

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Frohm, Erik

Working Paper Labor shortages and wage growth

Sveriges Riksbank Working Paper Series, No. 394

Provided in Cooperation with: Central Bank of Sweden, Stockholm

Suggested Citation: Frohm, Erik (2020) : Labor shortages and wage growth, Sveriges Riksbank Working Paper Series, No. 394, Sveriges Riksbank, Stockholm

This Version is available at: https://hdl.handle.net/10419/232597

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

Labor shortages and wage growth

Erik Frohm

September 2020

WORKING PAPERS ARE OBTAINABLE FROM

www.riksbank.se/en/research

Sveriges Riksbank • SE-103 37 Stockholm Fax international: +46 8 21 05 31 Telephone international: +46 8 787 00 00

The Working Paper series presents reports on matters in the sphere of activities of the Riksbank that are considered to be of interest to a wider public. The papers are to be regarded as reports on ongoing studies and the authors will be pleased to receive comments.

The opinions expressed in this article are the sole responsibility of the author(s) and should not be interpreted as reflecting the views of Sveriges Riksbank.

Labor shortages and wage growth

Erik Frohm*

Sveriges Riksbank Working Paper Series

No. 394

September 2020

Abstract

This paper presents a novel measure of labor market conditions based on micro data from a large business survey in Sweden. The indicator, relative labor shortages (RLS), is the ratio of respondents' quantitative assessment of labor shortages and current employment. Contrary to other surveybased measures of labor market conditions and the vacancy-unemployment ratio, RLS remained relatively subdued during the 2013-2018 recovery from the Great Recession. As the indicator is highly correlated with annual wage growth at the establishment-level, its slow recovery can help explain why wage growth in Sweden has been sluggish since the Great Recession.

Keywords: Wage inflation, labor shortages, survey data.

JEL codes: E31, E60, J31, J23, C80.

^{*}I am grateful to Niklas Amberg, Annelie Almérus, Katalin Bodnár, Håkan Gustavsson, Iida Häkkinen Skans, Mathias Klein, Åsa Olli Segendorf, Emelie Theobald and Andreas Westermark for useful suggestions, as well as for comments from seminar participants at the Swedish National Institute for Economic Research (NIER), Sveriges Riksbank, the Swedish Ministry of Labor and the Swedish Public Employment Office. The opinions expressed in this paper are the sole responsibility of the author and should not be interpreted as reflecting the views of Sveriges Riksbank. Sveriges Riksbank, SE-103 37 Stockholm, Sweden. E-mail: Erik.Frohm@riksbank.se.

1. Introduction

Labor market conditions in several advanced economies have improved substantially in the recovery from the Great Recession. At the same time, wage growth has remained subdued and been systematically over-predicted by central banks and international organizations (Nickel et al., 2019). Jerome Powell, chairman of the Federal Reserve Board in the United States referred to the absence of higher wage growth as a "puzzle"¹ and similar sentiments have been expressed by Andrew Haldane, Chief Economist of the Bank of England and former European Central Bank (ECB) Executive Board member Benoît Cœuré.² The puzzle of high resource utilization and subdued nominal wage growth has also been prominent in Sweden, a small, open and inflation-targeting economy (Sveriges Riksbank, 2017).

Several explanations have been suggested for the apparent disconnect between labor market conditions and wages and the "flattening" of the wage Phillips curve.³ These include the globalization of production (Borio et al., 2018), automation (Leduc and Liu, 2020), lower matching efficiency in the labor market (Jonsson and Theobald, 2019) or weaker bargaining power of labor (Krueger, 2018). Other strands of the literature argue that traditional measures of labor market conditions underestimate the true slack in the labor market (see for example Hong et al. 2018, Barnichon and Mesters 2018 and Abraham et al. 2020) or that the relationship between wage growth and slack is non-linear (Daly and Hobijn 2014 and Lindé and Trabandt 2019.).

I contribute to these latter studies by constructing a new survey-based measure of labor shortages, derived from respondents' quantitative assessment in a large, representative, business survey in Sweden, the Public Employment Ser-

¹"But there is still a bit of a puzzle in that we're hearing about labor shortages now all over the country in many, many different occupations in different geographies. And one would have expected, I would have expected, that wages would move up a little bit more.", see Powell (2018).

² "We have seen an unusual pattern emerge here over recent years. Jobs growth has been strong, with over 2 million new jobs created since the end of 2012. But pay growth has remained weak by historic standards, averaging around 2% annually.", see Haldane (2018) and "Despite a rapid fall in the unemployment rate, wages have remained stubbornly low. Annual growth in compensation per employee hovered around 1.2% since mid-2014 and only increased to 1.5% at the end of last year – substantially below its historical average of 2.1%", see Coeuré (2017).

³For example, Galí and Gambetti (2019) document changes to the wage Phillips curve in the United States, with reduced form as well as conditional estimates. They find a declining slope with conditional estimates, albeit somewhat less than reduced form estimates would suggest.

vice's interview survey. The new indicator, relative labor shortages (RLS), has the advantage over other indicators that it is direct measure as perceived by respondents themselves and not dependent on statistical filtering techniques or judgement that cause real-time estimates of "gaps" to be fraught with uncertainty (Orphanides and van Norden 2002 or Berge 2020). It is thus a surveybased complement to other types of conventional and non-conventional measures of labor market conditions.

According to RLS, there was markedly more slack in the Swedish labor market during the recovery from the Great Recession than conventional qualitative survey-based measures (QS) or the standard vacancy-unemployment (V/U) ratio suggested, see Figure 1.

Note: QS (the dashed line) is simply the share of respondents that responded "Yes" to whether or not they experienced labor shortages in connection to recruitment over the past six months. V/U (the crossed line) is the vacancyunemployment ratio measured as total number of vacancies as percent of the labor force, over unemployed persons as percent of the labor force in the age group 15-74 years retrieved from the Swedish National Institute of Economic Research. RLS (the solid line) is the average ratio of number of positions where respondents experienced labor shortages to total employment at the establishment. All series are indexed to 2007h1 for comparison. For more details, see Section 3.

The reason why RLS indicate more labor market slack than other surveybased measures is that it provides a picture of the intensive margin (i.e the average number of positions with labor shortages normalized with total em-

ERIK FROHM

ployment at the establishment-level) and not only the extensive margin of labor shortages (i.e the proportion of respondents experiencing labor shortages). RLS is thus not subject to the "New Modesty" affecting indicators based on purely qualitative survey data as highlighted by Gayer and Marc (2018) and National Institute of Economic Research (2018) in other contexts.⁴

I also provide evidence that RLS is correlated with wage growth at the establishment-level. The positive relationship is robust to a range of controls, such as fixed-effects for sector-time (controlling for sector-level productivity shocks or negotiated wages) and region-time (controlling for regional labor market conditions and inflation). The relationship is also positive *within* establishments. With establishment, sector-time and region-time fixed-effects for a sub-sample of establishments that have participated in more than 3/4 of all survey waves, there is evidence of wages responding non-linearly to RLS. For establishments below the 8^{th} decile of RLS, there is no statistically significant relationship, whereas wage growth is estimated to be about 0.8 percentage points higher for establishments with RLS in the 10^{th} decile. These findings therefore suggests that labor markets would have to tighten more substantially to increase wage growth, in line with the theoretical analysis of Daly and Hobijn (2014) and Lindé and Trabandt (2019) and aggregate empirical analyses by Byrne and Zekaite (2018) and Nickel et al. (2019) for the euro area.

The analysis in this paper is highly policy relevant. Several members of the Executive Board of the Swedish central bank highlighted record-level labor shortages as a motivation for the decision to begin tightening monetary policy at the December 2018 Monetary Policy Meeting (Sveriges Riksbank, 2018a). As the analysis in this paper shows, qualitative surveys of labor shortages likely underestimated the true labor market slack in the recovery from the Great Recession and thus provided a too strong signal for wage growth.⁵

The rest of this paper is organized as follows: Section 2 describes the Swedish

4

⁴"New Modesty" refers to a psychological or cognitive effect: that respondents' answers to qualitative survey questions are relative to a 'normal' benchmark. After a severe recession for example, respondents may have lowered their underlying reference standard to a lower level of economic activity or labor shortages. RLS on the other hand uses quantitative information on labor shortages to mitigate such biases.

⁵This conclusion also applies to other qualitative indicators of economic slack, some of which are used in Frohm (2020).

Public Employment Service's interview survey and the data used. Section 3 presents the measure of relative labor shortages and Section 4 the empirical analysis. Section 5 concludes.

2. Data

The data in this paper comes from the Swedish Public Employment Service's interview survey (AFU), which has existed in different constellations since the 1960s and been an important tool for the Swedish Public Employment Service's regional and national labor market forecasts.⁶ Before 2007, however, the micro data were not kept in a systematic manner and cannot be retrieved. The data used in this paper covers more than 200,000 responses and around 10,000 establishments participate in each survey wave, which is once every half year. The sample is drawn from Statistics Sweden's Business Register and is stratified by establishment sizes (employment at establishments), sectors (SNI 2007/NACE Rev.2.) and Swedish regions ("län"). The sample frame includes establishments with more than 100 employees are included. The survey is representative for Sweden as a whole and at the regional level.

Table A.1 in the Appendix shows the representatives of the survey in terms of employment across industry, size-classes and regions. To increase the weight of small sample units that also represent many small units in the population that were not included in the sample, sample weights are included from 2013h1 and onward.⁷ When greater weight is given to small sample units (column 3), the respective sector employment shares in the survey are closer to the population. For example, industry accounts for a slightly smaller share in the sample with 18.8% (31.2% unweighted), compared to 20.4% in the population. The weight-ing also improves the representatives among size-classes: for small establish-

⁶See for example the Swedish Public Employment Service report, Arbetsmarknadsutsikter hösten 2019-2020. ("Prospects of the Swedish labor market 2019-2020, fall").

⁷The sample weights are simply $w = \frac{N-O}{n}$, where N is the number of establishments in the population, O is oversampling and n the sampled units. When the Swedish Public Employment Service report their figures, they utilize sample weights from 2013h1 onward and equally weighted data from before then.

ERIK FROHM

ments (0-19 employees), the weight increases from 6.2% to 34.1%, closer to 33.7% in the population. With weights, large establishments account for 30.2% instead of 71.2% unweighted and compared to 44.9% in the population.

As sample weights are not available prior to 2013h1, I use simple averages to calculate the aggregate time-series. This means that the time-series are not necessarily representative for the population as a whole, although the total number of employees covered by the sample accounts for more than a fourth of the the total Swedish business employment.⁸

2.1 Design and survey questions

Respondents in the survey are typically the CEO, CFO or senior managers at the establishments and the interviewers are local employment officers at the Swedish Public Employment Service. The survey is conducted face-to-face or by phone, which allows the interviewers to ask more detailed questions than in mail-out questionnaires or web surveys. This is precisely what makes this survey unique: besides gathering qualitative Likert-scale type responses for assessments and expectations (that is, "Increase", "Unchanged", "Decreased"), it also gathers quantitative assessments (of for example labor shortages, employment and wage growth) and expectations (of employment).

Participation in the survey is voluntary. Nonetheless, the response rate is markedly high, on average above 80 percent. According to the Swedish Public Employment Service, the high response rate is a result of long-standing relationships between interviewers and interviewees.

The questions from the survey used in this paper reads as follows:⁹

- The number of employees at the establishment (excluding contract staff). Provide the number of persons and your expectations for the future: A year ago: Currently: In a year: In two years:
- Have you experienced labor shortages in connection with recruitment over

6

⁸In more detail, for 2014h1, the total number of employees covered by the survey sample was 732,329 as compared to 3,251,000 in the population for 2014. This is roughly equal across survey waves.

⁹The full questionnaire is available at https://arbetsformedlingen.se/om-oss/ statistik-och-analyser.

the past six months? Yes, No or Have not needed to recruit If yes:

- Provide the number of positions where you experienced labor shortages:
- Quantify how much the average salary (per employee) has increased at the establishment over the last year: Less than 1%, 1%-2%, 2%-3%, 3%-4%, 4%-5%, 5%-6%, 6%-7% and above 7%

2.2 Comparison with other sources

One important aspect when dealing with non-standard sources is to ensure that the data corresponds to other conventional sources, when applicable. In the following, I compare some variables available from the AFU with other official statistics. For example, the proportion of respondents in the AFU who report labor shortages is compared with the same figure from the National Institute of Economic Research (NIER) Economic Tendency Survey, and wage growth is compared with short-term statistics from the National Mediation Office (NMO), see Figure 2.

To compare data on labor shortages with the NIER-survey, I calculate the proportion of respondents that respond "Yes" to whether they have experienced labor shortages. There are however a couple of differences between the two surveys. First, the AFU survey is conducted bi-annually whereas the NIER survey is conducted quarterly. Second, the NIER survey simply asks their respondents to answer the statement: "Labor shortages at present?" with the response alternative "Yes" or "No" whereas the AFU asks respondents to answer the question: "Have you experienced labor shortages in connection with recruitment over the past six months?" with the response alternatives "Yes", "No" or "Have not needed to recruit". To enable comparisons, I calculate the average of the NIER labor shortages for the first and second quarter when comparing to the AFU:s first half of the year observation, and the third and fourth quarter for the second half

Figure 2: Comparison with other sources

Note: (a) shows the share of respondents that are experiencing labor shortages in the Public Employment Service (solid line) and the National Institute of Economic Research (dashed line). (b) shows the annual growth in nominal wages from the Public Employment Service (solid line) and the National Mediation Office (dashed line). The midpoint for each response category has been used in the AFU. This means that wage growth is 0.5 percent if respondents answer less than 1 percent, 1.5 if they answer between 1.0 and 2.0 percent, 2.5 if they answer between 2.0 and 3.0 percent and so forth. Nominal annual wage growth from the NMO is the nominal hourly wages in businesses.

of the year.

Nominal annual wage growth computed from the AFU is also compared with data from the NMO, which is the main source used to track nominal wage developments in Sweden. I use the mid-point of answers to the wage question in the AFU survey. That is, 0.5% represents responses that are in the bin "less than 1%", 1.5% if the bin is "1%-2%" and 2.5% if the bin is "2%-3%" and so on. Nominal annual wage growth from the National Mediation Office is the wage sum divided by the number of hours worked.

Overall, qualitative labor shortages and aggregate wage growth are very similar to those obtained from other sources in Sweden, see Figure 2. The comparability is also matched for broad sectors of the economy: industry, construction, retail trade and services, see Figure A.1 and A.2 in the Appendix.

3. A measure of relative labor shortages, RLS

In modern search models of the labor market (see for example Shimer 2005), tightness is defined as the vacancy-unemployment ratio. A higher ratio of vacancies to unemployment entail a larger number of jobs that employers would like to fill relative to the number of unemployed people available to fill them and implies a tighter labor market. In the AFU survey, respondents take a stand on how many positions they experienced shortages when they recruited over the past six months, *S*. One could conceivably think of this as points on the vacancy-unemployment curve, where few shortages indicate many applicants for each position (high unemployment and few vacancies) and more shortages corresponds to a small pool of applicants (low unemployment and several vacancies).

The number of shortages vary with the size of the establishment however. Large establishments tend to have greater absolute number of shortages than smaller establishments and if the establishment is growing, it is natural that the number of shortages increase as well. Fortunately, the survey also collect information about establishments' current number of employees, E. To obtain a establishment-level measure of relative labor shortages, the number of labor shortages S_{it} are divided by the total number of employees at the establishment E_{it} in (1):

$$RLS_{it} = \frac{S_{it}}{E_{it}} \tag{1}$$

Here, *i* is a establishment and *t* a survey round. This establishment-level measure of relative labor shortages (RLS) is continuous and relative: a higher value means that the number of positions where establishments experience labor shortages are increasing relative to the size of the establishment and is what one would expect when the labor market tightens. Similarly, a lower value means that establishments are experiencing less shortages and indicate a looser labor market.¹⁰ Establishments with no labor shortages or have not needed to recruit have a value of zero.

The aggregate measure of relative labor shortage (RLS) is simply the average of the establishment-level indicator over time:

$$RLS_t = \frac{1}{Y_t} \sum_{i=1}^{Y_t} \frac{S_{it}}{E_{it}}$$
⁽²⁾

 $^{^{10}}$ To deal with very extreme values reported by establishments in the survey, I winsorize the number of shortages and employment at the 99.5^{th} percentile. The measures is however robust in choosing both higher and lower percentile values for winzorizing. See Figure A.6 in the Appendix.

ERIK FROHM

where *Y* is the total number of responses to the question: "Have you experienced labor shortages in connection to recruitment over the past six months?". As compared to purely qualitative indicators of labor shortages that measure the proportion of establishments with *a* labor shortage (the extensive margin), this new measure provides additional information: it also takes into consideration the effective labor shortages per establishment (the intensive margin).¹¹ This can be shown with (3), which decomposes (2) into two parts: the extensive margin, which is simply the the proportion of respondents that experience labor shortages, y/Y, where *y* is the number of respondents responding "Yes" to if they experience labor shortages and *Y* is all responses.¹² The second part of the expression is the average labor shortages per establishment, who experience labor shortages, i.e the intensive margin. Most business surveys record only the first part of (3) and implicitly assume that the second part is fixed, or not varying much, over time.

$$RLS_{t} = \underbrace{\frac{y_{t}}{Y_{t}}}_{\text{extensive margin}} \times \underbrace{\frac{1}{y_{t}} \sum_{i=1}^{y_{t}} \frac{S_{it}}{E_{it}}}_{\text{intensive margin}}$$
(3)

This assumption has clear downsides. If, for example, a large fraction of establishments experience shortages of specialized competencies, they may report a shortage of labor or perceive labor as an important factor limiting production in a survey (increasing y), even though the number of positions and wages for those staff are only a small part of the total employment and wage bill at the establishment. If this behavior is pervasive across many respondents, rising qualitative labor shortages, or the extensive margin, may not indicate that the labor market has tightened in overall terms, but simply that many establishments are experiencing shortages of a narrow set of skills and competencies.¹³ This means that the quantitative signal from such an indicator might

¹¹As example of extensive margin indicators are the DG-ECFIN survey questions to the industrial, construction and services sectors that ask respondents what main factors are currently limiting their production. Respondents can choose from a number of options, including insufficient demand, shortage of labor force, shortage of material and/or equipment, financial constraints, none or other. In the Swedish Economic Tendency Survey, respondents in all sectors except for construction are prompted to answer whether they experience labor shortages or not.

¹²That is, the sum of responses of "Yes", "No" and "Have not needed to recruit".

¹³In the Riksbank Business Survey, a small-scale interview survey conducted by the Swedish

change over time if the intensive margin moves in the opposite direction of the extensive margin. This problem with qualitative survey data has also been highlighted for other indicators by Gayer and Marc (2018) and National Institute of Economic Research (2018).

Indeed, the intensive margin of labor shortages vary over time.¹⁴ Figure 3 shows this by comparing RLS with the conventional survey-based indicator for labor shortages (QS), indexed to 100 in 2007h1.¹⁵

Note: QS (the dashed line) is simply the share of respondents that responded "Yes" to whether or not they experienced labor shortages in connection to recruitment over the past six months. V/U (crossed line) is the vacancy-unemployment ratio measured as total number of vacancies as percent of the labor force, over unemployed persons as percent of the labor force in the age group 15-74 years retrieved from the Swedish National Institute of Economic Research. RLS (the solid line) is the average ratio of number of positions where respondents experienced labor shortages to total employment at the establishment. All series are indexed to 2007h1 for comparison.

From 2011h1 and onward, RLS was markedly lower than QS and the vacancyunemployment ratio (V/U). Moreover and contrary to these other indicators,

Central Bank, respondents have highlighted that labor shortages have mainly been acute for specialized competencies rather than for broad groups of staff, see Sveriges Riksbank (2018b).

¹⁴Figure A.4 in the Appendix shows the evolution of the extensive and intensive margin over time for all establishments and the four broad sectors of the economy. Across all broad sectors, the intensive margin measure is markedly lower in the 2013-2018 period than in 2007 before the Great Recession.

¹⁵The series are also calculated the broad sectors of the economy (industry, construction, retail trade and services) in Figure A.3 and for Swedish regions (NUTS1) in Figure A.7 in the Appendix. The measure is also constructed with sample weights from 2013h1-onward in Figure A.5.

RLS was only above its 2007h1 level in 2017h2 and fell back below it in 2018h1. Differently, the QS indicator was above the 2007h1 level already in 2015h2 and thus signalled stronger wage pressures than RLS.

Since the AFU survey collects both information on respondents assessment of their average annual nominal wage growth and RLS, it is possible to compute the average wage growth across levels of RLS. This is done in Figure 4 with deciles of RLS. Here, decile = 0 is all firms with no labor shortages. The rest of the deciles are computed for firms with positive values of RLS.¹⁶

Average wage growth is actually slightly higher for establishments with no labor shortages than establishments with labor shortages below the 3^{rd} decile. From the 4^{th} decile and onward, average wage growth is higher. For establishments at decile 10 for example, wage growth is 0.4 percentage points higher than if RLS = 0.

Figure 4: Wage growth across deciles of labor shortages

Note: The figure in (a) shows the average annual nominal wage growth for each decile of RLS. The group "0" is all establishments without any labor shortages. RLS at decile 1 for all establishments is 0.006, at 2 0.016, at 3 0.030, at 4 0.045, at 5 0.066, at 6 0.914, at 7 0.120, at 8 0.159, at 9 0.230 and at 10 0.657.

Panel (b) in Figure 4 shows how also the distribution of wage growth varies across deciles of RLS. There are stark differences: for establishments in the first decile of RLS, 55 percent respond that wages increase by 2-3 percent which can be contrasted with around a third of establishments in the 10th decile.¹⁷. However, the left tail of the distribution also becomes fatter, meaning that the frac-

¹⁶Again, the same Figures are available for establishments in industry, construction, retail trade and services in Figure A.8 in the Appendix.

¹⁷This pattern is also visible across the broad sectors in the economy, see Figure A.9.

tion of establishments with very low wage growth (less than 1%) increases. This can probably be rationalized by the fact that high enough labor shortages might reduce growth prospects for some establishments who are then unable to pay higher wages. Figure 4 are however only cross-sectional correlations that do not account for omitted variables. The next section proceeds to investigate whether the relationship between RLS and wage growth is robust to further controls.

4. Econometric evidence

A panel fixed-effects regression is used to further control for observable and unobservable factors. The estimated regression is (4):

$$w_{it} = \gamma_i + \lambda_t + \sum_{d=1}^{10} \beta_d \tau_d + \beta_X X_{it} + \varepsilon_{it}$$
(4)

where, w is nominal annual wage growth, τ is a decile-dummy for relative labor shortages, X is a vector of additional controls, γ is a set of sector, region or establishment fixed-effects, λ is a time fixed-effect and ε is the error term. iis an establishment and t a survey wave. Note that the omitted group in τ is establishments with a value of RLS of 0 (establishments with no labor shortages). The rest of the deciles (1-10) are computed for establishments with a positive value of RLS, similar to Figure 4. This means that the coefficient β_d is the effect on wage growth compared to having no labor shortages.¹⁸

First, the coefficient and significance of β_d is examined with sets of fixedeffects for region, sector and time. Second, I add establishment-level controls for expected demand conditions and forward-looking behaviour and third, I investigate the relationship between wage growth and RLS by controlling for heterogeneity with establishment fixed-effects. To be able to use the withinestablishment variation, I use a sub-sample of establishments that have responded to more than 3/4 of all survey waves.

Column (1) in Table 1 shows the baseline estimates with year fixed-effects (controlling for, for example, the aggregate business cycle, monetary policy or

¹⁸An alternative specification uses the continuous values of RLS directly in the estimation, see Table A.6. The positive economic and statistical significance remain in these specifications.

the inflation rate). The baseline estimates in column (1) confirms the picture in Figure 4. Moving from RLS = 0 to the 10^{th} decile is associated with an increase in wage growth of 0.43 percentage points.

	(1)	(2)	(3)	(4)
Constant	2.884***	2.898***	2.899***	2.899***
d = 1	-0.117***	-0.077***	-0.052***	-0.053***
d = 2	-0.003	-0.009	0.005	0.001
d = 3	0.085***	0.044***	0.045***	0.042***
d = 4	0.156***	0.100***	0.097***	0.095***
d = 5	0.234***	0.161***	0.152***	0.151***
d = 6	0.257***	0.189***	0.176***	0.176***
d = 7	0.325***	0.246***	0.235***	0.233***
d = 8	0.377***	0.309***	0.303***	0.301***
d = 9	0.418***	0.340***	0.326***	0.327***
d = 10	0.429***	0.355***	0.361***	0.360***
Observations	216,340	214,121	213,560	213,560
\mathbb{R}^2	0.118	0.201	0.250	0.253
FE			S-R	S-R
Time-FE	Т	T-S	T-S	T-S, T-R

Table 1: Wage growth and RLS

Note: *, **, and *** denote p < 0.10, p < 0.05, and p < 0.01, respectively. S = sector, R = region and T = time. Standard errors are clustered at the sector-time level. The omitted group is all establishments without any labor shortages. RLS at d = 1 is 0.006, at 2 0.016, at 3 0.030, at 4 0.045, at 5 0.066, at 6 0.914, at 7 0.120, at 8 0.159, at 9 0.230 and at 10 0.657.

Column (2) further controls for negotiated wages and sector-level productivity with sector-time fixed effects, column (3) adds fixed-effects for sector-region to control for time-invariant differences across sectors in certain regions and column (4) adds region-time fixed effects, to control for local regional economic conditions. In this specification, wage growth is 0.36 percentage points higher if an establishment has RLS at the 10^{th} decile. Note that this effect is the effect on wage-drift, as negotiated wages are controlled for with the sector-time fixed effects.¹⁹

Table A.2 in the Appendix adds additional establishment-level controls, namely respondents expectations of employment growth at the establishment the next two years (a proxy for wage expectations). It is calculated by using the (log) difference of answers to the question on the number of employees currently and expectations of number of employees in the next 24 months. Column (2) swaps this variable with another proxy for forward-looking wage-setting, namely answers to the question "*Do you judge demand for your goods and or services to increase, decrease or remain unchanged over the next 6-12 months?*". Column (3) weighs the results by sample weights, which restricts the sample to the 2013h1-2018h1 period, and column (4) by the number of employees at the establishments. The results are also replicated for the broad sectors of the economy with sector-region fixed-effects, as well as sector-time and region-time fixed effects in Table A.3, as well as for regions (NUTS1) in Table A.4.

Results remain significant and of the same magnitude as before. Next, I utilize only the within establishment-variation to estimate the effect of RLS on wage growth. Since the AFU is an unbalanced panel with a large number of respondents only participating once, I estimate the regressions for a sub-sample of establishments that have responded to the survey 18 or more times (3/4 of all survey waves).²⁰ The results are in Table A.5 and are plotted in Figure 5 with 90 % confidence bands.

For establishments below the 8^{th} decile of RLS, there is no statistically different effect on establishments' wage growth whereas there is a positive and both economically and statistically significant effect for establishments with RLS at or above the 8^{th} decile. Moving from no labor shortages to the 10^{th} decile is associated with 0.8 percentage points higher wage growth. Note that this is the effect when heterogeneity, sector shocks (sector productivity and negotiated wages) and regional shocks are controlled for.²¹ This empirical evidence supports the

¹⁹About 9/10 employees in Sweden are affected by sector-level collective bargaining agreements.

²⁰About 1/3 of respondents respond to the survey only once.

²¹Column (4) and (5) adds establishment-level controls for expectations and results are robust. Column (6) further weighs the regression with sample weights and the results are, if any-

Figure 5: Estimated impact on wage growth of RLS

Note: The regression controls for establishment, sector-time and region-time fixed-effects. Standard errors are clustered at the sector-time level. The whiskers are 90 percent confidence intervals and the solid lines are point estimates. The omitted group is all establishments without any labor shortages, RLS=0. RLS at d = 1 is 0.006, at 2 0.016, at 3 0.030, at 4 0.045, at 5 0.066, at 6 0.914, at 7 0.120, at 8 0.159, at 9 0.230 and at 10 0.657.

notion that labor markets would have to tighten more significantly for wages to increase at a faster rate and is in line with the theoretical analysis by Daly and Hobijn (2014) and Lindé and Trabandt (2019), who argues that the absence of upward pressure of price and wage inflation during the recovery from the Great Recession could be due to a non-linear response of wages and prices to economic slack.

5. Concluding remarks

In this paper, I have presented a novel measure of labor market conditions in Sweden, relative labor shortages (RLS). The indicator provides a direct picture of labor market conditions and can thus be used to gauge the implications for aggregate wage growth. The indicator suggest that there has been markedly more slack in the labor market during the post-crisis period (2013-2018h1) than other qualitative survey indicators. This is evidence that the Swedish labor market was not as tight as conventional survey measures suggested and can help explain why wage growth has been rather muted since the 2008-2009 crisis.

Looking ahead, the results suggests that labor markets would likely have to tighten more substantially to give a push to wage growth. The findings also suggest that conventional survey based measures of labor market conditions, that are based on the percentage of respondents answering "Yes" or "No" to whether they experience labor shortages or if labor is perceived as a limit to production, might overstate labor market conditions. Some caution about how to interpret these type of qualitative indicators (as in Nyman 2010 or ECB 2015) is thus warranted.

Importantly, the measure in this paper is positively associated with establishments' wage growth in the data and there is evidence for a non-linear relationship in Sweden. The difference in wage growth of having high, instead of low, RLS is estimated to be about 0.8 percentage points when controlling for heterogeneity as well as sector and regional shocks. Nonetheless, the paper does not provide causal evidence that RLS *lead* to higher wage growth. Future research could examine the existence of a causal relationship with the use of either instruments or regional or sector-level shocks. Future studies could also examine in more detail how labor shortages of different occupations and/or sectors have varied over time to shed light on which competencies or roles are in shortage during different stages of the business cycle.

References

- Abraham, Katharine G, John C Haltiwanger, and Lea E Rendell, "How Tight is the US Labor Market?," *BPEA Conference Draft, Spring*, 2020.
- Barnichon, Regis and Geert Mesters, "On the demographic adjustment of unemployment," *Review of Economics and Statistics*, 2018, *100* (2), 219–231.
- Berge, Travis J, "Time-varying uncertainty of the Federal Reserve's output gap estimate," *Finance and Economics Discussion Series, Divisions of Research Statistics and Monetary Affairs, Federal Reserve Board*, 2020, (2020-012).
- Borio, Claudio EV, Piti Disyatat, Mikael Juselius, and Phurichai Rungcharoenkitkul, "Monetary policy in the grip of a pincer movement," *Bank of International Settlements Working Paper Series*, 2018, 706.
- Byrne, David and Zivile Zekaite, "Missing wage growth in the euro area: is the wage Philips curve non-linear?," *Central Bank of Ireland Economic Letters*, 2018, (9).
- Coeuré, Benoît, "Scars or scratches? Hysteresis in the euro area," 2017. Speech at the International Center for Monetary and Banking Studies, Geneva, 19 May, 2017.
- Daly, Mary C and Bart Hobijn, "Downward nominal wage rigidities bend the Phillips curve," *Journal of Money, Credit and Banking*, 2014, *46* (S2), 51–93.
- ECB, "A survey-based measure of slack for the euro area," *ECB Economic Bulletin, Box*, 2015, 6.
- Frohm, Erik, "Price-setting and economic slack: Evidence from firm-level survey data," *Journal of Macroeconomics*, 2020, p. 103235.
- Galí, Jordi and Luca Gambetti, "Has the US wage phillips curve flattened? A semi-structural exploration," *National Bureau of Economic Research Working Paper*, 2019, (25476).

- Gayer, Christian and Bertrand Marc, "A 'New Modesty'? Level Shifts in Survey Data and the Decreasing Trend of 'Normal'Growth," *European Commission Discussion Paper*, 2018, (083).
- Haldane, Andrew G, "Pay Power," 2018. Speech at the Acas "Future of Work" Conference Congress Centre, London, 10 October, 2018.
- Hong, Mr Gee Hee, Zsóka Kóczán, Weicheng Lian, and Mr Malhar S Nabar, "More slack than meets the eye? Recent wage dynamics in advanced economies," *International Monetary Fund Working Paper Series*, 2018, (18/50).
- Jonsson, Magnus and Emelie Theobald, "A changed labour market–effects on prices and wages, the Phillips curve and the Beveridge curve," *Sveriges Riksbank Economic Review*, 2019, (1), 28–49.
- Krueger, Alan B, "Reflections on dwindling worker bargaining power and monetary policy," in "Luncheon Address at the Jackson Hole Economic Symposium," Vol. 24 2018.
- Leduc, Sylvain and Zheng Liu, "Robots or Workers? A Macro Analysis of Automation and Labor Markets," *Federal Reserve Bank of San Francisco Working paper series*, 2020, (17).
- Lindé, Jesper and Mathias Trabandt, "Resolving the missing deflation puzzle," *CEPR Discussion Paper*, 2019, (DP13690).
- National Institute of Economic Research, "Har sambandet mellan Barometerindikatorn och BNP-tillväxt ändrats över tid? ("Has the correlation be the Economic Tendency Survey and GDP growth changes over time?" in English)," *Article in Economic Tendency Survey, June*, 2018, pp. 14–17.
- Nickel, Christiane, Elena Bobeica, Gerrit Koester, Eliza Lis, and Mario Porqueddu, "Understanding low wage growth in the euro area and European countries," *European Central Bank Occasional Paper Series*, 2019, (232).
- Nyman, Christina, "An indicator of resource utilisation," *Sveriges Riksbank Economic Commentaries*, 2010, *4*.

- Orphanides, Athanasios and Simon van Norden, "The unreliability of outputgap estimates in real time," *Review of Economics and Statistics*, 2002, *84* (4), 569–583.
- Powell, Jerome, "Interview by Kai Ryssdal, Marketplace," 2018. July 12, 2018. Transcript available at https://www.marketplace.org/2018/07/12/economy/ powell-transcript/.
- Shimer, Robert, "The cyclical behavior of equilibrium unemployment and vacancies," *American Economic Review*, 2005, 95 (1), 25–49.

Sveriges Riksbank, "Monetary Policy Report, July," 2017.

- _, "Monetary Policy Minutes, December," 2018.
- _ , "Riksbank Business Survey, December," 2018.

A. Appendix: Figures and tables

Figure A.1: Comparison of qualitative labor shortages with the NIER-survey

Note: The solid lines in the Figure are calculated as the share of respondents responding "Yes" to whether they experience labor shortages or not in the AFU. The dashed lines are data from the NIER. It is a weighted average across all establishments in the sample (from 2013 for the AFU and the whole sample for data from the NIER). For construction, the comparison is made with answers to the question: *What are the greatest impediments for more construction* and the response alternative "*labor shortages*".

Figure A.2: Comparison of annual wage growth with the NIER/NMO

Note: The Figure shows the annual nominal wage growth from the AFU (solid lines) and estimates for three sectors by the National Institute of Economic Research and the National Mediation Office (NMO) (dashed lines). The midpoint for each response category has been used for wage growth from the AFU. This means that wage growth is 0.5 percent if respondents answers less than 1 percent, 1.5 if they answer between 1.0 and 2.0 percent, 2.5 if the answer between 2.0 and 3.0 percent and so forth. Nominal wage growth from the National Institute of Economic Research and the NMO is wage growth per hour worked. Services sector includes retail trade. Data is annual.

Figure A.3: Relative labor shortages, RLS

Note: NACE Rev. 2. codes corresponding to industry is 10-33, construction is 41-43, retail trade 45-47 and services all NACE Rev. 2. codes above 47.

Figure A.4: Relative labor shortages, RLS: extensive and intensive margin

Note: NACE Rev. 2. codes corresponding to industry is 10-33, construction is 41-43, retail trade 45-47 and services all NACE Rev. 2. codes above 47.

Figure A.5: Labor shortages, sample weights from 2013h1-onward

Note: NACE Rev. 2. codes corresponding to industry is 10-33, construction is 41-43, retail trade 45-47 and services all NACE Rev. 2. codes above 47. The series uses sample weights from 2013h1 onward and utilizes the non-weighted averages to back-link the series.

Figure A.6: RLS across various winzorizing percentiles

Note: The figure shows the RLS measure computed for various choices of winzorizing percentile, indexed to 2007-h1 = 100. The bands cover the 99.9th to 85th percentile.

Figure A.7: Labor shortages for regions (NUTS1)

Note: NUTS1 SE1 correspond to East Sweden, which includes the "län" Stockholm, Uppsala, Södermanland, Östergötland, Örebro and Västmanland. SE2 - South Sweden includes Jönköping, Kronoberg, Kalmar, Gotland, Blekinge, Sk, Halland and Västergötland. SE3 - North Sweden includes Värmland, Dalarna, Gävleborg, Västernorrland, Jämtland, Västerbotten and Norrbotten.

Figure A.8: Wage growth across deciles of labor shortages

Note: The figure shows the average annual nominal wage growth for each decile of RLS across sector groupings, which corresponds to NACE Rev. 2. Industry (10-33), construction (41-43), retail trade (45-47) and services (all sectors above 47). The group "0" is all establishments without any labor shortages. RLS at decile 1 for industry are 0.003, 0.007, 0.011, 0.018, 0.025, 0.038, 0.059, 0.093, 0.143 and 0.368. For construction, its 0.013, 0.032, 0.050, 0.070, 0.093, 0.117, 0.150, 0.200, 0.283, 0.684. For retail trade, 0.007, 0.017, 0.0299, 0.045, 0.066, 0.092, 0.127, 0.166, 0.221, 0.489. For services, 0.009, 0.023, 0.037, 0.054, 0.074, 0.010, 0.131, 0.179, 0.251 0.699.

Figure A.9: Wage growth distribution across deciles of labor shortages

Note: The figure shows the distribution of wage growth across deciles of RLS. The group "0" is all establishments without any labor shortages. See Figure A.8 for the RLS values for the various deciles.

Figure A.10: Estimated impact on wage growth of RLS, with sample weights

Note: The regression controls for establishment, sector-time and region-time fixed-effects. Standard errors are clustered at the sector-time level. The whiskers are 90 percent confidence intervals and the solid lines are point estimates. The omitted group is all establishments without any labor shortages. RLS at d = 1 is 0.006, at 2 0.016, at 3 0.030, at 4 0.045, at 5 0.066, at 6 0.914, at 7 0.120, at 8 0.159, at 9 0.230 and at 10 0.657. The regressions are weighted with sample weights.

	Emp, smpl	Emp, pop	Emp, smpl*
Industry	31.2%	20.4%	18.8%
Construction	6.8%	11.0%	9.8%
Retail trade	11.3%	18.7%	17.7%
Services	50.6%	49.9%	53.7%
0-19 employees	6.2%	33.7%	34.1%
20-49 employees	9.3%	12.7%	21.7%
50-99 employees	13.3%	8.7%	14.0%
100+ employees	71.2%	44.9%	30.2%
Stockholm	23.0%	26.1%	27.6%
Västergötland	16.8%	16.9%	17.1%
Skåne	10.3%	12.4%	14.3%
Östergötland	3.5%	4.3%	3.9%
Jönköping	3.8%	3.7%	3.8%
Uppsala	2.8%	3.4%	2.6%
Halland	3.0%	3.0%	2.7%
Örebro	3.5%	2.8%	2.6%
Dalarna	3.1%	2.6%	2.7%
Västerbotten	2.8%	2.6%	2.2%
Gävleborg	3.0%	2.6%	2.5%
Norrbotten	2.9%	2.5%	2.2%
Västmanland	3.6%	2.5%	2.5%
Värmland	2.9%	2.4%	2.2%
Södermanland	2.7%	2.4%	2.1%
Västernorrland	2.9%	2.4%	2.2%
Kalmar	2.7%	2.2%	2.2%
Kronoberg	3.0%	2.0%	2.0%
Blekinge	1.9%	1.5%	1.3%
Jämtland	1.1%	1.2%	0.9%
Gotland	0.6%	0.6%	0.4%

Table A.1: Employment in the AFU sample and total population, in 2014

Note: The percentages are calculated for the establishments in the AFU (sample) and the population (pop) and are aggregated across broad industry classifications according to NACE Rev. 2. The figures for the population are obtained from Statistics Sweden. * denotes employment figures with sample weights.

	(1)	(2)	(3)	(4)
Constant	2.884***	2.861***	2.723***	2.755***
d = 1	-0.050***	-0.057***	-0.050	-0.008
d = 2	0.000	-0.005	-0.019	0.046***
d = 3	0.032**	0.031**	0.030	0.076***
d = 4	0.088***	0.088***	0.088**	0.098***
d = 5	0.144***	0.143***	0.181***	0.161***
d = 6	0.162***	0.164***	0.084*	0.228***
d = 7	0.223***	0.221***	0.173***	0.249***
d = 8	0.276***	0.292***	0.284***	0.328***
d = 9	0.307***	0.324***	0.335***	0.377***
d = 10	0.311***	0.350***	0.366***	0.541***
Observations	200,820	210,543	100,934	213,560
\mathbb{R}^2	0.259	0.255	0.326	0.406

Table A.2: Additional controls

Note: *, **, and *** denote p < 0.10, p < 0.05, and p < 0.01, respectively. All regressions include fixed effects for sectorregion, section-time and region-time. Standard errors are clustered at the sector-time level. Column (1) includes respondents expectations of employment growth at the establishment next 24 months as a measure of expectations and Column (2) a qualitative measure if the level of demand is expected to increase in the next 12 months. (3) includes sample weights and (4) weights for employment. The omitted group is all establishments without any labor shortages, RLS=0. RLS at d = 1 is 0.006, at 2 0.016, at 3 0.030, at 4 0.045, at 5 0.066, at 6 0.914, at 7 0.120, at 8 0.159, at 9 0.230 and at 10 0.657.

	Industry	Construction	Retail trade	Services
Constant	2.874***	3.081***	2.988***	2.848***
d = 1	-0.029	0.013	-0.094***	-0.051***
d = 2	-0.043*	0.088**	-0.045	0.006
d = 3	-0.043*	0.210***	0.050	0.091***
d = 4	0.019	0.210***	0.147***	0.109***
d = 5	0.009	0.122***	0.182***	0.128***
d = 6	0.054*	0.175***	0.173***	0.208***
d = 7	0.138***	0.274***	0.299***	0.275***
d = 8	0.230***	0.305***	0.374***	0.310***
d = 9	0.220***	0.427***	0.288***	0.385***
d = 10	0.329***	0.412***	0.315***	0.352***
Observations	42,196	24,259	40,809	96,067
\mathbb{R}^2	0.359	0.211	0.264	0.225

Table A.3: Sector-level estimates

Note: *, **, and *** denote p < 0.10, p < 0.05, and p < 0.01, respectively. Standard errors are clustered at the sector-time level. All regressions include sector-region, sector-time and region-time fixed effects. The omitted group is all establishments without any labor shortages, RLS=0. Deciles are calculated within each broad industry. For industry, the figures are 1 = 0.003, 2 = 0.007, 3 = 0.011, 4 = 0.018, 5 = 0.025, 6 = 0.038, 7 = 0.059, 8 = 0.093, 9 = 0.143 and 10 = 0.368. For construction, its 0.013, 0.032, 0.050, 0.070, 0.093, 0.117, 0.150, 0.200, 0.283, 0.684. For retail trade, 0.007, 0.017, 0.029, 0.045, 0.066, 0.092, 0.127, 0.166, 0.221, 0.489. For services, 0.009, 0.023, 0.037, 0.054, 0.074, 0.010, 0.131, 0.179, 0.251 0.699.

	SE1 - East SE	SE2 - South SE	SE3 - North SE
Constant	2.898***	2.915***	2.895***
d = 1	-0.044*	-0.087***	-0.022
d = 2	-0.042*	-0.005	0.015
d = 3	0.039	0.023	0.097***
d = 4	0.067**	0.085***	0.132***
d = 5	0.223***	0.105***	0.135***
d = 6	0.210***	0.153***	0.191***
d = 7	0.292***	0.184***	0.238***
d = 8	0.381***	0.287***	0.186***
d = 9	0.372***	0.314***	0.268***
d = 10	0.406***	0.428***	0.306***
Observations	55,306	96,920	50,455
\mathbb{R}^2	0.268	0.290	0.314

Table A.4: Region-level estimates (NUTS1)

Note: *, **, and *** denote p < 0.10, p < 0.05, and p < 0.01, respectively. Standard errors are clustered at the sector-time level. All regressions include sector-region, sector-time and region-time fixed effects. The columns shows the establishment size in terms of employment. The omitted group is all establishments without any labor shortages, RLS=0. Deciles are calculated within each broad region classification. For SE1, the figures are 1 = 0.006, 2 = 0.015, 3 = 0.027, 4 = 0.043, 5 = 0.062, 6 = 0.089, 7 = 0.119, 8 = 0.157, 9 = 0.229 and 10 = 0.594. For SE2, its 0.006, 0.015, 0.027, 0.042, 0.060, 0.082, 0.111, 0.151, 0.214, 0.615. For SE3, 0.009, 0.023, 0.041, 0.062, 0.083, 0.114, 0.143, 0.184, 0.273, 0.848.

	(1)	(2)	(3)	(4)	(5)	(6)
d = 1	-0.024	0.008	0.004	0.001	0.007	-0.006
d = 2	0.020	0.029	0.019	-0.012	0.017	-0.059
d = 3	0.041	0.092	0.104*	0.054	0.094	0.034
d = 4	0.119	0.102	0.114	0.045	0.105	0.061
d = 5	0.084	0.095	0.112	0.137*	0.105	-0.062
d = 6	-0.071	0.001	0.039	-0.036	0.021	0.003
d = 7	-0.198	-0.180	-0.119	-0.119	-0.151	-0.082
d = 8	0.339*	0.340*	0.397**	0.396**	0.393**	0.121
d = 9	0.597*	0.633*	0.683**	0.794**	0.675**	0.589
d = 10	1.016**	0.803**	0.841***	0.545**	0.819***	1.688***
Observations	6,008	6,008	6,008	5,499	5,921	2,928
FE		S-R	F	F	F	F
Time-FE	T-S	T-S, T-R				
\mathbb{R}^2	0.562	0.644	0.653	0.669	0.656	0.675

Table A.5: Reduced sample and establishment fixed-effects

Note: *, **, and *** denote p < 0.10, p < 0.05, and p < 0.01, respectively. F = establishment, S = sector, R = region and T = time. Standard errors are clustered at the sector-time level. (4) Controls for employment growth the next 24 months and (5) a qualitative measure of demand expectations in the next 6-12 months. Column (6) is results with sample weights. The omitted group is all establishments without any labor shortages, RLS=0. RLS at d = 1 is 0.006, at 2 0.016, at 3 0.030, at 4 0.045, at 5 0.066, at 6 0.914, at 7 0.120, at 8 0.159, at 9 0.230 and at 10 0.657.

	(2)	2.003***	(0.800)	ц	T-S, T-R	2,928	0.670
(9)	1.881^{***}	(0.529)	ц	T-S, T-R	6,008	0.651	
ous RLS	(2)	0.191^{**}	(0.084)	S-R	T-S, T-R	100,934	0.403
h continue	(4)	0.309***	(0.034)	S-R	T-S, T-R	210,543	0.322
imates wit	(3)	0.155^{***}	(0.032)	S-R	T-S, T-R	200,820	0.250
ole A.6: Est	(2)	0.192^{***}	(0.034)	S-R	T-S, T-R	213,560	0.255
Tab	(1)	0.193^{***}	(0.033)		T-S	214,121	0.195
		β_{RLS}		FE	Time-FE	Observations	\mathbb{R}^2

Note: *, **, and *** denote p < 0.10, p < 0.05, and p < 0.01, respectively. F= establishment, S = sector, R = region and T = time. Standard errors are clustered at the sector-time level. (3) Controls for employment growth the next 24 months and (4) controls for a qualitative measure of demand expectations in the next 6-12 months. Column (5) is results with sample weights. Column (6) is estimates for establishments that have participated 18/23 survey waves and (7) utilizes sample weights.

Earlier Working Papers:

For a complete list of Working Papers published by Sveriges Riksbank, see www.riksbank.se

Estimation of an Adaptive Stock Market Model with Heterogeneous Agents by Henrik Amilon	2005:177
Some Further Evidence on Interest-Rate Smoothing: The Role of Measurement Errors in the Output Gap by Mikael Apel and Per Jansson	2005:178
Bayesian Estimation of an Open Economy DSGE Model with Incomplete Pass-Through by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani	2005:179
Are Constant Interest Rate Forecasts Modest Interventions? Evidence from an Estimated Open Economy DSGE Model of the Euro Area by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani	2005:180
Inference in Vector Autoregressive Models with an Informative Prior on the Steady State by Mattias Villani	2005:181
Bank Mergers, Competition and Liquidity by Elena Carletti, Philipp Hartmann and Giancarlo Spagnolo	2005:182
Testing Near-Rationality using Detailed Survey Data by Michael F. Bryan and Stefan Palmqvist	2005:183
Exploring Interactions between Real Activity and the Financial Stance by Tor Jacobson, Jesper Lindé and Kasper Roszbach	2005:184
Two-Sided Network Effects, Bank Interchange Fees, and the Allocation of Fixed Costs by Mats A. Bergman	2005:185
Trade Deficits in the Baltic States: How Long Will the Party Last? by Rudolfs Bems and Kristian Jönsson	2005:186
Real Exchange Rate and Consumption Fluctuations follwing Trade Liberalization by Kristian Jönsson	2005:187
Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks by Malin Adolfson, Michael K. Andersson, Jesper Lindé, Mattias Villani and Anders Vredin	2005:188
Bayesian Inference of General Linear Restrictions on the Cointegration Space by Mattias Villani	2005:189
Forecasting Performance of an Open Economy Dynamic Stochastic General Equilibrium Model by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani	2005:190
Forecast Combination and Model Averaging using Predictive Measures by Jana Eklund and Sune Karlsson	2005:191
Swedish Intervention and the Krona Float, 1993-2002 by Owen F. Humpage and Javiera Ragnartz	2006:192
A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro by Hans Lindblad and Peter Sellin	2006:193
Testing Theories of Job Creation: Does Supply Create Its Own Demand? by Mikael Carlsson, Stefan Eriksson and Nils Gottfries	2006:194
Down or Out: Assessing The Welfare Costs of Household Investment Mistakes by Laurent E. Calvet, John Y. Campbell and Paolo Sodini	2006:195
Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models by Paolo Giordani and Robert Kohn	2006:196
Derivation and Estimation of a New Keynesian Phillips Curve in a Small Open Economy by Karolina Holmberg	2006:197
Technology Shocks and the Labour-Input Response: Evidence from Firm-Level Data by Mikael Carlsson and Jon Smedsaas	2006:198
Monetary Policy and Staggered Wage Bargaining when Prices are Sticky by Mikael Carlsson and Andreas Westermark	2006:199
The Swedish External Position and the Krona by Philip R. Lane	2006:200

Price Setting Transactions and the Role of Denominating Currency in FX Markets by Richard Friberg and Fredrik Wilander	2007:201
The geography of asset holdings: Evidence from Sweden by Nicolas Coeurdacier and Philippe Martin	2007:202
Evaluating An Estimated New Keynesian Small Open Economy Model by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani	2007:203
The Use of Cash and the Size of the Shadow Economy in Sweden by Gabriela Guibourg and Björn Segendorf	2007:204
Bank supervision Russian style: Evidence of conflicts between micro- and macro-prudential concerns by Sophie Claeys and Koen Schoors	2007:205
Optimal Monetary Policy under Downward Nominal Wage Rigidity by Mikael Carlsson and Andreas Westermark	2007:206
Financial Structure, Managerial Compensation and Monitoring by Vittoria Cerasi and Sonja Daltung	2007:207
Financial Frictions, Investment and Tobin's q by Guido Lorenzoni and Karl Walentin	2007:208
Sticky Information vs Sticky Prices: A Horse Race in a DSGE Framework by Mathias Trabandt	2007:209
Acquisition versus greenfield: The impact of the mode of foreign bank entry on information and bank lending rates by Sophie Claeys and Christa Hainz	2007:210
Nonparametric Regression Density Estimation Using Smoothly Varying Normal Mixtures by Mattias Villani, Robert Kohn and Paolo Giordani	2007:211
The Costs of Paying – Private and Social Costs of Cash and Card by Mats Bergman, Gabriella Guibourg and Björn Segendorf	2007:212
Using a New Open Economy Macroeconomics model to make real nominal exchange rate forecasts by Peter Sellin	2007:213
Introducing Financial Frictions and Unemployment into a Small Open Economy Model by Lawrence J. Christiano, Mathias Trabandt and Karl Walentin	2007:214
Earnings Inequality and the Equity Premium by Karl Walentin	2007:215
Bayesian forecast combination for VAR models by Michael K. Andersson and Sune Karlsson	2007:216
Do Central Banks React to House Prices? by Daria Finocchiaro and Virginia Queijo von Heideken	2007:217
The Riksbank's Forecasting Performance by Michael K. Andersson, Gustav Karlsson and Josef Svensson	2007:218
Macroeconomic Impact on Expected Default Freqency by Per Åsberg and Hovick Shahnazarian	2008:219
Monetary Policy Regimes and the Volatility of Long-Term Interest Rates by Virginia Queijo von Heideken	2008:220
Governing the Governors: A Clinical Study of Central Banks by Lars Frisell, Kasper Roszbach and Giancarlo Spagnolo	2008:221
The Monetary Policy Decision-Making Process and the Term Structure of Interest Rates by Hans Dillén	2008:222
How Important are Financial Frictions in the U S and the Euro Area by Virginia Queijo von Heideken	2008:223
Block Kalman filtering for large-scale DSGE models by Ingvar Strid and Karl Walentin	2008:224
Optimal Monetary Policy in an Operational Medium-Sized DSGE Model by Malin Adolfson, Stefan Laséen, Jesper Lindé and Lars E. O. Svensson	2008:225
Firm Default and Aggregate Fluctuations by Tor Jacobson, Rikard Kindell, Jesper Lindé and Kasper Roszbach	2008:226
Re-Evaluating Swedish Membership in EMU: Evidence from an Estimated Model by Ulf Söderström	2008:227

The Effect of Cash Flow on Investment: An Empirical Test of the Balance Sheet Channel by Ola Melander	2009:228
Expectation Driven Business Cycles with Limited Enforcement by Karl Walentin	2009:229
Effects of Organizational Change on Firm Productivity by Christina Håkanson	2009:230
Evaluating Microfoundations for Aggregate Price Rigidities: Evidence from Matched Firm-Level Data on Product Prices and Unit Labor Cost by Mikael Carlsson and Oskar Nordström Skans	2009:231
Monetary Policy Trade-Offs in an Estimated Open-Economy DSGE Model by Malin Adolfson, Stefan Laséen, Jesper Lindé and Lars E. O. Svensson	2009:232
Flexible Modeling of Conditional Distributions Using Smooth Mixtures of Asymmetric Student T Densities by Feng Li, Mattias Villani and Robert Kohn	2009:233
Forecasting Macroeconomic Time Series with Locally Adaptive Signal Extraction by Paolo Giordani and Mattias Villani	2009:234
Evaluating Monetary Policy by Lars E. O. Svensson	2009:235
Risk Premiums and Macroeconomic Dynamics in a Heterogeneous Agent Model by Ferre De Graeve, Maarten Dossche, Marina Emiris, Henri Sneessens and Raf Wouters	2010:236
Picking the Brains of MPC Members by Mikael Apel, Carl Andreas Claussen and Petra Lennartsdotter	2010:237
Involuntary Unemployment and the Business Cycle by Lawrence J. Christiano, Mathias Trabandt and Karl Walentin	2010:238
Housing collateral and the monetary transmission mechanism by Karl Walentin and Peter Sellin	2010:239
The Discursive Dilemma in Monetary Policy by Carl Andreas Claussen and Øistein Røisland	2010:240
Monetary Regime Change and Business Cycles by Vasco Cúrdia and Daria Finocchiaro	2010:241
Bayesian Inference in Structural Second-Price common Value Auctions by Bertil Wegmann and Mattias Villani	2010:242
Equilibrium asset prices and the wealth distribution with inattentive consumers by Daria Finocchiaro	2010:243
Identifying VARs through Heterogeneity: An Application to Bank Runs by Ferre De Graeve and Alexei Karas	2010:244
Modeling Conditional Densities Using Finite Smooth Mixtures by Feng Li, Mattias Villani and Robert Kohn	2010:245
The Output Gap, the Labor Wedge, and the Dynamic Behavior of Hours by Luca Sala, Ulf Söderström and Antonella Trigari	2010:246
Density-Conditional Forecasts in Dynamic Multivariate Models by Michael K. Andersson, Stefan Palmqvist and Daniel F. Waggoner	2010:247
Anticipated Alternative Policy-Rate Paths in Policy Simulations by Stefan Laséen and Lars E. O. Svensson	2010:248
MOSES: Model of Swedish Economic Studies by Gunnar Bårdsen, Ard den Reijer, Patrik Jonasson and Ragnar Nymoen	2011:249
The Effects of Endogenuos Firm Exit on Business Cycle Dynamics and Optimal Fiscal Policy by Lauri Vilmi	2011:250
Parameter Identification in a Estimated New Keynesian Open Economy Model by Malin Adolfson and Jesper Lindé	2011:251
Up for count? Central bank words and financial stress by Marianna Blix Grimaldi	2011:252
Wage Adjustment and Productivity Shocks by Mikael Carlsson, Julián Messina and Oskar Nordström Skans	2011:253

Stylized (Arte) Facts on Sectoral Inflation by Ferre De Graeve and Karl Walentin	2011:254
Hedging Labor Income Risk by Sebastien Betermier, Thomas Jansson, Christine A. Parlour and Johan Walden	2011:255
Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios by Paolo Giordani, Tor Jacobson, Erik von Schedvin and Mattias Villani	2011:256
Collateralization, Bank Loan Rates and Monitoring: Evidence from a Natural Experiment by Geraldo Cerqueiro, Steven Ongena and Kasper Roszbach	2012:257
On the Non-Exclusivity of Loan Contracts: An Empirical Investigation by Hans Degryse, Vasso Ioannidou and Erik von Schedvin	2012:258
Labor-Market Frictions and Optimal Inflation by Mikael Carlsson and Andreas Westermark	2012:259
Output Gaps and Robust Monetary Policy Rules by Roberto M. Billi	2012:260
The Information Content of Central Bank Minutes by Mikael Apel and Marianna Blix Grimaldi	2012:261
The Cost of Consumer Payments in Sweden	2012:262
by Björn Segendorf and Thomas Jansson	
Trade Credit and the Propagation of Corporate Failure: An Empirical Analysis	2012:263
by Tor Jacobson and Erik von Schedvin	
Structural and Cyclical Forces in the Labor Market During the Great Recession: Cross-Country Evidence	2012:264
by Luca Sala, Ulf Söderström and AntonellaTrigari	
Pension Wealth and Household Savings in Europe: Evidence from SHARELIFE	2013:265
by Rob Alessie, Viola Angelini and Peter van Santen	
Long-Term Relationship Bargaining	2013:266
by Andreas Westermark	
Using Financial Markets To Estimate the Macro Effects of Monetary Policy: An Impact-Identified FAVAR*	2013:267
by Stefan Pitschner	
DYNAMIC MIXTURE-OF-EXPERTS MODELS FOR LONGITUDINAL AND DISCRETE-TIME SURVIVAL DATA	2013:268
by Matias Quiroz and Mattias Villani	
Conditional euro area sovereign default risk	2013:269
by André Lucas, Bernd Schwaab and Xin Zhang	
Nominal GDP Targeting and the Zero Lower Bound: Should We Abandon Inflation Targeting?*	2013:270
by Roberto M. Billi	
Un-truncating VARs*	2013:271
by Ferre De Graeve and Andreas Westermark	
Housing Choices and Labor Income Risk	2013:272
by Thomas Jansson	
Identifying Fiscal Inflation*	2013:273
by Ferre De Graeve and Virginia Queijo von Heideken	
On the Redistributive Effects of Inflation: an International Perspective* by Paola Boel	2013:274
Business Cycle Implications of Mortgage Spreads*	2013.275
by Karl Walentin	2010.210
Approximate dynamic programming with post-decision states as a solution method for dynamic	2013:276
economic models by Isaiah Hull	
A detrimental feedback loop: deleveraging and adverse selection	2013:277
by Christoph Bertsch	
Distortionary Fiscal Policy and Monetary Policy Goals	2013:278
by Klaus Adam and Roberto M. Billi	
Predicting the Spread of Financial Innovations: An Epidemiological Approach	2013:279
by Isaiah Hull	
Firm-Level Evidence of Shifts in the Supply of Credit	2013:280
by Karolina Holmberg	

Lines of Credit and Investment: Firm-Level Evidence of Real Effects of the Financial Crisis by Karolina Holmberg	2013:281
A wake-up call: information contagion and strategic uncertainty by Toni Ahnert and Christoph Bertsch	2013:282
Debt Dynamics and Monetary Policy: A Note	2013:283
by Stefan Laséen and Ingvar Strid	
Optimal taxation with home production	2014:284
by Conny Olovsson	
Incompatible European Partners? Cultural Predispositions and Household Financial Behavior	2014:285
by Michael Haliassos, Thomas Jansson and Yigitcan Karabulut	
How Subprime Borrowers and Mortgage Brokers Shared the Piecial Behavior	2014:286
by Antje Berndt, Burton Hollifield and Patrik Sandås	
The Macro-Financial Implications of House Price-Indexed Mortgage Contracts	2014:287
by Isaiah Hull	
Does Trading Anonymously Enhance Liquidity?	2014:288
by Patrick J. Dennis and Patrik Sandås	
Systematic bailout guarantees and tacit coordination	2014:289
by Christoph Bertsch. Claudio Calcagno and Mark Le Quement	
Selection Effects in Producer-Price Setting	2014:290
by Mikael Carlsson	
Dynamic Demand Adjustment and Exchange Rate Volatility	2014:291
by Vesna Corbo	
Forward Guidance and Long Term Interest Rates: Inspecting the Mechanism	2014:292
by Ferre De Graeve. Pelin Ilbas & Raf Wouters	
Firm-I evel Shocks and Labor Adjustments	2014:293
by Mikael Carlsson, Julián Messina and Oskar Nordström Skans	2011.200
A wake-up call theory of contagion	2015:294
by Toni Ahnert and Christoph Bertsch	2010.201
Risks in macroeconomic fundamentals and excess bond returns predictability	2015:295
by Rafael B. De Rezende	2010.200
The Importance of Reallocation for Productivity Growth: Evidence from European and US Banking	2015:296
by Jaan W.B. Bos and Peter C. van Santen	2010.200
SPEEDING UP MCMC BY EFFICIENT DATA SUBSAMPLING	2015.207
by Matias Quiroz, Mattias Villani and Robert Kobn	2010.201
Amortization Requirements and Household Indeptedness: An Application to Swedish-Style Mortgages	2015.208
by Isaiah Hull	2013.290
Fuel for Economic Growth?	2015:299
by Johan Gars and Conny Olovsson	2010.200
Searching for Information	2015:300
by Jungsuk Han and Francesco Sangiorgi	2010.000
What Broke First? Characterizing Sources of Structural Change Prior to the Great Recession	2015:301
by Isaiah Hull	2010.001
Price Level Targeting and Risk Management	2015:302
by Roberto Billi	2010.002
Central bank policy paths and market forward rates: A simple model	2015:303
by Ferre De Graeve and Jens Iversen	2010.000
Jump-Starting the Euro Area Recovery: Would a Rise in Core Fiscal Spending Halp the Peripheny?	2015.304
by Olivier Blanchard, Christopher I, Erceg and Jesper Lindé	2010.004
Bringing Financial Stability into Monetary Policy*	2015.205
	2013.305
SCALABLE MCMC FOR LARGE DATA PROBLEMS USING DATA SUBSAMPLING AND	2015:306
by MATIAS QUIROZ. MATTIAS VILLANI AND ROBERT KOHN	

SPEEDING UP MCMC BY DELAYED ACCEPTANCE AND DATA SUBSAMPLING by MATIAS QUIROZ	2015:307
Modeling financial sector joint tail risk in the euro area by André Lucas, Bernd Schwaab and Xin Zhang	2015:308
Score Driven Exponentially Weighted Moving Averages and Value-at-Risk Forecasting	2015:309
by André Lucas and Xin Zhang	
On the Theoretical Efficacy of Quantitative Easing at the Zero Lower Bound	2015:310
by Paola Boel and Christopher J. Waller	
Optimal Inflation with Corporate Taxation and Financial Constraints	2015:311
by Daria Finocchiaro, Giovanni Lombardo, Caterina Mendicino and Philippe Weil	
Fire Sale Bank Recapitalizations	2015:312
by Christoph Bertsch and Mike Mariathasan	
Since you're so rich, you must be really smart: Talent and the Finance Wage Premium	2015:313
by Michael Böhm, Daniel Metzger and Per Strömberg	
Debt, equity and the equity price puzzle	2015:314
by Daria Finocchiaro and Caterina Mendicino	
Trade Credit: Contract-Level Evidence Contradicts Current Theories	2016:315
by Tore Ellingsen, Tor Jacobson and Erik von Schedvin	
Double Liability in a Branch Banking System: Historical Evidence from Canada	2016:316
by Anna Grodecka and Antonis Kotidis	
Subprime Borrowers, Securitization and the Transmission of Business Cycles	2016:317
by Anna Grodecka	
Real-Time Forecasting for Monetary Policy Analysis: The Case of Sveriges Riksbank	2016:318
by Jens Iversen, Stefan Laséen, Henrik Lundvall and Ulf Söderström	
Fed Liftoff and Subprime Loan Interest Rates: Evidence from the Peer-to-Peer Lending	2016:319
by Christoph Bertsch, Isaiah Hull and Xin Zhang	
Curbing Shocks to Corporate Liquidity: The Role of Trade Credit	2016:320
by Niklas Amberg, Tor Jacobson, Erik von Schedvin and Robert Townsend	
Firms' Strategic Choice of Loan Delinquencies	2016:321
by Paola Morales-Acevedo	
Fiscal Consolidation Under Imperfect Credibility	2016:322
by Matthieu Lemoine and Jesper Lindé	
Challenges for Central Banks' Macro Models	2016:323
by Jesper Lindé, Frank Smets and Rafael Wouters	
The interest rate effects of government bond purchases away from the lower bound	2016:324
by Rafael B. De Rezende	
COVENANT-LIGHT CONTRACTS AND CREDITOR COORDINATION	2016:325
by Bo Becker and Victoria Ivashina	
Endogenous Separations, Wage Rigidities and Employment Volatility	2016:326
by Mikael Carlsson and Andreas Westermark	
Renovatio Monetae: Gesell Taxes in Practice	2016:327
by Roger Svensson and Andreas Westermark	
Adjusting for Information Content when Comparing Forecast Performance	2016:328
by Michael K. Andersson, Ted Aranki and André Reslow	
Economic Scarcity and Consumers' Credit Choice	2016:329
by Marieke Bos, Chloé Le Coq and Peter van Santen	
Uncertain pension income and household saving	2016:330
by Peter van Santen	
Money, Credit and Banking and the Cost of Financial Activity	2016:331
by Paola Boel and Gabriele Camera	
Oil prices in a real-business-cycle model with precautionary demand for oil	2016:332
by Conny Olovsson	
Financial Literacy Externalities	2016:333
by Michael Haliasso, Thomas Jansson and Yigitcan Karabulut	

The timing of uncertainty shocks in a small open economy by Hanna Armelius, Isaiah Hull and Hanna Stenbacka Köhler	2016:334
Quantitative easing and the price-liquidity trade-off	2017:335
by Marien Ferdinandusse, Maximilian Freier and Annukka Ristiniemi	
What Broker Charges Reveal about Mortgage Credit Risk	2017:336
by Antje Berndt, Burton Hollifield and Patrik Sandåsi	
Asymmetric Macro-Financial Spillovers	2017:337
by Kristina Bluwstein	
Latency Arbitrage When Markets Become Faster	2017:338
by Burton Hollifield, Patrik Sandås and Andrew Todd	
How big is the toolbox of a central banker? Managing expectations with policy-rate forecasts: Evidence from Sweden	2017:339
by Magnus Åhl	
International business cycles: quantifying the effects of a world market for oil	2017:340
by Johan Gars and Conny Olovsson I	
Systemic Risk: A New Trade-Off for Monetary Policy?	2017:341
by Stefan Laséen, Andrea Pescatori and Jarkko Turunen	
Household Debt and Monetary Policy: Revealing the Cash-Flow Channel	2017:342
by Martin Flodén, Matilda Kilström, Jósef Sigurdsson and Roine Vestman	
House Prices, Home Equity, and Personal Debt Composition	2017:343
by Jieying Li and Xin Zhang	
Identification and Estimation issues in Exponential Smooth Transition Autoregressive Models	2017:344
by Daniel Buncic	
Domestic and External Sovereign Debt	2017:345
by Paola Di Casola and Spyridon Sichlimiris	
The Role of Trust in Online Lending by Christoph Bertsch, Isaiah Hull, Yingjie Qi and Xin Zhang	2017:346
On the effectiveness of loan-to-value regulation in a multiconstraint framework by Anna Grodecka	2017:347
Shock Propagation and Banking Structure by Mariassunta Giannetti and Farzad Saidi	2017:348
The Granular Origins of House Price Volatility	2017:349
by Isaiah Hull, Conny Olovsson, Karl Walentin and Andreas Westermark	
Should We Use Linearized Models To Calculate Fiscal Multipliers?	2017:350
by Jesper Lindé and Mathias Trabandt	
The impact of monetary policy on household borrowing – a high-frequency IV identification by Maria Sandström	2018:351
Conditional exchange rate pass-through: evidence from Sweden by Vesna Corbo and Paola Di Casola	2018:352
Learning on the Job and the Cost of Business Cycles by Karl Walentin and Andreas Westermark	2018:353
Trade Credit and Pricing: An Empirical Evaluation by Niklas Amberg, Tor Jacobson and Erik von Schedvin	2018:354
A shadow rate without a lower bound constraint by Rafael B. De Rezende and Annukka Ristiniemi	2018:355
Reduced "Border Effects", FTAs and International Trade by Sebastian Franco and Erik Frohm	2018:356
Spread the Word: International Spillovers from Central Bank Communication by Hanna Armelius, Christoph Bertsch, Isaiah Hull and Xin Zhang	2018:357
Predictors of Bank Distress: The 1907 Crisis in Sweden by Anna Grodecka, Seán Kenny and Anders Ögren	2018:358

Diversication Advantages During the Global Financial Crisis by Mats Levander	2018:359
Towards Technology-News-Driven Business Cycles by Paola Di Casola and Spyridon Sichlimiris	2018:360
The Housing Wealth Effect: Quasi-Experimental Evidence by Dany Kessel, Björn Tyrefors and Roine	2018:361
Identification Versus Misspecification in New Keynesian Monetary Policy Models by Malin Adolfson, Stefan Laseén, Jesper Lindé and Marco Ratto	2018:362
The Macroeconomic Effects of Trade Tariffs: Revisiting the Lerner Symmetry Result by Jesper Lindé and Andrea Pescatori	2019:363
Biased Forecasts to Affect Voting Decisions? The Brexit Case by Davide Cipullo and André Reslow	2019:364
The Interaction Between Fiscal and Monetary Policies: Evidence from Sweden by Sebastian Ankargren and Hovick Shahnazarian	2019:365
Designing a Simple Loss Function for Central Banks: Does a Dual Mandate Make Sense? by Davide Debortoli, Jinill Kim and Jesper Lindé	2019:366
Gains from Wage Flexibility and the Zero Lower Bound by Roberto M. Billi and Jordi Galí	2019:367
Fixed Wage Contracts and Monetary Non-Neutrality by Maria Björklund, Mikael Carlsson and Oskar Nordström Skans	2019:368
The Consequences of Uncertainty: Climate Sensitivity and Economic Sensitivity to the Climate by John Hassler, Per Krusell and Conny Olovsson	2019:369
Does Inflation Targeting Reduce the Dispersion of Price Setters' Inflation Expectations? by Charlotte Paulie	2019:370
Subsampling Sequential Monte Carlo for Static Bayesian Models by David Gunawan, Khue-Dung Dang, Matias Quiroz, Robert Kohn and Minh-Ngoc Tran	2019:371
Hamiltonian Monte Carlo with Energy Conserving Subsampling by Khue-Dung Dang, Matias Quiroz, Robert Kohn, Minh-Ngoc Tran and Mattias Villani	2019:372
Institutional Investors and Corporate Investment by Cristina Cella	2019:373
The Impact of Local Taxes and Public Services on Property Values by Anna Grodecka and Isaiah Hull	2019:374
Directed technical change as a response to natural-resource scarcity by John Hassler, Per Krusell and Conny Olovsson	2019:375
A Tale of Two Countries: Cash Demand in Canada and Sweden by Walter Engert, Ben Fung and Björn Segendorf	2019:376
Tax and spending shocks in the open economy: are the deficits twins? by Mathias Klein and Ludger Linnemann	2019:377
Mind the gap! Stylized dynamic facts and structural models by Fabio Canova and Filippo Ferroni	2019:378
Financial Buffers, Unemployment Duration and Replacement Labor Income by Mats Levander	2019:379
Inefficient Use of Competitors' Forecasts? <i>by André Reslow</i>	2019:380
How Much Information Do Monetary Policy Committees Disclose? Evidence from the FOMC's Minutes and Transcripts <i>by Mikael Apel, Marianna Blix Grimaldi and Isaiah Hull</i>	2019:381
Risk endogeneity at the lender/investor-of-last-resort by Diego Caballero, André Lucas, Bernd Schwaab and Xin Zhang	2019:382
Heterogeneity in Households' Expectations of Housing Prices – Evidence from Micro Data by Erik Hjalmarsson and Pär Österholm	2019:383
Big Broad Banks: How Does Cross-Selling A Affect Lending? by Yingjie Qi	2020:384
Unemployment Fluctuations and Nominal GDP Targeting by Roberto Billi	2020:385

FAQ: How do I extract the output gap? <i>by Fabio Canova</i>	2020:386
Drivers of consumer prices and exchange rates in small open economies by Vesna Corbo and Paola Di Casola	2020:387
TFP news, stock market booms and the business cycle: Revisiting the evidence with VEC models by Paola Di Casola and Spyridon Sichlimiris	2020:388
The costs of macroprudential deleveraging in a liquidity trap by Jiaqian Chen, Daria Finocchiaro, Jesper Lindé and Karl Walentin	2020:389
The Role of Money in Monetary Policy at the Lower Bound by Roberto M. Billi, Ulf Söderström and Carl E. Walsh	2020:390
MAJA: A two-region DSGE model for Sweden and its main trading partners by Vesna Corbo and Ingvar Strid	2020:391
The interaction between macroprudential and monetary policies: The cases of Norway and Sweden by Jin Cao, Valeriya Dinger, Anna Grodecka-Messi, Ragnar Juelsrud and Xin Zhang	2020:392
Withering Cash: Is Sweden ahead of the curve or just special? by Hanna Armelius, Carl Andreas Claussen and André Reslow	2020:393

Sveriges Riksbank Visiting address: Brunkebergs torg 11 Mail address: se-103 37 Stockholm

Website: www.riksbank.se Telephone: +46 8 787 00 00, Fax: +46 8 21 05 31 E-mail: registratorn@riksbank.se