the ECB (2013)’s Annual

Report. The SMP’s daily cross-country breakdown of the purchase data is still confidential

at the time of writing. We use the country-specific data on SMP purchases when studying

the impact of the program.

The SMP had the objective of helping to restore the monetary policy transmission mech-

anism by addressing the malfunctioning of certain government bond markets. The SMP

consisted of interventions in the form of outright secondary market purchases. Implicit in

the concept of malfunctioning markets is the notion that government bond yields can be

unjustifiably high and volatile.

Figure 3 plots weekly total SMP purchases across countries as well as their accumulated

book value over time. Approximately e214 billion (bn) of bonds were acquired within

the SMP between 2010 and early 2012. The SMP was announced on 10 May 2010 and

initially focused on Greek, Irish, and Portuguese debt securities. The program was extended

to include Italian and Spanish bonds on 8 August 2011. The SMP was replaced by the

Outright Monetary Transactions (OMTs) program on 6 September 2012; see Cœuré (2013).

Visibly, the purchase data are unevenly spread over time. Between 10 May 2010 and Spring

2012 there are long periods during which the SMP was open but inactive.
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Figure 3: Weekly and total SMP purchase amounts.

The figure plots the book value of settled SMP purchases as of the end of a given week. We report weekly
purchases across countries (left panel) as well as the cumulative amounts (right panel). Maturing amounts
are excluded.
C:\RESEARCH\GAStails\Bond_Stata\OXrw_Final\Draft_2017Feb22\purchases1bn_2015.eps  02/22/17 19:38:38
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The SMP purchase data are time-stamped, allowing us to construct time series data

zt of country-specific SMP purchases at the high (15-minute) frequency. The 15-minute

frequency is chosen because 15 minutes is the regulatory limit for the recording of trades

by the Eurosystem. Observations zt contain all sovereign bond purchases at par (nominal)

value between t − 1 and t for the respective country, not only purchases of the five-year

benchmark bond.

4.2 Location–scale–df model estimates

This section applies our novel location–scale–df model of Section 2.4 to study changes in the

yield-to-maturity of five-year sovereign benchmark bonds as discussed in Section 4.1.1. We

are particularly interested in each series’ location, scale, and degrees of freedom, and how

these respond to Eurosystem bond purchases.

We apply the model to the raw data series after removing a (negligible) intra-daily pattern

via dummy variable regression. We introduce two simplifications to the general specification.

First, preliminary analyses suggest that the location parameters are approximately time-

invariant, such that aµ and bµ are close to zero. We proceed by imposing this restriction.

Note that the specification for the mean still includes dµ · yt−1 to accommodate a potentially
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Table 3: Parameter estimates for the location–scale–df model

Parameter estimates for the univariate location–scale–df model (13). Rows labeled EN, GR, IE, IT, and
PT refer to Spanish, Greek, Irish, Italian, and Portuguese five-year benchmark bond yields. The estimation
sample ranges from 04 January 2010 to 28 December 2012 for all countries except Greece. Standard error
estimates are in round brackets and are taken from a sandwich covariance matrix. P-values are provided in
square brackets.

EN GR IE IT PT
ωµ 0.013 -0.038 0.003 -0.003 -0.016

(0.007) (0.024) (0.005) (0.007) (0.006)
[0.046] [0.108] [0.641] [0.618] [0.004]

cµ -2.623 -2.856 0.017 -1.479 -0.053
(SMP) (0.941) (2.483) (1.594) (0.552) (2.068)

[0.005] [0.250] [0.992] [0.007] [0.980]
dµ -0.039 -0.000 -0.010 -0.029 -0.004
(AR1) (0.007) (0.000) (0.002) (0.010) (0.001)

[0.000] [0.200] [0.000] [0.004] [0.003]
aσ 0.107 0.141 0.135 0.124 0.089

(0.015) (0.011) (0.012) (0.013) (0.011)
[0.000] [0.000] [0.000] [0.000] [0.000]

cσ -0.126 -0.055 -0.461 -0.049 -0.441
(SMP) (0.089) (0.115) (0.324) (0.050) (0.228)

[0.158] [0.635] [0.155] [0.325] [0.053]
dσ 0.004 -0.004 -0.000 0.005 -0.000
(LEV) (0.001) (0.001) (0.001) (0.002) (0.001)

[0.006] [0.001] [0.885] [0.002] [0.641]
aν 0.004 0.018 0.007 0.006 0.008

(0.001) (0.002) (0.001) (0.001) (0.001)
[0.000] [0.000] [0.000] [0.000] [0.000]

cν 0.031 0.042 0.022 0.013 0.000
(SMP) (0.014) (0.027) (0.035) (0.007) (0.028)

[0.033] [0.122] [0.530] [0.052] [0.993]
loglik -56226.2 -68788.4 -68584.7 -56218.6 -78164.0
AIC 112468.4 137592.9 137185.4 112453.2 156343.9
BIC 112534.9 137656.8 137252.0 112519.8 156410.6

negative serial correlation at the 15-minute frequency; see e.g. Roll (1984). Second, we find

that the persistence (bσ and bν) in volatility and degrees of freedom parameters is very high.

We therefore set ωσ = ων = 0 and bσ = bν = 1, thus adopting the EWMA restricted score

dynamics of Lucas and Zhang (2016) for the scale and df parameters. A comparison of model

selection criteria (AIC, BIC) across model specifications confirms these choices. With these

simplifications in place, Table 3 now presents the parameter estimates.

We focus on three findings in Table 3. First, SMP bond purchases tended to lower the

conditional location of future bond yields for most countries. The estimate of cµ is negative
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for four out of five countries, and is statistically significantly negative for two of them. The

estimated impacts for the two largest SMP countries, Italy and Spain, are -1.5 bps and -2.6

bps per e1 bn of purchases, respectively. The highest impact per e1 bn is observed for

Greek bonds, at -2.9 bps per e1 bn of purchases. Greek bonds were the most illiquid at

the time. The estimates of cµ for IE and PT are smaller in magnitude and not significant.5

Since the yields are modeled in first differences and aµ = bµ = 0, these impacts are associated

with long-lasting (permanent) changes in yield levels. Overall, our cµ estimates are in line

with those obtained by Eser and Schwaab (2016) based on daily data and factor modeling

techniques, and marginally smaller and less dispersed than those obtained by Ghysels et al.

(2017) based on high-frequency data and VAR/GARCH modeling techniques.

Second, our parameter estimates for cσ suggest a reduction in scale (volatility) following

SMP bond purchases. The point estimates are all negative, although none are statistically

significant at a 5% confidence level. Sizeable standard error estimates for cσ are intuitive

because the SMP intervention data is scarce even at the 15-minute frequency and the log-

scale is subject to pronounced time series variation.

Third, the point estimates of cν are all positive, and statistically significant in one case

(EN, with IT a borderline case). As a result, the time-varying degrees of freedom νt tend

to increase following SMP bond purchases, suggesting an increasingly “Gaussian” tail shape

when the central bank is active as a buyer-of-last-resort. Taken together, the estimates of

cµ < 0, cσ < 0, and cν > 0 suggest an overall beneficial, market–stabilizing impact of the

bond purchases on sovereign bond yields.6

Figure 4.2 plots all time-varying parameters µt, σt, and νt. The conditional location

parameters µt (left column) tend to be small and rarely exceed one bp in absolute value. The

5If SMP purchases were more likely to occur following an increase in yields, then the impact estimates of
Table 3 would constitute a lower bound to (the absolute value of) the true impact. This endogeneity is un-
likely to be pronounced at the intra-daily frequency because the daily purchase volumes were predetermined
before markets opened, constraining the latitude of central bank portfolio managers; see Eser and Schwaab
(2016, Section 3.3) for a discussion.

6The remaining parameter estimates in Table 3 can be interpreted as follows. The autoregressive coeffi-
cients dµ associated with lagged yt−1 are all negative. The implied negative autocorrelation is in line with
severely illiquid markets for all five sovereign bonds during our sample; see Roll (1984). The intercept terms
ωµ are small and statistically different from zero only in two out of five cases (for EN and PT). The leverage
terms dσ are positive and statistically significant for EN and IT. In these cases an increase in yield has a
greater influence on future log–scale than a decrease.

25



Figure 4: Filtered location, scale, and degrees of freedom parameters

Filtered location (first column), scale (second column) and degrees of freedom (third column) parameters
associated with the location–scale–df model introduced in Section 2.4. Rows labeled EN, GR, IE, IT, and
PT refer to Spanish, Greek, Irish, Italian, and Portuguese five-year benchmark bond yields. Greek bonds
discontinued trading after 02 March 2012, and experienced a credit event on 09 March 2012.
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observed time-variation is due to the inclusion of the lagged term yt−1 and bond purchases

zt−1. High values for the conditional scale σt (middle column) are visible for Greece, Ireland

and Portugal in 2010, and for Spain and Italy in late 2011. The conditional df parameters νt

(right column) suggest that the conditional distribution is profoundly heavy-tailed, even after

allowing for time-variation in the location and scale parameters. The df parameter associated

with the Greek data declines almost monotonically until the credit event in March 2012.7

7Quintos et al. (2001) and Lin and Kao (2018) propose Markov-Switching models for the tail index. The

26



Table 4: Parameter estimates
Parameter estimates for the extended (with SMP purchases zt) tail shape model. Columns labeled EN, GR,
IE, IT, and PT refer to Spanish, Greek, Irish, Italian, and Portuguese five-year benchmark bond yields.
The estimation sample ranges from 04 January 2010 to 28 December 2012 for all countries except Greece.
Standard error estimates are in round brackets and are constructed from a sandwich covariance matrix.
P-values are in square brackets.

EN GR IE IT PT

aξ 0.006 0.032 0.021 0.055 0.026
(0.006) (0.006) (0.007) (0.012) (0.011)
[0.291] [0.000] [0.005] [0.000] [0.023]

aδ 0.027 0.144 0.078 0.027 0.103
(0.007) (0.026) (0.014) (0.006) (0.015)
[0.000] [0.000] [0.000] [0.000] [0.000]

cξ 0.001 0.005 0.033 -0.009 -0.033
(0.006) (0.014) (0.045) (0.010) (0.029)
[0.847] [0.705] [0.467] [0.376] [0.258]

cδ -0.013 -0.031 0.060 -0.011 0.107
(0.014) (0.034) (0.077) (0.005) (0.083)
[0.344] [0.362] [0.433] [0.036] [0.196]

aτ 0.010 0.312 0.143 0.027 0.263

T 30279 21839 30799 30519 30719
T ∗ 3003 2223 3093 3041 3084
loglik -102027.1 -152861.1 -226080.5 -103050.5 -306523.8
AIC 204062.1 305730.2 452168.9 206109.0 613055.7
BIC 204095.4 305762.2 452202.3 206142.3 613089.0

The location–scale–df model (13) is not without drawbacks in our empirical setting.

First, it makes an explicit distributional assumption that may or may not be appropriate.

Second, it implicitly requires the tail impact of SMP purchases to be symmetric in the lower

and upper tail. Since the Eurosystem acted only as a buyer-of-last-resort of bonds between

2010–2012, and has not sold any SMP bonds to date, it is not clear why that should be

the case. The next section provides a semi-parametric perspective focussed on the extreme

upper (“bad”) tail.

4.3 Tail shape and tail scale estimates

This section discusses our time-varying tail shape (ξt) and tail scale (δt) estimates associated

with the extreme upper tail of changes in sovereign bond yields. We focus on results obtained

location–scale–df estimates reported in Figure 4.2 suggest that these may not be appropriate for our data
at hand.
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from pre-filtered data, where we used the fitted location–scale–df model from Section 4.2 to

clean yt from location and scale effects. Web Appendix G presents the analogous tail shape

and scale estimates from raw bond yield data, allowing us to compare the two approaches;

see Section 4.4. Our main results are based on POT observations xt = (yt − µ̂t)/σ̂t − τ̂t if

(yt − µ̂t)/σ̂t > τ̂t and xt = missing otherwise, where µ̂t and σ̂t are the location and scale

estimates as reported in Figure 4.2, and where τ̂t was obtained using the autoregressive

specification (10) in conjunction with the objective function (12).

Preliminary analyses suggest that changes in the tail shape and scale parameters are

highly persistent for our high-frequency data. We thus set ωξ = ωδ = 0 and bξ = bδ = 1

to simplify the model, again adopting the EWMA restricted score dynamics of Lucas and

Zhang (2016) for these parameters. We also set the smoothing parameter λ = 0, see (7),

given the absence of mean reversion in ln ξt and ln δt at the 15-minute frequency.8 We allow

C 6= 0 such that SMP bond purchases zt−1 can impact both ln ξt and ln δt via their impact

coefficients cξ and cδ. A comparison of unreported model selection criteria (AIC, BIC) across

different model specifications supports these choices.

Table 4 presents tail shape estimates based on pre-filtered data. Parameters aξ and aδ can

be interpreted as the standard deviations of the scores driving ln ξt and ln δt, respectively; see

the statements above (6). The associated estimates suggest pronounced time series variation

in both parameters. The SMP impact parameters cξ are estimated negatively in two out of

five cases, but are not statistically significant according to their t-values. Estimates of cδ

are negative in three out of five cases, and are significantly negative in one case (IT). As a

result, most of the tail impact of SMP purchases appears to have come about through its

impact on the center of the distribution (µt, σt) and not on its tail shape (δt, ξt).

Figure 5 plots the corresponding filtered estimates for time-varying tail shape ξt and tail

scale δt. Blue bars indicate the approximate timing of SMP purchases in the respective

markets. Time series variation is present and pronounced in both tail shape and tail scale

parameters. The heaviest tail is estimated for Greek bonds during the weeks preceding the

8The smoothing parameter λ is hard to estimate numerically given the absence of mean reversion in our
high-frequency data. Fixing it to reasonable alternative values has little effect on our empirical findings.
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Figure 5: Filtered tail shape and tail scale estimates

Filtered ξt and δt estimates for Spanish (EN), Greek (GR), Irish (IE), Italian (IT), and Portuguese (PT)
five-year sovereign benchmark bond yields between 2010 and 2012. The sample for Greek bonds is shorter
as these bonds discontinued trading on 02 March 2012 and experienced a credit event on 09 March 2012.
Standard error bands are simulated at a 95% confidence level. Blue bars indicate the approximate timing
of SMP purchases in the respective markets. The SMP amounts are first aggregated over all five SMP
countries, then smoothed using a centered one-week moving average. The resulting common time series is
reported in the respective panel if the SMP was active for the respective market segment at the time; see
Section 4.1.2 for the respective announcement days. The scaling of the purchase amounts is omitted and
differs between left and right panels only for visibility.
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Table 5: Impact of e1 bn of SMP purchases on 97.5% VaR and 99.5% VaR

The table reports the impact of e1 bn of SMP bond purchases on the 97.5% and 99.5% VaR. The total

impact is estimated as (1/
∑T
t zt)

∑T
t (dVaRγ(yt)/dzt−1) zt−1, where dVaRγ(yt)/dzt−1 is given by (22).

The total impact is decomposed into the impact on the conditional location µt, scale σt, tail scale δt, and

tail shape ξt by setting the non-active summands in (22) to zero. Columns labeled EN, GR, IE, IT, and PT

refer to Spanish, Greek, Irish, Italian, and Portuguese five-year benchmark bond yields.

97.5% VaR
EN GR IE IT PT

µt -2.623 -2.856 0.017 -1.479 -0.053
σt -1.155 -2.439 -6.570 -0.537 -8.006
δt -0.068 -0.702 0.587 -0.042 1.216
ξt 0.001 0.037 0.068 -0.013 -0.040

Total -3.845 -5.961 -5.899 -2.071 -6.883

99.5% VaR
EN GR IE IT PT

µt -2.623 -2.856 0.017 -1.479 -0.053
σt -2.302 -5.361 -14.604 -1.163 -18.578
δt -0.190 -2.120 1.638 -0.131 3.556
ξt 0.009 0.260 0.443 -0.096 -0.278

Total -5.106 -10.077 -12.507 -2.870 -15.352

credit event on 09 March 2012. The tail shape parameter can be above one, suggesting

that no conditional mean, variance, and ES exist at such times. The other estimates for ξt

typically vary between zero and one. Estimates above one can occur but are temporary and

rare. Time-variation in δt is pronounced as well.

The tail shape and scale parameters of Figure 5 are difficult to interpret in economic

(or probabilistic) terms when considered in isolation. Table 5 therefore addresses the rele-

vant economic question how market risk measures responded on average to a e1 bn bond

purchase intervention. The total impact is decomposed into the impact on the conditional

location, scale, tail scale, and tail shape by setting the non-active summands in (22) to zero.

The estimates corroborate that most of the SMP’s effect on extreme market risk came from

its impact on location and scale, and thus from its impact on the center of the distribution.

We estimate that the 97.5% VaR was reduced by 3.8, 6.0, 5.9, 2.1, and 6.9 bps per e1 bn

Eurosystem intervention in Spanish, Greek, Irish, Italian, and Portuguese five-year bench-
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mark bonds, respectively. The impact grows with the extremeness of the VaR. The 99.5%

VaR estimate is reduced, respectively, by 5.1, 10.1, 12.5, 2.9, and 15.4 bps per e1 bn of

Eurosystem purchases in the above bonds. These are economically meaningful reductions

in market risk. Lower market risks likely helped market makers and dealer banks at the

time to remain in the market and to continue to supply liquidity to turbulent bond market

segments; see e.g. Pelizzon et al. (2013, 2016). High market risks can force dealer banks

to retreat, in particular when their own VaR constraints are binding; see Vayanos and Vila

(2009) and Adrian and Shin (2014). In turn, malfunctioning sovereign bond markets can

impair a balanced transmission of the common monetary policy stance to all parts of the

euro area. Table 5 also shows that these improvements were obtained without worsening

the tail parameters. If anything, additional beneficial secondary effects came about via the

SMP’s effect on tail shape and tail scale parameters for large economies such as Spain and

Italy.9

4.4 Tail shape and tail scale estimates from raw data

We conclude our empirical study with a discussion of tail shape and tail scale estimates

from raw (un-prefiltered) data yt. The dynamic tail shape and tail scale model of Section 2

could be robust to omitted variation in the center of the distribution g(yt | Ft−1). This is

because of two effects. First, the autoregressive specification of τt via (10) implies that τt

can adjust to time variation in the center of the distribution. The resulting exceedances

x̃t = yt − τ̃t from unfiltered data can therefore in practice still be close to the exceedances

xt = (yt − µt)/σt − τt from pre-filtered data. Second, the dynamic specification of δt via (7)

implies that the tail scale could mop up omitted time-variation in σt, leaving ξt free to fit

the time-variation in tail shape.

Web Appendix G discusses our tail shape and tail scale estimates obtained from POTs

x̃t = yt− τ̃t, along with the model’s deterministic parameters. The estimates of cδ, the SMP

impact on tail scale, are now negative in all five cases, and are statistically significantly

9Additional, beneficial SMP announcement effects are not taken into account in Table 5. This is because
both the 09 May 2010 and 08 August 2011 SMP announcements occurred when markets were closed, and
are therefore not part of our sample. The VaR impact estimates are conservative in this sense.
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negative at a 5% confidence level in two cases. This is intuitive, as δt now not only captures

dispersion in the tail, but to some extent also in the center. The point estimates of cξ remain

statistically insignificant. The estimates ξ̂t and δ̂t from un-prefiltered data are more volatile,

and visibly different from the estimates from pre-filtered data as reported in Figure 5. This

suggests that the score-driven updates of τt and δt do not fully absorb all variation in µt and

σt for our data at hand. We therefore prefer the estimates based on appropriately prefiltered

data.

5 Conclusion

We introduced a semi-parametric modeling framework to study time variation in tail param-

eters for long univariate time series. To this end we modeled the time variation in the shape

and scale parameters of the Generalized Pareto Distribution, which approximates the tail of

most heavy-tailed densities used in econometrics and the actuarial sciences. We discussed

the handling of non-tail time series observations, inference on deterministic and time-varying

parameters, and how to relate tail variation to observed covariates if such variables are avail-

able. The model therefore complements and extends recent work based on different method-

ologies, such as the non-parametric approach to tail index variation of de Haan and Zhou

(2020), the time-varying quantile (and ES) approaches of Patton et al. (2019) and Catania

and Luati (2019), and the parametric modeling approach of Massacci (2017). We applied

the model to study the impact of bond purchases within the Eurosystem’s SMP between

2010 and 2012 on the extreme upper tail of sovereign bond yield changes measured at a high

frequency, concluding that the program had a beneficial impact on extreme tail quantiles,

leaning against the risk of extremely adverse market outcomes while active. This beneficial

impact is mostly explained by moving the center of the predicative distribution to the left

and narrowing it, rather than via an impact on tail shape or tail scale parameters.

Evidently, our model for time-varying tail parameters is focussed on capturing marginal

features. In many applications it may also be of interest to study the time-varying nature

of joint extremes; see e.g. Castro-Camilo et al. (2018), Escobar-Bach et al. (2018), and
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Mhalla et al. (2019). In terms of the current application, one could wonder, for example, if

the extreme bond yield changes for Portuguese and Greek sovereign bonds, say, were more

dependent at certain points in time. We leave such research for future work; but see also

Lucas et al. (2014) and Patton and Oh (2018) in this regard.
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