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Technical Appendix to “MAJA: A two-region DSGE model for
Sweden and its main trading partners”

Vesna Corbo and Hugo Bourrousse

July 2, 2020

Abstract

This Technical Appendix contains detailed derivations of the model presented in Corbo and
Strid (2020). It contains the non-linear optimization problems and their solutions, the steady-state
solution, and details on the scaling ang log-linearization of the model.
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1 Introduction

The model discussed in this document is an open-economy medium-sized DSGE model of the Swedish
economy, presented in “MAJA: A two-region DSGE model for Sweden and its main trading partners”.
It draws heavily on the two previous DSGE models developed and used at the Riksbank, Ramses I and
Ramses II, documented in Adolfson et al. (2005) and Adolfson et al. (2013), respectively. Ramses I
was used as the main forecasting and simulation macro model at the Riksbank between 2005 and 2010.
It was derived as an open-economy version of the Smets and Wouters (2003) model and estimated on
data for the Swedish economy.1 Ramses II was basically an extension of Ramses I, which included
financial frictions in the accumulation of capital, search and matching on the labour market, and
the use of imports as inputs in export production. It was originally developed and documented by
Christiano, Trabandt, and Walentin (2011), and then adapted to policy purposes by the Modelling
Division at the Riksbank.2 Ramses II has beed the main macro model at the Riksbank since 2010, used
for macroeconomic analysis, forecasting and alternative scenarios. The current model is the result of
a project which aimed at evaluating and, ideally, improving on some dimensions of the previous model
setups, among those the importance of foreign economic fluctuations for the Swedish economy.

To be able to evaluate the usefulness of alternative specifications and estimation methods, we need
a benchmark to compare with. To this end, we derived and documented a version of the Ramses
model which is closely in line with the Ramses II baseline model (Ramses II without financial frictions
and search and matching) and very similar to Ramses I. We have chosen to keep the use of imports as
inputs in export production and most of the minor changes made to the model between the Ramses I
and II versions. Like its predecessors, our baseline model consists of a number of different firms, which
import, export and combine different inputs in order to produce a number of different consumption and
investment goods, and households, which consume, save in domestic and foreign bonds, and provide
labour services to the firms. Firms and households are subject to price and wage setting frictions as
in Calvo (1983), rendering monetary policy non-neutral. The central bank conducts monetary policy
according to some interest rate rule, while government consumption is assumed to follow an exogenous
process. With this as a starting point, we have made a number of alterations to the model structure.
MAJA contains a structural model of the foreign economy, a more flexible model of the demand for
Swedish exports, a differnet model of the labour market, a slow-moving interest rate trend (a ’neutral
rate’), and a more disaggregated modelling of inflation, resulting from the an explicit treatment of
energy prices. The specific differences and similarities to Ramses I and II are discussed more thoroghly
throughout the document.

The rest of the document is organized as follows. We begin by introducing some definitions of
growth rates, relative prices and inflation rates, needed for stationarizing the model. We then move
on to describing the firms, starting with domestic and imported intermediate goods and then moving
on to the production of final consumption, investment and export goods. We then consider the
households, including wage setting, as households are assumed to be the ones setting the wages in our
model economy. We then present our assumptions regarding the central bank and the government,
and derive the aggregate resource constraint and the evolution of net foreign assets. The model is then
completed with a despcription of the foreign economy block. Each section begins with the theoretical
structure and the optimization problem of the respective agents. The derived conditions are then
scaled to express the model in stationary form, and finally log-linearized. We present the scaling
and log-linearization of each specific agent’s problem in relation to the optimization problem, to ease
reading. Towards the end of the document, we then include a separate section that summarizes the
entire model in log-linear form. The documentation moreover includes the steady-state solution of

1 In the first published documentations of Ramses I, Adolfson et al. (2007) and Adolfson et al. (2005), the model was
estimated on data for the Euro Area. Model estimates of Ramses I on Swedish data are discussed.in Adolfson et al.
(2008).

2See Adolfson et al. (2013) for a documentation of the policy version of Ramses II. In our work with the present
model, we have also made use of earlier versions of the Christiano, Trabandt, and Walentin (2011) paper, some written
in collaboration with the Modelling Division.
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the model. Finally, we present a couple of alternative model setups, which were used in the model
development stage.

2 Stationarization and linearization assumptions

In order to express all of the model variables in stationary form, we need to divide the quantities with
the trend level of the neutral and, where applicable, investment-specific technologies. In the first part
of this section, we specify how the scaling of the non-stationary variables is done. The second part
of the section defines inflation rates and relative prices used in the model derivations. The final part
contains a reminder of some log-linearization rules which we frequently use when log-linearizing the
model.

2.1 Scaling of variables

This section specifies how the scaling of the non-stationary variables is done. We use the following
scaling of variables, as in Christiano, Trabandt, and Walentin (2011) and Adolfson et al. (2013). The
neutral shock of technology is denoted by zt and has the following growth rate:

zt
zt−1

= µz,t. (2.1)

In addition to the neutral technology shock, our model also includes an investment-specific technology
shock, Ψt, with the following growth rate:

Ψt

Ψt−1
= µΨ,t.

We define the following combination of investment-specific and neutral technology:

z+
t = Ψ

α
1−α
t zt, (2.2)

the growth rate of which is given by

µz+,t =
z+
t

z+
t−1

= µ
α

1−α
Ψ,t µz,t. (2.3)

Capital and investment are scaled by z+
t Ψt.The inputs to the production of final investment, however,

are scaled by z+
t , as Ψt is defined as a shock to the technology employed in the aggregation of domestic

and foreign intermediate investment goods into final goods. All consumption goods are scaled by z+
t ,

including government consumption goods, and so are all export goods. The real wage and real foreign
assets, where a bar above the variable denotes the real version of the corresponding nominal variable,
are also scaled by z+

t . The Lagrangian multiplier υt is the shadow value in utility terms of domestic
currency, and ψt ≡ υtP

d
t is the shadow value of one consumption good (i.e. the marginal utility of

consumption). This needs to be multiplied by z+
t to induce stationarity. Thus,

kt+1 =
Kt+1

z+
t Ψt

, kpt+1 =
Kp
t+1

z+
t Ψt

, it =
It

z+
t Ψt

,

yt =
Yt

z+
t

, ct =
Ct

z+
t

, gt =
Gt

z+
t

, xt =
Xt

z+
t

,

idt =
Idt
z+
t

, imt =
Imt
z+
t

, cdt =
Cdt
z+
t

, cmt =
Cmt
z+
t

, xmt =
Xm
t

z+
t

,

w̄t =
W̄t

z+
t

=
Wt

z+
t P

d
t

, āt =
Āt

z+
t

=
StB

F
t+1

P dt z
+
t

,

ψz+,t = υtP
d
t z

+
t .
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We denote the scaled date-t price of physical capital installed for the start of period t + 1 by p̆k′,t ,
and the scaled rental rate of capital by rkt , so that

p̆k′,t = Ψtpk′,t,

rkt = ΨtR
k
t ,

where pk′,t is denoted in units of the domestic homogeneous good, i.e.

pk′,t =
Pk′,t

P dt
.

Moreover, we denote by bars the real version of the corresponding nominal variable, so

r̄kt =
rkt
P dt

, R̄kt =
Rkt
P dt

, W̄t =
Wt

P dt
.

Note also that we define the real interest rate as follows:

R̄t =
Rt

Etπct+1

.

Finally, note that for the foreign economy, we have

z∗t
z∗t−1

= µz∗,t,

Ψ∗t
Ψ∗t−1

= µΨ∗,t

z+,∗
t = (Ψ∗t )

α∗
1−α∗ z∗t ,

µz+,∗,t =
z+,∗
t

z+,∗
t−1

=
(
µΨ∗,t

) α∗
1−α∗ µz∗,t,

k∗t+1 =
K∗t+1

z+,∗
t Ψ∗t

, kp,∗t+1 =
Kp,∗
t+1

z+,∗
t Ψ∗t

, i∗t =
I∗t

z+,∗
t Ψ∗t

,

y∗t =
Y ∗t
z+,∗
t

, c∗t =
C∗t
z+,∗
t

, g∗t =
G∗t
z+,∗
t

,

w̄∗t =
W̄ ∗t
z+,∗
t

=
W ∗t

z+,∗
t P ∗t

ψz+,∗,t = υ∗tP
∗
t z

+,∗
t ,

p∗k′,t =
P ∗k′,t
P ∗t

,

p̆∗k′,t = Ψ∗t p
∗
k′,t,

and

r̄k,∗t =
rk,∗t
P ∗t

, R̄k,∗t =
Rk,∗t
P ∗t

,

rkt = Ψ∗tR
k,∗
t .
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2.2 Definitions of inflation rates and relative prices

We define the following inflation rates:

πdt =
P dt
P dt−1

, πct =
P ct
P ct−1

, πcxet =
P cxet

P cxet−1

,

πcet =
P cet
P cet−1

, πd,cet =
P d,cet

P d,cet−1

,

πit =
P it
P it−1

, πm,jt =
Pm,jt

Pm,jt−1

, πxt =
P xt
P xt−1

,

for j = c, i, x, ce. πdt is the rate of inflation of the domestic homogeneous good, π
c
t the rate of inflation

of the final consumption good (i.e. the CPI inflation), πcxet the rate of inflation of the aggregate non-
energy consumption good, πcet the rate of inflation of the aggregate energy consumption good, πd,cet

the rate of inflation of the domestically-produced energy consumption good, πit the rate of inflation of
the final invesmtent good, and πm,jt for j = c, i, x, ce the rate of inflation of the import goods to be
used in the production of consumption, investment, exports, and energy consumption, respectively.
The corresponding prices are all in domestic currency. The price of exports is instead denoted in
foreign currency units. πxt is the rate of inflation of the final export good. For the foreign economy, in
an analogous way, we define:

πd,∗t =
P d,∗t

P d,∗t−1

, πc,∗t =
P c,∗t
P c,∗t−1

, πcxe,∗t =
P cxe,∗t

P cxe,∗t−1

,

πce,∗t =
P ce,∗t

P ce,∗t−1

, πi,∗t =
P i,∗t
P i,∗t−1

.

We further define the following relative prices:

pct =
P ct
P dt

, pcxet =
P cxet

P dt
, pcet =

P cet
P dt

, pd,cet =
P d,cet

P dt
,

pit =
ΨtP

i
t

P dt
, pxt =

P xt

P d,∗t

(
z̃+,∗
t

)− 1
ηf ,

pm,ct =
Pm,ct

P dt
, pm,it =

Pm,it

P dt
, pm,xt =

Pm,xt

P dt
, pm,cet =

Pm,cet

P dt
.

When the price is denominated in domestic currency units, we define a lower case price as the corre-
sponding upper case price divided by the price of the homogeneous good. The handling of the price of
final investment goods differs somewhat, however, from that of the prices of final consumption goods
and imported goods. This is due to the shock to the final investment production technology Ψt, which
makes the price of the final investment good grow at a rate slower than P dt . Thus, final investment
prices are scaled by P dt /Ψt. Finally, as the export price is denominated in foreign currency units, we
scale it by the price of the foreign homogeneous good. For the foreign economy, we define

pc,∗t =
P c,∗t

P d,∗t
, pcxe,∗t =

P cxe,∗t

P d,∗t
, pce,∗t =

P ce,∗t

P d,∗t
, pi,∗t =

Ψ∗tP
i,∗
t

P d,∗t
.

We define also the relative optimal wages in the domestic and foreign economy:

w̃t =
W̃t

Wt
,

w̃∗t =
W̃ ∗t
W ∗t

.
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Finally, we denote the growth rate of the nominal exchange rate by st, so that

st =
St
St−1

,

and define the real exchange rate as

qt =
StP

c,∗
t

P ct
.

2.3 Log-linearization of the model

In what follows, variables without time subscript denote steady-state values, and variables with a hat
denote log-deviation from their steady-state values. Consider a variable Xt. We define:

X̂t ≡ logXt − logX.

Taking a Taylor expansion of order 1 of the right-hand side, we get:

X̂t ≈ logX +
∂

∂Xt
logXt|Xt=X (Xt −X)− logX

=
Xt −X
X

.

Thus, for small X̂t, it can be interpretated as a percentage deviation of Xt from its steady-state value
X. It is also useful to note that:

X̂t = log

(
Xt

X

)
⇒ Xt = XeX̂t ≈ X

(
e0 + e0

(
X̂t − 0

))
= X

(
1 + X̂t

)
.

Finally, recall that if f is a function of n arguments (x1, . . . , xn), a Taylor expansion of order 1 of f
around (a1, . . . , an) is:

f (x1, . . . , xn) ≈ f (a1, . . . , an) +

n∑
i=1

∂

∂xi
f (x1, . . . , xn) |(x1,...,xn=a1,...,an)(xi − ai).

3 Firms

The production structure adopted in this model is similar to the one in Adolfson et al. (2013). Con-
sumption, investment and exports are the three final goods. They are produced by combining the
domestic homogeneous good with homogeneous goods derived from imports. Moreover, to arrive at
the final consumption good, the combined domestic and imported final (non-energy) consumption
good is combined with energy, which, in turn, is also a comination of domestic and imported energy.
The domestic homogeneous good is produced by competitive retailers who buy their input, the domes-
tic intermediate good, from the domestic intermediate goods producers. The domestic intermediate
goods producers have monopoly power. Importing firms buy a foreign homogeneous good or foreign
energy, respectively. They transform the former into a specialized imported intermediate good, which
is supplied monopolistically to three different types of import retailers that produce the aggregate
imported goods. In an analogous way, foreign energy is transformed into an imported energy good.
Exporting firms produce a specialized export good combining domestic and imported intermediate
inputs, sold to foreign competitive retailers which create a homogeneous good that is eventually sold
to foreign agents. The firms are owned by the households in the economy, to which any firm profits
will accrue.

Unlike in Adolfson et al. (2005) and Adolfson et al. (2013), in this version of the model we abstract
from taxes. We choose to do so in order to reduce the number of variables and notational complexity
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of the model. As we wish to still include shocks to the Phillips curves, we instead assume that price
and wage markups are varying. In the absence of price and wage distortions in steady state, this is
isomorphic to including tax-like shocks which affect marginal costs, as mentioned in Adolfson et al.
(2013).3 Note that there are other taxes in Ramses I and II than the ones affecting marginal costs,
such as taxes on capital holdings, which are omitted from our model for simplicity. These can be
easily included in future versions if needed.

3.1 Production of domestic homogeneous goods

The domestic homogeneous good is produced using the following technology:

Yt =

[∫ 1

0
(Yi,t)

1

λdt di

]λdt
, 1 ≤ λdt ≤ ∞, (3.1)

where λdt is a stochastic process determining the time-varying price markup in the domestic goods
market, given by4

log λdt =
(
1− ρλd

)
log λd + ρλd log λdt−1 + σλdελd,t. (3.2)

For calibration purposes, it is useful to note that λd is related to the elasticity of substitution between
the different domestic goods, which we denote by ηd, in the following way: λ

d = ηd
ηd−1 . The domestic

homogeneous good is produced by a representative, competitive firm which takes the price of output
P dt and the price of inputs P

d
i,t as given. The profit maximization problem writes:

max
Yi,t

P dt Yt −
∫ 1

0
P di,tYi,tdi,

which yields the following first order condition:

Yi,t =

(
P di,t

P dt

) λdt
1−λdt

Yt. (3.3)

Taking the integral over i in (3.3), and using the CES aggregator in (3.1) leads to the expression of
the aggregate price level:

P dt =

∫ 1

0

(
P di,t

) 1

1−λdt
di

1−λdt

. (3.4)

Turning now to the intermediate goods producers, the ith firm has the following production func-
tion:

Yi,t = (ztNi,t)
1−α εtK

α
i,t − z+

t φ
d, (3.5)

where Ki,t denotes the capital services rented by the ith intermediate firm, and Ni,t denotes homo-
geneous labour service hired by the same firm.5 zt is a technology shock whose first difference has a
positive mean, εt is a stationary neutral technology shock, and φd denotes a fixed production cost.
The fixed cost is assumed to grow at the same rate as consumption, the real wage and output in
steady state, to ensure that profits remain zero. In general, the economy has two sources of growth: a

3Time-varying price-markups was also the assumption used in Adolfson et al. (2005). Calculations are simplified
somewhat, however, by assuming tax-like shocks instead of time-varying price markups. This becomes particularly
important if the model is not linearized (by hand), but rewritten recursively in its non-linear form (to be linearized by
Dynare).

4The exogenous processes are discussed in more detail in Section 10.
5Note that Ki,t may differ from the physical capital stock, Kp

t , since we allow for variable capital utilization in the
model. This is discussed in more detail in Section 4.
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positive drift in zt and a positive drift in Ψt, where Ψt is the state of an investment-specific technology
shock. The object z+

t in (3.5) is defined as follows:

z+
t = Ψ

α
1−α
t zt.

The stationary neutral technology shock, εt, and the growth rates of zt and Ψt, µz,t and µΨ,t, are
assumed to evolve according to the following processes:

log εt = (1− ρε) log ε+ ρε log εt−1 + σεεε,t, (3.6)

logµz,t =
(

1− ρµz
)

logµz+ + ρµz logµz,t−1 + σµzεµz ,t, (3.7)

and
logµΨ,t =

(
1− ρµΨ

)
logµΨ + ρµΨ

logµΨ,t−1 + σµΨ
εµΨ,t. (3.8)

Note that the growth rate of z+
t is then given by the following equation:

µz+,t =
z+
t

z+
t−1

= µ
α

1−α
Ψ,t µz,t. (3.9)

The cost minimization problem of the ith intermediate firm is to minimize total costs subject to the
constraint of producing enough to meet demand:

min
Ni,t,Ki,t

Ni,tWtR
wc,d
t +Ki,tR

k
t

s.t. (ztNi,t)
1−α εtKα

i,t − z+
t φ

d ≥
(
P di,t
P dt

)− λdt
λdt−1

Yt,

where Rkt is the gross nominal rental rate per unit of capital services, and Wt is the nominal wage
rate per unit of aggregate homogeneous labour Ni,t, common to all intermediate firms. R

wc,d
t denotes

the gross effective nominal rate of interest faced by the firms, and it reflects the assumption that a
fraction νwc,dt of the firms’wage bill has to be financed in advance.6 The end of period labour cost
faced by the firm is Ni,tWtR

wc,d
t , with Rwc,dt defined as follows:

Rwc,dt ≡ νwc,dt Rt + 1− νwc,dt , (3.10)

where Rt denotes the gross nominal interest rate determined by the central bank.7 We assume that
νwc,dt follows

log νwc,dt = (1− ρνwc,d) log νwc,d + ρνwc,d log νwc,dt−1 + σνwc,dενwc,d,t. (3.11)

6Note that, given our labor market setup discussed further in Section 4, wages are expressed as wages per employee
rather than wages per hour worked as was the case in Ramses I and II (see Adolfson et al. (2005) and Adolfson et al.
(2013), respectively).

7Here, we have used the same definition of Rwc,dt as in Ramses II (see Christiano, Trabandt, and Walentin (2011)
and Adolfson et al. (2013)) and Christiano, Eichenbaum, and Evans (2005), for being the more recent one (note that in
previous versions of Ramses, Rwc,dt was denoted Rft ). In Ramses I, R

wc,d
t is instead given by

Rwc,dt ≡ νwc,dt Rt−1 + 1− νwc,dt ,

which is motivated by the fact that households purchase one-period zero-coupon bonds with certain nominal payout in
period t+ 1. This choice is not likely to be of much importance, however, as it has been found that the working capital
channel does not noteably improve the model fit. In fact, Adolfson et al. (2005) demonstrate that a version of Ramses I
that excludes the working capital channel is favoured by the data compared to the baseline. It is relevant to note that
the model is estimated using Bayesian estimation techniques, and that a different estimation method (e.g. matching
IRF) may yield different results. Nonetheless, in later versions of the model, this channel is entirely shut off.
We note also that the above applies to the definitions of all the gross effective nominal rates of interest faced by the

different types of firms in the model.
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The Lagrange multiplier associated with the constraint in the cost minimization problem will have
the interpretation of the nominal marginal cost (i.e. the nominal cost of producing an additional unit
of the domestic good). The first order conditions (henceforth FOC) with respect to Ni,t and Ki,t are
given by:

WtR
wc,d
t = MCdi,t (1− α) z1−α

t εt

(
Ki,t

Ni,t

)α
(3.12)

Rkt = MCdi,tαz
1−α
t εt

(
Ki,t

Ni,t

)−(1−α)

. (3.13)

Combining these two FOCs, one gets the following expression for the nominal marginal cost:

MCdt =

(
WtR

wc,d
t

)1−α

(
Rkt
)−α z

−(1−α)
t

(1− α)1−α ααεt
, (3.14)

where the firm index i is dropped as all the variables entering the right-hand side are aggregate
variables. We note that, using FOC (3.12), we could also write the expression for the nominal marginal
cost as follows:

MCdt =
WtR

wc,d
t

MPLi,t
=

WtR
wc,d
t

(1− α) z1−α
t εt

(
Ki,t
Ni,t

)α , (3.15)

where MPLi,t denotes the marginal product of labour (∂Yi,t/∂Ni,t) of the ith intermediate producer.
Using FOC (3.13), we could also write:

MCdt =
Rkt

MPKi,t
=

Rkt

αz1−α
t εt

(
Ki,t
Ni,t

)−(1−α)
, (3.16)

where MPKi,t denotes the marginal product of capital (∂Yi,t/∂Ki,t) of the ith intermediate producer.
We need only one additional expression in the final set of model equations. Note that (3.14) implies
that the capital services to labour ratio is the same for all firms, as they all face the same factor prices.
We note also that the marginal cost equals the average unit cost, as our assumption about constant
return to scale implies that the marginal cost does not change with output. Combining (3.14) and
(3.15), we obtain the solution for the nominal rental rate of capital services:

Rkt =
α

1− αWtR
wc,d
t

Nt

Kt
. (3.17)

The ith firm is a monopolist in the production of the ith intermediate goods and it sets its price in
a staggered fashion, following Calvo (1983). Each intermediate firm faces a probability (1− ξd) that
it can reoptimize its price in any period, independent on the time that has passed since it was last
able to reoptimize. If the firm is not able to reoptimize in period t, the price in period t + 1 will be
set according to the following indexation rule:{

P di,t = π̃dtP
d
i,t−1

π̃dt ≡
(
πdt−1

)κd (π̄ct)
1−κd−κd (π̆)κd ,

(3.18)

where κd, κd are parameters such that κd, κd, κd + κd ∈ [0, 1], πdt−1 is the lagged domestic gross
inflation rate, and π̄ct is a time-varying inflation trend or, alternatively, the time-varying central-bank
target inflation rate. Note that we allow π̄ct to vary over time, to capture medium-term movement in
inflation expectations (or, potentially, changes in policy makers’preferences). It is assumed to follow
the process

log π̄ct = (1− ρπ̄c) log π̄c + ρπ̄c log π̄ct−1 + σπ̄cεπ̄c,t. (3.19)
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π̆ is a scalar which allows to capture, among other things, cases in which non-optimizing firms do not
change their prices at all (π̆ = κd = 1) or index only to the steady-state inflation rate (π̆ = π̄, κd = 1).

Consider a firm that optimized its price in period t and has not been allowed to reoptimize during
s periods ahead. Denoting by P̃ di,t the reoptimized price in period t, the price that it will charge in
t+ s is given by:

P di,t+s =

s∏
j=1

π̃dt+jP̃
d
i,t. (3.20)

Hence, when setting its price at time t, the firm i will maximize its future discounted profits, taking
into account that it will not get to reoptimize the time-t price in t + 1 with probability ξd, in t + 2
with probability (ξd)

2 and so on. Thus, intermediate firm i faces the following optimization problem:
max
P̃ di,t

Et
∞∑
s=0

(βξd)
s ζβt+sυt+s

(
P di,t+sYi,t+s −mcdt+sP dt+sYi,t+s

)
s.t. Yi,t =

(
P di,t
P dt

)− λdt
λdt−1

Yt,

where υt is the multiplier on the household’s budget constraint, and measures the marginal value
to the household of one unit of profit in terms of currency. mcdt denotes the real marginal cost.
Substituting in the demand constraint, derived in equation (3.3), and equation (3.20), and rearranging,
the optimization problem becomes:

max
P̃ di,t

Et

∞∑
s=0

(βξd)
sζβt+sυt+sP

d
t+sYt+s


(
π̃dt+1 . . . π̃

d
t+s

P dt+s
P̃ di,t

)1−
λdt+s

λdt+s−1

−mcdt+s

(
π̃dt+1 . . . π̃

d
t+s

P dt+s
P̃ di,t

)− λdt+s

λdt+s−1

 .
(3.21)

The FOC associated with this problem directly yields the expression for the optimal price:

P̃ dt =

Et
∞∑
s=0

(βξd)
sζβt+sυt+sP

d
t+sYt+sλ

d
t+smc

d
t+s

(
π̃dt+1...π̃

d
t+s

P dt+s

) λdt+s

1−λdt+s

Et
∞∑
s=0

(βξd)
sζβt+sυt+sP

d
t+sYt+s

(
π̃dt+1...π̃

d
t+s

P dt+s

) 1

1−λdt+s

.

Note that we drop the subscript i in the expression of the optimal price. This reflects the fact that
all firms face the same optimization problem and hence have the same solution. To rewrite in terms
of relative prices, divide both sides by P dt to obtain

p̃dt =

Et
∞∑
s=0

(βξd)
sζβt+sυt+sP

d
t+sYt+sλ

d
t+smc

d
t+s

(
π̃dt+1...π̃

d
t+s

πdt+1...π
d
t+s

) λdt+s

1−λdt+s

Et
∞∑
s=0

(βξd)
sζβt+sυt+sP

d
t+sYt+s

(
π̃dt+1...π̃

d
t+s

πdt+1...π
d
t+s

) 1

1−λdt+s

, (3.22)

where p̃dt =
P̃ dt
P dt
, and we have used that 1

P dt
=

(P dt )

λdt+s

1−λdt+s

(P dt )
1

1−λdt+s

and
P dt+s
P dt

= πdt+s . . . π
d
t+1.

We consider again the definition of the price index P dt in equation (3.4). Bearing in mind that a
fraction ξd of firms index their price, while the remaining firms get to reoptimize, we can rewrite the
price index as follows:

(
P dt

) 1

1−λdt =
(
π̃dt

) 1

1−λdt

∫ ξd

0

(
P di,t−1

) 1

1−λdt
di+ (1− ξd)

(
P̃ dt

) 1

1−λdt
.
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There is a continuum of firms in the economy. Due to the Calvo pricing assumption, the firms who
get to update their prices are randomly chosen, and thus, the integral of individual prices over some
subset of the unit interval will be proportional to the integral over the entire unit interval, where the
proportion is equal to the subset over which the integral is taken. Hence,∫ ξd

0

(
P di,t−1

) 1

1−λdt
di = ξd

∫ 1

0

(
P di,t−1

) 1

1−λdt
di = ξd

(
P dt−1

) 1

1−λdt
.

This implies that (
P dt

) 1

1−λdt = ξd

(
π̃dtP

d
t−1

) 1

1−λdt
+ (1− ξd)

(
P̃ dt

) 1

1−λdt
.

Dividing both sides by
(
P dt
) 1

1−λdt , and solving for p̃dt , we have

p̃dt =


1− ξd

(
π̃dt
πdt

) 1

1−λdt

(1− ξd)


1−λdt

. (3.23)

It is also useful to note, for later use, that we can obtain the total demand for homogeneous goods
by integrating equation (3.3) over i. We then have

Y̊t ≡
∫ 1

0
Yi,tdi (3.24)

=

∫ 1

0

(
P di,t

P dt

) λdt
1−λdt

Ytdi

= Yt

(
P̊ dt
P dt

) λdt
1−λdt

, (3.25)

where P̊ dt denotes a measure of price dispersion, defined as follows:

P̊ dt =

∫ 1

0

(
P di,t

) λdt
1−λdt di


1−λdt
λdt

.

We can divide by P dt , to obtain the following expression in terms of relative prices:

p̊dt =

∫ 1

0

(
P di,t

P dt

) λdt
1−λdt

di


1−λdt
λdt

, (3.26)

yielding

Y̊t = Yt

(
p̊dt

) λdt
1−λdt .

We can break this integral, using the Calvo assumption on price setting, and re-express it in terms of
relative prices as follows:

p̊dt =

ξd( π̃dt
πdt
p̊dt−1

) λdt
1−λdt

+ (1− ξd)
(
p̃dt

) λdt
1−λdt


1−λdt
λdt

.
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Substituting p̃dt using (3.23), we get:

p̊dt =

ξd
(
π̃dt
πdt
p̊dt−1

) λdt
1−λdt

+ (1− ξd)

1− ξd
(
π̃dt
πdt

) 1

1−λdt

1− ξd


λdt


1−λdt
λdt

. (3.27)

For the steady-state solutions in Section 12, it is also useful to derive an expression for firms’
profits. Time-t profits, taking into account the fixed costs, of the ith domestic intermediate goods
producer are given by

PROFITSdi,t = P di,tYi,t −MCdt

(
Yi,t + z+

t φ
d
)
.

Using the demand curve for the ith intermediate goods producer in equation (3.3), we have

PROFITSdi,t =

(
P di,t

P dt

) 1

1−λdt
P dt Yt −MCdt

(P di,t
P dt

) λdt
1−λdt

Yt + z+
t φ

d

 . (3.28)

The domestic intermediate good is allocated among alternative uses as follows:

Yt = Gt + Cdt + Idt +Xd
t , (3.29)

where Gt denotes government spending; Cdt denotes intermediate domestic consumption goods, used
together with intermediate imported consumption goods to produce final consumption goods; Idt
denotes domestic investment goods, used together with imported investment goods to produce final
investment goods; and Xd

t denotes intermediate goods allocated to exports.
8

3.1.1 Scaling of the domestic intermediate goods producers’optimal conditions

The domestic intermediate firm’s real marginal cost is equal to the nominal marginal costMCdt divided
by the price of the homogeneous good. Scaling the non-stationary variables, equation (3.14) becomes:

mcdt =
(
w̄tR

wc,d
t

)1−α
(
r̄kt
)α

(1− α)1−α ααεt
. (3.30)

where w̄t = W̄t

z+
t

= Wt

z+
t P

d
t

denotes the scaled real wage, and r̄kt =
ΨtRkt
P dt

the scaled real capital rental rate.

The second expression for the firm’s marginal cost, (3.15), becomes, after scaling:

mcdt =
w̄tR

wc,d
t

εt (1− α)
(

kt
µz+,tµΨ,tNt

)α , (3.31)

8Note that Adolfson et al. (2013) includes another term in the equation for the domestic good allocation, so that

Yt = Gt + Cdt + Idt +Xd
t +Dt.

Here, Dt denotes the costs of the real frictions in the model. We do not include this term as our modelling of the labour
market does not include any vacancy posting costs. Moreover, the capital utilization costs in the model are assumed to
be paid for using the final investment good, implying that the share of the domestic good used to pay for this costs are
already accounted for through the inclusion of Idt (see Section 3.4). The latter is not the case in Ramses I, where capital
utilization costs enter the aggregate resource constraint explicitly. Finally, the investment adjustment costs are specified
so that some fraction of the investment is lost in the transformation to physical capital (see Section 4.3). As such, they
are already included through investment demand.

14



while the third can be written as

mcdt =
r̄kt

αεt

(
kt

µz+,tµΨ,tNt

)−(1−α)
. (3.32)

We can also scale the expressions for the marginal costs of labour and capital. Using that

MPLt = (1− α) z1−α
t εt

(
Kt

Nt

)α
(3.33)

and

MPKt = αz1−α
t εt

(
Kt

Nt

)−(1−α)

, (3.34)

we can obtain

mplt =
MPLt

z+
t

= (1− α) εt

(
kt

µz+,tµΨ,tNt

)α
, (3.35)

and

mpkt = MPKtΨt = αεt

(
kt

µz+,tµΨ,tNt

)−(1−α)

. (3.36)

Note that the marginal products of labour and of capital are scaled in the same way as wages and
the rental rate of capital, respectively, as specified in Section 2.1 above. Recall that, using (3.35) and
(3.36), we can also write the expression for marginal costs as follows:

mcdt =
w̄tR

wc,d
t

mplt
, (3.37)

mcdt =
r̄kt
mpkt

. (3.38)

Combining, we have
w̄tR

wc,d
t

mplt
=

r̄kt
mpkt

and
w̄tR

wc,d
t

(1− α)
=

r̄kt

α
(

kt
µz+,tµΨ,tNt

)−1 .

We can also directly rewrite the relationship for the rental rate of capital services, (3.17), in terms
of stationary variables as follows:

r̄kt =
α

1− αw̄tR
wc,d
t

Nt

kt
µz+,tµΨ,t. (3.39)

We scale the optimal-price equation of the domestic intermediate goods producer, equation (3.22), by
z+
t to obtain:

p̃dt =

Et
∞∑
s=0

(βξd)
sζβt+sψz+,t+syt+sλ

d
t+smc

d
t+s

(
π̃dt+1...π̃

d
t+s

πdt+1...π
d
t+s

) λdt+s

1−λdt+s

Et
∞∑
s=0

(βξd)
sζβt+sψz+,t+syt+s

(
π̃dt+1...π̃

d
t+s

πdt+1...π
d
t+s

) 1

1−λdt+s

, (3.40)

where we have used that:

υt+sP
d
t+sYt+s = υt+sP

d
t+sz

+
t+s

Yt+s

z+
t+s

= ψz+,t+syt+s.
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We can also scale the expression for profits in equation (3.28) to obtain

profitsdi,t =

(
P di,t

P dt

) 1

1−λdt
P dt yt −mcdtP dt yt

(P di,t
P dt

) λdt
1−λdt

+
φd

yt

 .

Integrating this expression over i, we get

profits
d
t = yt

1−mcdt

(p̊dt) λdt
1−λdt +

φd

yt

 , (3.41)

where profits
d
t denotes real total profits, and where we have used the definition of the aggregate

domestic price index (3.4) and the domestic price dispersion measure (6.3).

3.1.2 Log-linearization of the domestic intermediate goods producers’optimal condi-
tions

We start with the working capital interest rate for domestic intermediate goods producers. Log-
linearizing equation (3.10), we have

R̂wc,dt =
νwc,d (R− 1)

Rwc,d
ν̂wc,dt +

νwc,dR

Rwc,d
R̂t. (3.42)

We next log-linearize the expressions for domestic intermediate goods producers’marginal costs,
(3.30) and (3.31). Equation (3.30) gives

m̂cdt = (1− α)
(̂̄wt + R̂wc,dt

)
+ α̂̄rkt − ε̂t. (3.43)

From equation (3.31), we have

m̂cdt = ̂̄wt + R̂wc,dt + α
(
µ̂Ψ,t − k̂t + µ̂z+,t + N̂t

)
− ε̂t. (3.44)

We can combine equations (3.43) and (3.44) to obtain the following expression for the rental rate of
capital: ̂̄rkt = µ̂z+,t + µ̂Ψ,t + ̂̄wt + R̂wc,dt + N̂t − k̂t. (3.45)

We could alternatively use equations (3.37) and (3.38) to characterize firms’marginal costs. Log-
linearizing, we have

m̂cdt = ̂̄wt + R̂wc,dt − m̂plt, (3.46)

and
m̂cdt = ̂̄rkt − m̂pkt. (3.47)

Moreover, log-linearizing (3.35) and (3.36), we obtain the following expressions for the marginal rate
of labour and capital, respectively:

m̂plt = α

(̂
k

N

)
t

+ ε̂t, (3.48)

m̂pkt = − (1− α)

(̂
k

N

)
t

+ ε̂t, (3.49)

where
(̂
k
N

)
t
denotes the log-linearized capital-to-labour ratio given by(̂

k

N

)
t

= k̂t − N̂t −
(
µ̂z+,t + µ̂Ψ,t

)
. (3.50)
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We also need to log-linearize the expression for the combination of investment-specific and neutral
technology µz+,t. Log-linearization of equation (3.9) yields

µ̂z+,t =
α

1− αµ̂Ψ,t + µ̂z,t. (3.51)

We now consider the domestic intermediate goods producers’ price setting. We start by log-
linearizing the expression of the domestic intermediate goods producers’optimal price (3.40):

p̃dtEt

∞∑
s=0

(βξd)
sζβt+sψz+,t+syt+s

(
π̃dt+1 . . . π̃

d
t+s

πdt+1 . . . π
d
t+s

) 1

1−λdt+s

= Et

∞∑
s=0

(βξd)
sζβt+sψz+,t+syt+sλ

d
t+smc

d
t+s

(
π̃dt+1 . . . π̃

d
t+s

πdt+1 . . . π
d
t+s

) λdt+s

1−λdt+s
.

p̃d ̂̃pdt ζβψz+y

∞∑
s=0

(βξd)
s

(
π̃d

πd

) s

1−λd

+ p̃dEt

∞∑
s=0

(βξd)
sζβψz+y

(
π̃d

πd

) s

1−λd

×

×
[
ζ̂
β

t+s + ψ̂z+,t+s + ŷt+s −
λd(

1− λd
)2 log

(
π̃d

πd

)s
λ̂
d

t+s +
1

1− λd
(̂̃πdt+1 + . . .+ ̂̃πdt+s − π̂dt+1 − . . .− π̂dt+s

)]

= Et

∞∑
s=0

(βξd)
sζβψz+yλdmcd

(
π̃d

πd

) s

1−λd
[
ζ̂
β

t+s + ψ̂z+,t+s + ŷt+s +

(
1 +

λd(
1− λd

)2 log

(
π̃d

πd

)s)
λ̂
d

t+s

+
λd

1− λd
(̂̃πdt+1 + . . .+ ̂̃πdt+s − π̂dt+1 − . . .− π̂dt+s

)]
,

where we have used the steady-state relationship:

p̃d
∞∑
s=0

(βξd)
sζβψz+y

(
π̃d

πd

) s

1−λd

=

∞∑
s=0

(βξd)
sζβψz+yλdmcd

(
π̃d

πd

) sλd

1−λd

.

Now turn to the expression of π̃dt :

π̃dt =
(
πdt−1

)κd
(π̄ct)

1−κd−κd (π̆)κd ,

which gives, in steady state:

π̃d =
(
πd
)κd

(π̄c)1−κd−κd (π̆)κd .

As discussed in Section 12 below, we assume that πd = πc = π̄c, which implies that π̃d =
(
πd
)1−κd (π̆)κd .

Under the additional assumption that there is full indexation, i.e. κd = 0 or, alternatively, that π̆ is
equal to the inflation target as well, we have π̃d = πd. Under the same assumption, we also have that
mcd = 1

λd
(Section 12, equation (12.27)). Hence, we have:

̂̃pdt ζβψz+y
∞∑
s=0

(βξd)
s = Etζ

βψz+y
∞∑
s=0

(βξd)
s
[
m̂cdt+s + λ̂

d

t+s −
(̂̃πdt+1 + . . .+ ̂̃πdt+s − π̂dt+1 − . . .− π̂dt+s

)]
⇔ ̂̃pdt = (1− βξd)Et

∞∑
s=0

(βξd)
s
[
m̂cdt+s + λ̂

d

t+s −
(̂̃πdt+1 + . . .+ ̂̃πdt+s − π̂dt+1 − . . .− π̂dt+s

)]
.
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̂̃pdt can be written recursively as follows:
̂̃pdt = (1− βξd)

(
m̂cdt + λ̂

d

t

)
+ (βξd)Et̂̃pdt+1 + (1− βξd)Et

∞∑
s=1

(βξd)
s
(
π̂dt+1 − ̂̃πdt+1

)
, (3.52)

where we have used that, for a variable Xt, Et [Et+1Xt] = EtXt.

We can log-linearize expression (3.23) to obtain another expression for ̂̃pdt . Using the steady-state
relationships

1 = ξd

(
π̃d

πd

) 1
1−λd

+ (1− ξd)
(
p̃d
) 1

1−λd

,

p̃d = 1,
π̃d

πd
= 1,

we obtain ̂̃pdt =
ξd

1− ξd

(
π̂dt − ̂̃πdt) . (3.53)

Combining (3.52) with (3.53), we have:

ξd
1− ξd

(
π̂dt − ̂̃πdt) = (1− βξd)

(
m̂cdt + λ̂

d

t

)
+

βξd
1− ξd

Et

(
π̂dt+1 − ̂̃πdt+1

)
(3.54)

Log-linearizing the expression of π̃dt in equation (3.18) yields

̂̃πdt = κdπ̂
d
t−1 + (1− κd) ̂̄πct , (3.55)

under the assumption that κd = 0. Plugging into (3.54), we finally obtain the following Phillips curve
relation:

π̂dt − ̂̄πct =
(1− βξd) (1− ξd)
ξd (1 + βκd)

(
m̂cdt + λ̂

d

t

)
+

κd
1 + βκd

(
π̂dt−1 − ̂̄πct) (3.56)

+
β

1 + βκd
Et

(
π̂dt+1 − ̂̄πct+1

)
− βκd

1 + βκd
Et
(̂̄πct − ̂̄πct+1

)
.

For use in later sections, we need also to log-linearize the price dispersion equation (3.27). Rear-
ranging,

(
p̊dt

) λdt
1−λdt = ξd

(
π̃dt
πdt
p̊dt−1

) λdt
1−λdt

+ (1− ξd)

1− ξd
(
π̃dt
πdt

) 1

1−λdt

1− ξd


λdt

.
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Log-linearizing, we get

λd

1− λd
(
p̊d
) λd

1−λd ̂̊pdt + ln
(
p̊d
)(

p̊d
) λd

1−λd λd(
1− λd

)2 λ̂dt
= ξd

λd

1− λd

(
π̃d

πd
p̊d
) λd

1−λd [̂̃πdt − π̂dt + ̂̊pdt−1

]
+ ξd ln

(
π̃d

πd
p̊d
)(

π̃d

πd
p̊d
) λd

1−λd λd(
1− λd

)2 λ̂dt
−

1− ξd
(
π̃d

πd

) 1

1−λd

1− ξd


λd−1

λd

1− λd
ξd

(
π̃d

πd

) 1

1−λd [̂̃πdt − π̂dt ]

+ (1− ξd) ln

1− ξd
(
π̃d

πd

) 1

1−λd

1− ξd


1− ξd

(
π̃d

πd

) 1

1−λd

1− ξd


λd

λdλ̂
d

t

−

1− ξd
(
π̃d

πd

) 1

1−λd

1− ξd


λd−1

ξd ln

(
π̃d

πd

)(
π̃d

πd

) 1

1−λd
(

λd

1− λd

)2

λ̂
d

t .

Dividing through by λd

1−λd
(
p̊d
) λd

1−λd , we obtain

̂̊pdt = ξd

(
π̃d

πd

) λd

1−λd [̂̃πdt − π̂dt + ̂̊pdt−1

]
+ ξd ln

(
π̃d

πd
p̊d
)(

π̃d

πd

) λd

1−λd 1

1− λd
λ̂
d

t − ln
(
p̊d
) 1

1− λd
λ̂
d

t

− 1

(p̊d)
λd

1−λd

1− ξd
(
π̃d

πd

) 1

1−λd

1− ξd


λd−1

ξd

(
π̃d

πd

) 1

1−λd [̂̃πdt − π̂dt ]

+
1− ξd

(p̊d)
λd

1−λd

ln

1− ξd
(
π̃d

πd

) 1

1−λd

1− ξd


1− ξd

(
π̃d

πd

) 1

1−λd

1− ξd


λd (

1− λd
)
λ̂
d

t

−

1− ξd
(
π̃d

πd

) 1

1−λd

1− ξd


λd−1

ξd

(p̊d)
λd

1−λd

ln

(
π̃d

πd

)(
π̃d

πd

) 1

1−λd λd

1− λd
λ̂
d

t .

We can now use the steady-state relationship π̃d = πd to simplify the expression further. Note that
this assumption also implies that

p̊d = 1,

and thus that ln
(
p̊d
)

= 0. We then finally arrive at the following expression:

̂̊pdt = ξd
̂̊pdt−1. (3.57)

3.2 Production of imported intermediate goods

The import sector consists of domestic firms that buy a homogeneous good from foreign firms. There
are four different types of importing firms: (i) those that turn the imported product into a specialized
non-energy consumption good Cmi,t, (ii) those that turn the imported product into a specialized invest-
ment good Imi,t, (iii) those that turn the imported product into a specialized good used as input by

19



exporting firms Xm
i,t, and (iv) those that turn the imported energy into a specialized energy consump-

tion good Ce,mi,t . There is a continuum of importing firms in each category. They sell their specialized
output to import retailers, which produce the final imported goods. Consequently, there are also four
types of import retailers.

Consider the production of the homogeneous consumption good derived from imports, Cmt . It
is a composite of the specialized consumption goods Cmi,t, and it is produced by domestic retailers
according to the following technology:

Cmt =

[∫ 1

0

(
Cmi,t
) 1

λ
m,c
t di

]λm,ct

, 1 ≤ λm,ct ≤ ∞, (3.58)

where λm,ct is a time-varying price markup in the import consumption market. Specifically, for the
four different types of importing firms, we assume that

log λm,jt = (1− ρλm,j ) log λm,j + ρλm,j log λm,jt−1 + σλm,jελm,j ,t, j = c, i, x, ce. (3.59)

The retailers of the imported consumption goods operate under perfect competition and take the price
of output Pm,ct and input Pm,ci,t as given. Profit maximization writes:

max
Cmi,t

Pm,ct Cmt −
∫ 1

0
Pm,ci,t Cmi,tdi,

which yields

Cmi,t =

(
Pm,ci,t

Pm,ct

) λ
m,c
t

1−λm,ct

Cmt . (3.60)

The ith importing firm producing Cmi,t takes (3.60) as a demand curve. It buys the foreign homoge-
neous good and converts it into a differentiated consumption good through access to a differentiating
technology (brand naming). The importing firm must pay the inputs at the beginning of the period
in foreign currency, and as it doesn’t have resources at the beginning of the period it must borrow
those resources. The marginal cost of this producer is

MCm,ct = StP
d,∗
t Rwc,mt (3.61)

where
Rwc,mt = νwc,mt R∗t + 1− νwc,mt , (3.62)

R∗t is the foreign nominal interest rate, St the nominal exchange rate (domestic currency per units
of foreign currency), and P d,∗t is the foreign currency price of the foreign homogeneous good. νwc,mt

denotes the fraction of the import retailers’costs that has to be financed in advance. We assume that
νwc,mt follows

log νwc,mt = (1− ρνwc,m) log νwc,m + ρνwc,m log νwc,mt−1 + σνwc,mενwc,m,t. (3.63)

There is no risk for this firm because all shocks are realized at the beginning of the period, and
thus there is no uncertainty about the realization of prices and exchange rates during the borrowing
period.9 For reasons related to the steady-state calculations, further discussed in Section 12, we will
assume that each firm i, producing the speacilized consumption good Cmi,t, needs to pay a fixed cost of

9This feature is commented on in an earlier documentation of Ramses II. In particular, the authors point out that
they are somewhat uncomfortable with this feature of the model, as the fact that interest is due and matters indicates
that some time evolves over the duration of the loan, and thus the assumption that no uncertainty is realized over a
period of signicant duration of time seems implausible. They conjecture, however, that this does not affect the first order
properties of the model.

20



production like the one assumed for the intermediate goods producers in Section 3.1 above. We thus
separate between gross demand for consumption imports, which we denote by C̃mt , and the demand
net of fixed costs. Specifically, we assume that

C̃mt =

∫ 1

0
Cmi,t + z+

t φ
m,c, (3.64)

and that the firm pays for the fixed costs using its own imported good. Denoting by φm,c the fixed
cost faced by the domestic importers of consumption goods, we derive the following expression for the
firm’s profits:

PROFITSm,ci,t = Pm,ci,t Cmi,t −MCm,ct

(
Cmi,t + z+

t φ
m,c
)
.

Using the demand curve for the ith intermediate goods producer in equation (3.60), we have

PROFITSm,ci,t =

(
Pm,ci,t

Pm,ct

) 1

1−λm,ct

Pm,ct Cmt −MCm,ct

(Pm,ci,t

Pm,ct

) λ
m,c
t

1−λm,ct

Cmt + z+
t φ

m,c

 . (3.65)

Now turn to the production of the homogeneous investment good derived from imports, Imt . It
is a composite of the specialized investment goods, Imi,t, and it is produced by competitive domestic
retailers according to:

Imt =

[∫ 1

0

(
Imi,t
) 1

λ
m,i
t di

]λm,it

, 1 ≤ λm,it ≤ ∞. (3.66)

The retailers of the imported investment goods take the price of output, Pm,it , and input, Pm,ii,t , as
given. As for consumption, profit maximization leads to:

Imi,t =

(
Pm,ii,t

Pm,it

) λ
m,i
t

1−λm,it

Imt . (3.67)

The ith importing firm producing Imi,t takes (3.67) as a demand curve. It buys the foreign homogeneous
good and converts it into a differentiated investment good. The marginal cost of this producer is the
same as (3.61):

MCm,it = StP
d,∗
t Rwc,mt . (3.68)

This implies that the price met by this firm, P d,∗t (in terms of foreign currency), is the same as the
cost of the importing firm producing Cmi,t. This may seem inconsistent with the fact that domestically
produced investment and consumption goods have different relative prices. From the aggregation
technologies for consumption and investment goods, discussed in Sections 3.3 and 3.4, it will be
clear that the effi ciency of imported investment goods grows over time, relative that of the imported
consumption good. As for imported consumption goods, we assume that gross demand for investment
imports is given by

Ĩmt =

∫ 1

0
Imi,t + z+

t φ
m,i. (3.69)

We also have the following expression for the investment importing firm’s profits:

PROFITSm,ii,t = Pm,ii,t I
m
i,t −MCm,it

(
Imi,t + z+

t φ
m,i
)
.

PROFITSm,ii,t =

(
Pm,ii,t

Pm,it

) 1

1−λm,it

Pm,it Imt −MCm,it


(
Pm,ii,t

Pm,it

) λ
m,i
t

1−λm,it

Imt + z+
t φ

m,i

 . (3.70)
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Next, consider the production of the homogeneous imported input, Xm
t , used in the production

of the specialized export good Xt. It is a composite of the specialized export goods Xm
i,t and it is

produced by competitive domestic retailers according to:

Xm
t =

[∫ 1

0

(
Xm
i,t

) 1

λ
m,x
t di

]λm,xt

, 1 ≤ λm,xt ≤ ∞. (3.71)

The retailers of Xm
t take the price of output, Pm,xt , and input, Pm,xi,t , as given. As for consumption

and investment, profit maximization leads to the following demand curve for the producer of Xm
i,t:

Xm
i,t =

(
Pm,xi,t

Pm,xt

) λ
m,x
t

1−λm,xt

Xm
t . (3.72)

The marginal cost associated with the production of Xm
i,t is:

MCm,xt = StP
d,∗
t Rwc,mt . (3.73)

Finally, we assume that gross demand for imports used in export production are given by

X̃m
t =

∫ 1

0
Xm
i,t + z+

t φ
m,x, (3.74)

and derive the following expression for the profits of firm i importing goods for export production:

PROFITSm,xi,t = Pm,xi,t Xm
i,t −MCm,xt

(
Xm
i,t + z+

t φ
m,x
)
.

PROFITSm,xi,t =

(
Pm,xi,t

Pm,xt

) 1

1−λm,xt

Pm,xt Xm
t −MCm,xt

(Pm,xi,t

Pm,xt

) λ
m,x
t

1−λm,xt

Xm
t + z+

t φ
m,x

 . (3.75)

Finally, we turn to the production of the homogeneous energy consumption good derived from
imports, Ce,mt . It is a composite of the specialized investment goods, Ce,mi,t , and it is produced by
competitive domestic retailers according to:

Ce,mt =

[∫ 1

0

(
Ce,mi,t

) 1

λ
m,ce
t di

]λm,cet

, 1 ≤ λm,cet ≤ ∞. (3.76)

The retailers of Ce,mt take the price of output, Pm,cet , and input, Pm,cei,t , as given. As for non-energy
consumption, investment, and exports, profit maximization leads to the following demand curve for
the producer of Ce,mi,t :

Ce,mi,t =

(
Pm,cei,t

Pm,cet

) λ
m,ce
t

1−λm,cet

Ce,mt . (3.77)

The marginal cost associated with the production of Ce,mi,t is:

MCm,cet = StP
ce,∗
t Rwc,mt . (3.78)

Finally, we assume that gross demand for imports used in energy consumption production are given
by

C̃e,mt =

∫ 1

0
Ce,mi,t + z+

t φ
m,ce, (3.79)
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and derive the following expression for the profits of firm i importing goods for export production:

PROFITSm,cei,t = Pm,cei,t Ce,mi,t −MCm,cet

(
Ce,mi,t + z+

t φ
m,ce

)
.

PROFITSm,cei,t =

(
Pm,cei,t

Pm,cet

) 1

1−λm,cet

Pm,cet Ce,mt −MCm,cet

(Pm,cei,t

Pm,cet

) λ
m,ce
t

1−λm,cet

Ce,mt + z+
t φ

m,ce

 .

(3.80)
Each of the four types of importing firms is a monopolist and is subject to Calvo price-setting

frictions. Each importing firm faces a probability
(
1− ξm,j

)
that it can reoptimizes its price in any

period, for j = c, i, x, ce, independent on the time that has passed since it was last able to reoptimize.
If the firm is not able to reoptimize in period t, the price in period t+ 1 will be set according to the
following indexation rule:{

Pm,ji,t = π̃m,jt Pm,ji,t−1

π̃m,jt ≡
(
πm,jt−1

)κm,j
(π̄ct)

1−κm,j−κm,j (π̆)κm,j ,
j = c, i, x, (3.81)

where κm,j , κm,j are parameters such that κm,j , κm,j , κm,j + κm,j ∈ [0, 1]. In a similar way as
what we had for the domestic producers of intermediate goods, when setting its price at time t, the
ith importing firm in each of the categories will maximize its future discounted profits. Denoting
by P̃m,ji,t (j = c, i, x, ce) the reoptimized price at period t, the firm faces the following optimization
problem:

max
P̃m,ji,t

Et
∞∑
s=0

(
βξm,j

)s
ζβt+sυt+s

(
Pm,ji,t+sZ

j
i,t+s −mc

m,j
t+sP

m,j
t+sZ

j
i,t+s

)

s.t. Zji,t =

(
Pm,ji,t

Pm,jt

)− λ
m,j
t

λ
m,j
t −1

Zjt

, Zji,t =


Cmi,t if j = c

Imi,t if j = i

Xm
i,t if j = x

Ce,mi,t if j = ce

.

The FOC yields the expression for the optimal price:

p̃m,jt =

Et
∞∑
s=0

(βξm,j)
sζβt+sυt+sP

m,j
t+sZ

j
t+sλ

m,j
t+smc

m,j
t+s

(
π̃m,jt+1...π̃

m,j
t+s

πm,jt+1...π
m,j
t+s

) λ
m,j
t+s

1−λm,jt+s

Et
∞∑
s=0

(βξm,j)
sζβt+sυt+sP

m,j
t+sZ

j
t+s

(
π̃m,jt+1...π̃

m,j
t+s

πm,jt+1...π
m,j
t+s

) 1

1−λm,jt+s

, (3.82)

Zjt =


Cmt if j = c
Imt if j = i
Xm
t if j = x

Ce,mi,t if j = ce

.

where p̃m,jt =
P̃m,jt

P dt
for j = c, i, x, ce.

We can derive a second expression for p̃m,jt from the expression of the aggregate price of imported
goods, Pm,jt , in a similar way as for domestic intermediate goods producers. We have:

p̃m,jt =


1− ξm,j

(
π̃m,jt

πm,jt

) 1

1−λm,jt

(
1− ξm,j

)


1−λm,jt

. (3.83)

23



Note that, to obtain total demand for imports of non-energy consumption, investment, export
and energy consumption input goods, we can integrate expressions (3.60), (3.67), (3.72) and (3.77),
respectively. Starting with consumption we have

∫ 1

0
Cmi,tdi =

∫ 1

0

(
Pm,ci,t

Pm,ct

) λ
m,c
t

1−λm,ct

Cmt di

= Cmt

∫ 1

0

(
Pm,ci,t

Pm,ct

) λ
m,c
t

1−λm,ct

di

Defining a measure of price dispersion, p̊m,jt , as follows:

p̊m,jt =

∫ 1

0

(
Pm,ji,t

Pm,jt

) λ
m,j
t

1−λm,jt


1−λm,jt

λ
m,j
t

, j = c, i, x, ce, (3.84)

we have that total demand for imports of consumption goods is given by∫ 1

0
Cmi,tdi = Cmt (p̊m,ct )

λ
m,c
t

1−λm,ct . (3.85)

Proceeding in the same way, we can derive total demand for imports of investment goods∫ 1

0
Imi,tdi = Imt

(
p̊m,it

) λ
m,i
t

1−λm,it , (3.86)

total demand for imports used as inputs in export production∫ 1

0
Xm
i,tdi = Xm

t (p̊m,xt )
λ
m,x
t

1−λm,xt , (3.87)

and total demand for imports of energy consumption goods∫ 1

0
Ce,mi,t di = Ce,mt (p̊m,cet )

λ
m,ce
t

1−λm,cet . (3.88)

As for domestic intermediate goods producers above, we can use the Calvo assumption to rewrite
(3.84) in terms of relative prices as follows:

p̊m,jt =

ξm,j
(
π̃m,jt

πm,jt

p̊m,jt−1

) λ
m,j
t

1−λm,jt
+
(
1− ξm,j

) (
p̃m,jt

) λ
m,j
t

1−λm,jt


1−λm,jt

λ
m,j
t

.

Substituting p̃m,jt using (3.83), we get

p̊m,jt =

ξm,j
(
π̃m,jt

πm,jt

p̊m,jt−1

) λ
m,j
t

1−λm,jt
+
(
1− ξm,j

)


1− ξm,j
(
π̃m,jt

πm,jt

) 1

1−λm,jt

1− ξm,j


λm,jt



1−λm,jt

λ
m,j
t

, (3.89)

j = c, i, x, ce.

24



3.2.1 Scaling of the imported intermediate goods producers’optimal conditions

The real marginal cost of the imported (non-energy) consumption, investment and export intermediate
goods producers is given by (dividing expressions (3.61), (3.68) and (3.73) by the corresponding price
of imported goods):

mcm,jt =
StP

d,∗
t Rwc,mt

Pm,jt

=
StP

c,∗
t

P ct

P ct
P dt

P d,∗t
P c,∗t

P dt

Pm,jt

Rwc,mt =
qtp

c
t

pc,∗t pm,jt

Rwc,mt , for j = c, i, x. (3.90)

For the imported energy goods producers, it is given by (dividing expression (3.78) by the price of the
imported energy goods):

mcm,cet =
StP

ce,∗
t Rwc,mt

Pm,cet

=
StP

c,∗
t

P ct

P ct
P dt

P ce,∗t

P d,∗t

P d,∗t
P c,∗t

P dt
Pm,cet

Rwc,mt =
qtp

c
tp
ce,∗
t

pc,∗t pm,cet

Rwc,mt . (3.91)

Scaling equation (3.82) by z+
t , the optimal-price condition of the importing firms becomes

p̃m,jt =

Et
∞∑
s=0

(βξm,j)
sζβt+sψz+,t+sp

m,j
t zjt+sλ

m,j
t+smc

m,j
t+s

(
π̃m,jt+1...π̃

m,j
t+s

πm,jt+1...π
m,j
t+s

) λ
m,j
t+s

1−λm,jt+s

Et
∞∑
s=0

(βξm,j)
sζβt+sψz+,t+sp

m,j
t zjt+s

(
π̃m,jt+1...π̃

m,j
t+s

πm,jt+1...π
m,j
t+s

) 1

1−λm,jt+s

, (3.92)

zjt =


cmt if j = c
imt if j = i
xmt if j = x
ce,mt if j = ce

,

where we have used that

υt+sP
m,j
t+sZt+s = υt+sz

+
t+sP

d
t+s

Pm,jt+s

P dt+s

Zjt+s
z+
t+s

= ψz+,t+sp
m,j
t+sz

j
t+s.

We can also scale the expression for profits in equation (3.65) to obtain:

profitsm,ci,t = Pm,ct cmt

(Pm,ci,t

Pm,ct

) 1

1−λm,ct

−mcm,ct

(Pm,ci,t

Pm,ct

) λ
m,c
t

1−λm,ct

+
φm,c

cmt


 .

Integrating this expression over the whole set of firms importing consumption goods, we get:

profitsm,ct = Pm,ct cmt

[(
1

Pm,ct

) 1

1−λm,ct
(Pm,ct )

1

1−λm,ct −mcm,ct

((
p̊m,jt

) λ
m,c
t

1−λm,ct +
φm,c

cmt

)]

or, defining real profits as profits
m,c
t =

profitsm,ct

Pm,ct
, one gets in real terms:

profits
m,c
t = cmt

[
1−mcm,ct

(
(p̊m,ct )

λ
m,c
t

1−λm,ct +
φm,c

cmt

)]
. (3.93)

Following the same reasoning for the other three types of importing firms (investment and export
goods, and energy consumption), we obtain:

profits
m,i
t = imt

1−mcm,it

(p̊m,it

) λ
m,i
t

1−λm,it +
φm,i

imt

 , (3.94)
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profits
m,x
t = xmt

[
1−mcm,xt

(
(p̊m,xt )

λ
m,x
t

1−λm,xt +
φm,x

xmt

)]
, (3.95)

profits
m,ce
t = ce,mt

[
1−mcm,cet

(
(p̊m,cet )

λ
m,ce
t

1−λm,cet +
φm,ce

ce,mt

)]
. (3.96)

3.2.2 Log-linearization of the imported intermediate goods producers’optimal condi-
tions

Log-linearization of the expression for the working capital interest rate for importing firms in equation
(3.62) yields

R̂wc,mt =
νwc,m (R∗ − 1)

Rwc,m
ν̂wc,mt +

νwc,mR∗

Rwc,m
R̂∗t . (3.97)

Moving on to the importing firms’marginal cost, we can log-linearize equation (3.90) to obtain

m̂cm,jt = q̂t + p̂ct − p̂
c,∗
t − p̂

m,j
t + R̂wc,mt , for j = c, i, x. (3.98)

We can also log-linearize equation (3.91) to obtain

m̂cm,cet = q̂t + p̂ct + p̂ce,∗t − p̂c,∗t − p̂
m,ce
t + R̂wc,mt . (3.99)

We now turn to the import goods producers’price setting. Starting from equation (3.92), we can
proceed with the derivations in the same way as for the for the domestic intermediate goods producers.
Assuming that κm,j = 0, for j = c, i, x, ce, we get the following Phillips curves for the importing firms
(corresponding to equation (3.56) for the domestic intermediate goods producers):

π̂m,jt − ̂̄πct =

(
1− βξm,j

) (
1− ξm,j

)
ξm,j (1 + βκm,j)

(
m̂cm,jt + λ̂

m,j

t

)
+

κm,j
1 + βκm,j

(
π̂m,jt−1 − ̂̄πct) (3.100)

+
β

1 + βκm,j
Et

(
π̂m,jt+1 − ̂̄πct+1

)
− βκm,j

1 + βκm,j
Et
(̂̄πct − ̂̄πct+1

)
,

j = c, i, x, ce,

where we have used the log-linearized version of the price indexation rule for the importing firms in
equation (3.81): ̂̃πm,jt = κm,j π̂

m,j
t−1 + (1− κm,j) ̂̄πct , j = c, i, x, ce. (3.101)

For use in later sections, we need also to log-linearize the price dispersion equation (3.89). We
proceed in the same way as for the domestic price dispersion term in Section 3.1.2. We rearrange
(3.89) to obtain

(
p̊m,jt

) λ
m,j
t

1−λm,jt = ξm,j

(
π̃m,jt

πm,jt

p̊m,jt−1

) λ
m,j
t

1−λm,jt
+
(
1− ξm,j

)


1− ξm,j
(
π̃m,jt

πm,jt

) 1

1−λm,jt

1− ξm,j


λm,jt

,

j = c, i, x, ce,
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and log-linearize, which gives

̂̊pm,jt = ξm,j

(
π̃m,j

πm,j

) λm,j

1−λm,j [̂̃πm,jt − π̂m,jt + ̂̊pm,jt−1

]
+ξm,j ln

(
π̃m,j

πm,j
p̊m,j

)(
π̃m,j

πm,j

) λm,j

1−λm,j 1

1− λm,j
λ̂
m,j

t − ln
(
p̊m,j

) 1

1− λm,j
λ̂
m,j

t

− 1

(p̊m,j)
λm,j

1−λm,j

1− ξm,j
(
π̃m,j

πm,j

) 1

1−λm,j

1− ξm,j


λm,j−1

ξm,j

(
π̃m,j

πm,j

) 1

1−λm,j [̂̃πm,jt − π̂m,jt

]

+
1− ξm,j

(p̊m,j)
λm,j

1−λm,j
ln

1− ξm,j
(
π̃m,j

πm,j

) 1

1−λm,j

1− ξm,j


1− ξm,j

(
π̃m,j

πm,j

) 1

1−λm,j

1− ξm,j


λm,j (

1− λm,j
)
λ̂
m,j

t

−

1− ξm,j
(
π̃m,j

πm,j

) 1

1−λm,j

1− ξm,j


λm,j−1

ξm,j

(p̊m,j)
λm,j

1−λm,j
ln

(
π̃m,j

πm,j

)(
π̃m,j

πm,j

) 1

1−λm,j λm,j

1− λm,j
λ̂
m,j

t .

We can now use the steady-state relationship π̃m,j = πm,j , and thus p̊m,j = 1, to obtain

̂̊pm,jt = ξm,j
̂̊pm,jt−1, j = c, i, x, ce. (3.102)

3.2.3 Marginal costs with exchange rate lags

The marginal costs for the producers of imported consumption goods was given by equation (3.61)
above. Considering that many importing firms may hedge against unexpected exchange rate move-
ments, and that the exchange rate thus may affect the marginal cost only with some lag, we could
alternatively assume that the marginal cost of the importing goods producers is given by10

MCm,jt = Sts̃tP
d,∗
t Rwc,mt , j = c, i, x (3.103)

where
s̃t = S−ς1−ς2−ς3t Sς1t−1S

ς2
t−2S

ς3
t−3.

For importers of the energy consumption good, we could similarly have

MCm,cet = Sts̃tP
ce,∗
t Rwc,mt . (3.104)

Note that the steady-state value of s̃t equals one, so that the steady-state computations are not affected
by this alternative marginal cost specification. We can rewrite s̃t as follows:

s̃t = S−ς1−ς2−ς3t Sς1t−1S
ς2
t−2S

ς3
t−3

=

(
St−1

St

)ς1 (St−2

St

)ς2 (St−3

St

)ς3
=

(
St
St−1

)−ς1 ( St
St−1

St−1

St−2

)−ς2 ( St
St−1

St−1

St−2

St−2

St−3

)−ς3
s̃t = s−ς1t (stst−1)−ς2 (stst−1st−2)−ς3 (3.105)

10This could be implemented for all import goods or only for the consumption goods, as that is the only import sector
for which we include prices as an observable.
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Scaling (3.103), we obtain

mcm,jt =
Sts̃tP

d,∗
t Rwc,mt

Pm,jt

=
StP

d,∗
t P c,∗t P ct P

d
t R

wc,m
t

Pm,jt P c,∗t P ct P
d
t

s̃t

=
qtp

c
t s̃t

pc,∗t pm,jt

Rwc,mt , for j = c, i, x. (3.106)

Scaling (3.104), we obtain

mcm,cet =
Sts̃tP

ce,∗
t Rwc,mt

Pm,cet

=
StP

c,∗
t

P ct

P ct
P dt

P d,∗t
P c,∗t

P dt

Pm,jt

s̃tR
wc,m
t (3.107)

=
qtp

c
tp
ce,∗
t s̃t

pc,∗t pm,cet

Rwc,mt .

Log-linearizing, we get

m̂cm,jt = q̂t + p̂ct + ̂̃st − p̂c,∗t − p̂m,jt + R̂wc,mt , for j = c, i, x, (3.108)

m̂cm,cet = q̂t + p̂ct + p̂ce,∗t + ̂̃st − p̂c,∗t − p̂m,cet + R̂wc,mt , (3.109)

and ̂̃st = −ς1ŝt − ς2 (ŝt + ŝt−1)− ς3 (ŝt + ŝt−1 + ŝt−2) . (3.110)

An alternative could be to include also lags of the price of the homogeneous foreign good which
is used as input in the import production. For the import goods producers, we would then have the
following alternative specification of s̃t:

s̃t =
(
StP

d,∗
t

)−ς1−ς2−ς3 (
St−1P

d,∗
t−1

)ς1 (
St−2P

d,∗
t−2

)ς2 (
St−3P

d,∗
t−3

)ς3
=

(
St−1

St

P d,∗t−1

P d,∗t

)ς1 (
St−2

St

P d,∗t−2

P d,∗t

)ς2 (
St−3

St

P d,∗t−3

P d,∗t

)ς3

=

(
St
St−1

P d,∗t

P d,∗t−1

)−ς1 (
St
St−1

St−1

St−2

P d,∗t

P d,∗t−1

P d,∗t−1

P d,∗t−2

)−ς2
×(

St
St−1

St−1

St−2

St−2

St−3

P d,∗t

P d,∗t−1

P d,∗t−1

P d,∗t−2

P d,∗t−2

P d,∗t−3

)−ς3
s̃t =

(
stπ

d,∗
t

)−ς1 (
stst−1π

d,∗
t πd,∗t−1

)−ς2 (
stst−1st−2π

d,∗
t πd,∗t−1π

d,∗
t−2

)−ς3
. (3.111)

Log-linearizing,

̂̃st = −ς1

(
ŝt + π̂d,∗t

)
− ς2

(
ŝt + ŝt−1 + π̂d,∗t + π̂d,∗t−1

)
(3.112)

−ς3

(
ŝt + ŝt−1 + ŝt−2 + π̂d,∗t + π̂d,∗t−1 + π̂d,∗t−2

)
.

For the importers of the energy consumption good, we would then instead have

m̂cm,cet = q̂t + p̂ct + p̂ce,∗t + ̂̃scet − p̂c,∗t − p̂m,cet + R̂wc,mt , (3.113)

where

̂̃scet = −ς1

(
ŝt + π̂ce,∗t

)
− ς2

(
ŝt + ŝt−1 + π̂ce,∗t + π̂ce,∗t−1

)
(3.114)

−ς3

(
ŝt + ŝt−1 + ŝt−2 + π̂ce,∗t + π̂ce,∗t−1 + π̂ce,∗t−2

)
.
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3.3 Production of final consumption goods

Final consumption goods are purchased by households. The goods are produced by a representative
competitive firm that combines domestically produced and imported goods and energy according to
the following technologies:

Ct =
[
(1− ωe)1/ηe (Cxet )(ηe−1)/ηe + ω

1/ηe
e (Cet )(ηe−1)/ηe

]ηe/(ηe−1)
, (3.115)

Cxet =

[
(1− ωc)1/ηc

(
Cdt

)(ηc−1)/ηc
+ ω

1/ηc
c (Cmt )(ηc−1)/ηc

]ηc/(ηc−1)

, (3.116)

Cet =

[
(1− ωem)1/ηem

(
Ce,dt

)(ηem−1)/ηem
+ ω

1/ηem
em (Ce,mt )

(ηem−1)/ηem

]ηem/(ηem−1)

. (3.117)

Here, Cxet denotes consumption excluding energy and Cet is consumption of energy. C
d
t is a one-for-

one transformation of the domestic homogeneous good Yt, and Cmt is the homogeneous composite of
specialized consumption imported goods discussed in Section 3.2. Ce,dt is the consumption of domesti-
cally produced energy, and Ce,mt is the imported energy consumption. ωe determines the steady-state
share of energy in consumption and ηe is the elasticity of substitution between energy and non-energy
consumption. ωc determines the steady-state share of imports in non-energy consumption, and ηc
the elasticity of substitution between domestic and imported consumption goods. ωem determines the
steady-state share of imports in energy consumption, and ηem the elasticity of substitution between
domestic and imported energy. The introduction of energy consumption will allow us to include both
headline and core inflation as observables. We assume that production of energy requires some use
of the domestic homogenous good, just as all the other goods. We think of this as there being an
endowment of energy, which requires labour and capital in the same proportions as all other goods in
order to be turned into consumable energy. Note that we will treat the prices of the domestic energy
consumption in the two countries as stochastic processes.

The representative firm takes the price of output P ct and the prices of inputs P
d
t , P

m,c
t , P d,cet and

Pm,cet as given. It faces the following three budget constraints:

P cxet Cxet + P cet C
e
t = P ct Ct, (3.118)

P dt C
d
t + Pm,ct Cmt = P cxet Cxet , (3.119)

P d,cet Ce,dt + Pm,cet Ce,mt = P cet C
e
t . (3.120)

We define the aggregate price index as the inverse of the Lagrange multiplier on the expenditures,
i.e. P ct ≡ 1/λct . Also, for non-energy consumption we have that P

cxe
t ≡ 1/λcxet , while for energy

consumption P cet ≡ 1/λcet . This allows us to write total expenditures as P
c
t Ct and expenditures on

non-energy goods and energy as P cxet Cxet and P cet C
e
t , respectively. We assume that the agent first

solves the partial problems of how to allocate the shares they spend on non-energy goods and energy,
respectively, between domestic and imported goods.

First, we derive expressions for Cdt and C
m
t for a given expenditure level EXP xet , by solving the

following problem:

max
Cdt ,C

m
t

[
(1− ωc)

1
ηc

(
Cdt

) ηc−1
ηc + ω

1
ηc
c (Cmt )

ηc−1
ηc

] ηc
ηc−1

− λcxet

[
P dt C

d
t + Pm,ct Cmt − EXP cxet

]
Optimization yields the following demand functions for Cdt and C

m
t :

Cdt = (1− ωc)
[
P dt
P cxet

]−ηc
Cxet , (3.121)
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Cmt = ωc

[
Pm,ct

P cxet

]−ηc
Cxet . (3.122)

Here, P dt denotes the domestic price level, P
m,c
t the price level of imported consumption, and P cxet the

aggregate consumption price index excluding energy (CPIxe). Substituting (3.121) and (3.122) into
(3.119), we obtain the following expression for the CPI excluding energy:

P cxet =

[
(1− ωc)

(
P dt

)1−ηc
+ ωc (Pm,ct )

1−ηc
]1/(1−ηc)

. (3.123)

Next, we derive expressions for Ce,dt and Ce,mt for a given expenditure level EXP et , by solving the
following problem:

max
Ce,dt ,Ce,mt

[
(1− ωem)

1
ηem

(
Ce,dt

) ηem−1
ηem + ω

1
ηem
em (Ce,mt )

ηem−1
ηem

] ηem
ηem−1

−λcet
[
P d,cet Ce,dt + Pm,cet Ce,mt − EXP cet

]
Optimization yields the following demand functions for Ce,dt and Ce,mt :

Ce,dt = (1− ωem)

[
P d,cet

P cet

]−ηem
Cet , (3.124)

Ce,mt = ωem

[
Pm,cet

P cet

]−ηem
Cet . (3.125)

Here, P d,cet denotes the price level of the domestic energy component, Pm,cet the price level of the
imported energy component, and P cet the aggregate energy price index. Substituting (3.124) and
(3.125) into (3.120), we obtain the following expression for the the energy price index:

P cet =

[
(1− ωem)

(
P d,cet

)1−ηem
+ ωem (Pm,cet )

1−ηem
]1/(1−ηem)

. (3.126)

Finally, we solve the problem for the aggregate consumption good. We derive expressions for Cxet
and Cet for a given total expenditure level EXP

c
t , by solving the following problem:

max
Cxet ,Cet

[
(1− ωe)

1
ηe (Cxet )

ηe−1
ηe + (ωe)

1
ηc (Cet )

ηe−1
ηe

] ηe
ηe−1

− λct [P cxet Cxet + P cet C
e
t − EXP ct ]

Optimization yields the following demand functions for Cxet and Cet :

Cxet = (1− ωe)
[
P cxet

P ct

]−ηe
Ct, (3.127)

Cet = ωe

[
P cet
P ct

]−ηe
Ct. (3.128)

Here, P cet denotes the price of the energy consumption good and P ct the aggregate consumption price
index (CPI). Substituting (3.127) and (3.128) into (3.118), we obtain the following expression for CPI:

P ct =
[
(1− ωe) (P cxet )1−ηe + ωe (P cet )1−ηe

]1/(1−ηe)
. (3.129)
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Defining the relative prices of final consumption and imported consumption (relative to the do-
mestic price) as

pct =
P ct
P dt

(3.130)

pm,ct =
Pm,ct

P dt
, (3.131)

the relative prices of non-energy and energy consumption as

pcxet =
P cxet

P dt
, (3.132)

pcet =
P cet
P dt

, (3.133)

and the relative price of domestically produced and imported energy consumption as

pd,cet =
P d,cet

P dt
, (3.134)

pm,cet =
Pm,cet

P dt
, (3.135)

we can rewrite (3.123), (3.126) and (3.129) as follows

pcxet =
[
(1− ωc) + ωc (pm,ct )

1−ηc
]1/(1−ηc)

, (3.136)

pcet =

[
(1− ωem)

(
pd,cet

)1−ηem
+ ωem (pm,cet )

1−ηem
]1/(1−ηem)

, (3.137)

and

pct =
[
(1− ωe) (pcxet )1−ηe + ωe (pcet )1−ηe

]1/(1−ηe)
. (3.138)

The rate of inflation of the aggregate consumption good excluding energy is then given by

πcxet =
P cxet

P cxet−1

=

[
(1− ωc)

(
P dt
)1−ηc + ωc (Pm,ct )

1−ηc

(1− ωc)
(
P dt−1

)1−ηc + ωc
(
Pm,ct−1

)1−ηc
]1/(1−ηc)

, (3.139)

or, in terms of relative prices,

πcxet =

(
P cxet

P cxet−1

P dt−1

P dt

)
P dt
P dt−1

=
pcxet

pcxet−1

πdt

= πdt

[
(1− ωc) + ωc (pm,ct )

1−ηc

(1− ωc) + ωc
(
pm,ct−1

)1−ηc
]1/(1−ηc)

, (3.140)

where πdt = P dt /P
d
t−1 denotes the rate of inflation of the domestically produced goods. Similarly, the

rate of inflation of aggregate energy consumption is then given by

πcet =
P cet
P cet−1

=

 (1− ωem)
(
P d,cet

)1−ηem
+ ωem (Pm,cet )

1−ηem

(1− ωem)
(
P d,cet−1

)1−ηem
+ ωem

(
Pm,cet−1

)1−ηem


1/(1−ηem)

, (3.141)
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or, in terms of relative prices,

πcet =

(
P cet
P cet−1

P dt−1

P dt

)
P dt
P dt−1

=
pcet
pcet−1

πdt

= πdt

 (1− ωem)
(
pd,cet

)1−ηem
+ ωem (pm,cet )

1−ηem

(1− ωem)
(
pd,cet−1

)1−ηem
+ ωem

(
pm,cet−1

)1−ηem


1/(1−ηem)

. (3.142)

Finally, the rate of inflation of the final consumption good is given by

πct =
P ct
P ct−1

=

[
(1− ωe) (P cxet )1−ηe + ωe (P cet )1−ηe

(1− ωe)
(
P cxet−1

)1−ηe + ωe
(
P cet−1

)1−ηe
]1/(1−ηe)

, (3.143)

or, in terms of of relative prices,

πct =

(
P ct
P ct−1

P dt−1

P dt

)
P dt
P dt−1

=
pct
pct−1

πdt

= πdt

[
(1− ωe) (pcxet )

1−ηe
+ ωe (pcet )

1−ηe

(1− ωe)
(
pcxet−1

)1−ηe
+ ωe

(
pcet−1

)1−ηe

] 1
1−ηe

. (3.144)

3.3.1 Scaling of the final consumption goods producers’optimal conditions

Scaling equations (3.121), (3.122), (3.124), (3.125), (3.127) and (3.128) by z+
t , we obtain the following

demand functions:
cdt = (1− ωc) (pcxet )ηc cxet , (3.145)

cmt = ωc

(
pm,ct

pcxet

)−ηc
cxet , (3.146)

ce,dt = (1− ωem)

(
pd,cet

pcet

)−ηem
cet (3.147)

ce,mt = ωem

(
pm,cet

pcet

)−ηem
cet (3.148)

cxet = (1− ωe)
(
pcxet

pct

)−ηe
ct, (3.149)

cet = ωe

(
pcet
pct

)−ηe
ct, (3.150)

where we have used the definitions of relative prices pct , p
m,c
t , pcxet , pcet , p

d,ce
t , and pm,cet specified in

Section 2.2.

3.3.2 Log-linearization of the final consumption goods producers’optimal conditions

From equation (3.145), we obtain the following log-linear demand for domestic consumption goods:

ĉdt = ηcp̂
cxe
t + ĉxet . (3.151)

From equation (3.146), we have the following log-linear demand for imported consumption goods:

ĉmt = −ηc (p̂m,ct − p̂cxet ) + ĉxet . (3.152)
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Equation (3.147), next, yields the following log-linear demand for consumption of domestically pro-
duced energy:

ĉe,dt = −ηem
(
p̂d,cet − p̂cet

)
+ ĉet . (3.153)

Equation (3.148), in turn, yields the following log-linear demand for imported energy consumption

ĉe,mt = −ηem (p̂m,cet − p̂cet ) + ĉet . (3.154)

Equation (3.149) yields the following log-linear demand for non-energy consumption:

ĉxet = −ηe (p̂cxet − p̂ct) + ĉt. (3.155)

Finally, equation (3.150) yields the following log-linear demand for energy consumption:

ĉet = −ηe (p̂cet − p̂ct) + ĉt. (3.156)

To obtain a log-linear expression for the consumer price index excluding energy, we can log-linearize
equation (3.123) in levels to obtain

P̂ cxet = (1− ωc)
(

1

pcxe

)1−ηc
P̂ dt + ωc

(
pm,c

pcxe

)1−ηc
P̂m,ct ,

where we have used the definitions of relative prices pcxet and pm,ct , specified in Section 2.2. Lagging
one period and differencing, and using that the definitions of the inflation rates in Section 2.2 imply
that

π̂cxet = P̂ cxet − P̂ cxet−1,

π̂dt = P̂ dt − P̂ dt−1,

π̂m,ct = P̂m,ct − P̂m,ct−1 ,

we obtain the following log-linear expression for the CPIxe inflation in terms of domestic and imported
inflation:

π̂cxet = (1− ωc)
(

1

pcxe

)1−ηc
π̂dt + ωc

(
pm,c

pcxe

)1−ηc
π̂m,ct . (3.157)

Proceeding in the same way as for the CPIxe above, we can start from equation (3.126) in order
to obtain an expression for the rate of inflation of the energy price index. Log-linearizing, we get

P̂ cet = (1− ωem)

(
pd,ce

pce

)1−ηem
P̂ d,cet + ωem

(
pm,ce

pce

)1−ηem
P̂m,cet ,

where we have used the definitions of relative prices pd,cet , pm,cet and pcet , specified in Section 2.2.
Lagging one period and differencing, and using that the definitions of the inflation rates in Section 2.2
imply that

π̂cet = P̂ cet − P̂ cet−1,

π̂d,cet = P̂ d,cet − P̂ d,cet−1 ,

π̂m,cet = P̂m,cet − P̂m,cet−1 ,

we obtain the following log-linear expression for the consumer energy price inflation in terms of do-
mestic and imported energy inflation:

π̂cet = (1− ωem)

(
pd,ce

pce

)1−ηem
π̂c,cet + ωem

(
pm,ce

pce

)1−ηem
π̂m,cet . (3.158)
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Finally, in an analogous way to the above, from equation (3.129) we can obtain an expression for
the rate of inflation of the aggregate total consumption goods. Log-linearizing, we get

P̂ ct = (1− ωe)
(
pcxe

pc

)1−ηe
P̂ cxet + ωe

(
pce

pc

)1−ηe
P̂ cet .

Lagging one period and differencing, and using that the definitions of the inflation rates in Section 2.2
imply that

π̂ct = P̂ ct − P̂ ct−1,

π̂cxet = P̂ cxet − P̂ cxet−1,

π̂cet = P̂ cet − P̂ cet−1,

we obtain the following log-linear expression for the aggregate consumer price inflation in terms of
non-energy and energy goods price inflation:

π̂ct = (1− ωe)
(
pcxe

pc

)1−ηe
π̂cxet + ωe

(
pce

pc

)1−ηe
π̂cet . (3.159)

We finally log-linearize the expressions for relative prices in equations (3.136), (3.137) and (3.138),
which yields the following expressions:

p̂cxet = ωc

(
pm,c

pcxe

)1−ηc
p̂m,ct , (3.160)

p̂cet = (1− ωem)

(
pd,ce

pce

)1−ηem
p̂d,cet + ωem

(
pm,ce

pce

)1−ηem
p̂m,cet , (3.161)

p̂ct = (1− ωe)
(
pcxe

pc

)1−ηe
p̂cxet + ωe

(
pce

pc

)1−ηe
p̂cet . (3.162)

Note that we assume that the relative price of domestic energy evolves as an exogenous process, as
given by the following equation

log pd,cet =
(
1− ρpd,ce

)
log pd,ce + ρpd,ce log pd,cet−1 + σpd,ceεpd,ce,t. (3.163)

3.4 Production of final investment goods

As for consumption, final investment goods are produced by a representative competitive firm that
combines domestically produced and imported goods. Total investment is, however, defined as the
sum of investment goods used in the accumulation of physical capital, It, plus investment goods
used in capital maintenance, a (ut)K

p
t . Moreover, to accomodate the observation that the price of

investment goods relative to the price of consumption goods is declining over time, the investment
production technology includes a unit root process with a positive drift, denoted by Ψt. Specifically,
the investment production technology is given by

It + a (ut)K
p
t = Ψt

[
(1− ωi)1/ηi

(
Idt

)(ηi−1)/ηi
+ ω

1/ηi
i (Imt )(ηi−1)/ηi

]ηi/(ηi−1)

, (3.164)

where Idt is a one-for-one transformation of the domestic homogeneous good Yt, and I
m
t is the homoge-

neous composite of specialized investment imported goods discussed in Section 3.2. ωi determines the
steady-state share of imports in investment, and ηi the elasticity of substitution between domestic and
imported investment goods. The representative firm takes the price of output, P it , and the prices of
inputs, P dt and P

m,i
t , as given. Proceding in the same way as for consumption above, i.e. maximizing
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equation (3.164) subject to the investment expenditure budget constraint, we obtain the following
demand functions for Idt and I

m
t :

Idt = (1− ωi)
[
P dt
P it

]−ηi
Ψ
ηi−1
t (It + a (ut)K

p
t ) , (3.165)

Imt = ωi

[
Pm,it

P it

]−ηi
Ψ
ηi−1
t (It + a (ut)K

p
t ) , (3.166)

where Pm,it denotes the price of imported investment, and P it the aggregate investment price index.
Note that the prices of the domestically produced consumption and investment goods are assumed to
be the same. As for the CPI, we can use the derived demand functions to obtain an expression for the
aggregate investment price index. Using equations (3.165) and (3.166) in the investment expenditure
budget constraint, we obtain

P it =
1

Ψt

[
(1− ωi)

(
P dt

)1−ηi
+ ωi

(
Pm,it

)1−ηi
]1/(1−ηi)

. (3.167)

Defining the relative prices of final investment and imported investment relative to the domestic price
as

pit = Ψt
P it
P dt

, (3.168)

pm,it =
Pm,it

P dt
, (3.169)

we can rewrite (3.167) as follows

pit =

[
(1− ωi) + ωi

(
pm,it

)1−ηi
]1/(1−ηi)

. (3.170)

The rate of inflation of the final investment good is then given by

πit =
P it
P it−1

=
Ψt−1

Ψt

 (1− ωi)
(
P dt
)1−ηi + ωi

(
Pm,it

)1−ηi

(1− ωi)
(
P dt−1

)1−ηi + ωi

(
Pm,it−1

)1−ηi


1/(1−ηi)

, (3.171)

or, in terms of relative prices,

πit =

(
P it
P it−1

P dt−1

P dt

Ψt

Ψt−1

)
P dt
P dt−1

Ψt−1

Ψt
=

pit
pit−1

πdt
µΨ,t

=
πdt
µΨ,t

 (1− ωi) + ωi

(
pm,it

)1−ηi

(1− ωi) + ωi

(
pm,it−1

)1−ηi


1/(1−ηi)

, (3.172)

where

µΨ,t ≡
Ψt

Ψt−1
(3.173)

denotes the growht rate of the investment-specific technology shock Ψt.
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3.4.1 Scaling of the final investment goods producers’optimal conditions

The demand functions for imported and domestically produced investment goods (3.165) and (3.166)
in scaled form are given by:

idt = (1− ωi)
(

1

pit

)−ηi (
it + a (ut)

kpt
µz+,tµΨ,t

)
, (3.174)

imt = ωi

(
pm,it

pit

)−ηi (
it + a (ut)

kpt
µz+,tµΨ,t

)
, (3.175)

where we have used the definitions of relative prices pit and p
m,i
t specified in Section 2.2.

3.4.2 Log-linearization of the final investment goods producers’optimal conditions

We begin by log-linearizing the demand for domestically produced investment goods in equation
(3.174):

ı̂dt = ηip̂
i
t +

1

i+ a (u) kp

µz+µΨ

(
îıt +

a′ (u) kp

µz+µΨ

uût +
a (u) kp

µz+µΨ

(
k̂pt − µ̂z+,t − µ̂Ψ,t

))
.

Using that a (u) = 0, a′ (u) = σb, and u = 1 (see Section 4.2.1, specifically equations (4.17) and
(4.16)), we finally get

ı̂dt = ηip̂
i
t + ı̂t +

1

i

σbk
p

µz+µΨ

ût. (3.176)

Similarly, log-linearizing the demand for imported investment goods in equation (3.175), we get

ı̂mt = −ηi
(
p̂m,it − p̂it

)
+

1

i+ a(u) kp

µz+µΨ

(
îıt +

a′ (u) kp

µz+µΨ

uût +
a (u) kp

µz+µΨ

(
k̂pt − µ̂z+,t − µ̂Ψ,t

))
.

Using again that a (u) = 0, a′ (u) = σb, and u = 1, we obtain

ı̂mt = −ηi
(
p̂m,it − p̂it

)
+ ı̂t +

1

i

σbk
p

µz+µΨ

ût. (3.177)

As for consumption inflation, we can log-linearize equation (3.167) in levels to obtain

P̂ it = (1− ωi)
(
pi
)ηi−1

P̂ dt + ωi

(
pm,i

pi

)1−ηi
P̂m,it − 1

1− ηi
Ψ̂t,

where we have used the definitions of relative prices pit and p
m,i
t , specified in Section 2.2. Lagging one

period and differencing, and using that the definitions of the inflation rates in Section 2.2 imply that

π̂it = P̂ it − P̂ it ,
π̂dt = P̂ dt − P̂ dt−1,

π̂m,it = P̂m,it − P̂m,it ,

and that the growth rate of the investment-specific technology shock, specified in Section 2.1, in log
deviations is given by

µ̂Ψ,t = Ψ̂t − Ψ̂t−1,

we obtain the following log-linear expression for the aggregate investment price index inflation in terms
of domestic and imported inflation:

π̂it = (1− ωi)
(
pi
)ηi−1

π̂dt + ωi

(
pm,i

pi

)1−ηi
π̂m,it − 1

1− ηi
µ̂Ψ,t. (3.178)
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We can also directly log-linearize the expression for the investment relative price (3.170). Rearranging:(
pit
)1−ηi = (1− ωi) + ωi

(
pm,it

)1−ηi

(
pi
)1−ηi + (1− ηi)

(
pi
)−ηi (pit − pi) = (1− ωi) + ωi

(
pm,i

)1−ηi
+ (1− ηi)ωi

(
pm,i

)−ηi (pm,it − pm,i
)
.

Substracting the steady-state relationship
(
pi
)1−ηi = (1− ωi)+ωi

(
pm,i

)1−ηi and simplifying, we have:
p̂it = ωi

(
pm,i

pi

)1−ηi
p̂m,it . (3.179)

3.5 Production of final export goods

The goods Xt are produced by a representative, competitive, foreign retailer using specialized inputs
as follows:

Xt =

[∫ 1

0
(Xk,t)

1
λxt dk

]λxt
, 1 ≤ λxt ≤ ∞, (3.180)

where Xk,t are exports of specialized goods defined below, and λxt is a time-varying price markup in
the export market given by the following process

log λxt = (1− ρλx) log λx + ρλx log λxt−1 + σλxελx,t. (3.181)

The producer of Xt takes the price of output, P xt , and the prices of inputs, P
x
k,t, as given.

11 It
maximizes profits according to:

max
Xk,t

P xt Xt −
∫ 1

0
P xk,tXk,tdk

which yields the following demand for exports of specialized goods:

Xk,t =

(
P xk,t
P xt

) λxt
1−λxt

Xt. (3.182)

Integrating (3.182) and using (3.180), we obtain the expression for the index of export prices:

P xt =

[∫ 1

0

(
P xk,t

) 1
1−λxt dk

]1−λxt
. (3.183)

The producer of the kth specialized export good, Xk,t, is a monopolist and uses the following technol-
ogy:

Xk,t =

[
ω

1
ηx
x

(
Xm
k,t

) ηx−1
ηx + (1− ωx)

1
ηx

(
Xd
k,t

) ηx−1
ηx

] ηx
ηx−1

, (3.184)

where Xm
k,t and Xd

k,t are the demand by prodycer k for the imported and domestically produced
intermediate goods used in the production of exports, Xm

t and Xd
t respectively, and φ

x denotes a fixed
production cost. The cost minimization problem of the producer of the kth specialized export good is
to minimize total costs subject to the constraint of producing enough to meet demand:

min
Xm
k,t, X

d
k,t

Pm,xt Rwc,xt Xm
k,t + P dt R

wc,x
t Xd

k,t

s.t.

[
ω

1
ηx
x

(
Xm
k,t

) ηx−1
ηx + (1− ωx)

1
ηx

(
Xd
k,t

) ηx−1
ηx

] ηx
ηx−1

≥
(
Pxk,t
Pxt

) λxt
1−λxt Xt

,

11We index the producers of final export goods by k, rather than i, in order to distinguish the demand for the aggregated
imported export goods by a certain producer k, Xm

k,t, from the demand for a differentiated imported good for export
production, produced by the intermediate import good producer i, Xm

i,t.
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where
Rwc,xt = νwc,xt Rt + 1− νwc,xt , (3.185)

and νwc,xt is the fraction of the export producers’costs that has to be financed in advance. We assume
that νwc,xt evolves according to the following process:

log νwc,xt = (1− ρνwc,x) log νwc,x + ρνwc,x log νwc,xt−1 + σνwc,xενwc,x,t. (3.186)

Denoting byMCxk,t the Lagrange multiplier associated with the optimization problem, the FOC writes

Rwc,xt Pm,xt = MCxk,t
(
Xm
k,t

)− 1
ηx ω

1
ηx
x (Xk,t)

1
ηx

Rwc,xt P dt = MCxk,t

(
Xd
k,t

)− 1
ηx (1− ωx)

1
ηx (Xk,t)

1
ηx .

Solving for the inputs Xm
k,t and X

d
k,t, we obtain

Xm
k,t =

(
MCxk,t

)ηx
ωxXk,t

(Rwc,xt Pm,xt )
ηx

, (3.187)

Xd
k,t =

(
MCxk,t

)ηx
(1− ωx)Xk,t(

Rwc,xt P dt
)ηx , (3.188)

which, inserted in the production function (3.184), allows us to obtain the expression of the nominal
marginal cost for the producer of the specialized export good (identical across producers and, thus,
without the k subscript):

MCxt = Rwc,xt

(
ωx (Pm,xt )

1−ηx + (1− ωx)
(
P dt

)1−ηx
) 1

1−ηx
. (3.189)

The firm producing the kth specialized export good is subject to Calvo frictions. At any date, it
faces a probability (1− ξx) that it can reoptimize its price, independent on the time that has passed
since it was last able to reoptimize. If the firm is not able to reoptimize in period t, the price in period
t+ 1 will be set according to the following indexation rule:{

P xk,t = π̃xt P
x
k,t−1

π̃xt ≡
(
πxt−1

)κx (π̄∗t )
1−κx−κx (π̆)κx ,

(3.190)

where κx and κx are parameters such that κx, κx, κx + κx ∈ [0, 1], πxt−1 is the lagged export gross
inflation rate, and π̄∗t is the foreign economy central bank’s target inflation rate. Unlike in the earlier
Riksbank models, we choose to treat the export firms’indexation equally to the domestic and import
firms’to allow for potential medium-term movement in foreign inflation expectations (possibly driven
by changes in foreign policy makers’preferences). π̄∗t is assumed to follow the process

log π̄∗t = (1− ρπ̄∗) log π̄∗ + ρπ̄∗ log π̄∗t−1 + σπ̄∗επ̄∗,t. (3.191)

When setting its price at time t, the kth specialized exporting firm will maximize its expected future
discounted profits, taking into account that there is a probability ξx in each period that it cannot
reoptimize. Denoting by P̃ xk,t the reoptimized price at period t, the firm thus faces the following
optimization problem:

max
P̃xk,t

Et
∞∑
s=0

(βξx)s ζβt+sυt+s

(
St+sP

x
k,t+s

(
z̃+,∗
t+s

)− 1
ηf Xk,t+s −mcxt+sSt+sP xt+s

(
z̃+,∗
t+s

)− 1
ηf Xk,t+s

)
s.t. Xk,t =

(
Pxk,t
Pxt

)− λxt
λxt −1

Xt

.
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Substituting in the demand expression for Xk,t along with the following expression

P xk,t+s =
s∏
j=1

π̃xt+jP̃
x
k,t,

the optimization problem becomes

max
P̃xk,t

Et
∞∑
s=0

(βξx)s ζβt+sυt+s


StP

x
k,t+s

(
z̃+,∗
t+s

)− 1
ηf

((
π̃xt+1...π̃

x
t+s

Pxt+s
P̃ xk,t

)− λxt+s
λxt+s−1

Xt+s

)

−mcxt+sSt+sP xt+s
(
z̃+,∗
t+s

)− 1
ηf

((
π̃xt+1...π̃

x
t+s

Pxt+s
P̃ xk,t

)− λxt+s
λxt+s−1

Xt+s

)
 .

Rearranging,

max
P̃xk,t

Et
∞∑
s=0

(βξx)s ζβt+sυt+sSt+sP
x
t+s

(
z̃+,∗
t+s

)− 1
ηf Xt+s ×

×

( π̃xt+1 . . . π̃
x
t+s

P xt+s
P̃ xk,t

)1−
λxt+s
λxt+s−1

−mcxt+s
(
π̃xt+1 . . . π̃

x
t+s

P xt+s
P̃ xk,t

)− λxt+s
λxt+s−1

 .
Taking derivatives w.r.t. P̃ xk,t, we get

(
1−

λxt+s
λxt+s − 1

)(
P̃ xk,t

)− λxt+s
λxt+s−1

Et

∞∑
s=0

(βξx)sζβt+sυt+sSt+sP
x
t+s

(
z̃+,∗
t+s

)− 1
ηf Xt+s

(
π̃xt+1 . . . π̃

x
t+s

P xt+s

)1−
λxt+s
λxt+s−1

+
λxt+s

λxt+s − 1

(
P̃ xk,t

)− λdt+s

λdt+s−1
−1
Et

∞∑
s=0

(βξd)
sζβt+sυt+sSt+sP

x
t+s

(
z̃+,∗
t+s

)− 1
ηf Xt+smc

x
t+s

(
π̃xt+1 . . . π̃

x
t+s

P xt+s

)− λxt+s
λxt+s−1

= 0.

Multiplying through by
(
λxt+s − 1

) (
P̃ xk,t

) λxt+s
λxt+s−1

+1
, and simplifying, we get

−P̃ xk,tEt
∞∑
s=0

(βξx)sζβt+sυt+sSt+sP
x
t+s

(
z̃+,∗
t+s

)− 1
ηf Xt+s

(
π̃xt+1 . . . π̃

x
t+s

P xt+s

)1−
λxt+s
λxt+s−1

+λxt+sEt

∞∑
s=0

(βξd)
sζβt+sυt+sSt+sP

x
t+s

(
z̃+,∗
t+s

)− 1
ηf Xt+smc

x
t+s

(
π̃xt+1 . . . π̃

x
t+s

P xt+s

)− λxt+s
λxt+s−1

= 0,

P̃ xk,t =
Et
∑∞

s=0(βξd)
sζβt+sυt+sSt+sP

x
t+s

(
z̃+,∗
t+s

)− 1
ηf Xt+sλ

x
t+smc

x
t+s

(
π̃xt+1...π̃

x
t+s

Pxt+s

)− λxt+s
λxt+s−1

Et
∑∞

s=0(βξx)sζβt+sυt+sSt+sP
x
t+s

(
z̃+,∗
t+s

)− 1
ηf Xt+s

(
π̃xt+1...π̃

x
t+s

Pxt+s

)1−
λxt+s
λxt+s−1

p̃xt =

Et
∞∑
s=0

(βξx)sζβt+sυt+sSt+sP
x
t+s

(
z̃+,∗
t+s

)− 1
ηf Xt+sλ

x
t+smc

x
t+s

(
π̃xt+1...π̃

x
t+s

πxt+1...π
x
t+s

) λxt+s
1−λxt+s

Et
∞∑
s=0

(βξx)sζβt+sυt+sSt+sP
x
t+s

(
z̃+,∗
t+s

)− 1
ηf Xt+s

(
π̃xt+1...π̃

x
t+s

πxt+1...π
x
t+s

) 1
1−λxt+s

, (3.192)

where p̃xt ≡
P̃xt
Pxt
.
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We can derive a second expression for p̃xt from the definition of the aggregate exports price index
P xt in equation (3.183), in a similar way as for domestic and import intermediate goods producers.
We have:

p̃xt =

1− ξx
(
π̃xt
πxt

) 1
1−λxt

(1− ξx)


1−λxt

. (3.193)

Using the expression of the demand for domestic input in export production (3.188), we can derive
the expression of the aggregate export demand for the domestic homogeneous good:

Xd
t =

∫ 1

0
Xd
k,tdk =

(
MCxt
P dt R

wc,x
t

)ηx
(1− ωx)

∫ 1

0
Xk,tdk.

Replacing Xk,t by its expression in (3.182), we get:

Xd
t =

(
MCxt
P dt R

wc,x
t

)ηx
(1− ωx) (p̊xt )

λxt
1−λxt Xt, (3.194)

where p̊xt ≡
P̊xt
Pxt
, and P̊ xt is a measure of export price dispersion defined as follows:

P̊ xt =

[∫ 1

0

(
P xk,t

) λxt
1−λxt dk

] 1−λxt
λxt

,

p̊xt =

∫ 1

0

(
P xk,t
P xt

) λxt
1−λxt

dk


1−λxt
λxt

. (3.195)

We can break the integral, using the Calvo assumption on price setting, and re-express it in terms of
relative prices as follows:

p̊xt =

ξx( π̃xtπxt p̊xt−1

) λxt
1−λxt

+ (1− ξx) (p̃xt )
λxt

1−λxt


1−λxt
λxt

.

Substituting p̃xt using (3.193) we get:

p̊xt =

ξx( π̃xtπxt p̊xt−1

) λxt
1−λxt

+ (1− ξx)

1− ξx
(
π̃xt
πxt

) 1
1−λxt

1− ξx


λxt


1−λxt
λxt

. (3.196)

We can use (3.189) in (3.194) to obtain the final expression for the aggregate demand for domestic
inputs for export goods production:

Xd
t =

(
ωx (pm,xt )

1−ηx + (1− ωx)
) ηx

1−ηx (1− ωx) (p̊xt )

λxt
1−λxt

Xt. (3.197)

Proceeding in the same way as for the domestically produced input good, we can arrive at an expression
for the aggregate export demand for the imported input good:

Xm
t =

(
ωx + (1− ωx) (pm,xt )

ηx−1
) ηx

1−ηx ωx (p̊xt )

λxt
1−λxt

Xt. (3.198)

40



As in the case of imports, we want to distinguish between gross demand for exported goods,
denoted above by Xt, and the demand net of fixed costs, which we denote by Ẋt. Specifically, we
assume that

Ẋk,t = Xk,t − z+
t φ

x,

or, in aggregate terms

Ẋt =

∫ 1

0
Xk,tdk − z+

t φ
x. (3.199)

Inserting demand equation (3.182), we get

Ẋt =

∫ 1

0

(
P xk,t
P xt

) λxt
1−λxt

Xtdk − z+
t φ

x.

Integrating over i, and using the expression for export price dispersion in equation (3.195), we have

Ẋt = (p̊xt )
λxt

1−λxt Xt − z+
t φ

x. (3.200)

We also derive the following expression for the exporting firm’s profits:

PROFITSxk,t = StP
x
k,t

(
z̃+,∗
t

)− 1
ηf Ẋk,t −MCxt

(
Ẋk,t + z+

t φ
x
)

= StP
x
k,t

(
z̃+,∗
t

)− 1
ηf
(
Xk,t − z+

t φ
x
)
−MCxt Xk,t.

Using the demand curve faced by the kth specialized exporter in equation (3.182), we have

PROFITSxk,t = StP
x
k,t

(
z̃+,∗
t

)− 1
ηf

(P xk,t
P xt

) λxt
1−λxt

Xt − z+
t φ

x

−MCxt

(
P xk,t
P xt

) λxt
1−λxt

Xt

= StP
x
t

(
z̃+,∗
t

)− 1
ηf

((
P xk,t
P xt

) 1
1−λxt

Xt −
P xk,t
P xt

z+
t φ

x

)
−MCxt

(
P xk,t
P xt

) λxt
1−λxt

Xt.(3.201)

3.5.1 Scaling of the final export goods producers’optimal conditions

We can write the expression for the marginal costs (3.189) in terms of stationary variables as

mcxt =
Rwc,xt pc,∗t
qtpxt p

c
t

(
ωx (pm,xt )

1−ηx + (1− ωx)
) 1

1−ηx , (3.202)

where we have used the definitions of relative prices pm,xt , pxt , p
c
t and p

c,∗
t , and the real exchange rate

qt, all stated in Section 2.1. Scaling the aggregate demand for domestically produced and imported
goods used in export production, (3.197) and (3.198), by z+

t , we obtain

xdt =
(
ωx (pm,xt )

1−ηx + (1− ωx)
) ηx

1−ηx (1− ωx) (p̊xt )

λxt
1−λxt

xt, (3.203)

xmt =
(
ωx + (1− ωx) (pm,xt )

ηx−1
) ηx

1−ηx ωx (p̊xt )

λxt
1−λxt

xt. (3.204)

Finally, the expression of the optimal price for domestic exporters (3.192) in terms of stationary
variables is given by

p̃xt =

Et
∞∑
s=0

(βξx)sζβt+sψz+,t+s
qt+spct+sp

x
t+s

pc,∗t+s
xt+sλ

x
t+smc

x
t+s

(
π̃xt+1...π̃

x
t+s

πxt+1...π
x
t+s

) λxt+s
1−λxt+s

Et
∞∑
s=0

(βξx)sζβt+sψz+,t+s
qt+spct+sp

x
t+s

pc,∗t+s
xt+s

(
π̃xt+1...π̃

x
t+s

πxt+1...π
x
t+s

) 1
1−λxt+s

, (3.205)
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where we have used that

υt+sSt+sP
x
t+s

(
z̃+,∗
t

)− 1
ηf Xt+s = υt+sz

+
t+sP

d
t+s

St+sP
c,∗
t+s

P ct+s

P ∗t+s
P c,∗t+s

P ct+s
P dt+s

P xt+s

(
z̃+,∗
t

)− 1
ηf

P ∗t+s

Xt+s

z+
t+s

= ψz+,t+s

qt+sp
c
t+sp

x
t+s

pc,∗t+s
xt+s.

Scaling the expression for Ẋt in equation (3.200), we get

ẋt = (p̊xt )
λxt

1−λxt xt − φx. (3.206)

We can also scale the expression for profits in equations (3.201), to obtain

profitsxk,t = StP
x
t

(
z̃+,∗
t

)− 1
ηf xt

(P xk,t
P xt

) 1
1−λxt −

P xk,t
P xt

φx

xt
−mcxt

(
P xk,t
P xt

) λxt
1−λxt

 .
Integrating this expression over the whole set of specialized exporters, we get:∫ 1

0
profitsxk,tdk = StP

x
t

(
z̃+,∗
t

)− 1
ηf xt ×

×

( 1

P xt

) 1
1−λxt

∫ 1

0

(
P xk,t

) 1
1−λxt dk − φx

xt

∫ 1

0

P xk,t
P xt

dk −mcxt
∫ 1

0

(
P xk,t
P xt

) λxt
1−λxt

dk


profitsxt = StP

x
t

(
z̃+,∗
t

)− 1
ηf xt

[
1− φx

xt

∫ 1

0

P xk,t
P xt

dk −mcxt (p̊xt )
λxt

1−λxt

]
.

We define
∫ 1

0

Pxk,t
Pxt

dk = p̊x,tempt , a price term that will equate one in steady state and under full

indexation.12 Bearing in mind that a fraction ξx of firms index their price, while the remaining
fraction get to reoptimize, we can derive the following expression for p̊x,tempt , which will be useful for
the steady-state calculations:

p̊x,tempt = ξx
π̃xt
πxt
p̊x,tempt−1 + (1− ξx) p̃xt−1. (3.207)

We thus end up with the following expression for the specialized exporters’real profits:

profits
x
t = xt

[
1− φx

xt
p̊x,tempt −mcxt (p̊xt )

λxt
1−λxt

]
. (3.208)

3.5.2 Log-linearization of the final export goods producers’optimal conditions

We first log-linearize the expressions for export goods producers’marginal costs in equation (3.202)

m̂cxt = R̂wc,xt + p̂c,∗t − q̂t − p̂xt − p̂ct +
ωx (pm,x)1−ηx

ωx (pm,x)1−ηx + (1− ωx)
p̂m,xt . (3.209)

Log-linearization of the expression for the working capital interest rate for export goods producers
in equation (3.185) yields

R̂wc,xt =
νwc,x (R− 1)

Rwc,x
ν̂wc,xt +

νwc,xR

Rwc,x
R̂t. (3.210)

12Note that this term will not enter the final set of model equations, but is only needed for the computation of the
steady state.
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We now turn to the export goods producers’price setting. Starting from equation (3.205), we can
proceed with the derivations in the same way as for the for the domestic and import intermediate
goods producers. Assuming that κx = 0, we get the following Phillips curve for the exporting firms:

π̂xt − ̂̄π∗t =
(1− βξx) (1− ξx)

ξx (1 + βκx)

(
m̂cxt + λ̂

x

t

)
+

κx
1 + βκx

(
π̂xt−1 − ̂̄π∗t ) (3.211)

+
β

1 + βκx
Et
(
π̂xt+1 − ̂̄π∗t )− βκx

1 + βκx
Et
(̂̄π∗t − ̂̄π∗t+1

)
,

where we have used the log-linearized version of the price indexation rule for the importing firms in
equation (3.190): ̂̃πxt = κxπ̂

x
t−1 + (1− κx − κx) ̂̄π∗t . (3.212)

For use in later sections, we need also to log-linearize the price dispersion equation (3.196). Rear-
ranging,

(p̊xt )
λxt

1−λxt = ξx

(
π̃xt
πxt
p̊xt−1

) λxt
1−λxt

+ (1− ξx)

1− ξx
(
π̃xt
πxt

) 1
1−λxt

1− ξx


λxt

.

We now log-linearize, proceeding in the same way as for the domestic and imported price dispersion
terms before, which yields

̂̊pxt = ξx

(
π̃x

πx

) λx

1−λx [̂̃πxt − π̂xt + ̂̊pxt−1

]
+ ξx ln

(
π̃x

πx
p̊x
)(

π̃x

πx

) λx

1−λx 1

1− λx λ̂
x

t − ln (p̊x)
1

1− λx λ̂
x

t

− 1

(p̊x)
λx

1−λx

1− ξx
(
π̃x

πx

) 1
1−λx

1− ξx

λx−1

ξx

(
π̃x

πx

) 1
1−λx [̂̃πxt − π̂xt ]

+
1− ξx

(p̊x)
λx

1−λx
ln

1− ξx
(
π̃x

πx

) 1
1−λx

1− ξx

1− ξx
(
π̃x

πx

) 1
1−λx

1− ξx

λx

(1− λx) λ̂
x

t

−

1− ξx
(
π̃x

πx

) 1
1−λx

1− ξx

λx−1

ξx

(p̊x)
λx

1−λx
ln

(
π̃x

πx

)(
π̃x

πx

) 1
1−λx λx

1− λx λ̂
x

t .

We use the steady-state relationship π̃x = πx, which implies that p̊x = 1, to obtain

̂̊pxt = ξx
̂̊pxt−1. (3.213)

Finally, we log-linearize the demand equations for domestically produced and imported goods used
in export production. Starting with equation (3.203), we have:

x̂dt =
ηxωx (pm,x)1−ηx

ωx (pm,x)1−ηx + (1− ωx)
p̂m,xt +

λx

(1− λx)2 log p̊xλ̂
x

t +
λx

1− λx
̂̊pxt + x̂t.

Using that full indexation implies that p̊x = 1, we arrive at the following expression:

x̂dt =
ηxωx (pm,x)1−ηx

ωx (pm,x)1−ηx + (1− ωx)
p̂m,xt +

λx

1− λx
̂̊pxt + x̂t. (3.214)

Moving on to equation (3.204), we have:

x̂mt = − ηx (1− ωx) (pm,x)ηx−1

ωx + (1− ωx) (pm,x)ηx−1 p̂
m,x
t +

λx

(1− λx)2 log p̊xλ̂
x

t +
λx

1− λx
̂̊pxt + x̂t.
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Using that full indexation implies that p̊x = 1, we finally obtain

x̂mt = − ηx (1− ωx) (pm,x)ηx−1

ωx + (1− ωx) (pm,x)ηx−1 p̂
m,x
t +

λx

1− λx
̂̊pxt + x̂t. (3.215)

We note that

ωx (pm,x)1−ηx

ωx (pm,x)1−ηx + (1− ωx)
+

(1− ωx) (pm,x)ηx−1

ωx + (1− ωx) (pm,x)ηx−1

=
ωx (pm,x)1−ηx

(
ωx + (1− ωx) (pm,x)ηx−1

)
+ (1− ωx) (pm,x)ηx−1

(
ωx (pm,x)1−ηx + (1− ωx)

)
(
ωx (pm,x)1−ηx + (1− ωx)

)(
ωx + (1− ωx) (pm,x)ηx−1

)
=

ω2
x (pm,x)1−ηx + 2ωx (1− ωx) + (1− ωx)2 (pm,x)ηx−1

ω2
x (pm,x)1−ηx + 2ωx (1− ωx) + (1− ωx)2 (pm,x)ηx−1

= 1,

and so
(1− ωx) (pm,x)ηx−1

ωx + (1− ωx) (pm,x)ηx−1 = 1− ωx (pm,x)1−ηx

ωx (pm,x)1−ηx + (1− ωx)

Thus, defining

ω̃x ≡
ωx (pm,x)1−ηx

ωx (pm,x)1−ηx + (1− ωx)
, (3.216)

we can rewrite (3.214) and (3.215) above as

x̂dt = ηxω̃xp̂
m,x
t +

λx

1− λx
̂̊pxt + x̂t, (3.217)

and

x̂mt = −ηx (1− ω̃x) p̂m,xt +
λx

1− λx
̂̊pxt + x̂t, (3.218)

respectively.

3.6 Total export demand

We assume that total demand by foreigners for domestic exports takes the following form:

Xt =

(
P xt

P d,∗t

)−ηf
(Y ∗t −G∗t ) , (3.219)

where Y ∗t is the foreign GDP, G∗t is foreign government spending, P
x
t is an index of export prices,

and P d,∗t has been defined before as the foreign-currency price of the foreign homogeneous good, and
where we have assumed that exports do not enter in the production of foreign government spending.
From the foreign economy resource constraint, we know that this is equivalent to

Xt =

(
P xt
P ∗t

)−ηf (
Cd,∗t + Ce,∗t + Id,∗t

)
.

We can substitute for Cd,∗t to obtain

Xt =

(
P xt
P ∗t

)−ηf (
Cxe,∗t + Ce,∗t + Id,∗t

)
. (3.220)
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3.6.1 Scaling of total export demand

Scaling the total demand by foreigners for domestic exports in equation (3.220), we have

Xt

z+
t

=

(
P xt

P d,∗t

)−ηf (
Cxe,∗t

z+,∗
t

+
Ce,∗t
z+,∗
t

− Id,∗t
z+,∗
t

)
z+,∗
t

z+
t

.

If we assume that z+
t and z

+,∗
t , albeit similar, are two different processes, as in Ramses I, and define

z̃+,∗
t ≡ z+,∗

t

z+
t

as the degree of asymmetry in the technological progess in the domestic economy compared to the
rest of the world. We note that the evolution of z̃+,∗

t can be written as follows:

z̃+,∗
t

z̃+,∗
t−1

=
z+,∗
t

z+,∗
t−1

z+
t−1

z+
t

=
µz+,∗,t

µz+,t

. (3.221)

The relative price of exports is then defined as

pxt =
P xt
P ∗t

(
z̃+,∗
t

)− 1
ηf . (3.222)

Using this definition, the scaled expression for export demand is given by

xt = (pxt )−ηf
(
cxe,∗t + ce,∗t + id,∗t

)
, (3.223)

We note that from equations (11.29), (11.30) and (11.31), we have that

cxe,∗t = (1− ω∗e)
(

1

pc,∗t

)−η∗e
c∗t ,

ce,∗t = ω∗e

(
pce,∗t

pc,∗t

)−η∗e
c∗t ,

and

id,∗t = i∗t +
a (u∗t ) k

p,∗
t

µz+,∗,tµΨ∗,t
.

Thus, in a setting where there is only one consumption good and the share of energy is zero so that
ω∗e = 0 and pc,∗t = 1, as for example in Smets and Wouters (2003), we get that cxe,∗t = c∗t . Also, if the
absence of variable capital utilization or capital utilization costs, we get that id,∗t = i∗t . (3.223) could
then be written as

xt = (pxt )−ηf (c∗t + i∗t ) .

3.6.2 Log-linearization of total export demand

For the export demand expression given by equation (3.223), we obtain

x̂t = −ηf p̂xt +
cxe,∗

cxe,∗ + ce,∗ + id,∗
ĉxe,∗t +

ce,∗

cxe,∗ + ce,∗ + id,∗
ĉe,∗t +

id,∗

cxe,∗ + ce,∗ + id,∗
îd,∗t .

Note that it is not clear in practice what the shares of consumption and investment in exports should
be. It may not be optimal to assume that those should be equal to their shares in foreign GDP,
as the composition of exports from a small open economy may be different than the composition of
imports in the rest of the world. Moreover, the import shares of consumption and investment are most
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likely not equal to one another. We do not model those explicitly as the foreign economy is assumed
approximately closed. Instead, in order to take this into account, we allow for more flexibility in
the parametrization of export demand. In practice, we thus estimate the parameter ωxc in the below
specification, where we have grouped together the non-energy and energy consumption into aggregate
consumption, and let data decide exactly what it should be rather than assuming that it is equal to
the constants specified above.13 ,14

x̂t = −ηf p̂xt + ωxc ĉ
∗
t + (1− ωxc ) îd,∗t . (3.224)

3.7 Total import demand

Total import demand is given by the sum of demand for the three different types of non-energy good
and of energy imports. We then have that

Mt =

∫ 1

0
Cmi,tdi+

∫ 1

0
Imi,tdi+

∫ 1

0
Xm
i,tdi+

∫ 1

0
Ce,mi,t di,

where we have letMt denote the sum of all import goods used in the domestic economy. Using demand
expressions (3.85), (3.86), (3.87) and (3.88), we get the following expression:15

Mt = Cmt (p̊m,ct )
λ
m,c
t

1−λm,ct + Imt

(
p̊m,it

) λ
m,i
t

1−λm,it +Xm
t (p̊m,xt )

λ
m,x
t

1−λm,xt + Ce,mt (p̊m,cet )
λ
m,ce
t

1−λm,cet . (3.225)

Note that the above expression is the sum of goods used in, and not imported to the domestic econ-
omy. As we have assumed that some of the imported goods are used to cover the fixed costs of the
monopolistic importing firms, the gross imports are going to exceed total import demand Mt. This is
important for the calculations of the steady state, to ensure consistency between net exports derived
from the aggregate resource constraint and net exports derived from the expression for net foreign
assets. As the individual importers of non-energy goods are assumed to act under imperfect compe-
tition, they set prices as a markup over marginal costs and, in the absence of fixed production costs,
make positive profits that generate too high imports in the resource constraint. Denoting gross total
imports by M̃t, we have

M̃t =

∫ 1

0
Cmi,tdi+ z+

t φ
m,c +

∫ 1

0
Imi,tdi+ z+

t φ
m,i

+

∫ 1

0
Xm
i,tdi+ z+

t φ
m,x +

∫ 1

0
Ce,mi,t di+ z+

t φ
m,ce

M̃t = Cmt (p̊m,ct )
λ
m,c
t

1−λm,ct + Imt

(
p̊m,it

) λ
m,i
t

1−λm,it +Xm
t (p̊m,xt )

λ
m,x
t

1−λm,xt (3.226)

+Ce,mt (p̊m,cet )
λ
m,ce
t

1−λm,cet + z+
t

(
φm,c + φm,i + φm,x + φm,ce

)
.

13 In Ramses I and II, which contained simpler, three-variable models of the foreign economy, export demand was
specified as follows:

Xt =

(
P xt

P d,∗t

)−ηf
Y ∗t .

It was thus implicitly assumed that exports entered the production of GDP components in a way that made total exports
covary one-for-one with foreign total demand, at given relative prices. See Adolfson et al. (2005) and Adolfson et al.
(2013).
14We note that, for the steady state computations, we use the following expression for export demand:

xt = (pxt )−ηf (c∗t )
ωxc (i∗t )

1−ωxc ,

in order to take into account that the weights of the export demand shares are different from those implied by the
derivation above.
15Equations (3.85), (3.86) and (3.87) are also used in the derivation of the evolution of net foreign assets in Section 7,

where the scaling and log-linearization of these equations is done.
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3.7.1 Scaling of total import demand

We can scale the expression for total import demand (3.225) by z+
t , to obtain

mt = cmt (p̊m,ct )
λ
m,c
t

1−λm,ct + imt

(
p̊m,it

) λ
m,i
t

1−λm,it + xmt (p̊m,xt )
λ
m,x
t

1−λm,xt + ce,mt (p̊m,cet )
λ
m,ce
t

1−λm,cet . (3.227)

Scaling (3.226) by z+
t , we get

m̃t = cmt (p̊m,ct )
λ
m,c
t

1−λm,ct + imt

(
p̊m,it

) λ
m,i
t

1−λm,it + xmt (p̊m,xt )
λ
m,x
t

1−λm,xt (3.228)

+ce,mt (p̊m,cet )
λ
m,ce
t

1−λm,cet +
(
φm,c + φm,i + φm,x + φm,ce

)
.

3.7.2 Log-linearization of total import demand

Log-linearization of the expression for total import demand (3.227) yields

m̂t =
cm

m
(p̊m,c)

λm,c

1−λm,c

[
ĉmt +

λm,c

1− λm,c
̂̊pm,ct + ln (p̊m,c)

λm,c

(1− λm,c)2 λ̂
m,c

t

]
(3.229)

+
im

m

(
p̊m,i

) λm,i

1−λm,i

[̂
imt +

λm,i

1− λm,i
̂̊pm,it + ln

(
p̊m,i

) λm,i(
1− λm,i

)2 λ̂m,it

]

+
xm

m
(p̊m,x)

λm,x

1−λm,x

[
x̂mt +

λm,x

1− λm,x
̂̊pm,xt + ln (p̊m,x)

λm,x

(1− λm,x)2 λ̂
m,x

t

]
+
ce,m

m
(p̊m,ce)

λm,ce

1−λm,ce

[
ĉe,mt +

λm,ce

1− λm,ce
̂̊pm,cet + ln (p̊m,ce)

λm,ce

(1− λm,ce)2 λ̂
m,ce

t

]
.

Using that, in steady state π̃m,j = πm,j and p̊m,j = 1, this simplifies to

m̂t =
cm

m

[
ĉmt +

λm,c

1− λm,c
̂̊pm,ct

]
+
im

m

[̂
imt +

λm,i

1− λm,i
̂̊pm,it

]
(3.230)

+
xm

m

[
x̂mt +

λm,x

1− λm,x
̂̊pm,xt

]
+
ce,m

m

[
ĉe,mt +

λm,ce

1− λm,ce
̂̊pm,cet

]
.

4 Households

4.1 Household preferences

We assume that there is a large representative household, with full risk sharing of consumption among
household members as in Merz (1995). There is a continuum of members indexed by (j, k) ∈ (0, 1)×
(0, 1).16 Here, j denotes the type of labour service a household member is specialized in, and k the
disutility of work. They attain utility from consumption and disutility from work. The preferences with
respect to consumption are unchanged compared to the setup in Christiano, Trabandt, and Walentin
(2011) and Adolfson et al. (2013). But while these previous two models assume a specification of
the disutility of work as in Erceg, Henderson, and Levin (2000), we here instead rely on the setup in
Galí, Smets, and Wouters (2012) as a simple way of introducing unemployment into the model. A
household member of type (j, k) has preferences

Ej0

∞∑
t=0

βtζβt [ζct log (Cj,k,t − bCj,k,t−1)− 1 (j, k) ζnt Θtk
ϕ] , (4.1)

16 In general, the subscripted variables denote household or firm choice variables and the variables without a subscript
(other than the time subscript t) denote economy-wide variables.
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where β is the household’s discount factor, Cj,k,t is consumption of household member (j, k), 1 (j, k)
is an indicator function that is equal to one if the household member works and zero otherwise, and
Θt is an endogenous preference shifter. The parameter ϕ ≥ 0 determines the shape of the distribution
of work disutilities across the individual household members.17 ζβt , ζ

c
t and ζ

n
t denote shocks to the

discount rate, consumption preferences and labour supply, respectively, given by the following AR(1)
processes:18

log ζβt =
(

1− ρζβ
)

log ζβ + ρζβ log ζβt−1 + σζβεζβ ,t, (4.2)

log ζct =
(
1− ρζc

)
log ζc + ρζc log ζct−1 + σζcεζc,t, (4.3)

log ζnt =
(
1− ρζn

)
log ζn + ρζn log ζnt−1 + σζnεζn,t. (4.4)

There is habit persistence in consumption, as indicated by the inclusion of the term bCj,t−1. The
endogenous preference shifter is defined as19

Θt = ZCt ῩN
t , (4.5)

where C̄t is average aggregate consumption,

ZCt =
(
ZCt−1

)1−ν ( 1

ῩN
t

)ν
, (4.6)

and ῩN
t is the marginal utility of consumtpion given by

ῩN
t = ζβt ζ

c
t

1

C̄t − bC̄t−1
− βbEtζβt+1ζ

c
t+1

1

C̄t+1 − bC̄t
. (4.7)

In a symmetric equilibrium C̄t = Ct. Integrating over all household members’utilities, using that
Cj,k,t = Ct for all (j, k), gives20

E0

∞∑
t=0

βtζβt

[
ζct log (Ct − bCt−1)− ζnt Θt

∫ 1

0

∫ nj,t

0
kϕdkdj

]

= E0

∞∑
t=0

βtζβt

[
ζct log (Ct − bCt−1)− ζnt Θt

∫ 1

0

n1+ϕ
j,t

1 + ϕ
dj

]
. (4.8)

We can derive the household-relevant marginal rate of substitution between consumption and
employment for type j workers as follows:

MRSj,t = −∂Ut/∂Nj,t

∂Ut/∂Ct
,

17 In this preference specification, the coeffi cient of relative risk aversion equals one, as implied by the assumption of
log utility.
18Note that all three shocks cannot be turned on at once in the estimation of the model. They are all included in the

derivations to allow for the possibility of choosing any subset of the three.
19Note that, when habits are external and ζβt = ζct = 1, our expressions coincide with Θt and ZCt in Galí, Smets, and

Wouters (2012) (in Galí, Smets, and Wouters (2012), ZCt is denoted by Zt), as given by

Θt =
ZCt

C̄t − bC̄t−1
,

ZCt =
(
ZCt−1

)1−ν (
C̄t − bC̄t−1

)ν
.

20Note that this expression is very similar to the preference specifications in Christiano, Trabandt, and Walentin (2011)
and Adolfson et al. (2013). Instead of ζht , which was the notation of the shock to the household’s labor supply in the
model with hours, we now have ζnt Θt in front of the disutility of work term, and the inverse of the Frisch elasticity of
labor supply σL is now replaced by the preference parameter ϕ.
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where Ut denotes the household’s utility function. We then have

MRSj,t = −
−ζβt ζnt Θtn

ϕ
j,t

ζβt ζ
c
t

1
Ct−bCt−1

− βbEtζβt+1ζ
c
t+1

1
Ct+1−bCt

.

In a symmetric equilibrium where C̄t = Ct, using (4.7) we can rewrite this as

MRSj,t =
ζβt ζ

n
t Θtn

ϕ
j,t

ῩN
t

. (4.9)

We thus note that, in a symmetric equilibrium, ῩN
t is the marginal utility of consumption.

4.2 The household’s budget constraint

The representative household optimizes its utility subject to the following budget constraint:

P ct Ct + P it (It + a (ut)K
p
t ) + Pk′,t∆t +Bt+1 + StB

F
t+1

=

∫ 1

0

∫ nj,t

0
Wj,k,tdkdj +Rkt utK

p
t +Rt−1χt−1Bt +R∗t−1Φt−1χt−1StB

F
t + Πt + TRt, (4.10)

where the left-hand side contains the expenditure terms and the right-hand side the income terms.
The budget constraint (4.10) is slightly modified compared to the earlier Riksbank models, due to the
assumption that some household members do not work.

The households spend part of their resources on consumption and investment, purchasing aggregate
consumption and investment goods at the prices P ct and P

i
t , respectively. Moreover, as the households

own the economy’s physical capital stock, they also pay for the capital utilization costs which we will
describe further under 4.2.1 below. Note that we assume that the variable capital utilization involves
the use of investment goods, as described in Section 3.4. The term Pk′,t∆j,t is included to allow for
the computation of the price of capital in the model, Pk′,t. The term ∆t reflects the existence of a
market for capital, and will be further explained in Section 4.3 below. Finally, the households invest in
domestic bonds Bt+1 (on which they earn interest in period t+ 1), denominated in domestic currency,
and foreign bonds BF

t+1, denominated in foreign currency. St denotes the nominal exchange rate,
defined as the price of a unit of foreign currency expressed in terms of the domestic currency.

The households receive income from wages, with Wj,k,t denoting the wage set by the household
as specified in Section 4.6 below. Note that Wj,k,t = Wj,t for all k, as firms pay the same price for
the labour of type j irrespectively of which household member that supplies the labour. Note further
that, unlike in the setup based on Erceg, Henderson, and Levin (2000) as in Christiano, Trabandt,
and Walentin (2011), and Adolfson et al. (2013), the wage in our model is defined as the wage per
worker rather than the wage per hour, as reflected by the integral over the household members wages
replacing the product of wages and hours worked. The households further receive return on their
capital holdings as given by the second term on the right-hand side. There is a distinction between
physical and effi cient capital in the model, as we allow for a variable capital utilization rate, denoted
by uj,t. With K

p
j,t denoting physical capital, effi cient capital is given by

Kj,t = uj,tK
p
j,t, (4.11)

and it yields a return of Rkt . Interest rates are expressed as gross interest rates, so that Rt = 1 + rt.
Moreover, households earn interest on their bond holdings. The interest rate they earn on their
holdings of domestic bonds are Rt−1 adjusted by the exogenous process χt−1 – a risk premium shock
as in Smets and Wouters (2007), given by the following AR(1) process:

logχt =
(
1− ρχ

)
logχ+ ρχ logχt−1 + σχεχ,t. (4.12)
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This shock induces a wedge between the interest rate controlled by the central bank and the return on
assets held by the households, and has similar effects as a net-worth shock in Bernanke, Gertler, and
Gilchrist (1999).21 A positive shock to this wedge increases the required return on assets and reduces
current consumption. It is different from the discount factor shock (as in Smets and Wouters (2003))
or the shock to consumer preferences (ζct in our model), however, as it also increases the cost of capital
and reduces the value of capital and investment, while the other two affect only the consumption
Euler equation. The risk premium shock can thus help generate comovement of consumption and
investment.22 The foreign bonds instead pay a risk-adjusted interest rate of R∗t−1Φt−1χt−1, where
Φt−1 denotes the premium on foreign bond holdings, discussed further in Section 4.2.2 below. The
households own the firms in the economy, from which they recieve profits denoted by Πt.23 Finally,
TRt denotes potential lump-sum transfers (or taxes) that the household receives from (or pays to) the
government.

4.2.1 The capital utilization costs

The capital utilization cost function, a (ut), is an increasing, convex (a′′ ≥ 0) function of the utilization
rate ut. It is assumed to satisfy a (1) = 0, u = 1 and a′ = r̄k in steady state, where r̄k is the scaled real
rental rate of capital further explained in Section 2.1.24 Under these assumptions, the steady state
of the model is independent of σa ≡ a′′ (u) /a′ (u). The dynamics of the model, however, do depend
on σa.25 The specific functional form for a (ut), assumed also in Christiano, Trabandt, and Walentin
(2011) and Adolfson et al. (2013), is given by the following expression:

a (ut) = 0.5σbσau
2
t + σb (1− σa)ut + σb ((σa/2)− 1) , (4.13)

where σa and σb are the parameters of this function. The first- and second-order derivatives are given
by

a′ (ut) = σbσaut + σb (1− σa) , (4.14)

a′′ (ut) = σbσa, (4.15)

yielding
a′′ (u)

a′ (u)
=
a′′ (1)

a′ (1)
=

σbσa
σbσau+ σb − σbσa

=
σbσa
σb

= σa (4.16)

in steady state. Moreover,

a (u) = a (1) = 0.5σbσa + σb − σbσa + 0.5σbσa − σb = 0. (4.17)

4.2.2 Risk adjustment on foreign holdings

The risk adjustment term, Φt, depends on the real aggregate net foreign asset position of the domestic
economy, āt, the anticipated growth rate of the exchange rate, and a time-varying mean-zero shock to
the risk premium φ̃t – the country risk premium shock, given by the following AR(1) process:

log φ̃t =
(

1− ρφ̃
)

log φ̃+ ρφ̃ log φ̃t−1 + σφ̃εφ̃,t. (4.18)

21A structural interpretation of this shock is provided in Fisher (2015).
22Note that we assume that this risk premium is tied to the household and so it enters the return of both domestic

and foreign bonds alike.
23Note that the model will be calibrated so that profits equal zero in steady state.
24We denote by bar the real version of the corresponding nominal variables and by small letters the scaled version of

the corresponding capital-letter variable.
25Note that, for estimation purposes, we will introduce the following transformation of σa:

σa =
1− σtra
σtra

,

setting a prior on and estimating σtra , instead of σa.
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Specifically,

Φt = Φ
(
āt, Etst+1st, φ̃t

)
= exp

(
−φ̃a (āt − ā)− φ̃s

(
Etst+1st − s2

)
+ φ̃t

)
, (4.19)

where φ̃a and φ̃s are positive parameters, st ≡ St/St−1 denotes the growth rate of the exchange rate,
and

āt ≡
StB

F
t+1

P dt z
+
t

. (4.20)

Note that variables without time subscript denote the corresponding value in a non-stochastic steady
state. The term z+

t in equation (4.20) is a scaling variable, defined as a combination of investment-
specific and neutral technology, which is included in order to ensure the stationarity of the model, as
discussed in Section 2.1.

The dependence of Φt on āt in equation (4.19) ensures that the steady state of the model is well-
defined. Φt is assumed to be strictly increasing in āt, and it holds that Φ = 1 in a non-stochastic steady
state, as shown in Section 12. If the domestic economy is a net borrower (lender), so that BF

t+1 < 0
(BF

t+1 > 0), domestic households must pay a premium on the foreign interest rate (recieve lower
interest on their savings). This term, along with the stochastic risk premium shock, were included in
the Ramses I and Ramses II specifications alike.

The dependence of Φt on the exchange rate was instead specific to Ramses II. It is included to allow
the model to reproduce two observations regarding the uncovered interest parity (UIP) and the output
response to a monetary policy shock, respectively. First, while the standard UIP condition implies
that a decrease in Rt relative to R∗t produces an anticipated appreciation of the domestic currency,
acheived by an instantaneous depreciation in the exchange rate on impact, this turns out not to hold
empirically.26 In theory, asset holders respond to the decreased rate of return on domestic assets by
attempting to sell these for the purpose of acquiring foreign ones. The implied increased demand for
foreign currency puts a pressure on the exchange rate to depreciate, until the anticipated appreciation
exactly compensates traders holding domestic assets. An interpretation of why this does not hold in
data is that the reduction in the domestic interest rate, say by a monetary policy shock, reduces the
general risk in the domestic economy which makes traders happier to hold domestic assets in spite of
their lower nominal return. The specification of Φt is designed to capture this idea, as an anticipated
appreciation in the level of the exchange rate lowers the assessment of risk in the domestic economy.
Second, the output response to a monetary policy shock is generally found to be hump-shaped in data,
which requires mechanisms that slow down the initial response of demand to the shock. The increase
in net exports, specifically, depends on the degree of depreciation when the shock hits, and is reduced
by the introduction of the risk adjustment mechanism described above.

The specification of the risk adjustment term in Ramses II differs from that in the published CTW
paper, where Φt is given by the following expression:

Φt = Φ
(
āt, R

∗
t −Rt, φ̃t

)
= exp

(
−φ̃a (āt − ā)− φ̃s (R∗t −Rt − (R∗ −R)) + φ̃t

)
.

This is motivated using the regression interpretation of the uncovered interest parity result, specifically
considering the regression coeffi cient

γ =
cov (logSt+1 − logSt, Rt −R∗t )

var (Rt −R∗t )
=

in theory︷︸︸︷
1 but

in data︷︸︸︷
< 0 .

Log-linearizing the CTW expression for Φt, we have that

γ =
cov (logSt+1 − logSt, Rt −R∗t )

var (Rt −R∗t )
=
cov (Rt −R∗t − Φt, Rt −R∗t )

var (Rt −R∗t )
= 1− cov (Rt −R∗t ,Φt)

var (Rt −R∗t )
.

26 In earlier/internal versions of the Ramses II documentation (but not in the published occasional paper), there is a
nice and intuitive description of the reasoning underlying the exact choice of the specification for the risk adjustment
term.

51



Given that γ is usually found to be negative in the data, in stark contrast to the positive unit value
implied by theory, any specification of Φt which causes it to have a positive covariance with the interest
rate differential will help in accounting for this discrepancy with the data. With the assumption made
in CTW that φ̃s > 1, γ will be negative as usually found in the data. The reason that this specification
was in the end not used in Ramses II has to do with the fact the the motivation for it comes mainly
from movements caused by monetary policy shocks. While it is plausible that a negative interest
rate differential (i.e. Rt − R∗t < 0) stemming from a monetary policy shock may signal lower risk in
the domestic economy, this mechanism is not as intuitive when the interest rate differential is driven
by some other underlying shock. As monetary policy shocks account for only a small share of the
total variance in the observed variables, this specification was changed in Ramses II to one that more
directly addresses the issues related to the observed unoconditional moments of the exchange rate
such as the high autocorrelation found in data.

4.3 The law of motion for capital

As mentioned above, the households in the economy own the capital stock, denoted by Kp
t , with the

subscript p included to distinguish the physical capital stock from the effi cient capital available to
firms. We omit the household index j throughout this section. The law of motion for the households
physical capital stock is given by

Kp
t+1 = (1− δ)Kp

t + ΥtF (It, It−1) + ∆t, (4.21)

where δ denotes the capital depreciation rate, F (It, It−1) summarizes the technology that transforms
current and past investment into installed capital for use in the following period, and Υt is a stationary
investment-specific technology shock that affects the effi ciency of transforming investments into capital.
It is assumed to evolve according to the following process:

log Υt = (1− ρΥ) log Υ + ρΥ log Υt−1 + σΥεΥ,t. (4.22)

∆t is included to help define the shadow price of capital Pk′,t. The households have access to a market
where they can purchase new capital, Kp

t+1. As the market for capital is closed, households wishing
to sell Kp

t+1 are the only source of supply, and households wishing to buy K
p
t+1 the only source of

demand on this market. As all households are identical, the only equilibrium is one where ∆t = 0.
Pk′,t is the shadow value, in consumption units, of a unit of installed capital (for use in the following
period) as of time t when the household makes its investment and capital utilization decision. In other
words, the shadow price is what the price of installed capital would be if there were a market for Kp

t+1

at the beginning of period t.27 Note that we use the stock at the beginning of the period convention,
so that the investment during period t determines the capital stock at the beginning of period t+ 1.
This is of relevance when setting up the model in Dynare, as Dynare uses the stock at the end of the
period convention and the the timing of the stock variables therefore must be changed in the code.

The investment technology is assumed to be given by the following function:28

F (It, It−1) =

(
1− S̃

(
It
It−1

))
It, (4.23)

where S̃ (x) = S̃′ (x) = 0, and S̃′′ (x) ≡ S̃′′ > 0 is assumed to hold in steady state, with x =
µz+µΨ denoting the real investment growth rate in steady state. Note that only the adjustment cost

27This is explained in more detail in Christiano, Eichenbaum, and Evans (2005).
28This was introduced by Christiano, Eichenbaum, and Evans (2005), and adopted in both Ramses I and Ramses II.

Note that the capital adjustment costs are modelled as a function of the change in investment rather than its level. In
other words, we introduce investment adjustment costs rather than capital adjustment costs. The reason for this are
the additional dynamics in the investment equation, which have proven useful in capturing the humpshaped response of
investment following shocks (see, for example, Smets and Wouters (2007)).
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parameter, S̃′′, needs to be specified, as it affects the dynamics of the model.29 The steady state of
the model does not depend on the adjustment cost parameter. Taking the derivative of F (It, It−1)
with respect to its arguments, we obtain

F1 (It, It−1) ≡ ∂F (It, It−1)

∂It
= −S̃′

(
It
It−1

)
It
It−1

+

(
1− S̃

(
It
It−1

))
, (4.24)

F2 (It, It−1) ≡ ∂F (It, It−1)

∂It−1
= S̃′

(
It
It−1

)(
It
It−1

)2

. (4.25)

In steady state, we then have

F1 (I, I) = −S̃′ (x)x+
(

1− S̃ (x)
)

= 1, (4.26)

F2 (I, I) = S̃′ (x) (x)2 = 0. (4.27)

The specific functional form for S̃ used in Christiano, Trabandt, and Walentin (2011) and Adolfson
et al. (2013), and its first- and second-order derivatives are given by

S̃ (x) =
1

2

{
exp

[√
S̃′′ (x− µz+µΨ)

]
+ exp

[
−
√
S̃′′ (x− µz+µΨ)

]
− 2
}

︸ ︷︷ ︸
=1+1−2

= 0, x = µz+µΨ,

S̃′ (x) =
1

2

{√
S̃′′ exp

[√
S̃′′ (x− µz+µΨ)

]
+
(
−
√
S̃′′
)

exp
[
−
√
S̃′′ (x− µz+µΨ)

]}
=

1

2

√
S̃′′
{

exp
[√

S̃′′ (x− µz+µΨ)
]
− exp

[
−
√
S̃′′ (x− µz+µΨ)

]}
︸ ︷︷ ︸

=1−1

= 0, x = µz+µΨ,

S̃′′ (x) =
1

2

√
S̃′′
{√

S̃′′ exp
[√

S̃′′ (x− µz+µΨ)
]
−
(
−
√
S̃′′
)

exp
[
−
√
S̃′′ (x− µz+µΨ)

]}
=

1

2
S̃′′
{

exp
[√

S̃′′ (x− µz+µΨ)
]

+ exp
[
−
√
S̃′′ (x− µz+µΨ)

]}
︸ ︷︷ ︸

=1+1

= S′′, x = µz+µΨ.

In the Adolfson et al. (2005) documentation of Ramses I, an example is given of a different functional
form for S̃ (x) in footnote 11. Both these specifications fulfil the requirements on S̃ (x), why it is of
little importance which one we choose. As it may simplify calibration comparisons with Ramses II, we
here adopt the more recent specification in Christiano, Trabandt, and Walentin (2011), and Adolfson
et al. (2013).

Note also that equation (4.11) yields

Kt = utK
p
t . (4.28)

4.4 The household’s optimization problem

In each period, the household chooses its consumption and bond holdings to maximize equation (4.8)
subject to the budget constraint given in equation (4.10) and the law of motion for capital in equation

29Note that, for estimation purposes, we will introduce the following transformation of S′′:

S′′ =
1− S′′,tr

S′′,tr
,

setting a prior on and estimating S′′,tr, instead of S′′.
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(4.21). Moreover, households decide the level of capital services provided to the firms. They can
increase the capital stock by investing in additional physical capital, in which case the newly invested
capital becomes operational one period ahead, or by increasing the utilization rate of the existing
capital. Specifically, households solve the following Lagrangian problem:

max
Ct,Bt+1,BFt+1,K

p
t+1,∆t,It,ut

Ej0

∞∑
t=0

βtζβt [Lt] , (4.29)

Lt =


ζct log (Ct − bCt−1)− ζnt Θt

∫ 1
0

n1+ϕ
j,t

1+ϕ dj

+υt

[ ∫ 1
0

∫ nj,t
0 Wj,k,tdkdj +Rkt utK

p
t +Rt−1χt−1Bt +R∗t−1Φt−1χt−1StB

F
t + Πt + TRt

−
(
P ct Ct + P it (It + a (ut)K

p
t ) + Pk′,t∆t +Bt+1 + StB

F
t+1

) ]
+ωt

[
(1− δ)Kp

t + ΥtF (It, It−1) + ∆t −Kp
t+1

]
 ,

where υt is the shadow value in utility terms of domestic currency. We then obtain the following set
of first-order conditions:

w.r.t. Ct : ζβt ζ
c
t

1

Ct − bCt−1
− βbEtζβt+1ζ

c
t+1

1

Ct+1 − bCt
− ζβt υtP ct = 0 (4.30)

w.r.t. Bt+1 : −ζβt υt + βEtζ
β
t+1υt+1Rtχt = 0 (4.31)

w.r.t. BF
t+1 : −ζβt υtSt + βEtζ

β
t+1υt+1R

∗
tΦtχtSt+1 = 0 (4.32)

w.r.t. Kp
t+1 : −ζβt ωt + βEt

[
ζβt+1υt+1

(
Rkt+1ut+1 − P it+1a (ut+1)

)
+ ζβt+1ωt+1 (1− δ)

]
= 0 (4.33)

w.r.t. ∆t : −ζβt υtPk′,t + ζβt ωt = 0 (4.34)

w.r.t. It : −ζβt υtP it + ζβt ωtΥtF1 (It, It−1) + βEtζ
β
t+1ωt+1Υt+1F2 (It+1, It) = 0 (4.35)

w.r.t. ut : ζβt υtK
p
t

(
Rkt − P it a′ (ut)

)
= 0 (4.36)

We note that, using (4.7), we can also write (4.30) as follows:

ῩN
t = ζβt υtP

c
t . (4.37)

4.5 Unemployment and labour supply

As mentioned in Section 4.1 above, modelling the labour market as in Galí, Smets, and Wouters (2012)
allows us to introduce unemployment into the model. Just as in Galí, Smets, and Wouters (2012)
(following in turn Galí (2011a) and Galí (2011b)) the unemployment rate is defined as

Ut =
Lt −Nt

Lt
= 1− Nt

Lt
≈ logLt − logNt. (4.38)

With this definition, the unemployed include all the individuals who would like to be working but
are not currently employed. As argued in Galí, Smets, and Wouters (2012), it can thus be viewed
as involuntary. Note that the assumption that the individual members of the household take into
account the utility of the household rather than their personal utility is crucial. As the model implies
that unemployed individuals will enjoy a higher utility ex post than employed individuals – which
follows from the assumption of full consumption risk-sharing – not internalizing the benefits to the
household of an individual’s unemployment would result in no participation.

An individual specialized in type-j labour and with disutility of work ζβt ζ
n
t Θtk

ϕ finds it optimal
to participate in the labour market whenever(

ζβt ζ
c
t

1

Ct − bCt−1
− βbζβt+1ζ

c
t+1

1

Ct+1 − bCt

)
Wj,t

P ct
≥ ζβt ζ

n
t Θtk

ϕ

ῩN
t

Wj,t

P ct
≥ ζβt ζ

n
t Θtk

ϕ,
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using household welfare as a criterion, and taking as given current labour market conditions as sum-
marized by the type-j prevailing wage. Recall that we in a symmetric equilibrium have C̄t = Ct. The
household member that is just willing to supply labour Lj,t is then given by the expression above
holding with equality. We get, in a symmetric equilibrium,

Wj,t

P ct
= ζβt ζ

n
t Z

C
t L

ϕ
j,t. (4.39)

4.6 Wage setting

We assume that households are monopolistic suppliers of differentiated labour services hired by the
firm. Thus, households can determine their wages. After having set their wages, households inelasti-
cally supply the firms’demand for labour at the going wage rate. We suppose that the differentiated
labour, nj,t, is sold by households to labour contractors who combine it into a homogeneous input
good Nt using the following technology:

Nt =

[∫ 1

0
(nj,t)

1
λwt dj

]λwt
, 1 ≤ λwt <∞, (4.40)

where λwt is a time-varying wage markup given by the following process:

log λwt = (1− ρλw) log λw + ρλw log λwt−1 + σλwελw,t. (4.41)

These labour contractors take the price of the jth differentiated labour input, Wj,t, and the price of
the homogeneous labour service, Wt, as given. Profit maximization writes

max
nj,t

WtNt −
∫ 1

0
Wj,tnj,tdj,

and leads to the following first-order condition:

nj,t =

(
Wj,t

Wt

) λwt
1−λwt

Nt, (4.42)

which is a demand curve for the individual households’labour services. Integrating (4.42) and using
the definition of Nt, we obtain the expression for the aggregate wage rate:

Wt =

[∫ 1

0
(Wj,t)

1
1−λwt dj

]1−λwt
. (4.43)

We consider that households are subject to Calvo wage setting frictions as in Erceg, Henderson,
and Levin (2000). In every period, each labour type (or union representing that labour type) faces a
probability 1 − ξw that it can reoptimize its nominal wage, independent of when it was last allowed
to reoptimize. If the union reporesenting the jth labour type is not able to reoptimize in period t, the
wage it will charge in period t+ 1 will be set according to the following indexation rule:{

Wj,t+1 = π̃wt+1Wj,t

π̃wt+1 ≡ (πct)
κw
(
π̄ct+1

)1−κw−κw (π̆)κw (µz+)ϑw .
(4.44)

Let us denote by W̃j,t the reoptimized nominal wage of the union representing the jth labour type
that is set in period t, and consider that this union has not been able to reoptimize during s periods
ahead. The wage in t+ s will be given by

Wj,t+s = π̃wt+s . . . π̃
w
t+1W̃j,t.
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When reoptimizing their wage in period t, unions representing labour of type j choose the wage
in order to maximize the representative households’utility (as opposed to the individuals’utility),
subject to the usual sequence of household flow budget constraints and labour demand. In period t,
when setting its wage W̃j,t the unions representing labour of type j will maximize its future discounted
utility subject to the budget constraint as in Section 4.4, taking into account that there is a probability
ξw in each period that it cannot reoptimize. Using (4.8) and ignoring the irrelevant terms (of the utility
function) for the wage setting problem, the problem becomes

max
W̃j,t

Et
∞∑
s=0

(βξw)s ζβt+s

[
−ζnt+sΘt+s

n1+ϕ
j,t+s

1+ϕ + υt+sWj,t+snj,t+s

]
s.t. nj,t =

(
Wj,t

Wt

) λwt
1−λwt Nt

. (4.45)

Replacing both nj,t and the expression for the wage Wj,t+s, we get30

max
W̃j,t

Et

∞∑
s=0

(βξw)s ζβt+s

 −ζnt+s
Θt+s
1+ϕ

[(
π̃wt+s...π̃

w
t+1

Wt+s

) λwt+s
1−λwt+s Nt+s

]1+ϕ

W̃

λwt+s(1+ϕ)

1−λwt+s
j,t

+υt+s (Wt+s)
−

λwt+s
1−λwt+s Nt+s

(
π̃wt+s . . . π̃

w
t+1

) 1
1−λwt+s

(
W̃j,t

) 1
1−λwt+s

 .
The FOC associated with this problem directly yields the expression for the optimal wage W̃t,

which is independent of j, as each union faces the same optimization problem. Taking derivatives
w.r.t. W̃j,t gives(

W̃j,t

)1−
ϕλwt+s

1−λwt+s Et

∞∑
s=0

(βξw)s ζβt+sυt+s (Wt+s)
−

λwt+s
1−λwt+s Nt+s

(
π̃wt+s . . . π̃

w
t+1

) 1
1−λwt+s

= Et

∞∑
s=0

(βξw)s ζβt+sζ
n
t+sΘt+sλ

w
t+s

( π̃wt+s . . . π̃wt+1

Wt+s

) λwt+s
1−λwt+s

Nt+s

1+ϕ

.

Rearranging and dropping the index j, we obtain

W̃

1−λwt+s(1+ϕ)

1−λwt+s
t =

Et
∞∑
s=0

(βξw)s ζβt+sζ
n
t+sΘt+sλ

w
t+s

[(
π̃wt+s...π̃

w
t+1

Wt+s

) λwt+s
1−λwt+s Nt+s

]1+ϕ

Et
∞∑
s=0

(βξw)s ζβt+sυt+sWt+sNt+s

(
π̃wt+s...π̃

w
t+1

Wt+s

) 1
1−λwt+s

.

To rewrite in terms of relative wages, we divide both sides by W

1−λwt+s(1+ϕ)

1−λwt+s
t to obtain

w̃

1−λwt+s(1+ϕ)

1−λwt+s
t =

Et
∞∑
s=0

(βξw)s ζβt+sζ
n
t+sΘt+sλ

w
t+s

[(
Wtπ̃wt+s...π̃

w
t+1

Wt+s

) λwt+s
1−λwt+s Nt+s

]1+ϕ

Et
∞∑
s=0

(βξw)s ζβt+sυt+sWt+sNt+s

(
Wtπ̃wt+s...π̃

w
t+1

Wt+s

) 1
1−λwt+s

, (4.46)

where w̃t = W̃t
Wt
, and we have used that

(Wt)

λwt+s
1−λwt+s

(1+ϕ)

(Wt)
1

1−λwt+s

= W
−

1−λwt+s(1+ϕ)

1−λwt+s
t .

30Note that the objective is almost the same as in the Smets and Wouters (2003) model. Instead of ζnt+s
AL

1+σL

multiplying the first term in the summation, we instead have ζnt+s
Θt+s
1+ϕ

and the term within the square brackets is raised
to 1 + ϕ instead of 1 + σL. The first-order condition is then almost identical to the Smets and Wouters (2003) model.
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Consider again the aggregate wage index (4.43). Due to the Calvo assumption on wage setting
frictions, the fraction of unions that are allowed to reoptimize their wages is random, and thus the
integral over some subset of the unit interval is equal to the integral over the entire unit interval
weighted by the fraction of the unit interval over which the former integral is taken. We can then
rewrite the wage index as follows:

W
1

1−λwt
t =

∫ 1

0
(Wj,t)

1
1−λwt dj

=

∫ ξw

0
(π̃wt Wj,t−1)

1
1−λwt dj +

∫ 1

ξw

(
W̃t

) 1
1−λwt dj

= ξw (π̃wt Wt−1)
1

1−λwt + (1− ξw)
(
W̃t

) 1
1−λwt .

Dividing both sides by W
1

1−λwt
t , we obtain

1 = ξw

(
π̃wt
πwt

) 1
1−λwt

+ (1− ξw) (w̃t)
1

1−λwt

w̃t =

1− ξw
(
π̃wt
πwt

) 1
1−λwt

(1− ξw)


1−λwt

, (4.47)

where

πwt =
Wt

Wt−1
=

w̄tz
+
t P

d
t

w̄t−1z
+
t−1P

d
t−1

=
w̄tµz+,tπ

d
t

w̄t−1
. (4.48)

For use in later sections, we now derive the relationship between aggregate homogeneous labour
Nt, and aggregate household labour nt, defined as

nt ≡
∫ 1

0
nj,tdj.

Substituting for the demand for nj,t, using (4.42), we obtain

nt = Nt

∫ 1

0

(
Wj,t

Wt

) λwt
1−λwt

dj

nt = Nt (ẘt)
λwt

1−λwt , (4.49)

where ẘt is a measure of wage dispersion defined as

ẘt ≡

∫ 1

0

(
Wj,t

Wt

) λwt
1−λwt

dj


1−λwt
λwt

. (4.50)

We can break this integral and re-express it in terms of aggregates using the Calvo assumption on wage
setting frictions. The fraction of households that are allowed to reoptimize their wages is random,
and thus the integral over some subset of the unit interval is equal to the integral over the entire unit
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interval weighted by the fraction of the unit interval over which the former integral is taken. Hence,

ẘt =

∫ ξw

0

(
π̃wt Wj,t−1

Wt

) λwt
1−λwt

dj +

∫ 1

ξw

(
W̃t

Wt

) λwt
1−λwt

di


1−λwt
λwt

=

(π̃wt )
λwt

1−λwt

∫ ξw

0

(
Wt−1

Wt

Wj,t−1

Wt−1

) λwt
1−λwt

dj + (1− ξw) (w̃t)
λwt

1−λwt


1−λwt
λwt

=

ξw ( π̃wtπwt ẘt−1

) λwt
1−λwt

+ (1− ξw) (w̃t)
λwt

1−λwt


1−λwt
λwt

.

Using (4.47), we finally obtain

ẘt =

ξw ( π̃wtπwt ẘt−1

) λwt
1−λwt

+ (1− ξw)

1− ξw
(
π̃wt
πwt

) 1
1−λwt

(1− ξw)


λwt


1−λwt
λwt

. (4.51)

4.7 Scaling of the household equations

To express the model in stationary form, we need to divide the quantities with the trend level of the
neutral and, where applicable, investment-specific technologies, as specified in Section 2.1.

4.7.1 Scaling of the preference shifters and MRS

We start by scaling the expression for the endogenous preference shifter Θt in equation (4.5). We
rewrite (4.5) as

Θt =
ZCt
z+
t

ῩN
t z

+
t =

ZCt
z+
t

ζct 1

C̄t
z+
t

− b C̄t−1

z+
t−1

z+
t−1

z+
t

− βbEtζct+1

1

C̄t+1

z+
t+1

z+
t+1

z+
t

− b C̄t
z+
t

 ,

where
ZCt
z+
t

=

(
ZCt−1

z+
t−1

z+
t−1

z+
t

)1−ν (
1

z+
t ῩN

t

)ν
.

Defining
ῡNt = ῩN

t z
+
t ,

we have that

ῡNt = ῩN
t z

+
t = ζβt ζ

c
t

1

C̄t
z+
t

− b C̄t−1

z+
t−1

z+
t−1

z+
t

− βbEtζβt+1ζ
c
t+1

1

C̄t+1

z+
t+1

z+
t+1

z+
t

− b C̄t
z+
t

.

Then, using that we in a symmetric equilibrium have that Ct = C̄t,

Θt = zCt ῡ
N
t = ζβt ζ

c
t

zCt
ct − bct−1

1
µz+,t

− βbEtζβt+1ζ
c
t+1

zCt
ct+1µz+,t+1 − bct

, (4.52)

where

zCt =

(
zCt−1

1

µz+,t

)1−ν ( 1

ῡNt

)ν
, (4.53)
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and

ῡNt =
ζβt ζ

c
t

ct − bct−1
1

µz+,t

− βbEt
ζβt+1ζ

c
t+1

ct+1µz+,t+1 − bct
. (4.54)

For future use, we note also that

ῡNt+1 = ῩN
t+1z

+
t+1 = ζβt+1ζ

c
t+1

1

C̄t+1

z+
t+1

− b C̄t
z+
t

z+
t

z+
t+1

− βbEtζβt+2ζ
c
t+2

1

C̄t+2

z+
t+2

z+
t+2

z+
t+1

− bC̄t+1

ῡNt+1 = ῩN
t+1z

+
t+1 =

ζβt+1ζ
c
t+1

ct+1 − bct 1
µz+,t+1

− βbEt
ζβt+2ζ

c
t+2

ct+2µz+,t+2 − bct+1
,

and
ῡNt+1

µz+,t+1

=
ζβt+1ζ

c
t+1

ct+1µz+,t+1 − bct
− βbEt

ζβt+2ζ
c
t+2

ct+2µz+,t+1µz+,t+2 − bct+1µz+,t+1

. (4.55)

We can also scale the marginal rate of substituion in equation (4.9) to obtain

MRSj,t

z+
t

=
ζβt ζ

n
t ΘtN

ϕ
j,t

ῩN
t z

+
t

mrsj,t =
ζβt ζ

n
t ΘtN

ϕ
j,t

ῡNt
. (4.56)

4.7.2 Scaling of the household’s first-order conditions

Scaling equations (4.30)—(4.36), we obtain

w.r.t. ct :
ζβt ζ

c
t

ct − bct−1
1

µz+,t

− βbEt
ζβt+1ζ

c
t+1

ct+1µz+,t+1 − bct
− ζβt ψz+,tp

c
t = 0, (4.57)

w.r.t. bt+1 : −ζβt ψz+,t + βEt
ζβt+1ψz+,t+1

µz+,t+1

Rtχt
πdt+1

= 0, (4.58)

w.r.t. bFt+1 : −ζβt ψz+,tSt + βEt
ζβt+1ψz+,t+1

πdt+1µz+,t+1

R∗tΦtχtSt+1 = 0, (4.59)

w.r.t. kpt+1 : −ζβt ωtz+
t Ψt + βEt

 ζβt+1ψz+,t+1

µz+,t+1µΨ,t+1

(
r̄kt+1ut+1 − pit+1a (ut+1)

)
+ζβt+1ωt+1z

+
t+1Ψt+1

1
µz+,t+1µΨ,t+1

(1− δ)

 = 0, (4.60)

w.r.t. ∆̃t : −ζβt ψz+,tp̆k′,t + ζβt ωtz
+
t Ψt = 0, (4.61)

w.r.t. it :
−ζβt ψz+,tp

i
t + ζβt ωtz

+
t ΨtΥtF1 (it, it−1)

+βEtζ
β
t+1ωt+1z

+
t+1Ψt+1

1
µz+,t+1µΨ,t+1

Υt+1F2 (it+1, it) = 0
, (4.62)

where F1 (it, it−1) and F2 (it+1, it) are specified further below, and

w.r.t. ut : ζβt ψz+,tk
p
t

1

µz+,tµΨ,t

(
r̄kt − pita′ (ut)

)
= 0. (4.63)

We can also scale equation (4.37) to get

ῡNt = ζβt ψz+,tp
c
t , (4.64)
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where we have used the definitions ῡNt = ῩN
t z

+
t and ψz+,t = υtz

+
t .

We note that equation (4.58) yields the following expression for the rescaled Lagrange multiplier
ψz+,t:

ψz+,t = βEt
ζβt+1

ζβt

ψz+,t+1

µz+,t+1

Rtχt
πdt+1

. (4.65)

We can combine the first-order conditions for domestic and foreign bond holdings, (4.58) and (4.59),
to obtain

Rt = R∗tΦtEtst+1, (4.66)

which is a modified uncovered interest rate parity condition, with the term Φt defined as in equation
(4.19), and st+1 defined as follows:

st+1 =
St+1

St
.

We can rewrite equation (4.66) in real terms as follows:

Rt
Etπct+1

=
R∗t

Etπ
c,∗
t+1

ΦtEt
st+1π

c,∗
t+1

πct+1

R̄t = R̄∗tΦtEt
St+1P

c,∗
t+1

P ct+1

P ct
StP

c,∗
t

R̄t = R̄∗tΦtEt
qt+1

qt
,

where the real interest rates are denoted by a bar, and we have used the definition of the real exchange
rate

qt =
StP

c,∗
t

P ct
.

Moreover, we can combine equations (4.58) and (4.57) to obtain the following household consumption
Euler equation:

ζβt ζ
c
t

ct − bct−1
1

µz+,t

− βbEt
ζβt+1ζ

c
t+1

ct+1µz+,t+1 − bct

= βEt
Rtχt
πdt+1

pct
pct+1

[
ζβt+1ζ

c
t+1

ct+1µz+,t+1 − bct
− βbEt

ζβt+2ζ
c
t+2

ct+2µz+,t+1µz+,t+2 − bct+1µz+,t+1

]
,

and noting that
pct
pct+1

=
P ct
P dt

P dt+1

P ct+1

=
πdt+1

πct+1

,

ζβt ζ
c
t

ct − bct−1
1

µz+,t

− βbEt
ζβt+1ζ

c
t+1

ct+1µz+,t+1 − bct

= βEt
Rtχt
πct+1

[
ζβt+1ζ

c
t+1

ct+1µz+,t+1 − bct
− βbEt

ζβt+2ζ
c
t+2

ct+2µz+,t+1µz+,t+2 − bct+1µz+,t+1

]
. (4.67)

Using (4.54) and (4.55), we can also rewrite the above equation as

ῡNt = βEt
Rtχt

πct+1µz+,t+1

ῡNt+1. (4.68)
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For intuition, note that, in the absence of habit formation, i.e. when b = 0, (4.67) collapses to the
standard simple Euler equation given by

ζβt ζ
c
t

1

ct
= βEt

Rtχt
πct+1

ζβt+1ζ
c
t+1

1

ct+1µz+,t+1

,

which states that the expected utility of one unit of consumption today equals the discounting expected
utility of postponing that consumption until the next period. In other words, the consumer chooses
her consumption such that she is indifferent between consuming one more unit today, on the one hand,
and saving that unit and consuming it in the future, on the other.

Using equation (4.61), we can solve for ζβt ωtz
+
t Ψt and substitute into equation (4.60) to obtain

Et

[
r̄kt+1ut+1 − pit+1a (ut+1) + (1− δ) p̆k′,t+1

]
=

1

β
Et

ζβt

ζβt+1

ψz+,t

ψz+,t+1

µz+,t+1µΨ,t+1p̆k′,t. (4.69)

Combining with equation (4.65), we have

Et

[
r̄kt+1ut+1 − pit+1a (ut+1) + (1− δ) p̆k′,t+1

]
= Et

Rtχt
πdt+1

µΨ,t+1p̆k′,t. (4.70)

We can also substitute (4.61) into equation (4.62), yielding

pit = p̆k′,tΥtF1 (it, it−1) + βEt
ζβt+1

ζβt

ψz+,t+1

ψz+,t

p̆k′,t+1
1

µz+,t+1µΨ,t+1

Υt+1F2 (it+1, it) . (4.71)

If we combine with equation (4.65), we obtain

pit = p̆k′,tΥtF1 (it, it−1) + Et
πdt+1

Rtχt
p̆k′,t+1

1

µΨ,t+1

Υt+1F2 (it+1, it) . (4.72)

From this expression it is clear that the risk premium shock, χt, affects also the value of investment,
in addition to entering in the consumption Euler equation, as discussed in Section 4.2 above. Finally,
from equation (4.63), we have that

r̄kt = pita
′ (ut) . (4.73)

To make the description of the household problem in terms of scaled variables complete, we need
also to scale F1 (It, It−1) and F2 (It, It−1). We can scale the investment terms in equations (4.24) and
(4.25) as follows:

F1 (it, it−1) = 1− S̃
(
µz+,tµΨ,tit

it−1

)
− S̃′

(
µz+,tµΨ,tit

it−1

)
µz+,tµΨ,tit

it−1
(4.74)

F2 (it, it−1) = S̃′
(
µz+,tµΨ,tit

it−1

)(
µz+,tµΨ,tit

it−1

)2

. (4.75)

Combining equation (4.71) with expressions (4.74) and (4.75), we have

pit = p̆k′,tΥt

[
1− S̃

(
µz+,tµΨ,tit

it−1

)
− S̃′

(
µz+,tµΨ,tit

it−1

)
µz+,tµΨ,tit

it−1

]
+βEt

ζβt+1

ζβt

ψz+,t+1

ψz+,t

p̆k′,t+1Υt+1S̃
′
(
µz+,t+1µΨ,t+1it+1

it

)(
it+1

it

)2

µz+,t+1µΨ,t+1.
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4.7.3 Scaling of the law of motion for capital

Starting from equation (4.21) combined with (4.23), we divide the quantities with the trend level of
the neutral and investment-specific technologies to obtain

kpt+1 =
1− δ

µz+,tµΨ,t

kpt + Υt

(
1− S̃

(
µz+,tµΨ,tit

it−1

))
it. (4.76)

We can also scale equation (4.28) with z+
t−1Ψt−1 to obtain

kt = utk
p
t . (4.77)

4.7.4 Scaling of labour supply

Using that w̄t = Wt

z+
t P

d
t

and pct =
P ct
P dt
, we can scale (4.39) to obtain

∫ 1

0

Wj,t

Wt
dj

Wt

z+
t P

d
t

P dt
P ct

=
w̄t
pct

∫ 1

0

Wj,t

Wt
dj = ζβt ζ

n
t

ZCt
z+
t

∫ 1

0
Lϕj,tdj

w̄t
pct

∫ 1

0

Wj,t

Wt
dj = ζβt ζ

n
t z

C
t

∫ 1

0
Lϕj,tdj. (4.78)

4.7.5 Scaling of the household’s wage setting

We scale equation (4.46), stated here again for convenience:

w̃

1−λwt+s(1+ϕ)

1−λwt+s
t =

Et
∞∑
s=0

(βξw)s ζβt+sζ
n
t+sΘt+sλ

w
t+s

[(
Wtπ̃wt+s...π̃

w
t+1

Wt+s

) λwt+s
1−λwt+s Nt+s

]1+ϕ

Et
∞∑
s=0

(βξw)s ζβt+sυt+sWt+sNt+s

(
Wtπ̃wt+s...π̃

w
t+1

Wt+s

) 1
1−λwt+s

.

First, note that
Wtπ̃

w
t+s . . . π̃

w
t+1

Wt+s
=
Wtπ̃

w
t+s . . . π̃

w
t+1

w̄t+sz
+
t+sP

d
t+s

,

where w̄t = Wt

z+
t P

d
t

is the scaled real wage, and µz+,t+1 . . . µz+,t+s =
z+
t+s

z+
t

, πdt+1 . . . π
d
t+s =

P dt+s
P dt
. We can

then rewrite the previous ratio as

Wtπ̃
w
t+s . . . π̃

w
t+1

w̄t+sz
+
t+sP

d
t+s

=
Wt

z+
t P

d
t

π̃wt+s . . . π̃
w
t+1

w̄t+sµz+,t+1 . . . µz+,t+sπ
d
t+1 . . . π

d
t+s

=
w̄t
w̄t+s

π̃wt+s . . . π̃
w
t+1

µz+,t+1 . . . µz+,t+sπ
d
t+1 . . . π

d
t+s

.

The expression for the optimal wage in terms of stationary variables is then given by

w̃

1−λwt+s(1+ϕ)

1−λwt+s
t =

λwt+sEt
∞∑
s=0

(βξw)s ζβt+sζ
n
t+sΘt+s

( w̄t
w̄t+s

π̃wt+s...π̃
w
t+1

µz+,t+1...µz+,t+sπ
d
t+1...π

d
t+s

) λwt+s
1−λwt+s

Nt+s

1+ϕ

Et
∞∑
s=0

(βξw)s ζβt+sψz+,t+sw̄t+sNt+s

(
w̄t
w̄t+s

π̃wt+s...π̃
w
t+1

µz+,t+1...µz+,t+sπ
d
t+1...π

d
t+s

) 1
1−λwt+s

.

(4.79)
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4.8 Log-linearization of the household equations

4.8.1 Log-linearization of the preference shifters and MRS

Log-linearizing the endogenous preference shifter Θt in (4.52) gives

Θ̂t = ẑCt + ̂̄υNt . (4.80)

Log-linearizing next the smooth trend for the the marginal utility of consumption in equation (4.53),
we get31

ẑCt = (1− ν)
(
ẑCt−1 − µ̂z+,t

)
− ν̂̄υNt . (4.81)

Log-linearizing (4.56), we get

m̂rsj,t = ζ̂
β

t + ζ̂
n

t + Θ̂t + ϕN̂j,t − ̂̄υNt . (4.82)

Integrating over all labour types, we can write the average marginal rate of substitution

m̂rst =

∫ 1

0
m̂rsj,tdj

as follows:
m̂rst = ζ̂

β

t + ζ̂
n

t + Θ̂t + ϕN̂t − ̂̄υNt , (4.83)

where N̂t denotes the aggregate employment, as given by

N̂t =

∫ 1

0
N̂j,tdj.

4.8.2 Log-linearization of the household’s first-order conditions

We start by log-linearizing the UIP condition (4.66), yielding

R̂t = R̂∗t + Φ̂t + Etŝt+1. (4.84)

We next derive an expression for Φ̂t, starting from equation (4.19), stated here again for convenience:

Φt = Φ
(
āt, Etst+1st, φ̃t

)
= exp

(
−φ̃a (āt − ā)− φ̃s

(
Etst+1st − s2

)
+ φ̃t

)
.

We linearize the above expression to obtain

Φ̂t = −φ̃aăt − φ̃s (Etŝt+1 + ŝt) +
̂̃
φt, (4.85)

where we have defined ăt ≡ āt − ā, since we assume that ā takes the value of zero in steady state and
therefore must use level deviations for deviations of āt from steady state, and used that s = S/S = 1
and φ̃ = 1 in steady state. Combining with equation (4.84), we arrive att the following modified
uncovered interest rate parity condition:

R̂t = R̂∗t − φ̃aăt +
(

1− φ̃s
)
Etŝt+1 − φ̃sŝt +

̂̃
φt. (4.86)

31 If we assume ν = 1 we have
ẑt = −̂̄υNt

and
Θ̂t = 0,

thus obtaining standard KPR (King, Plosser, and Rebelo (1988)) preferences. We note that in estimations, we have
typically had ν estimated closer to 1.
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Next, we log-linearize the consumption Euler equation. We start from expression (4.57), stated
here again for convenience:

ζβt ζ
c
t

ct − bct−1
1

µz+,t

− βbEt
ζβt+1ζ

c
t+1

ct+1µz+,t+1 − bct
= ζβt ψz+,tp

c
t .

Using that ζβ = ζc = 1 in steady state, we have the following log-linearized expression of the left-hand
side:

µz+

c (µz+ − b)
ζ̂
β

t +
µz+

c (µz+ − b)
ζ̂
c

t

−
µ2
z+

c2 (µz+ − b)2 cĉt +
bµz+

c2 (µz+ − b)2 cĉt−1 −
b

c (µz+ − b)2µz+ µ̂z+,t

−βb 1

c (µz+ − b)
Etζ̂

β

t+1 − βb
1

c (µz+ − b)
Etζ̂

c

t+1

−βb
(
− µz+

c2 (µz+ − b)2

)
cEtĉt+1

−βb b

c2 (µz+ − b)2 cĉt − βb
(
− 1

c (µz+ − b)2

)
µz+Etµ̂z+,t+1.

Multiplying everywhere by c (µz+ − b)2 and simplifying, we have

µz+ (µz+ − b) ζ̂βt + µz+ (µz+ − b) ζ̂ct − µ2
z+ ĉt + bµz+ ĉt−1 − bµz+ µ̂z+,t

−βb (µz+ − b)Etζ̂
β

t+1 − βb (µz+ − b)Etζ̂
c

t+1

+βbµz+Etĉt+1 − βbbĉt + βbµz+Etµ̂z+,t+1.

Equalizing this to the right-hand side again (where we have again used that ζβ = 1), multiplied by
c (µz+ − b)2, we finally have

µz+ (µz+ − b) ζ̂βt + µz+ (µz+ − b) ζ̂ct − µ2
z+ ĉt + bµz+ ĉt−1 − bµz+ µ̂z+,t

−βb
[
(µz+ − b)Etζ̂

β

t+1 + (µz+ − b)Etζ̂
c

t+1 − µz+Etĉt+1 + bĉt − µz+Etµ̂z+,t+1

]
= c (µz+ − b)2 ψz+pc

(
ζ̂
β

t + ψ̂z+,t + p̂ct

)
. (4.87)

Following the calculations above, we can also log-linearize (4.54) to obtain

̂̄υNt = µz+ (µz+ − b) ζ̂βt + µz+ (µz+ − b) ζ̂ct − µ2
z+ ĉt + bµz+ ĉt−1 − bµz+ µ̂z+,t (4.88)

−βb
[
(µz+ − b)Etζ̂

β

t+1 + (µz+ − b)Etζ̂
c

t+1 − µz+Etĉt+1 + bĉt − µz+Etµ̂z+,t+1

]
.

Log-linearization of (4.68) gives

̂̄υNt = R̂t + χ̂t − Etπ̂ct+1 − Etµ̂z+,t+1 + Et̂̄υNt+1. (4.89)

We note also that the log-linearization of equation (4.64) yields the following log-linear expression for
ῡNt : ̂̄υNt = ζ̂

β

t + ψ̂z+,t + p̂ct . (4.90)

To complete the log-linearization of the household’s consumption decision, we need also to derive an
expression for ψ̂z+,t. Log-linearizing equation (4.58), we get

ψ̂z+,t = Etψ̂z+,t+1 + Etζ̂
β

t+1 − ζ̂
β

t + R̂t + χ̂t − Etµ̂z+,t+1 − Etπ̂dt+1. (4.91)
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We note that, in the abscence of habits (i.e. setting b = 0), shocks and growth, equation (4.87) boils
down to

− 1

cpcψz+

ĉt − p̂ct = ψ̂z+,t.

Inserting into equation (4.91) and rearranging

Et

(
− 1

cpcψz+

ĉt+1

)
= − 1

cpcψz+

ĉt +
(
Etp̂

c
t+1 − p̂ct

)
−
(
R̂t − Etπ̂dt+1

)
= − 1

cpcψz+

ĉt + Et

(
π̂ct+1 − π̂dt+1

)
−
(
R̂t − Etπ̂dt+1

)
= − 1

cpcψz+

ĉt −
(
R̂t − Etπ̂ct+1

)
,

ĉt = Etĉt+1 −
1

cpcψz+

(
R̂t − Etπ̂ct+1

)
,

and using that under these assumptions ψz+ = 1
cpc holds in steady state, we arrive at the standard

textbook consumption Euler equation given by

ĉt = Etĉt+1 −
(
R̂t − Etπ̂ct+1

)
.

Turning next to the household’s optimization with respect to capital, we can log-linearize equation
(4.69),

Et

[
r̄kt+1ut+1 − pit+1a (ut+1) + (1− δ) p̆k′,t+1

]
=

1

β
Et

ζβt

ζβt+1

ψz+,t

ψz+,t+1

µz+,t+1µΨ,t+1p̆k′,t,

to obtain

r̄kuEt̂̄rkt+1 + r̄kuEtût+1 − pia (u)Etp̂
i
t+1 − pia (u)Et ̂a (ut+1) + (1− δ) p̆k′̂̆pk′,t+1

=
1

β
µz+µΨp̆k′Et

[
ζ̂
β

t − ζ̂
β

t+1 + ψ̂z+,t − ψ̂z+,t+1 + µ̂z+,t+1 + µ̂Ψ,t+1 + ̂̆pk′,t]
We note that u = 1 and a (u) = 0 in steady state, and so the above expression simplifies to

r̄kEt

(̂̄rkt+1 + ût+1

)
+ (1− δ) p̆k′̂̆pk′,t+1

=
1

β
µz+µΨp̆k′Et

[
ζ̂
β

t − ζ̂
β

t+1 + ψ̂z+,t − ψ̂z+,t+1 + µ̂z+,t+1 + µ̂Ψ,t+1 + ̂̆pk′,t] .
Rearranging and substituing in

ψ̂z+,t − Etψ̂z+,t+1 = Etζ̂
β

t+1 − ζ̂
β

t − Etµ̂z+,t+1 +
(
R̂t − Etπ̂dt+1 + χ̂t

)
,

from equation (4.91) or, alternatively, log-linearizing equation (4.70), we get the following expression
for the real value of capital:

̂̆pk′,t =
β (1− δ)
µz+µΨ

̂̆pk′,t+1 +
βr̄k

µz+µΨp̆k′
Et

(̂̄rkt+1 + ût+1

)
(4.92)

−Etµ̂Ψ,t+1 − Et
(
R̂t − Etπ̂dt+1 + χ̂t

)
.

We next consider the investment equation (4.71). Combining with expressions (4.74) and (4.75),
we have

pit = p̆k′,tΥt

[
1− S̃

(
µz+,tµΨ,tit

it−1

)
− S̃′

(
µz+,tµΨ,tit

it−1

)
µz+,tµΨ,tit

it−1

]
+βEt

ζβt+1

ζβt

ψz+,t+1

ψz+,t

p̆k′,t+1Υt+1S̃
′
(
µz+,t+1µΨ,t+1it+1

it

)(
it+1

it

)2

µz+,t+1µΨ,t+1.
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Defining

d1,t ≡ S̃

(
µz+,tµΨ,tit

it−1

)
,

d2,t ≡ S̃′
(
µz+,tµΨ,tit

it−1

)
,

d3,t ≡
[
1− d1,t − d2,t

µz+,tµΨ,tit

it−1

]
,

we can rewrite the above expression as

pit = p̆k′,tΥtd3,t + βEt
ζβt+1

ζβt

ψz+,t+1

ψz+,t

p̆k′,t+1Υt+1d2,t+1

(
it+1

it

)2

µz+,t+1µΨ,t+1.

Log-linearizing yields

pip̂it = p̆k′Υ̂̆pk′,t + p̆k′ΥΥ̂t + p̆k′Υd̂3,t + βp̆k′Υµz+µΨd̆2,t+1,

where d̆2 = d2,t − d2, and where we have used that d1 = d2 = 0 and d3 = 1 hold in steady state.
Rearranging, we obtain

pi

p̆k′Υ
p̂it = ̂̆pk′,t + Υ̂t + d̂3,t + βµz+µΨd̆2,t+1.

We next derive d̂3,t, which gives
d̂3,t = −d̆1,t − µz+µΨd̆2,t,

where d̆1,t = d1,t − d1 and d̆2,t = d2,t − d2. We then have that

pi

p̆k′Υ
p̂it = ̂̆pk′,t + Υ̂t − d̆1,t − µz+µΨd̆2,t + βµz+µΨd̆2,t+1.

We now consider d̆1 and d̆2. For d1, we have

d̆1,t = d1,t − d1

= S̃′µz+µΨµ̂z+,t + S̃′µz+µΨµ̂Ψ,t + S̃′
µz+µΨ

i
îit − S̃′

µz+µΨi

i2
îit−1 = 0,

since S′ = S′ (µz+µΨ) = 0 in steady state by assumption, as discussed in Section 4.3. For d2, we have

d̆2,t = d2,t − d2

= S̃′′µz+µΨµ̂z+,t + S̃′′µz+µΨµ̂Ψ,t + S̃′′
µz+µΨ

i
îit − S̃′′

µz+µΨi

i2
îit−1

= S̃′′µz+µΨ

[
µ̂z+,t + µ̂Ψ,t + ît − ît−1

]
,

where we have used that

S̃′′ (x) =
1

2
S̃′′
{

exp
[√

S̃′′ (x− µz+µΨ)
]

+ exp
[
−
√
S̃′′ (x− µz+µΨ)

]}
= S′′, x = µz+µΨ,

as derived in Section 4.3. We then have that

pi

p̆k′Υ
p̂it = ̂̆pk′,t + Υ̂t − (µz+µΨ)2 S̃′′

[̂
it − ît−1 + µ̂z+,t + µ̂Ψ,t − βEt

(̂
it+1 − ît + µ̂z+,t+1 + µ̂Ψ,t+1

)]
.
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Rearranging, we finally obtain

ît − ît−1 + µ̂z+,t + µ̂Ψ,t = βEt

(̂
it+1 − ît + µ̂z+,t+1 + µ̂Ψ,t+1

)
+

1

(µz+µΨ)2 S̃′′

[̂̆pk′,t + Υ̂t −
pi

p̆k′Υ
p̂it

]
.

(4.93)
Finally, log-linearizing equation (4.73), we have

̂̄rkt = p̂it + â′ (ut). (4.94)

Remembering from Section 4.2.1 that

a′ (ut) = σbσaut + σb (1− σa) ,

which in stedy state (where u = 1) yields

a′ (u) = σbσau+ σb − σbσa
= σbσa + σb − σbσa
= σb,

we can log-linearize to obtain

a′ (u) â′ (ut) = σbσauût

â′ (ut) = σaût.

Inserting into equation (4.94) gives ̂̄rkt = p̂it + σaût. (4.95)

4.8.3 Log-linearization of the law of motion for capital

We log-linearize equation (4.76) to obtain

kpk̂pt+1 = (1− δ) kp

µz+µΨ

[
k̂pt − µ̂z+,t − µ̂Ψ,t

]
+ Υi

(
Υ̂t + ît

)
,

where we have used the steady-state relationship S̃ (µz+µΨ) = 0. Rearranging, we get

k̂pt+1 =
1− δ
µz+µΨ

(
k̂pt − µ̂z+,t − µ̂Ψ,t

)
+

Υi

kp

(
Υ̂t + ît

)
. (4.96)

We next log-linearize equation (4.77) to obtain

k̂t = ût + k̂pt . (4.97)

4.8.4 Log-linearization of unemployment and labour supply

As in Galí, Smets, and Wouters (2012), we define

L̂t =

∫ 1

0
L̂j,tdj. (4.98)

Moreover, the unemployment rate is given by

Ût = L̂t − N̂t, (4.99)
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where L̂t and N̂t are log deviations from steady state while Ût is the deviation of the unemployment
rate from its steady state.32 We also note that equation (4.43) implies that

W
1

1−λwt
t =

∫ 1

0
(Wj,t)

1
1−λwt dj

W
1

1−λwt
t = e

1
1−λwt

logWt

1

1− λw
W

1
1−λw

W
WŴt +W

1
1−λw logW

1

(1− λw)2λ
wλ̂

w

t

=

∫ 1

0

 1

1− λw
W

1
1−λw
j

Wj
WjŴj,t +W

1
1−λw
j logWj

1

(1− λw)2λ
wλ̂

w

t

 dj

1

1− λw Ŵt =

∫ 1

0

1

1− λw Ŵj,tdj

Ŵt =

∫ 1

0
Ŵj,tdj,

where we have used that all unions (denoted by j) choose the same wage in steady state. We can then
log-linearize (4.78) to obtain

ŵt − p̂ct +

(∫ 1

0
Ŵj,tdj − Ŵt

)
= ζ̂

β

t + ζ̂
n

t + ẑCt + ϕ

∫ 1

0
L̂j,tdj.

Using expression (4.98) above, we obtain the following labour market participation equation:̂̄wt − p̂ct = ζ̂
n

t + ζ̂
β

t + ẑCt + ϕL̂t. (4.100)

Following Galí, Smets, and Wouters (2012), we define the average wage markup as the (log)
deviation between the average real wage and the average marginal rate of substitution, i.e.

µ̂w,t ≡
(̂̄wt − p̂ct)− m̂rst.

Combining with equations (4.100) and (4.83), we get

µ̂w,t ≡
(
ζ̂
n

t + ζ̂
β

t + ẑCt + ϕL̂t

)
−
(
ζ̂
β

t + ζ̂
n

t + Θ̂t + ϕN̂t − ̂̄υNt )
= ẑCt − Θ̂t + ̂̄υNt + ϕ

(
L̂t − N̂t

)
.

Using (4.80), this reduces to the following simple relationship:

µ̂w,t = ϕ
(
L̂t − N̂t

)
= ϕÛt. (4.101)

4.8.5 Log-linearization of the household’s wage setting

To log-linearize equation (4.79), we start by re-expressing it as follows:

exp

(
1− λwt+s (1 + ϕ)

1− λwt+s
log w̃t

)
×

Et

∞∑
s=0

(βξw)s ζβt+sψz+,t+sw̄t+sNt+s exp

(
1

1− λwt+s
log

(
w̄t
w̄t+s

π̃wt+s . . . π̃
w
t+1

µz+,t+1 . . . µz+,t+sπ
d
t+1 . . . π

d
t+s

))

= λwt+sEt

∞∑
s=0

(βξw)s ζβt+sζ
n
t+sΘt+sN

1+ϕ
t+s exp

(
λwt+s (1 + ϕ)

1− λwt+s
log

(
w̄t
w̄t+s

π̃wt+s . . . π̃
w
t+1

µz+,t+1 . . . µz+,t+sπ
d
t+1 . . . π

d
t+s

))
.

32We particularly note that this is the deviation of the unemployment rate (in levels) from its steady state, rather
than a log-deviation. Hence,

Ût = Ut − U.
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A first-order Taylor expansion of the left-hand side yields:

w̃
1−λw(1+ϕ)

1−λw
∞∑
s=0

(βξw)s ζβψz+w̄N

(
π̃w

πdµz+

) s
1−λw

+w̃
1−λw(1+ϕ)

1−λw
∞∑
s=0

(βξw)s ψz+w̄N

(
π̃w

πdµz+

) s
1−λw (

ζβt+s − ζβ
)

+w̃
1−λw(1+ϕ)

1−λw Et

∞∑
s=0

(βξw)s ζβw̄N

(
π̃w

πdµz+

) s
1−λw (

ψz+,t+s − ψz+

)
+w̃

1−λw(1+ϕ)
1−λw Et

∞∑
s=0

(βξw)s ζβψz+w̄

(
π̃w

πdµz+

) s
1−λw

(Nt+s −N)

+
1− λw (1 + ϕ)

1− λw w̃
−λwϕ
1−λw Et

∞∑
s=0

(βξw)s ζβψz+w̄N

(
π̃w

πdµz+

) s
1−λw

(w̃t − w̃)

−w̃
1−λw(1+ϕ)

1−λw Et

∞∑
s=0

(βξw)s ζβψz+w̄N

(
π̃w

πdµz+

) s
1−λw

[
1

w̄

λw

1− λw
]

(w̄t+s − w̄)

+w̃
1−λw(1+ϕ)

1−λw Et

∞∑
s=0

(βξw)s ζβψz+w̄N

(
π̃w

πdµz+

) s
1−λw

[
1

w̄

1

1− λw
]

(w̄t − w̄)

+w̃
1−λw(1+ϕ)

1−λw Et

∞∑
s=0

(βξw)s ζβψz+w̄N

(
π̃w

πdµz+

) s
1−λw

×

×


− 1

(1−λw)2×(
log
(

π̃w

πdµz+

)s
+ (1− λw (1 + ϕ)) log w̃

)
− (1 + ϕ) log w̃ 1

1−λw

(λwt+s − λw)

+w̃
1−λw(1+ϕ)

1−λw Et

∞∑
s=0

(βξw)s ζβψz+w̄N

(
π̃w

πdµz+

) s
1−λw 1

1− λw ×

×

 1
π̃w
(
π̃wt+1 + . . .+ π̃wt+s − sπ̃w

)
− 1
πd

(
πdt+1 + . . .+ πdt+s − sπd

)
− 1
µz+

(
µz+,t+1 + . . .+ µz+,t+s − sµz+

)
 .
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A first-order Taylor expansion of the right-hand side yields:

∞∑
s=0

(βξw)s ζβζnΘλwN1+ϕ

(
π̃w

πdµz+

)sλw(1+ϕ)
1−λw

+Et

∞∑
s=0

(βξw)s ζβΘλwN1+ϕ

(
π̃w

πdµz+

)sλw(1+ϕ)
1−λw (

ζnt+s − ζn
)

+Et

∞∑
s=0

(βξw)s ζnΘλwN1+ϕ

(
π̃w

πdµz+

)sλw(1+ϕ)
1−λw (

ζβt+s − ζβ
)

+Et

∞∑
s=0

(βξw)s ζβζnλwN1+ϕ

(
π̃w

πdµz+

)sλw(1+ϕ)
1−λw

(Θt+s −Θ)

+Et

∞∑
s=0

(βξw)s ζβζnΘλw (1 + ϕ)Nϕ

(
π̃w

πdµz+

)sλw(1+ϕ)
1−λw

(Nt+s −N)

+Et

∞∑
s=0

(βξw)s ζβζnΘN1+ϕ

(
π̃w

πdµz+

)sλw(1+ϕ)
1−λw

×

×

 1 + 1+ϕ

(1−λw)2×

log
(

π̃w

πdµz+

)s (
π̃w

πdµz+

)sλw(1+ϕ)
1−λw

(λwt+s − λw)

+Et

∞∑
s=0

(βξw)s ζβζnΘλwN1+ϕ

(
π̃w

πdµz+

)sλw(1+ϕ)
1−λw λw (1 + ϕ)

1− λw ×

×

 1
π̃w
(
π̃wt+1 + . . .+ π̃wt+s

)
− 1
πd

(
πdt+1 + . . .+ πdt+s − sπd

)
− 1
µz+

(
µz+,t+1 + . . .+ µz+,t+s − sµz+

)
 .

Now recall that π̃wt+1 = (πct)
κw
(
π̄ct+1

)1−κw−κw (π̆)κw (µz+)ϑw . We know from Section 12 that πc =

π̄c = πd, which implies that π̃w =
(
πd
)1−κw (π̆)κw (µz+)ϑw . Under the additional assumptions that

κw = 0 and ϑw = 1, we have that
π̃w = πdµz+ .

From equation (4.48), we moreover have that πw = πdµz+ . Under the previous assumptions, we thus
have that π̃w

πwt
= 1, which yields

w̃ = 1.

Using these steady-state relationships, we equate both sides of the optimal-wage equation derived
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above and, after simpliflying, we obtain

1− λw (1 + ϕ)

1− λw
̂̃wtζβψz+w̄N

∞∑
s=0

(βξw)s

+ Et

∞∑
s=0

(βξw)s ζβψz+w̄N×

×
[
ζ̂
β

t+s + ψ̂z+,t+s + N̂t+s +
1

1− λw
(̂̄wt − λw ̂̄wt+s + ̂̃πwt+1 + . . .+ ̂̃πwt+s

−π̂dt+1 − . . .− π̂dt+s − µ̂z+,t+1 − . . .− µ̂z+,t+s

)]
= Et

∞∑
s=0

(βξw)s ζβζnλwΘN1+ϕ
[
ζ̂
β

t+s + ζ̂
n

t+s + Θ̂t+s + (1 + ϕ) N̂t+s + λ̂
w

t+s

+
λw (1 + ϕ)

1− λw
(̂̄wt − ̂̄wt+ŝ̃πwt+1 + . . .+ ̂̃πwt+s − π̂dt+1 − . . .− π̂dt+s − µ̂z+,t+1 − . . .− µ̂z+,t+s

)]
.

Solving for steady state in equation (4.79) implies ψz+w̄N = λwΘζnN1+ϕ. Simplifying the previous
expression, we get

1− λw (1 + ϕ)

1− λw
(̂̃wt + ̂̄wt)

= (1− βξw)Et

∞∑
s=0

(βξw)s
[
ζ̂
n

t+s + Θ̂t+s + ϕN̂t+s − ψ̂z+,t+s + λ̂
w

t+s −
λwϕ

1− λw
̂̄wt+s

. +
λw (1 + ϕ)− 1

1− λw
(̂̃πwt+1 + . . .+ ̂̃πwt+s − π̂dt+1 − . . .− π̂dt+s − µ̂z+,t+1 − . . .− µ̂z+,t+s

)]
= (1− βξw)Et

{
ζ̂
n

t + Θ̂t + ϕN̂t − ψ̂z+,t + λ̂
w

t −
λwϕ

1− λw
̂̄wt (4.102)

+ (βξw)
[
ζ̂
n

t+1 + Θ̂t+1 + ϕN̂t+1 − ψ̂z+,t+1

+λ̂
w

t+1 −
λwϕ

1− λw
̂̄wt+1 +

λw (1 + ϕ)− 1

1− λw
(̂̃πwt+1 − π̂dt+1 − µ̂z+,t+1

)]
+ (βξw)2

[
ζ̂
n

t+2 + Θ̂t+2 + ϕN̂t+2 − ψ̂z+,t+2 + λ̂
w

t+2 −
λwϕ

1− λw
̂̄wt+2

+
λw (1 + ϕ)− 1

1− λw
(̂̃πwt+1 + ̂̃πwt+2 − π̂dt+1 − π̂dt+2 − µ̂z+,t+1 − µ̂z+,t+2

)]
+ . . .} .

Leading one period forward, we can rewrite expression (4.102) in the following recursive form:

1− λw (1 + ϕ)

1− λw
(̂̃wt + ̂̄wt) = (1− βξw)

(
ζ̂
n

t + Θ̂t + ϕN̂t − ψ̂z+,t + λ̂
w

t −
λwϕ

1− λw
̂̄wt) (4.103)

+βξw
1− λw (1 + ϕ)

1− λw Et

(̂̃wt+1 + ̂̄wt+1

)
+ (1− βξw)

∞∑
s=0

(βξw)s
λw (1 + ϕ)− 1

1− λw Et

(̂̃πwt+1 − π̂dt+1 − µ̂z+,t+1

)
.

Now, going back and log-linearizing the expression for w̃t in equation (4.47), that we derived from the
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aggregate wage index:

1 = ξw

(
π̃wt
πwt

) 1
1−λwt

+ (1− ξw) (w̃t)
1

1−λwt

= ξw exp

(
1

1− λwt
log

π̃wt
πwt

)
+ (1− ξw) exp

(
1

1− λwt
log w̃t

)
= ξw

(
π̃w

πwt

) 1
1−λw

+ (1− ξw) (w̃)
1

1−λw + ξw
−1

(1− λw)2 log
π̃w

πwt

(
π̃w

πwt

) 1
1−λw

(λwt − λw)

+ξw
1

1− λw
(
π̃w

πwt

) 1
1−λw

[
1

π̃w
(π̃wt − π̃w)− 1

πwt
(πwt − πwt )

]
+ (1− ξw)

[
−1

(1− λw)2 log w̃ (w̃)
1

1−λw (λwt − λw) +
1

1− λw (w̃)
1

1−λw
1

w̃
(w̃t − w̃)

]
.

Using the steady-state relationships w̃ = 1, π̃
w

πwt
= 1, and

1 = ξw

(
π̃w

πwt

) 1
1−λw

+ (1− ξw) (w̃)
1

1−λw ,

and rearranging, we obtain, ̂̃wt =
ξw

1− ξw

(
π̂wt − ̂̃πwt ) . (4.104)

Log-linearizing the expressions for πwt and π̃
w
t , under the assumption that κw = 0, we get

̂̃πwt = κwπ̂
c
t−1 + (1− κw) ̂̄πct , (4.105)

and
π̂wt = ̂̄wt − ̂̄wt−1 + π̂dt + µ̂z+,t. (4.106)

Substituting in expressions (4.104)—(4.106) into the recursive equation for the optimal wage, (4.103),
yields

1− λw (1 + ϕ)

(1− λw) (1− ξw)

(
1 + βξ2

w

) ̂̄wt + (1− βξw)
λwϕ

1− λw
̂̄wt

+
1− λw (1 + ϕ)

(1− λw) (1− ξw)
ξw

(
− ̂̄wt−1 + π̂dt + µ̂z+,t − κwπ̂ct−1 + (1− κw) ̂̄πct)

= (1− βξw)
(
ζ̂
n

t + Θ̂t + ϕN̂t − ψ̂z+,t + λ̂
w

t

)
+βξw

1− λw (1 + ϕ)

1− λw Et

(̂̄wt+1 + π̂dt+1 + µ̂z+,t+1 − κwπ̂ct + (1− κw) ̂̄πct+1

)
.

Multiplying by 1−λw
1−βξw

, we get

ξwbw ̂̄wt−1 +
(
λwϕ− bw

(
1 + βξ2

w

)) ̂̄wt + βξwbwEt ̂̄wt+1 − ξwbw
(
π̂dt − ̂̄πct)

+βξwbwEt

(
π̂dt+1 − ̂̄πct+1

)
+ κwξwbw

(
π̂ct−1 − ̂̄πct)− βξwκwbwEt (π̂ct − ̂̄πct+1

)
+ (1− λw)

(
ψ̂z+,t − ζ̂

n

t − Θ̂t − ϕN̂t − λ̂
w

t

)
− ξwbwµ̂z+,t + βξwbwEtµ̂z+,t+1

= 0,

where

bw =
λw (1 + ϕ)− 1

(1− βξw) (1− ξw)
.
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We can rearrange this equation in order to simplify it further. Dividing through by ξwbw, we have

̂̄wt−1 +

(
λwϕ− bw

(
1 + βξ2

w

))
ξwbw

̂̄wt + βEt ̂̄wt+1 −
(
π̂dt − ̂̄πct)

+βEt

(
π̂dt+1 − ̂̄πct+1

)
+ κw

(
π̂ct−1 − ̂̄πct)− βκwEt (π̂ct − ̂̄πct+1

)
+

(1− λw)

ξwbw

(
ψ̂z+,t − ζ̂

n

t − Θ̂t − ϕN̂t − λ̂
w

t

)
− µ̂z+,t + βEtµ̂z+,t+1

= 0. (4.107)

We next define the parameter

dw ≡
(1− βξw) (1− ξw)

ξw

λw − 1

λw (1 + ϕ)− 1
=
λw − 1

ξwbw
. (4.108)

Now, adding and subtracting dw, the coeffi cient multiplying ̂̄wt above can be written as(
bw
(
1 + βξ2

w

)
− λwϕ

)
ξwbw

= dw +

(
bw
(
1 + βξ2

w

)
− λwϕ− (λw − 1)

)
ξwbw

= dw +

(
bw
(
1 + βξ2

w

)
− λw (ϕ+ 1) + 1

)
ξwbw

= dw +

(
bw
(
1 + βξ2

w

)
− bw (1− βξw) (1− ξw)

)
ξwbw

= dw +
bwξw (1 + β)

ξwbw
= dw + (1 + β) .

The wage Philips curve in equation (4.107) can then be written as

̂̄wt−1 + βEt ̂̄wt+1 −
(
π̂dt − ̂̄πct)

+βEt

(
π̂dt+1 − ̂̄πct+1

)
+ κw

(
π̂ct−1 − ̂̄πct)− βκwEt (π̂ct − ̂̄πct+1

)
−dw

(
ψ̂z+,t − ζ̂

n

t − Θ̂t − ϕN̂t − λ̂
w

t

)
− µ̂z+,t + βEtµ̂z+,t+1

= (dw + (1 + β)) ̂̄wt.
Re-grouping terms, we get

−
(̂̄wt − ̂̄wt−1 + π̂dt + µ̂z+,t

)
+ βEt

(̂̄wt+1 − ̂̄wt + π̂dt+1 + µ̂z+,t+1

)
+̂̄πct − βEt̂̄πct+1 + κw

(
π̂ct−1 − ̂̄πct)− βκwEt (π̂ct − ̂̄πct+1

)
−dw

(
ψ̂z+,t − ζ̂

n

t − Θ̂t − ϕN̂t − λ̂
w

t

)
= dw ̂̄wt.

Using that nominal wage inflation is

π̂wt = ̂̄wt − ̂̄wt−1 + π̂dt + µ̂z+,t,

we have

−π̂wt + βEtπ̂
w
t+1 +

+̂̄πct − βEt̂̄πct+1 + κw
(
π̂ct−1 − ̂̄πct)− βκwEt (π̂ct − ̂̄πct+1

)
−dw

(
ψ̂z+,t − ζ̂

n

t − Θ̂t − ϕN̂t − λ̂
w

t

)
= dw ̂̄wt. (4.109)

73



Now, using equations (4.100), (4.80), (4.81) and (4.90), together with (4.109) we have

̂̄wt +
(
ψ̂z+,t − ζ̂

n

t − Θ̂t − ϕN̂t − λ̂
w

t

)
= ̂̄wt +

(
ψ̂z+,t − ζ̂

n

t −
(
ẑCt + ̂̄υNt )− ϕN̂t − λ̂

w

t

)
= ̂̄wt +

(
ψ̂z+,t − ζ̂

n

t −
(
ẑCt + ζ̂

β

t + ψ̂z+,t + p̂ct

)
− ϕN̂t − λ̂

w

t

)
= ̂̄wt − p̂ct − (ζ̂nt + ζ̂

β

t + ẑCt + ϕL̂t − ϕL̂t + ϕN̂t + λ̂
w

t

)
= ̂̄wt − p̂ct − (ζ̂nt + ζ̂

β

t + ẑCt + ϕL̂t

)
+ ϕL̂t − ϕN̂t − λ̂

w

t

= ϕ
(
L̂t − N̂t

)
− λ̂wt

= ϕÛt − λ̂
w

t ,

where Ût is the deviation of the unemployment rate from its steady state. The wage Phillips curve
then becomes

π̂wt − ̂̄πct = βEt
(
π̂wt+1 − ̂̄πct+1

)
+ κw

(
π̂ct−1 − ̂̄πct)− βκwEt (π̂ct − ̂̄πct+1

)
− dw

(
ϕÛt − λ̂

w

t

)
.

We note that, in our model (and in Galí, Smets, and Wouters (2012)), unlike in Christiano, Trabandt,
and Walentin (2011), and Adolfson et al. (2013) (and in Erceg, Henderson, and Levin (2000)), the wage
Phillips curve includes only shocks to the wage markup and not preference (labour supply) shocks,
which allows us to separately identify both of those shocks.33 As in Galí, Smets, and Wouters (2012),
we define the natural rate of unemployment as

Ûnt =
1

ϕ
λ̂
w

t , (4.110)

i.e. the unemployment rate that would prevail in the absence of nominal wage rigidities. The wage
Philips curve can then be expressed as

π̂wt − ̂̄πct = βEt
(
π̂wt+1 − ̂̄πct+1

)
+ κw

(
π̂ct−1 − ̂̄πct)− βκwEt (π̂ct − ̂̄πct+1

)
− dwϕ

(
Ût − Ûnt

)
(4.111)

We note that, if the inflation trend is constant, so that ̂̄πct = 0, this reduces to

π̂wt = βEtπ̂
w
t+1 + κwπ̂

c
t−1 − βκwEtπ̂ct − dwϕ

(
Ût − Ûnt

)
. (4.112)

Moreover, if unions fully index to the constant inflation target, i.e. if κw = 0, we obtain a purely
forward-looking wage Philips curve

π̂wt = βEtπ̂
w
t+1 − dwϕ

(
Ût − Ûnt

)
. (4.113)

We complete the wage setting block by log-linearizing equation (4.49), which yields

n̂t = N̂t +
λw

1− λw
̂̊wt +

λw log (ẘ)

(1− λw)2 λ̂
w

t .

Assuming that there is full indexation, which implies that ẘ = 1, we can simplify this further to get
the following expression:

n̂t = N̂t +
λw

1− λw
̂̊wt. (4.114)

33See also discussion at the end of Section 15.4.
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For use in later sections, we need also to log-linearize the wage dispersion equation (4.51). Rear-
ranging,

ẘ

λwt
1−λwt
t = ξw

(
π̃wt
πwt

ẘt−1

) λwt
1−λwt

+ (1− ξw)

1− ξw
(
π̃wt
πwt

) 1
1−λwt

(1− ξw)


λwt

.

We can now log-linearize in the same way as for price dispersion terms in Section 3 earlier, which
yields

̂̊wt = ξw

(
π̃w

πw

) λw

1−λw [̂̃πwt − π̂wt + ̂̊wt−1

]
+ ξw ln

(
π̃w

πw
ẘ

)(
π̃w

πw

) λw

1−λw 1

1− λw λ̂
w

t − ln (ẘ)
1

1− λw λ̂
w

t

− 1

(ẘ)
λw

1−λw

1− ξw
(
π̃w

πw

) 1
1−λw

1− ξw

λw−1

ξw

(
π̃w

πw

) 1
1−λw [̂̃πwt − π̂wt ]

+
1− ξw

(ẘ)
λw

1−λw
ln

1− ξw
(
π̃w

πw

) 1
1−λw

1− ξw

1− ξw
(
π̃w

πw

) 1
1−λw

1− ξw

λw

(1− λw) λ̂
w

t

−

1− ξw
(
π̃w

πw

) 1
1−λw

1− ξw

λw−1

ξw

(ẘ)
λw

1−λw
ln

(
π̃w

πw

)(
π̃w

πw

) 1
1−λw λw

1− λw λ̂
w

t .

Using the steady-state relationship π̃w = πw, which implies that ẘ = 1, we finally arrive at the
following expression: ̂̊wt = ξw

̂̊wt−1. (4.115)

5 Monetary and fiscal authorities

5.1 The central bank

We assume that monetary policy is conducted according to an instrument rule. Following the specifi-
cation in Ramses II, we assume that the policy maker can adjust the short-run interest rate in response
to deviations of CPI inflation from the inflation target, some measure of a resource utilization gap, and
the real exchange rate gap. Moreover, the policy maker can also take into account the rate of change
in inflation and in resource utilization. We allow for interest rate smoothing, assuming that the policy
maker places some weight on the lagged interest rate. Monetary policy is thus approximated with the
following rule:

log

(
Rt
R

)
= ρR log

(
Rt−1

R

)
+ (1− ρR)

[
log

(
π̄ct
π̄c

)
+ rπ log

(
πct−1

π̄ct

)
(5.1)

+rRU (Ut−1 − U) + rq log

(
qt−1

q

)]
+ r∆π∆ log

(
πct
πc

)
+ r∆RU∆Ut + log εR,t,

where Rt is the short-term interest rate, πct the CPI inflation rate, Ut the unemployment rate, π̄
c
t an

exogenous process that characterizes the consumer price inflation target, with a steady-state value
that corresponds to the steady state of actual inflation, and εR,t an interest rate shock. Just as in
Adolfson et al. (2013), in this document the first will be referred to as an inflation target shock and
the second as a monetary policy shock. The monetary policy shock is assumed to follow the process

log εR,t =
(
1− ρεR

)
log εR + ρεR log εR,t−1 + σεRεεR,t. (5.2)
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Note that, given our labour market modelling and unlike in Ramses I and II, we have here chosen
unemployment as the measure of resource utilization, rather than hours or some measure of the GDP
gap.34

5.2 Government consumption

We model government consumption expenditures as follows:

Gt = gtz
+
t , (5.3)

where gt is an exogenous stochastic process given by

log gt =
(
1− ρg

)
log g + ρg log gt−1 + σgεg,t. (5.4)

Here, g = ηgY , where ηg denotes the steady-state government consumption as a fraction of GDP.

5.3 Log-linearization of the monetary policy rule and government consumption

Recalling the definition X̂t ≡ logXt − logX = log
(
Xt
X

)
, we can write the policy rule in terms of

log-deviations from steady state as follows:35

R̂t = ρRR̂t−1 + (1− ρR)
[̂̄πct + rπ

(
π̂ct−1 − ̂̄πct)+ ryÛt−1 + rq q̂t−1

]
+ r∆π∆π̂ct + r∆y∆Ût + ε̂R,t, (5.5)

where ̂̄πct = ρπ̄c ̂̄πct−1 + σπ̄cεπ̄c,t. (5.6)

Government consumption in scaled form, defined as gt = Gt/z
+
t , is given by the following exogenous

stochastic process in terms of log-deviations from steady state:

ĝt = ρg ĝt−1 + σgεg,t. (5.7)

6 The aggregate resource constraint

We begin by deriving a relationship between total output of the domestic homogeneous good, Yt, and
aggregate factors of production. We then proceed with the aggregate resource constraint.

34 In Christiano, Trabandt, and Walentin (2011), as well as in Ramses I, the central bank is assumed to take into
account the output gap as the measure of resource utilization. In Ramses II, the output gap was replaced by hours
worked. The motivation for introducing hours in Ramses II was twofold. First, filtered hours worked is an observed
variable (filtered with an HP or a KAMEL-trend) which enables judgment to directly influence monetary policy, and
ii) the specification with hours was preferred by the data (although only with a slight advantage). In our model, hours
are no longer observed, which is why our baseline specification has the unemployment rate as the measure of resource
utilization.
We note also that, in Ramses II, rq is set to zero, and so the real exchange rate term is excluded. In preliminary

versions of the Christiano, Trabandt, and Walentin (2011) model and in Ramses I, the term is included in the rule. The
final version of Christiano, Trabandt, and Walentin (2011) assumes that rq = 0 as well as r∆π = r∆y = 0. The final
version of Christiano, Trabandt, and Walentin (2011) also has πt entering the rule instead of πt−1 as in Ramses I and II.
35Recall that Ut denotes the deviation in levels, rather than the log-deviation, of the unemployment rate from its

steady state, and thus
Ût = Ut − U.
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The unweighted average of the domestic intermediate goods is given by

Y sum
t =

∫ 1

0
Yi,tdi

=

∫ 1

0

[
(ztNi,t)

1−α εtK
α
i,t − z+

t φ
d
]
di

=

∫ 1

0

[
z1−α
t εt

(
Ki,t

Ni,t

)α
Ni,t − z+

t φ
d

]
di

= z1−α
t εt

(
Kt

Nt

)α ∫ 1

0
Ni,tdi− z+

t φ
d,

where Kt and Nt are the economy-wide averages of capital services and homogeneous labour, respec-
tively. The last step above makes use of the fact that all intermediate good firms face the same factor
prices, regardless of wheter or not they have the opportunity to reoptimize, and so they adopt the
same capital services to homogeneous labour ratio.36 We then have that

Y sum
t = z1−α

t εtK
α
t N

1−α
t − z+

t φ
d. (6.1)

We consider next the demand for homogeneous goods. Using demand equation (3.3), stated here
again for convenience,

Yi,t =

(
P di,t

P dt

) λdt
1−λdt

Yt,

we have

Y̊t ≡
∫ 1

0
Yi,tdi

=

∫ 1

0

(
P di,t

P dt

) λdt
1−λdt

Ytdi

= Yt

(
P dt

) λdt
λdt−1

(
P̊ dt

) λdt
1−λdt , (6.2)

where

P̊ dt =

∫ 1

0

(
P di,t

) λdt
1−λdt di


1−λdt
λdt

.

Dividing by P dt ,

p̊dt =

∫ 1

0

(
P di,t

P dt

) λdt
1−λdt

di


1−λdt
λdt

. (6.3)

We can break this integral and re-express it in terms of aggregate prices using the Calvo assumption

36This follows from the firms’cost minimization problem.
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on price setting:

p̊dt =

∫ ξd

0

(
π̃dtP

d
i,t−1

P dt

) λdt
1−λdt

di+

∫ 1

ξd

(
P̃ dt
P dt

) λdt
1−λdt

di


1−λdt
λdt

=

(π̃dt) λdt
1−λdt

∫ ξd

0

(
P dt−1

P dt

P di,t−1

P dt−1

) λdt
1−λdt

di+ (1− ξd)
(
p̃dt

) λdt
1−λdt


1−λdt
λdt

=

ξd( π̃dt
πdt
p̊dt−1

) λdt
1−λdt

+ (1− ξd)
(
p̃dt

) λdt
1−λdt


1−λdt
λdt

.

Substituting p̃dt using (3.23) we get:

p̊dt =

ξd
(
π̃dt
πdt
p̊dt−1

) λdt
1−λdt

+ (1− ξd)

1− ξd
(
π̃dt
πdt

) 1

1−λdt

1− ξd


λdt


1−λdt
λdt

. (6.4)

Combining (6.3) and (6.2) with (6.1), we have the following expression for GDP in terms of aggregate
factors of production:

Yt =
(
p̊dt

) λdt
λdt−1 Y̊t =

(
p̊dt

) λdt
λdt−1

[
z1−α
t εtK

α
t N

1−α
t − z+

t φ
d
]
. (6.5)

The aggregate resource constraint, equalizing the uses of domestic homogeneous goods to the above
expression for GDP from the production side, is given by the following equation:

Gt + Cdt + Ce,dt + Idt +Xd
t ≤

(
p̊dt

) λdt
λdt−1

[
z1−α
t εtK

α
t N

1−α
t − z+

t φ
d
]
. (6.6)

Substituting in the demand equations for Cdt , C
e,d
t , Idt , and X

d
t , given by (3.121) together with (3.127),

(3.124) together with (3.128), (3.165), and (3.197), respectively, we have37

Gt + (1− ωc) (1− ωe)
[
P dt
P cxet

]−ηc [P cxet

P ct

]−ηe
Ct

+ (1− ωem)ωe

[
P d,cet

P cet

]−ηem [
P cet
P ct

]−ηe
Ct

+ (1− ωi)
[
P dt
P it

]−ηi
Ψ
ηi−1
t (It + a (ut)K

p
t )

+

(
ωx

[
Pm,xt

P dt

]1−ηx
+ (1− ωx)

) ηx
1−ηx

(1− ωx) (p̊xt )

λxt
1−λxt

Xt

≤
(
p̊dt

) λdt
λdt−1

[
z1−α
t εtK

α
t N

1−α
t − z+

t φ
d
]
. (6.7)

37Note that there is a price dispersion term in the export demand equation, while there are none in the consumption
and investment demand equation. This has to do with the fact that the Calvo frictions are placed on the aggregate level
for exports, i.e. export firms face staggered price setting when pricing the final export good, and only on the intermediate
level —staggered price setting for the domestic and imported intermediate good —for consumption and investment.
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6.1 Scaling of the aggregate resource constraint

Scaling by z+
t , remembering that z

+
t =Ψ

α
1−α
t zt,

Yt

z+
t

=
(
p̊dt

) λdt
λdt−1

[
z1−α
t εtK

α
t N

1−α
t

Ψ
α

1−α
t zt

− z+
t φ

d

z+
t

]

yt =
(
p̊dt

) λdt
λdt−1

[
εt

(
kt

µΨ,tµz+,t

)α
N1−α
t − φd

]
. (6.8)

Finally, using equation (4.49) we replace aggregate homogeneous labour, Nt, with aggregate household
labour, nt, to obtain

yt =
(
p̊dt

) λdt
λdt−1

εt( kt
µΨ,tµz+,t

)α(
ẘ
− λwt

1−λwt
t nt

)1−α

− φd
 . (6.9)

Scaling (6.6) by z+
t , we have

gt + cdt + ce,dt + idt + xdt

≤
(
p̊dt

) λdt
λdt−1

εt( kt
µΨ,tµz+,t

)α(
ẘ
− λwt

1−λwt
t nt

)1−α

− φd
 . (6.10)

6.2 Log-linearization of the aggregate resource constraint

We begin by log-linearizing the left-hand side of equation (6.10):

yt = gt + cdt + ce,dt + idt + xdt . (6.11)

Log-linearizing, we get

ŷt =
g

y
ĝt +

cd

y
ĉdt +

ce,d

y
ĉe,dt +

id

y
îdt +

xd

y
x̂dt . (6.12)

We now focus on the right-hand side of equation (6.10), i.e.

yt =
(
p̊dt

) λdt
λdt−1

εt( kt
µΨ,tµz+,t

)α(
ẘ
− λwt

1−λwt
t nt

)1−α

− φd
 .

Rearranging,

yt

(
p̊dt

) λdt
1−λdt = εt

(
kt

µΨ,tµz+,t

)α(
ẘ
− λwt

1−λwt
t nt

)1−α

− φd.

Log-linearizing, we get

y
(
p̊d
) λd

1−λd

[
ŷt +

λd

1− λd
̂̊pdt +

λd log
(
p̊d
)(

1− λd
)2 λ̂dt

]

= ε

(
k

µΨµz+

)α (
ẘ−

λw

1−λw n
)1−α

×

×
[
ε̂t + α

(
k̂t − µ̂Ψ,t − µ̂z+,t

)
− λw (1− α)

1− λw
̂̊wt − λw (1− α) log (ẘ)

(1− λw)2 λ̂
w

t + (1− α) n̂t

]
,
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Using that ε = 1 and that full indexation implies that p̊d = ẘ = 1, and rearranging,

ŷt =
1

y

(
k

µΨµz+

)α
n1−α × (6.13)

×
[
ε̂t + α

(
k̂t − µ̂Ψ,t − µ̂z+,t

)
− λw (1− α)

1− λw
̂̊wt + (1− α) n̂t

]
− λd

λd − 1
̂̊pdt .

The log-linear version of equation (6.10) is then given by equations (6.12) and (6.13) combined.

7 Evolution of net foreign assets

In this section, we derive the expression linking net exports and the current account. Expenses on
imports and net new purchases of foreign assets must equal income from exports and from previously
purchased net foreign assets. Hence, the evolution of net foreign assets at the aggregate level must
satisfy the following equation

StB
F
t+1 + expenses on importst = receipts from exportst +R∗t−1Φt−1χt−1StB

F
t .

We focus first on the expenses on imports. We begin by noting that the relevant measure here is the
total value of all imports that cross the border, that is the marginal cost times the gross imports as
given by equation (3.226), and so

expenses on importst = StP
d,∗
t Rwc,mt

(∫ 1

0
Cmi,tdi+

∫ 1

0
Imi,tdi+

∫ 1

0
Xm
i,tdi

+z+
t

(
φm,c + φm,i + φm,x

))
+StP

ce,∗
t Rwc,mt

(∫ 1

0
Ce,mi,t di+ z+

t φ
m,ce

)
.

This is an important distinction as the value of the imports used in the domestic economy, i.e. the im-
ports entering the production of final goods, is higher than the value of imports net of fixed costs above
due to positive markups from the monopolistic importing firms. In earlier models, this distinction was
not made, why the implications for net exports from the resource constraint and from the evolution of
net foreign assets were not consistent.38 This, in turn, implied that the consumption-to-output ratios
were not in line with the data. Moving on to the receipts from exports, given by

receipts from exportst = StP
x
t

(
z̃+,∗
t

)− 1
ηf

(
(p̊xt )

λxt
1−λxt Xt − z+

t φ
x

)
.

As for imports, the relevant measure is the value of all exports that cross the border, that is what
remains of exports once the fixed costs of production are covered times the aggregate export price.

38This issue is discussed in more detail in internal Riksbank memos by Malin Adolfsson, where the inconsistency
between the expressions for net exports from the resource constraint and the evolution of net foreign assets is derived.
The treatment of imports and exports is problematic as the two economies in the model are not treated symmetrically.
Instead, it is assumed that there is monopolistic power in both the domestic import and export sector and that they are
both meeting a single foreign good price. Moreover, the assumption of advance financing of firms’costs introduces an
additional friction that drives a wedge between the resources used in the domestic economy and the trande balance. No
solutions are proposed in the memos by Adolfsson.
As the biggest wedges are induced by the markups, we here handle the problem of monopolistic competition and positive

profits through the introduction of fixed costs in production of imports and exports. These are set so as to ensure that
profits in steady state are zero. We do not handle the wedge stemming from the advance financing assumption, as it is
likely to have much more limited quantitative implications.
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We can substitute for Cmi,t, I
m
i,t, X

m
i,t and C

e,m
i,t in the expenses on imports using (3.60), (3.67), (3.72)

and (3.77). We then have:

expenses on importst = StP
d,∗
t Rwc,mt

Cmt ∫ 1

0

(
Pm,ci,t

Pm,ct

) λ
m,c
t

1−λm,ct

di+ Imt

∫ 1

0

(
Pm,ii,t

Pm,it

) λ
m,i
t

1−λm,it

di

+Xm
t

∫ 1

0

(
Pm,xi,t

Pm,xt

) λ
m,x
t

1−λm,xt

di+ z+
t

(
φm,c + φm,i + φm,x

)
+StP

ce,∗
t Rwc,mt

Ce,mt ∫ 1

0

(
Pm,cei,t

Pm,cet

) λ
m,ce
t

1−λm,cet

di+ z+
t φ

m,ce


= StP

d,∗
t Rwc,mt

Cmt (p̊m,ct )
λ
m,c
t

1−λm,ct + Imt

(
p̊m,it

) λ
m,i
t

1−λm,it +Xm
t (p̊m,xt )

λ
m,x
t

1−λm,xt

+z+
t

(
φm,c + φm,i + φm,x

))
+StP

ce,∗
t Rwc,mt

(
Ce,mt (p̊m,cet )

λ
m,ce
t

1−λm,cet + z+
t φ

m,ce

)
,

where for j = c, i, x, ce, we define p̊m,jt , a measure of price dispersion, as follows:

p̊m,jt =

∫ 1

0

(
Pm,ji,t

Pm,jt

) λ
m,j
t

1−λm,jt


1−λm,jt

λ
m,j
t

. (7.1)

Hence,

StB
F
t+1 + StP

d,∗
t Rwc,mt

Cmt (p̊m,ct )
λ
m,c
t

1−λm,ct + Imt

(
p̊m,it

) λ
m,i
t

1−λm,it +Xm
t (p̊m,xt )

λ
m,x
t

1−λm,xt

+z+
t

(
φm,c + φm,i + φm,x

))
+StP

ce,∗
t Rwc,mt

(
Ce,mt (p̊m,cet )

λ
m,ce
t

1−λm,cet + z+
t φ

m,ce

)

= StP
x
t

(
(p̊xt )

λxt
1−λxt Xt − z+

t φ
x

)
+R∗t−1Φt−1χt−1StB

F
t , (7.2)

where we have used equations (3.85), (3.86), (3.87) and (3.88), and where Φt is defined in Section
4.2.2.
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7.1 Scaling of the evolution of net foreign assets

We scale equation (7.2) by z+
t to obtain

ātP
d
t z

+
t + StP

d,∗
t z+

t R
wc,m
t

cmt (p̊m,ct )
λ
m,c
t

1−λm,ct + imt

(
p̊m,it

) λ
m,i
t

1−λm,it + xmt (p̊m,xt )
λ
m,x
t

1−λm,xt

+
(
φm,c + φm,i + φm,x

))
+ StP

ce,∗
t z+

t R
wc,m
t

(
ce,mt (p̊m,cet )

λ
m,ce
t

1−λm,cet + φm,ce

)

= StP
x
t

(
z̃+,∗
t

)− 1
ηf z+

t

(
(p̊xt )

λxt
1−λxt xt − φx

)
+R∗t−1Φt−1χt−1

St
St−1

āt−1P
d
t−1z

+
t−1,

where we have used the definition of the real aggregate net foreign asset position

āt ≡
Āt

z+
t

=
StB

F
t+1

P dt z
+
t

.

Dividing by P dt z
+
t , we have

āt +
qtp

c
t

pc,∗t
Rwc,mt

cmt (p̊m,ct )
λ
m,c
t

1−λm,ct + imt

(
p̊m,it

) λ
m,i
t

1−λm,it

+xmt (p̊m,xt )
λ
m,x
t

1−λm,xt + φm,c + φm,i + φm,x

)

+
qtp

c
tp
ce,∗
t

pc,∗t
Rwc,mt

(
ce,mt (p̊m,cet )

λ
m,ce
t

1−λm,cet + φm,ce

)

=
qtp

x
t p
c
t

pc,∗t

(
(p̊xt )

λxt
1−λxt xt − φx

)
+R∗t−1Φt−1χt−1st

āt−1

πdtµz+,t

, (7.3)

where we have used definitions of relative prices pct , p
c,∗
t , p

ce,∗
t and pxt , the definition of the real exchange

rate

qt =
StP

c,∗
t

P ct
,

and the growth of the nominal exchange rate

st =
St
St−1

.

7.2 Log-linearization of the evolution of net foreign assets

We log-linearize equation (7.3). To do so, we apply a first-order Taylor expansion of the expression
around the steady-state of each variable. Note that ā takes the value of zero in steady state, so level
deviations must be used for deviations of āt from steady state. We therefore define ăt = āt − ā. Note
also that the steady-state version of (7.3) writes

qpc

pc,∗
Rwc,m

(
cm (p̊m,c)

λm,c

1−λm,c + im
(
p̊m,i

) λm,i

1−λm,i + xm (p̊m,x)
λm,x

1−λm,x

+φm,c + φm,i + φm,x
)

+
qpcpce,∗

pc,∗
Rwc,m

(
ce,m (p̊m,ce)

λm,ce

1−λm,ce + φm,ce
)

=
qpcpx

pc,∗

(
(p̊x)

λx

1−λx x− φx
)
.

82



In what follows, we directly state the Taylor expansion substracting the previous steady-state expres-
sion for the sake of conciseness. We then have (dropping terms involving ā = 0):

ăt +
qpc

pc,∗
Rwc,m

(
cm (p̊m,c)

λm,c

1−λm,c + im
(
p̊m,i

) λm,i

1−λm,i + xm (p̊m,x)
λm,x

1−λm,x + φm,c + φm,i + φm,x
)
×

×
(
q̂t + p̂ct − p̂

c,∗
t + R̂wc,mt

)
+
qpc

pc,∗
Rwc,mcm (p̊m,c)

λm,c

1−λm,c

(
ĉmt +

λm,c

1− λm,c
̂̊pm,ct +

λm,c

(1− λm,c)2 log (p̊m,c) λ̂
m,c

t

)
+
qpc

pc,∗
Rwc,mim

(
p̊m,i

) λm,i

1−λm,i

(
ı̂mt +

λm,i

1− λm,i
̂̊pm,it +

λm,i(
1− λm,i

)2 log
(
p̊m,i

)
λ̂
m,i

t

)

+
qpc

pc,∗
Rwc,mxm (p̊m,x)

λm,x

1−λm,x

(
x̂mt +

λm,x

1− λm,x
̂̊pm,xt +

λm,x

(1− λm,x)2 log (p̊m,x) λ̂
m,x

t

)
+
qpcpce,∗

pc,∗
Rwc,m

(
ce,m (p̊m,ce)

λ
m,ce
t

1−λm,cet + φm,ce

)(
q̂t + p̂ct + p̂ce,∗t − p̂c,∗t + R̂wc,mt

)
+
qpcpce,∗

pc,∗
Rwc,mce,m (p̊m,ce)

λm,ce

1−λm,ce

(
ĉe,mt +

λm,ce

1− λm,ce
̂̊pm,cet +

λm,ce

(1− λm,ce)2 log (p̊m,ce) λ̂
m,ce

t

)
=

qpxpc

pc,∗

(
(p̊x)

λx

1−λx x− φx
) (
q̂t + p̂xt + p̂ct − p̂

c,∗
t

)
+
qpxpc

pc,∗
x (p̊x)

λx

1−λx ×

×
(
x̂t +

λx

(1− λx)2 log(p̊x)λ̂
x

t +
λx

1− λx
̂̊pxt)

+
R∗Φχs

πdµz+

ăt−1.

Assuming full indexation, that is p̊m,c = p̊m,i = p̊m,x = p̊m,ce = p̊x = 1, the expression simplifies to

pc,∗

qpc
ăt +Rwc,m

(
cm + im + xm + φm,c + φm,i + φm,x

) (
q̂t + p̂ct − p̂

c,∗
t + R̂wc,mt

)
+Rwc,mcm

(
ĉmt +

λm,c

1− λm,c
̂̊pm,ct

)
+Rwc,mim

(
ı̂mt +

λm,i

1− λm,i
̂̊pm,it

)
+Rwc,mxm

(
x̂mt +

λm,x

1− λm,x
̂̊pm,xt

)
+pce,∗Rwc,m (ce,m + φm,ce)

(
q̂t + p̂ct + p̂ce,∗t − p̂c,∗t + R̂wc,mt

)
+pce,∗Rwc,mce,m

(
ĉe,mt +

λm,ce

1− λm,ce
̂̊pm,cet

)
= px (x− φx)

(
q̂t + p̂xt + p̂ct − p̂

c,∗
t

)
+ pxx

(
x̂t +

λx

1− λx
̂̊pxt)+

pc,∗

qpc
R∗Φχs

πdµz+

ăt−1.

Now note that the steady-state relationship under full indexation and given that ā takes the value
of zero in steady state yields

Rwc,m
(
cm + im + xm + φm,c + φm,i + φm,x

)
+ pce,∗Rwc,m (ce,m + φm,ce) = px (x− φx) ,
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which allows to further simplify the log-linearized expression to obtain

pc,∗

qpc
ăt = px (x− φx) p̂xt + pxx

(
x̂t +

λx

1− λx
̂̊pxt)+

pc,∗

qpc
R∗Φχs

πdµz+

ăt−1 (7.4)

−px (x− φx) R̂wc,mt − pce,∗Rwc,m (ce,m + φm,ce) p̂ce,∗t

−Rwc,mcm
(
ĉmt +

λm,c

1− λm,c
̂̊pm,ct

)
−Rwc,mim

(
ı̂mt +

λm,i

1− λm,i
̂̊pm,it

)
−Rwc,mxm

(
x̂mt +

λm,x

1− λm,x
̂̊pm,xt

)
− pce,∗Rwc,mce,m

(
ĉe,mt +

λm,ce

1− λm,ce
̂̊pm,cet

)
.

8 Inflation rates and relative price formulas

We have defined the following relative prices in Section 2.2, stated here again for convenience:

pct =
P ct
P dt

, pcxet =
P cxet

P dt
, pcet =

P cet
P dt

, pd,cet =
P d,cet

P dt
,

pit =
ΨtP

i
t

P dt
, pxt =

P xt

P d,∗t

(
z̃+,∗
t

)− 1
ηf ,

pm,ct =
Pm,ct

P dt
, pm,it =

Pm,it

P dt
, pm,xt =

Pm,xt

P dt
, pm,cet =

Pm,cet

P dt
.

These definitions imply the following ten restrictions across inflation rates for the relative prices of
total consumption, aggregate non-energy consumption, energy consumption, domestically produced
energy consumption, investment, exports, imported consumption goods, imported investment goods,
goods imported for the production of exports, and imported energy consumption, respectively:

pct =
P ct
P dt

P dt−1

P ct−1

pct−1 =
πct
πdt
pct−1, (8.1)

pcxet =
P cxet

P dt

P dt−1

P cxet−1

pcxet−1 =
πcxet

πdt
pcxet−1, (8.2)

pcet =
P cet
P dt

P dt−1

P cet−1

pcet−1 =
πcet
πdt

pcet−1, (8.3)

pd,cet =
P d,cet

P dt

P dt−1

P d,cet−1

pd,cet−1 =
πd,cet

πdt
pd,cet−1 , (8.4)

pit =
ΨtP

i
t

P dt

P dt−1

Ψt−1P it−1

pit−1 =
µΨ,tπ

i
t

πdt
pit−1, (8.5)

pxt =
P xt

P d,∗t

P d,∗t−1

P xt−1

(
z̃+,∗
t

z̃+,∗
t−1

)− 1
ηf

pxt−1 =
πxt

πd,∗t

(
µz+,∗,t

µz+,t

)− 1
ηf
pxt−1, (8.6)

where we have used equation (3.221),

pm,ct =
Pm,ct

P dt

Pm,ct−1

P dt−1

pm,ct−1 =
πm,ct

πdt
pm,ct−1, (8.7)

pm,it =
Pm,it

P dt

Pm,it−1

P dt−1

pm,it−1 =
πm,it

πdt
pm,it−1, (8.8)
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pm,xt =
Pm,xt

P dt

Pm,xt−1

P dt−1

pm,xt−1 =
πm,xt

πdt
pm,xt−1 , (8.9)

and

pm,cet =
Pm,cet

P dt

Pm,cet−1

P dt−1

pm,cet−1 =
πm,cet

πdt
pm,cet−1 . (8.10)

Note that the first three and the fifth relative price equations (for aggregate and non-energy consump-
tion, and investment) are not needed for the solution of the model since we already derived expressions
(3.162), (3.160), (3.161), and (3.179).39

8.1 Log-linearization of the relative price restrictions

Log-linearizing equations (8.4) and (8.6)—(8.10) yields the following five expressions (ordered as above):

p̂d,cet = π̂d,cet − π̂dt + p̂d,cet−1 , (8.11)

p̂xt = π̂xt − π̂∗t −
1

ηf

(
µ̂z+,∗,t − µ̂z+,t

)
+ p̂xt−1, (8.12)

p̂m,ct = π̂m,ct − π̂dt + p̂m,ct−1, (8.13)

p̂m,it = π̂m,it − π̂dt + p̂m,it−1, (8.14)

p̂m,xt = π̂m,xt − π̂dt + p̂m,xt−1 . (8.15)

p̂m,cet = π̂m,cet − π̂dt + p̂m,cet−1 . (8.16)

The log-linear expression for the relative prices of the three different types of aggregate consumption
and for investment have already been derived in Sections 3.3.2 and 3.4.2.

9 Real exchange rate and the terms of trade

We define the real exchange rate as

qt =
StP

c,∗
t

P ct
,

and note that we can write the definition of the real exchange rate in terms of inflation rates and
changes in the nominal exchange rate as follows:

qt =
StP

c,∗
t

P ct

P ct−1

St−1P
c,∗
t−1

qt−1 =
stπ

c,∗
t

πct
qt−1. (9.1)

We define the terms of trade as

ToTt =
StP

x
t

(
z̃+,∗
t

)− 1
ηf

PMt
,

where PMt is the price at time t of the total bundle of imports.
We next derive a price index for total imports, to be used in the definition of terms of trade. From

equation (3.225), we have that

Mt = Cmt (p̊m,ct )
λ
m,c
t

1−λm,ct + Imt

(
p̊m,it

) λ
m,i
t

1−λm,it +Xm
t (p̊m,xt )

λ
m,x
t

1−λm,xt + Ce,mt (p̊m,cet )
λ
m,ce
t

1−λm,cet .

39The inclusion of these four equations instead of (3.162), (3.160), (3.161) and (3.179) causes a collinearity issue when
solving the model.
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We then define the price index for total imports, PMt , in the following way:

PMt Mt = Pm,ct Cmt (p̊m,ct )
λ
m,c
t

1−λm,ct +Pm,it Imt

(
p̊m,it

) λ
m,i
t

1−λm,it +Pm,xt Xm
t (p̊m,xt )

λ
m,x
t

1−λm,xt +Pm,cet Ce,mt (p̊m,cet )
λ
m,ce
t

1−λm,cet .

Given that full indexation implies that p̊m,ct = p̊m,it = p̊m,xt = 1, we ignore the price dispersion terms
to simplify calculations. Then,

PMt Mt = Pm,ct Cmt + Pm,it Imt + Pm,xt Xm
t + Pm,cet Ce,mt .

We divide through by StP xt
(
z̃+,∗
t

)− 1
ηf and rewrite in terms of relative prices40

PMt

StP xt

(
z̃+,∗
t

)− 1
ηf

Mt =
Pm,ct

P dt

P dt
P ct

P ct
StP

c,∗
t

P c,∗t

P d,∗t

P d,∗t

P xt

(
z̃+,∗
t

)− 1
ηf

Cmt

+
Pm,it

P dt

P dt
P ct

P ct
StP

c,∗
t

P c,∗t

P d,∗t

P d,∗t

P xt

(
z̃+,∗
t

)− 1
ηf

Imt

+
Pm,xt

P dt

P dt
P ct

P ct
StP

c,∗
t

P c,∗t

P d,∗t

P d,∗t

P xt

(
z̃+,∗
t

)− 1
ηf

Xm
t

+
Pm,cet

P dt

P dt
P ct

P ct
StP

c,∗
t

P c,∗t

P d,∗t

P d,∗t

P xt

(
z̃+,∗
t

)− 1
ηf

Ce,mt

1

ToTt
Mt =

pm,ct pc,∗t
pctqtp

x
t

Cmt +
pm,it pc,∗t
pctqtp

x
t

Imt +
pm,xt pc,∗t
pctqtp

x
t

Xm
t +

pm,cet pc,∗t
pctqtp

x
t

Ce,mt .

Rearranging,
pctqtp

x
t

pc,∗t ToTt
Mt = pm,ct Cmt + pm,it Imt + pm,xt Xm

t + pm,cet Ce,mt . (9.2)

Alternatively, we could define

ToT ct =
StP

x
t

Pm,ct

,

as well as corresponding measures for investment and exports. In terms of relative prices, we would
then have

ToT ct =
P dt
Pm,ct

P ct
P dt

StP
c,∗
t

P ct

P ∗t
P c,∗t

P xt
P ∗t

=
pctqtp

x
t

pc,∗t pm,ct

.

40Note that

pxt =
P xt

P d,∗t

(
z̃+,∗
t

)− 1
ηf

simplifies to

pxt =
P xt

P d,∗t
if the technological growth rates in the two economies coincide.

86



9.1 Scaling of the terms of trade

Scaling,
pctqtp

x
t

pc,∗t ToTt

Mt

z+
t

= pm,ct

Cmt
z+
t

+ pm,it

Imt
z+
t

+ pm,xt

Xm
t

z+
t

+ pm,cet

Ce,mt
z+
t

pctqtp
x
t

pc,∗t ToTt
mt = pm,ct cmt + pm,it imt + pm,xt xmt + pm,cet ce,mt . (9.3)

We note that, in steady state,

ToT =
pcqpxm

pc,∗ (pm,ccm + pm,iim + pm,xxm + pm,cece,m)
.

9.2 Log-linearization of the real exchange rate and the terms of trade

Log-linearizing (9.1), we have
q̂t = ŝt + π̂c,∗t − π̂ct + q̂t−1. (9.4)

Log-linearizing the expression for the terms of trade as given by equation (9.3),

pcqpxm

pc,∗t ToT

(
p̂ct + q̂t + p̂xt + m̂t − p̂c,∗t − T̂ oT t

)
= pm,ccm (p̂m,ct + ĉmt ) + pm,iim

(
p̂m,it + îmt

)
+pm,xxm (p̂m,xt + x̂mt ) + pm,cece,m (p̂m,cet + ĉe,mt ) .

We can rewrite this as

p̂ct + q̂t + p̂xt + m̂t − p̂c,∗t − T̂ oT t

=
pc,∗t ToT

pcqpx

[
pm,c

cm

m
(p̂m,ct + ĉmt ) + pm,i

im

m

(
p̂m,it + îmt

)
+pm,x

xm

m
(p̂m,xt + x̂mt ) + pm,ce

ce,m

m
(p̂m,cet + ĉe,mt )

]
Rearranging, we finally obtain

T̂ oT t = −p
c,∗
t ToT

pcqpx

[
pm,c

cm

m
(p̂m,ct + ĉmt ) + pm,i

im

m

(
p̂m,it + îmt

)
(9.5)

+pm,x
xm

m
(p̂m,xt + x̂mt ) + pm,ce

ce,m

m
(p̂m,cet + ĉe,mt )

]
+p̂ct + q̂t + p̂xt − p̂

c,∗
t + m̂t.

Log-linearizing the alternative definition would yield

T̂ oT
c

t = p̂ct + q̂t + p̂xt − p̂
c,∗
t − p̂

m,c
t .

10 Exogenous processes

The domestic side of our model contains a total of 23 exogenous processes, most of which are given
by AR(1) processes

log et = (1− ρe) log e+ ρe log et−1 + σeεe,t,
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where e = ε,Υ, µz, µΨ, λ
d, λm,c, λm,i, λm,x, λm,ce, λx, λw, νwc,dt , νwc,mt , νwc,xt , ζβ, ζc, ζn, χ, φ̃, εR, π̄

c, pd,ce, g,
and εe,t ∼ N (0, 1).41 In practice, it may be empirically motivated to allow some of the shock processes
to be correlated with their foreign counterparts, and to model some as ARMA processes. Moreover,
some of the shock processes are turned off in the estimation. In this document, we restrict the dis-
cussion to the theoretical model which was used as the starting point for the estimations, and leave
empirical considerations aside.

In terms of log-deviations from steady state, we thus have: the neutral stationary technology shock
in equation (3.6)

ε̂t = ρεε̂t−1 + σεεε,t, (10.1)

the investment-specific stationary technology shock in equation (4.22)

Υ̂t = ρΥΥ̂t−1 + σΥεΥ,t, (10.2)

the shock to neutral technology growth in equation (3.7)

µ̂z,t = ρµz µ̂z,t−1 + σµzεµz ,t, (10.3)

the shock to investment-specific technology growth in equation (3.8)

µ̂Ψ,t = ρµΨ
µ̂Ψ,t−1 + σµΨ

εµΨ,t, (10.4)

the domestic price markup shock in equation (3.2)

λ̂
d

t = ρλd λ̂
d

t−1 + σλdελd,t, (10.5)

the import (non-energy) consumption price markup shock

λ̂
m,c

t = ρλm,c λ̂
m,c

t−1 + σλm,cελm,c,t, (10.6)

the import investment price markup shock

λ̂
m,i

t = ρλm,i λ̂
m,i

t−1 + σλm,iελm,i,t, (10.7)

the import-to-export price markup shock

λ̂
m,x

t = ρλm,x λ̂
m,x

t−1 + σλm,xελm,x,t, (10.8)

tha import energy consumption markup shock

λ̂
m,ce

t = ρλm,ce λ̂
m,ce

t−1 + σλm,ceελm,ce,t, (10.9)

all four in equation (3.59), the export price markup shock in equation (3.181)

λ̂
x

t = ρλx λ̂
x

t−1 + σλxελx,t, (10.10)

the wage markup shock in equation (4.41)

λ̂
w

t = ρλw λ̂
w

t−1 + σλwελw,t, (10.11)

the fraction of the domestic firms’wage bill that has to be financed in advance in equation (3.11)

ν̂wc,dt = ρνwc,d ν̂
wc,d
t−1 + σνwc,dενwc,d,t, (10.12)

41 In Ramses I and II, the processes for the fractions of the firms’costs that have to be financed in advance, νft , ν
∗
t , and

νxt , are assumed to be constants. Here, we define them as AR(1) processes, that can be switched on and off, depending
on the calibration.
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the fraction of the import retailers’costs that has to be financed in advance in equation (3.63)

ν̂wc,mt = ρνwc,m ν̂
wc,m
t−1 + σνwc,mενwc,m,t, (10.13)

he fraction of the export producers’costs that has to be financed in advance in equation (3.186)

ν̂wc,xt = ρνwc,x ν̂
wc,x
t−1 + σνwc,xενwc,x,t, (10.14)

the shock to the houshold’s discount rate in equation (4.2)

ζ̂
β

t = ρζβ ζ̂
β

t−1 + σζβεζβ ,t, (10.15)

the shock to consumption preferences in equation (4.3)

ζ̂
c

t = ρζc ζ̂
c

t−1 + σζcεζc,t, (10.16)

the labour supply shock in equation (4.4)42

ζ̂
n

t = ρζn ζ̂
n

t−1 + σζnεζn,t, (10.17)

the household risk premium shock in equation (4.12)

χ̂t = ρχχ̂t−1 + σχεχ,t, (10.18)

the country risk premium shock in equation (4.18)

̂̃
φt = ρφ̃

̂̃
φt−1 + σφ̃εφ̃,t, (10.19)

the monetary policy shock in equation (5.2)

ε̂R,t = ρεR ε̂R,t−1 + σεRεεR,t, (10.20)

the inflation target shock in equation (3.19)

̂̄πct = ρπ̄c ̂̄πct−1 + σπ̄cεπ̄c,t, (10.21)

the evolution of the relative price of energyin equation (3.163)

p̂d,cet = ρpd,ce p̂
d,ce
t−1 + σpd,ceεpd,ce,t. (10.22)

and government consumption expenditures in equation (5.4)

ĝt = ρg ĝt−1 + σgεg,t. (10.23)

42We note that the labour supply shock in theory is modified to a random walk (allowing for drift in the labour supply),
i.e.

ζ̂
n

t = ζ̂
n

t−1 + σζnεζn,t.

In practice, however, this is implemented by setting ρζn = 0.999 in the AR process listed in the main text.
Also, as a shortcut to allow for composition effects from variations in the labour force (in a boom workers of lower

productivity than average tend to enter the labour force; see the code from Lindé, Maih, and Wouters (2017)) the
stationary technology shock is modified to

ε̂t = ρεε̂t−1 + σεεε,t + σε,ζhεζh,t.

Potentially one could, following Lindé, Maih, and Wouters (2017), modify the labour supply shock to

ζ̂
n

t = ρζn ζ̂
n

t−1 + σζnεζn,t + σζn,εεε,t,

i.e., allow the technology shock to affect labour supply.
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11 Foreign economy

11.1 Structural model of the foreign economy

The structure of the foreign economy is analogous to that of the domestic economy. All functional
forms (utility function, production technologies, various costs) are unchanged. Nonetheless, given our
small open-economy assumption, the influence of the domestic economy is negligible, and the foreign
economy is thus approximately closed. Most of this block’s optimal conditions are identical to those
of the domestic block, with variables and parameters assigned an additional superscript “∗”where
appropriate. We won’t derive the full set of foreign’s optimal conditions in this section (the derivations
can be found in the corresponding sections for the home economy), but we will rather focus on the
equations that differ with respect to what has been previously derived. The entire set of equilibrium
conditions is presented in Section 13.2.43

11.1.1 Firms

The structure of the foreign economy’s corporate sector is analogous to that of the domestic economy’s
homogeneous good sector. Foreign intermediate good firms produce the differentiated goods using the
same technology as in (3.5), that is:

Y ∗i,t =
(
z∗tN

∗
i,t

)1−α∗
ε∗t
(
K∗i,t

)α∗ − z+,∗
t φ∗, (11.1)

where all variables are defined as in the domestic economy. As for the domestic economy, we assume
that the foreign economy has two sources of growth: a positive drift in the neutral technology, z∗t ,
and a positive drift in the investment-specific technology, Ψ∗t . The stochastic processes of ε

∗
t and the

growth rates of z∗t and z
+,∗
t are defined as in (3.6), (3.7) and (3.9). The goods are sold monopolistically

to foreign retailers who produce the homogeneous foreign good, Y ∗t , by aggregating the intermediate
foreign goods Y ∗i,t as in (3.1):

Y ∗t =

[∫ 1

0

(
Y ∗i,t
) 1
λ∗t di

]λ∗t
, 1 ≤ λ∗t ≤ ∞,

where λ∗t is a stochastic process determining the time-varying price markup in the foreign goods market
defined as in (3.2). From the cost-minimization problem of the foreign intermediate goods producers,
we obtain expressions for the marginal products of labour and capital as in (3.35) and (3.36), for
marginal costs as in (3.37) and (3.38), and for the nominal rental rate of capital services as in (3.17).
We moreover have a corresponding expression to the gross effective nominal interest rate faced by firms
in (3.10), the price setting equations (3.22) and (3.23), and the price dispersion equation in (3.27).
After log-linearization, we end up with the starred version of the following eight equations: the two
marginal cost expressions for foreign intermediate goods producers (3.46) and (3.47), the marginal
product of labour (3.48), the marginal product of capital (3.49), the capital-to-labour ratio (3.50),
the gross effective nominal interest rate (3.42), the Phillips curve (3.56), and the price dispersion
expression (3.57). We also need to include the starred version of the log-linearized expression of the
technological growth rate µz+,t in (3.51).

The foreign homogeneous good is allocated among the alternatives uses as follows:

Y ∗t = G∗t + Cd,∗t + Ce,∗t + Id,∗t . (11.2)

The fact that X∗t does not appear in the previous equation arises from the small open-economy
assumption —foreign exports to the home economy represent a negligible share of total output and
the foreign export sector can thus be omitted from the analysis. By the same reasoning, although the

43The foreign economy model is very close to the model in Smets and Wouters (2003), on which the first Ramses model
(Adolfson et al. (2005) and Adolfson et al. (2007)) also was based.
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foreign economy does include an import sector, we can omit the production of imported intermediate
goods in the foreign block. Again, this is because imports from the small open economy form a
negligible part of the foreign consumption and investment bundles, which implies that variations in
import prices have an insignificant impact on the evolution of the foreign price index P d,∗t .

We next turn to the production of final goods. We start by assuming that final consumption and
investment goods are produced by foreign, competitive, representative firms using the same production
technologies as in (3.115), (3.116) and (3.164), and thus

C∗t =

[
(1− ω∗e)

1
η∗e
(
Cxe,∗t

) η∗e−1

η∗e + (ω∗e)
1
η∗c
(
Ce,∗t

) η∗e−1

η∗e

] η∗e
η∗e−1

, (11.3)

Cxe,∗t =

[
(1− ω∗c)

1
η∗c

(
Cd,∗t

) η∗c−1

η∗c + (ω∗c)
1
ηc

(
Cm,∗t

) η∗c−1

η∗c

] η∗c
η∗c−1

, (11.4)

I∗t + a (u∗t )K
p,∗
t = Ψ∗t

[
(1− ω∗i )

1
η∗
i

(
Id,∗t

) η∗i−1

η∗
i + (ω∗i )

1
ηi

(
Im,∗t

) η∗i−1

η∗
i

] η∗i
η∗
i
−1

. (11.5)

As noted above, however, the small open-economy assumption implies that imports represent a neg-
ligible share in the consumption and investment bundles, such that

ω∗c → 0

ω∗i → 0.

Hence, (11.4) and (11.5) become:
Cxe,∗t = Cd,∗t , (11.6)

I∗t + a (u∗t )K
p,∗
t = Ψ∗t I

d,∗
t . (11.7)

The representative final consumption good firm takes the price of output P c,∗t and the prices of inputs
P d,∗t , and P ce,∗t as given. It faces the following budget constraint:

P c,∗t C∗t = P cxe,∗t Cxe,∗t + P ce,∗t Ce,∗t , (11.8)

where P cxe,∗t Cxe,∗t denotes the expenditures on non-energy goods and P ce,∗t Ce,∗t the expenditures on
energy. Just as in the domestic economy, we have that

Cxe,∗t = (1− ω∗e)
[
P cxe,∗t

P c,∗t

]−η∗e
C∗t , (11.9)

Ce,∗t = ω∗e

[
P ce,∗t

P c,∗t

]−η∗e
C∗t . (11.10)

Moreover, we have that

P c,∗t =
[
(1− ω∗e)

(
P cxe,∗t

)1−η∗e + ω∗e
(
P ce,∗t

)1−η∗e]1/(1−η∗e)
, (11.11)

P cxe,∗t =

[
(1− ω∗c)

(
P d,∗t

)1−η∗c
+ ω∗c

(
Pm,c,∗t

)1−η∗c]1/(1−η∗c)

. (11.12)

Letting ω∗c → 0, we get that
P cxe,∗t = P d,∗t . (11.13)
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Using the definitions

pc,∗t =
P c,∗t

P d,∗t
, (11.14)

pcxe,∗t =
P cxe,∗t

P d,∗t
, (11.15)

pce,∗t =
P ce,∗t

P d,∗t
, (11.16)

we can rewrite (11.11) as

pc,∗t =
[
(1− ω∗e) + ω∗e

(
pce,∗t

)1−η∗e]1/(1−η∗e)
. (11.17)

The rate of inflation of the foreign aggregate CPI is then given by

πc,∗t =
P c,∗t
P c,∗t−1

=

[
(1− ω∗e)

(
P cxe,∗t

)1−η∗e + ω∗e
(
P ce,∗t

)1−η∗e
(1− ω∗e)

(
P cxe,∗t−1

)1−η∗e + ω∗e
(
P ce,∗t−1

)1−η∗e
] 1

1−η∗e

, (11.18)

or, in terms of relative prices,

πc,∗t =

(
P c,∗t
P c,∗t−1

P d,∗t−1

P d,∗t

)
P d,∗t

P d,∗t−1

=
pc,∗t
pc,∗t−1

πd,∗t

= πd,∗t

[
(1− ω∗e) + ω∗e

(
pce,∗t

)1−η∗e
(1− ω∗e) + ω∗e

(
pce,∗t−1

)1−η∗e
] 1

1−η∗e

. (11.19)

We note also that
πcxe,∗t = πd,∗t , (11.20)

πc,∗t =
pc,∗t
pc,∗t−1

πd,∗t , (11.21)

and that

πce,∗t =
pce,∗t

pce,∗t−1

πd,∗t . (11.22)

For investment we have that

P i,∗t =
1

Ψ∗t

[
(1− ω∗i )

(
P d,∗t

)1−η∗i
+ ω∗i

(
Pm,i,∗t

)1−η∗i
]1/(1−η∗i )

.

Letting ω∗i → 0, we get that

P i,∗t =
1

Ψ∗t
P d,∗t . (11.23)

Using the definition

pi,∗t ≡
Ψ∗tP

i,∗
t

P d,∗t
,

(11.23) becomes
pi,∗t = 1. (11.24)

Moreover, the rate of inflation of the foreign investment good is given by

πi,∗t =
P i,∗t
P i,∗t−1

=
πd,∗t
µΨ∗,t

. (11.25)
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We note that, as the foreign economy is closed, the good Y ∗t is the single produced good in the economy
(other than energy). It is sold at the price P d,∗t , and used directly for consumption and investment by
the households. The reason that investment price inflation may deviate from the consumption (and
domestic) price inflation is the fact that we allow for a potentially different trend in the investment
production technology, just as in Section 3.4 of the domestic problem earlier.

In scaled form, for consumption, we obtain

c∗t =

[
(1− ω∗e)

1
η∗e
(
cxe,∗t

) η∗e−1

η∗e + (ω∗e)
1
η∗c
(
ce,∗t
) η∗e−1

η∗e

] η∗e
η∗e−1

, (11.26)

where

cxe,∗t = (1− ω∗e)
[
P cxe,∗t

P c,∗t

]−η∗e
c∗t , (11.27)

ce,∗t = ω∗e

[
P ce,∗t

P c,∗t

]−η∗e
c∗t . (11.28)

Using the definitions of the relative prices pc,∗t , p
cxe,∗
t and pce,∗t specified above, we have

cxe,∗t = (1− ω∗e)
(

1

pc,∗t

)−η∗e
c∗t , (11.29)

ce,∗t = ω∗e

(
pce,∗t

pc,∗t

)−η∗e
c∗t . (11.30)

For investment, we have

id,∗t = i∗t +
a (u∗t ) k

p,∗
t

µz+,∗,tµΨ∗,t
. (11.31)

Before turning to the foreing household’s optimization problem, we first log-linearize the few op-
timal conditions that we just derived for the foreign economy and that differ from the domestic ones.
From (11.29) and (11.30) we directly obtain

ĉxe,∗t = η∗ep̂
c,∗
t + ĉ∗t , (11.32)

ĉe,∗t = −η∗e
(
p̂ce,∗t − p̂c,∗t

)
+ ĉ∗t . (11.33)

We recall also that the following holds:
ĉxe,∗t = ĉd,∗t . (11.34)

To obtain a log-linear expression for the foreign aggregate CPI, we can log-linearize equation (11.11)
in levels to obtain

P̂ c,∗t = (1− ω∗e)
(

1

pc,∗

)1−η∗e
P̂ cxe,∗t + ω∗e

(
pce,∗

pc,∗

)1−η∗e
P̂ ce,∗t , (11.35)

where we have used the definitions of relative prices pc,∗t and pce,∗ specified above. Lagging one period
and differencing, and using that the definitions of the inflation rates πcxe,∗t , πc,∗t and πce,∗t in Section
2.2 imply that

π̂cxe,∗t = P̂ cxe,∗t − P̂ cxe,∗t−1 , (11.36)

π̂c,∗t = P̂ c,∗t − P̂
c,∗
t−1, (11.37)

π̂ce,∗t = P̂ ce,∗t − P̂ ce,∗t−1 , (11.38)
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we obtain the following log-linear expression for the foreign CPI inflation in terms of non-energy and
energy price inflation,

π̂c,∗t = (1− ω∗e)
(

1

pc,∗

)1−η∗e
π̂cxe,∗t + ω∗e

(
pce,∗

pc,∗

)1−η∗e
π̂ce,∗t . (11.39)

We note also that taking logs of expression (11.20) gives

π̂cxe,∗t = π̂d,∗t . (11.40)

From equation (11.22), we have
π̂ce,∗t = p̂ce,∗t − p̂ce,∗t−1 + πd,∗t . (11.41)

Just as for the domestic economy, we assume that the relative price of energy evolves as an exogenous
process, so that

log pce,∗t =
(
1− ρpce,∗

)
log pce,∗ + ρpce,∗ log pce,∗t−1 + σpce,∗εpce,∗,t. (11.42)

We also log-linearize the relative price expression in equation (11.17), which yields the following
expression:

p̂c,∗t = ω∗e

(
pce,∗

pc,∗

)1−η∗e
p̂ce,∗t . (11.43)

(11.31) yields

ı̂d,∗t =
1

i∗

(
i∗ı̂∗t +

σ∗bk
p,∗

µz+,∗µΨ∗
û∗t

)
. (11.44)

Finally, from equations (11.24) and (11.25), we have

p̂i,∗t = 0, (11.45)

and
π̂i,∗t = π̂d,∗t − µ̂Ψ∗,t. (11.46)

11.1.2 Households

The household problem in the foreign economy is very similar to the domestic economy one, but for
the following exception: the small open-economy assumption implies that foreign households do not
have access to the domestic bond markets. As a result, the budget contraint for foreign households is
slightly different from (4.10), and is given by:

P c,∗t C∗t + P i,∗t
(
I∗t + a (u∗t )K

p,∗
t

)
+ P ∗k′,t∆

∗
t +B∗t+1

=

∫ 1

0

∫ n∗j,t

0
W ∗j,k,tdkdj +Rk,∗t u∗tK

p,∗
t +R∗t−1χ

∗
tB
∗
t + Π∗t + TR∗t , (11.47)

where all variables are defined analogously to those in the domestic economy. The household’s util-
ity maximization problem, analogous to (4.29), thus results in first-order conditions for the foreign
economy corresponding to (4.30), (4.31), and (4.33)—(4.36). The preference shifters are specified in
an analogous way to (4.5), (4.6) and (4.7). Moreover, the preference shocks pertaining to the foreign
economy’s household problem, ζβ,∗t , ζc,∗t and ζn,∗t , are defined as in (4.2), (4.3) and (4.4), and the risk
premium shock χ∗t as in (4.12).

The law of motion for captital is given by the process specified in (4.21), and effi cient capital is
assumed to relate to physical capital as in (4.28).

Unemployment and labour supply are specified as in (4.38) and (4.39).
The wage setting problem is analogous to the domestic one in Section 4.6. Households set wages

maximizing its future discounted utility, and then inelastically supply the firm’s demand for labour at
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the going wage rate. Just as for prices, there is a time-varying wage markup shock, λw,∗t , defined as
in (4.41). The wage setting problem yields expressions corresponding to the optimal wage equations
(4.46) and (4.47), the relationship between aggregate homogeneous labour and aggregate household
labour (4.46), and the wage dispersion expression (4.51).

After scaling and log-linearization, we end up with the starred version of the following eighteen
equations from the household side: the expression determining the labour participation in equation
(4.100), the unemployment rate in equation (4.99), the natural rate of unemployment in equation
(4.110), the endogenous preference shifter in equation (4.80), the trend consumption in equation
(4.81), the marginal utility of consumption in equation (4.88), the marginal rate of substitution in
equation (4.83), the wage markup in equation (4.101), the consumption Euler equation (4.89), the
first-order conditions with respect to capital and investment (4.92) and (4.93), the expression for the
capital utilization rate (4.95), the law of motion for capital (4.96), the relationship between effi cient
and physical capital (4.97), the wage inflation expression (4.106), the wage Phillips curve (4.111), the
expression for aggregate household labour (4.114), and the wage dispersion expression (4.115).

We restate and solve the foreign-economy wage problem below. Just as in the domestic economy,
the foreign households are monopoly suppliers of differentiated labour services hired by the firm. As
such, they can determine their wages. Households are subject to Calvo wage setting frictions, facing a
probability 1− ξ∗w in each period that it can reoptimize its nominal wage. If the union reporesenting
the jth labour type is not able to reoptimize in period t, the wage it will charge in period t+ 1 will be
set according to the following indexation rule:{

W ∗j,t+1 = π̃w,∗t+1W
∗
j,t

π̃w,∗t+1 ≡
(
πc,∗t

)κ∗w (π̄c,∗t+1

)1−κ∗w−κ∗w (π̆∗)κ
∗
w (µz+,∗)ϑ

∗
w .

(11.48)

The household’s wage optimization problem is given by

max
W̃ ∗j,t

Et

∞∑
s=0

(β∗ξ∗w)s ζβ,∗t+s


−ζn,∗t+s

Θ∗t+s
1+ϕ∗

( π̃w,∗t+s...π̃w,∗t+1

W ∗t+s

) λ
w,∗
t+s

1−λw,∗t+s N∗t+s

1+ϕ∗ (
W̃ ∗j,t

)λw,∗t+s(1+ϕ∗)
1−λw,∗t+s

+υ∗t+s
(
W ∗t+s

)− λ
w,∗
t+s

1−λw,∗t+s N∗t+s
(
π̃w,∗t+s . . . π̃

w,∗
t+1

) 1

1−λw,∗t+s
(
W̃ ∗j,t

) 1

1−λw,∗t+s

 .

Optimization w.r.t. W̃ ∗j,t yields

(w̃∗t )

1−λw,∗t+s(1+ϕ∗)
1−λw,∗t+s =

λw,∗t+sEt
∞∑
s=0

(β∗ξ∗w)s ζβ,∗t+sζ
n,∗
t+sΘ

∗
t+s

(W ∗t π̃w,∗t+s...π̃w,∗t+1

W ∗t+s

) λ
w,∗
t+s

1−λw,∗t+s N∗t+s

1+ϕ∗

Et
∞∑
s=0

(β∗ξ∗w)s ζβ,∗t+sυ
∗
t+sW

∗
t+sN

∗
t+s

(
W ∗t π̃

w,∗
t+s...π̃

w,∗
t+1

W ∗t+s

) 1

1−λw,∗t+s

. (11.49)

where w̃∗t =
W̃ ∗t
W ∗t
. Note that, due to the Calvo assumption on wage setting frictions, we can then

rewrite the wage index as follows:

(W ∗t )
1

1−λw,∗t+s =

∫ 1

0

(
W ∗j,t

) 1

1−λw,∗t+s dj

=

∫ ξ∗w

0

(
π̃w,∗t W ∗j,t−1

) 1

1−λw,∗t+s dj +

∫ 1

ξ∗w

(
W̃ ∗t

) 1

1−λw,∗t+s dj

= ξ∗w
(
π̃w,∗t W ∗t−1

) 1

1−λw,∗t+s + (1− ξ∗w)
(
W̃ ∗t

) 1

1−λw,∗t+s .
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Dividing both sides by (W ∗t )
1

1−λw,∗t+s , we obtain

1 = ξ∗w

(
π̃w,∗t
πw,∗t

) 1

1−λw,∗t+s
+ (1− ξ∗w) (w̃∗t )

1

1−λw,∗t+s

w̃∗t =

1− ξ∗w
(
π̃w,∗t
πw,∗t

) 1

1−λw,∗t+s

(1− ξ∗w)


1−λw,∗t

, (11.50)

where

πw,∗t =
W ∗t
W ∗t−1

=
w̄∗t z

+,∗
t P d,∗t

w̄∗t−1z
+,∗
t−1P

d,∗
t−1

=
w̄∗tµz+,∗,tπ

d,∗
t

w̄∗t−1

, (11.51)

and w̄∗t =
W ∗t

z+,∗
t P d,∗t

is the scaled real wage.

We next scale the wage setting equation. First, note that

W ∗t π̃
w,∗
t+s . . . π̃

w,∗
t+1

W ∗t+s
=
W ∗t π̃

w,∗
t+s . . . π̃

w,∗
t+1

w̄∗t+sz
+,∗
t+sP

d,∗
t+s

=
w̄∗t
w̄∗t+s

π̃w,∗t+s . . . π̃
w,∗
t+1

µz+,∗,t+1 . . . µz+,∗,t+sπ
d,∗
t+1 . . . π

d,∗
t+s

.

We then have that

(w̃∗t )

1−λw,∗t+s(1+ϕ∗)
1−λw,∗t+s =

λw,∗t+sEt
∞∑
s=0

(β∗ξ∗w)s ζβ,∗t+sζ
n,∗
t+sΘ

∗
t+s

( w̄∗t
w̄∗t+s

π̃w,∗t+s...π̃
w,∗
t+1

µz+,∗,t+1...µz+,∗,t+sπ
d,∗
t+1...π

d,∗
t+s

) λ
w,∗
t+s

1−λw,∗t+s N∗t+s


1+ϕ∗

Et
∞∑
s=0

(β∗ξ∗w)s ζβ,∗t+sψz+,∗,t+sw̄
∗
t+sN

∗
t+s

(
w̄∗t
w̄∗t+s

π̃w,∗t+s...π̃
w,∗
t+1

µz+,∗,t+1...µz+,∗,t+sπ
d,∗
t+1...π

d,∗
t+s

) 1

1−λw,∗t+s

.

(11.52)
For the log-linearization, we need to recall that π̃w,∗t+1 =

(
πc,∗t

)κ∗w (π̄c,∗t+1

)1−κ∗w−κ∗w (π̆∗)κ
∗
w (µz+,∗)ϑ

∗
w .

From the steady-state computations, we have that πc,∗ = π̄c,∗ = πd,∗, which implies that π̃w,∗ =(
πd,∗

)1−κ∗w (π̆∗)κ
∗
w (µz+,∗)ϑ

∗
w . Under the additional assumptions that κ∗w = 0 and ϑ∗w = 1, we have that

π̃w,∗ = πd,∗µz+,∗ .

We moreover have that.

πw,∗ =
w̄∗µz+,∗πd,∗

w̄∗
= πd,∗µz+,∗ ,

and, thus, π̃
w,∗

πw,∗t
= 1, which yields

w̃∗ = 1.

Using these steady-state relationships, we can obtain the following log-linear expression of the optimal
wage equation:

1− λw,∗ (1 + ϕ∗)

1− λw,∗
(̂̃w∗t + ̂̄w∗t) = (1− β∗ξ∗w)

(
ζ̂
n,∗
t + Θ̂∗t + ϕ∗N̂∗t − ψ̂

∗
z+,t + λ̂

w,∗
t − λw,∗ϕ∗

1− λw,∗
̂̄w∗t)

+β∗ξ∗w
1− λw,∗ (1 + ϕ∗)

1− λw,∗ Et

(̂̃w∗t+1 + ̂̄w∗t+1

)
+ (1− β∗ξ∗w)

∞∑
s=0

(β∗ξ∗w)s
λw,∗ (1 + ϕ∗)− 1

1− λw,∗ Et

(̂̃πw,∗t+1 − π̂
d,∗
t+1 − µ̂z+,∗,t+1

)
.

Log-linearizing the expression for w̃t that we derived from the aggregate wage index, we obtain

̂̃w∗t =
ξ∗w

1− ξ∗w

(
πw,∗t − ̂̃πw,∗t )

.
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Log-linearizing the expressions for πw,∗t and π̃w,∗t , under the assumption that κ∗w = 0, we get

̂̃πw,∗t = κ∗wπ̂
c,∗
t−1 + (1− κ∗w) ̂̄πc,∗t

π̂w,∗t = ̂̄w∗t − ̂̄w∗t−1 + π̂d,∗t + µ̂z+,∗,t.

Combining and rearranging as in Section 4.8.5, we finally get the following wage setting equation

π̂w,∗t = β∗Etπ̂
w,∗
t+1 + (11.53)

+ (1− β∗ρπ̄∗) ̂̄πc,∗t + κ∗w
(
π̂c,∗t−1 − ̂̄πc,∗t )− β∗κ∗wEt (π̂c,∗t − ̂̄πc,∗t+1

)
−d∗wϕ∗

(
Û∗t − Û

n,∗
t

)
,

where we have defined

b∗w =
λw,∗ (1 + ϕ∗)− 1

(1− β∗ξ∗w) (1− ξ∗w)

and

d∗w =
(1− β∗ξ∗w) (1− ξ∗w)

ξ∗w

λw,∗ − 1

λw,∗ (1 + ϕ∗)− 1
=
λw,∗ − 1

ξ∗wb
∗
w

, (11.54)

and where
Ûn,∗t =

1

ϕ∗
λ̂
w,∗
t . (11.55)

11.1.3 Monetary and fiscal authorities

We assume that foreign monetary policy is also conducted according to an instrument rule, which is
analogous to the one described in Section 5.1:

log

(
R∗t
R∗

)
= ρR∗ log

(
R∗t−1

R∗

)
+ (1− ρR∗)

[
log

(
π̄c,∗t
π̄c,∗

)
+ rπ∗ log

(
πc,∗t−1

π̄c,∗t

)
(11.56)

+rRU∗
(
U∗t−1 − U∗

)]
+ r∆π∗∆ log

(
πc,∗t
πc,∗

)
+ r∆RU∗∆U

∗
t + log εR∗,t

where all variables are defined as in Section 5.1. Note that, due to the assumption that the foreign
economy is approximately closed, we have excluded the exchange rate term from the rule.

We model foreign government consumption as follows

G∗t = g∗t z
+,∗
t , (11.57)

where g∗t is an exogenous stochastic process defined as in (5.4). Here, g
∗ = η∗gY

∗, where η∗g denotes
the steady-state foreign government consumption as a fraction of foreign GDP.

11.1.4 The aggregate resource constraint

Following Section 6, the foreign aggregate resource constraint writes:

G∗t + Cd,∗t + Ce,∗t + Id,∗t =
(
p̊d,∗t

) λ∗t
λ∗t−1

[
(z∗t )1−α∗ ε∗t (K∗t )α

∗
(N∗t )1−α∗ − z+,∗

t φ∗
]
. (11.58)

Scaling the resource constraint yields

g∗t + cd,∗t + ce,∗t + id,∗t =
(
p̊d,∗t

) λ∗t
λ∗t−1

[
ε∗t

(
k∗t

µz+,∗,tµΨ∗,t

)α∗
(N∗t )1−α∗ − φ∗

]
.
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Substituting N∗t using the foreign version of (4.49), we have

g∗t + cd,∗t + ce,∗t + id,∗t

=
(
p̊d,∗t

) λ∗t
λ∗t−1

ε∗t ( k∗t
µz+,∗,tµΨ∗,t

)α∗ (
n∗t (ẘ∗t )

− λ
w,∗
t

1−λw,∗t

)1−α∗

− φ∗
 . (11.59)

We now turn to the log-linearization. We first consider the left-hand side, i.e. the uses of the
foreign good:

y∗t = g∗t + cd,∗t + ce,∗t + id,∗t .

We can substitute for cd,∗t to obtain

y∗t = g∗t + cxe,∗t + ce,∗t + id,∗t .

Log-linearization yields

ŷ∗t =
g∗

y∗
ĝ∗t +

cxe,∗

y∗
ĉxe,∗t +

ce,∗

y∗
ĉe,∗t +

id,∗

y∗
ı̂d,∗t . (11.60)

Moving on to the right hand side, log-linearization yields

y∗ŷ∗t =

[(
k∗

µz+,∗µΨ∗

)α∗
(n∗)1−α∗ − φ∗

]
×
[

λ∗

1− λ∗
̂̊pd,∗t ]

+

(
k∗

µz+,∗µΨ∗

)α∗
(n∗)1−α∗ ×

[
ε̂∗t + α∗

(
k̂∗t − µ̂z+,∗,t − µ̂Ψ∗,t

)
+ (1− α∗)

(
n̂∗t −

λw,∗

1− λw,∗
̂̊w∗t)] .

Under full indexation (where p̊d,∗ = ẘ∗ = 1), we also have that (foreign and steady-state version of
(6.8))

y∗ =

(
k∗

µz+,∗µΨ∗

)α∗
(n∗)1−α∗ − φ∗,

so the aggregate resource constraint from the production side writes

ŷ∗t =
λ∗

1− λ∗
̂̊pd,∗t +

1

y∗

(
k∗

µz+,∗µΨ∗

)α∗
(n∗)1−α∗ × (11.61)

×
[
ε̂∗t + α∗

(
k̂∗t − µ̂z+,∗,t − µ̂Ψ∗,t

)
+ (1− α∗)

(
n̂∗t −

λw,∗

1− λw,∗
̂̊w∗t)] .

11.1.5 Exogenous processes

The foreign model contains a total of 15 exogenous processes, all given by AR(1) processes:44 the
neutral stationary technology shock

ε̂∗t = ρε∗ ε̂
∗
t−1 + σε∗εε∗,t, (11.62)

the investment-specific stationary technology shock

Υ̂∗t = ρΥ∗Υ̂
∗
t−1 + σΥ∗εΥ∗,t, (11.63)

44Just as for the domestic-economy model in Section 10, we here restrict the discussion to the theoretical model which
was used as the starting point for the estimations, and leave empirical considerations aside. In practice, it may be
empirically motivated to model some of the shock processes differently, or turn them off in the estimation.
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the shock to neutral technology growth

µ̂z∗,t = ρµz∗ µ̂z∗,t−1 + σµz∗εµz∗ ,t, (11.64)

the shock to investment-specific technology growth

µ̂Ψ∗,t = ρµΨ∗
µ̂Ψ∗,t−1 + σµΨ∗εµΨ∗ ,t, (11.65)

the domestic price markup shock
λ̂
∗
t = ρλ∗ λ̂

∗
t−1 + σλ∗ελ∗,t, (11.66)

the wage markup shock
λ̂
w,∗
t = ρλw,∗ λ̂

w,∗
t−1 + σλw,∗ελw,∗,t, (11.67)

the fraction of the foreign firms’costs that has to be financed in advance

ν̂wc,∗t = ρνwc,∗ ν̂
wc,∗
t−1 + σνwc,∗ενwc,∗,t, (11.68)

the shock to the household’s discount rate

ζ̂
β,∗
t = ρζβ,∗ ζ̂

β,∗
t−1 + σζβ,∗εζβ,∗,t, (11.69)

the shock to consumption preferences

ζ̂
c,∗
t = ρζc,∗ ζ̂

c,∗
t−1 + σζc,∗εζc,∗,t, (11.70)

the labour supply shock
ζ̂
n,∗
t = ρζn,∗ ζ̂

n,∗
t−1 + σζn,∗εζn,∗,t, (11.71)

the household risk premium shock

χ̂∗t = ρ∗χ∗χ̂
∗
t−1 + σχ∗εχ∗,t, (11.72)

the monetary policy shock
ε̂R∗,t = ρεR∗ ε̂R∗,t−1 + σεR∗εεR∗ ,t, (11.73)

the inflation target shock ̂̄πc,∗t = ρπ̄c,∗ ̂̄πc,∗t−1 + σπ̄c,∗επ̄c,∗,t, (11.74)

government consumption expenditures

ĝ∗t = ρg∗ ĝ
∗
t−1 + σg∗εg∗,t, (11.75)

and the evolution of the relative price of energy

p̂ce,∗t = ρpce,∗ p̂
ce,∗
t−1 + σpce,∗εpce,∗,t. (11.76)

11.2 Modelled as a VAR

In this section, we present on alternative model of the foreign economy, which is similar to the foreign-
economy modelling in earlier Riksbank models. This version is not used at present, but only included
for documentation purposes.

99



In Ramses II, the foreign economy block is specified by the following system of equations:

X∗t = AX∗t−1 + Cεt

log
(
y∗t
y∗

)
π∗t − π∗
R∗t −R∗

log
(
µz,t
µz

)
log
(
µΨ,t

µΨ

)


=


a11 a12 a13 0 0
a21 a22 a23 a24

a24α
1−α

a31 a32 a33 a34
a34α
1−α

0 0 0 ρµz 0

0 0 0 0 ρµΨ





log
(
y∗t−1

y∗

)
π∗t−1 − π∗
R∗t−1 −R∗

log
(
µz,t−1

µz

)
log
(
µΨ,t−1

µΨ

)



+


σy∗ 0 0 0 0
c21 σπ∗ 0 c24

c24α
1−α

c31 c32 σR∗ c34
c34α
1−α

0 0 0 σµz 0
0 0 0 0 σµΨ




εy∗,t
επ∗,t
εR∗,t
εµz ,t
εµΨ,t

 ,

where the εt’s are mean-zero, unit variance i.i.d. processes uncorrelated with each other. It takes into
account that foreign output, Y ∗t , is affected by disturbances to z

+
t , as

log Y ∗t = log y∗t + log z+
t

= log y∗t + log zt +
α

1− α log Ψt,

where log (y∗t ) is asumed to be a stationary process. As the matrix C has 10 elements, the order con-
dition for identification is satisfied. The documentation of Ramses II discusses the intuition behind
the zero restrictions in A and C. Here, it suffi ces to note that the above system is estimated together
with the rest of the model, implying that the estimation of the parameters in A and C is affected by
domestic as well as foreign observed variables, and that the past few years’experience with estimation
has taught us that the parameters pertaining to the foreign economy block tend to be rather unsta-
ble. Moreover, shocks to the investment technology process have been switched of since the original
implementation of Ramses II. In the latest versions of Ramses II, even the neutral technology process
has been detached from the rest of the foreign VAR, rendering the modelling of the foreign economy
block similar to that in Ramses I.

In Ramses II, the two permanent technology processes are assumed to be global. As Sweden is a
small-open economy, we usually assume exogeneity of foreign variables. In other words, the standard
small-open-economy assumption implies that Swedish economic developments should be affected by,
but not affect, the developments in the rest of the world. It is not obvious that global technology
processes should be estimated in a model of the Swedish economy with restrictions on Swedish variables
following global shocks, such as for example Ramses II, as the results will be driven to a considerable
extent by data and restrictions pertaining to the domestic economy block.

For the above discussed reasons, in the model presented here, we will deviate from the assumptions
made in Ramses II. We will instead assume that the foreign economy block looks like the one in Ramses
I. To this end, we will shut off any shocks to the investment-specific technology, as in the implemented
version of Ramses II, and assume that the global neutral technology growth is given by an AR(1)
process.

The foreign economy in this model is specified as a VAR model of foreign inflation, output and
interest rates, assumed to be exogenously given. Defining

X∗t ≡
[
π∗t ŷ∗t R∗t

]′
,

where π∗t and R
∗
t are quarterly foreign inflation and interest rates, and ŷ

∗
t the foreign output gap

45,
we can write the model as

F0X
∗
t = F (L)X∗t−1 + εx∗,t, (11.77)

45 In Ramses I, it is the HP-filtered output.
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where εx∗,t ∼ N (0,Σx∗). In Ramses I, it is assumed that F0 has the following structure:

F0 =

 1 0 0
0 1 0
−γ∗π,0 −γ∗y,0 1

 .
This structure is equivalent to assuming predetermined expectations in the Phillips curve and output
equation, and could be not rejected in the estimation of Ramses I. Note that this specification of the
foreign block is complemented with two exogenous processes for the evolution of the domestic and
foreign technological processes µ̂z+,t and ̂̃z+,∗

t , specified in Section 10 below. The parameters in F0

and F (L) can be estimated outside of the model, and then calibrated prior to the estimation of the
parameters pertaining to the domestic economy block. Note that the foreign variables are still needed
as observed variables when the model is estimated, in order to enable idenfitication of the asymmetric
technology shock z̃+,∗

t . In Ramses I, HP-filtered output is used in the estimation of the parameters
in (11.77), while the vector of observed variables in the model estimation includes foreign output in
growth rates.46

Note, finally, that in the case the foreign economy is modelled as in the above VAR, we need to
assume that total demand by foreigners for domestic exports takes the following form:

Xt =

(
P xt
P ∗t

)−ηf
Y ∗t , (11.78)

as foreign GDP components are no longer explicitly modelled.

12 Steady state

In this section we solve for the non-stochastic steady state. We apply the convention that variables
without a time subscript represent steady-state values. We first present the solution for the domestic
economy, before proceding with the foreign one. Note that in practice, however, the steady state for
the foreign economy model is solved first, as the domestic steady state partly relies on the foreign
economy steady-state solution.

12.1 Steady state of the domestic-economy model

We begin by solving the steady state for the monetary policy rule. With the exception of consumer
price inflation, all variables are in log-deviation from their steady-state values. We have, in steady
state, that

log

(
Rt
R

)
= ρR log

(
Rt−1

R

)
+ (1− ρR)

[
log

(
π̄ct
π̄c

)
+ rπ log

(
πct−1

π̄ct

)
(12.1)

+rRU (Ut−1 − U) + rq log

(
qt−1

q

)]
+ r∆π∆ log

(
πct
πc

)
+ r∆RU∆Ut + log εR,t,

log

(
R

R

)
= ρR log

(
R

R

)
+ (1− ρR)

[
log

(
π̄c

π̄c

)
+ rπ log

(
πc

π̄c

)
+rRU (U − U)] + r∆π∆ log

(
πc

πc

)
+ r∆RU∆U,

yielding

log

(
πc

π̄c

)
= 0

⇒ πc = π̄c. (12.2)
46Foreign inflation and interest rates are included in levels in both cases.
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As will be clarified in the following section, the foreign policy maker follows a similar rule for the
foreign economy and, hence,

πc,∗ = π̄c,∗.

The relationship between the aggregate and domestic inflation rates and the relative price of aggregate
consumption then implies

πd,∗ = πc,∗.

Solving for (8.1)—(8.10), we obtain:

πd = πc (12.3)

πcxe = πd (12.4)

πce = πd (12.5)

πd,ce = πd (12.6)

πi =
πd

µΨ

(12.7)

πx = πd,∗ (12.8)

πm,c = πd (12.9)

πm,i = πd (12.10)

πm,x = πd (12.11)

πm,ce = πd. (12.12)

Solving for (3.18), (3.81) and (3.190) yields

π̃d =
(
πd
)κd

(π̄c)1−κd−κd (π̆)κd =
(
πd
)1−κd

(π̆)κd

π̃m,j =
(
πm,j

)κm,j (π̄c)1−κm,j−κm,j (π̆)κm,j =
(
πd
)1−κm,j

(π̆)κm,j , j = c, i, x, ce

π̃x = (πx)κx (π̄∗)1−κx−κx (π̆)κx = (πx)1−κx (π̆)κx .

Assuming full indexation, i.e. that κd = κm,j = κx = 0, the above three expressions simplify to

π̃d = πd (12.13)

π̃m,j = πd, j = c, i, x, ce (12.14)

π̃x = πx. (12.15)

From equation (4.48), we can solve for wage inflation

πw =
wµz+πd

w
= µz+πd, (12.16)

and from (4.44) for wage indexation to obtain

π̃w = (πc)κw (π̄c)1−κw−κw (π̆)κw (µz+)ϑw =
(
πd
)1−κw

(π̆)κw (µz+)ϑw .

Assuming full indexation, i.e. that κw = 0, and ϑw = 1, wage indexation simplifies to

π̃w = µz+πd = πw. (12.17)

From (3.9), we have that

µz+ = µ
α

1−α
Ψ µz. (12.18)
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From the Euler equation (4.58), we can then solve for the steady-state interest rate

R =
µz+

β
πd. (12.19)

We then have that the real rate is given by

R̄ =
R

πc
=
µz+

β
, (12.20)

where we have used that πd = πc in steady state.47 Correspondingly, R∗ is determined by the foreign
economy Euler equation, as given by

R∗ =
µz+,∗

β∗
πd,∗. (12.21)

With expressions for R and R∗ at hand, we can now solve for the steady-state gross effective nominal
interest rates faced by the different types of firms in equations (3.10), (3.62) and (3.185):

Rwc,d = νwc,dR+ 1− νwc,d (12.22)

Rwc,m = νwc,mR∗ + 1− νwc,m (12.23)

Rwc,x = νwc,xR+ 1− νwc,x. (12.24)

From equation (9.1), we can solve for the the steady-state value of the nominal exchange rate growth
rate:

s =
πc

πc,∗
=

πd

πd,∗
. (12.25)

From the UIP condition (4.66), we have
R = R∗Φs.

Combining (12.19), (12.21) and (12.25), we have

Φ =
µz+

µz+,∗

β∗

β

πd

πd,∗
=

1

s

µz+

µz+,∗

β∗

β

πd

πd,∗
πd,∗

πd

Φ =
µz+

µz+,∗

β∗

β
. (12.26)

Under the assumption of equal steady-state growth rates and discount factors in the two economies,
we have that

Φ = 1.

It is clear from equation (4.19) that we denote the steady-state value of net foreign assets by ā. We
assume that ā = ηay.

48

47Note also that we assume that the neutral interest rate, or the time-varying real interest rate trend, are equal in
steady state, so that:

R̄t = R̄.

See also Section 14.
48We will generally set ηa to 0. This is relevant for the linearlization of the model, as level deviations must be used for

deviations of āt from steady state instead of log deviations. The linearizations in earlier sections were done under this
assumption.
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Next, we solve for the steady-state marginal cost of domestic goods producers. We start with the
scaled expression of the optimal price (3.40):

p̃d =

λdmcdψz+y
∞∑
s=0

(βξd)
s
[(

π̃d

πd

)s] λd

1−λd

ψz+y
∞∑
s=0

(βξd)
[(

π̃d

πd

)s] 1

1−λd

p̃d = λdmcd

∞∑
s=0

[
βξd

(
π̃d

πd

) λd

1−λd

]s
∞∑
s=0

[
βξd

(
π̃d

πd

) 1

1−λd
]s = λdmcd

1− βξd
(
π̃d

πd

) 1

1−λd

1− βξd
(
π̃d

πd

) λd

1−λd

.

Using the second expression of the optimal price (3.23), which we derived from the aggregate price,
we obtain

mcd =
1

λd

1− βξd
(
π̃d

πd

) λd

1−λd

1− βξd
(
π̃d

πd

) 1

1−λd

1− ξd
(
π̃d

πd

) 1
1−λd

(1− ξd)


1−λd

. (12.27)

Assuming full indexation, implying that π̃d = πd, this simplifies to

mcd =
1

λd
. (12.28)

Note that λd is related to the elasticity of substitution between the different domestic goods, which
we denote by ηd, in the following way:

λd =
ηd

1− ηd
.

We note that λd is calibrated. Similarly, for importing and exporting firms, we have

mcx =
1

λx
1− βξx

(
π̃x

πx

) λx

1−λx

1− βξx
(
π̃x

πx

) 1
1−λx

1− ξx
(
π̃x

πx

) 1
1−λx

(1− ξx)


1−λx

(12.29)

and

mcm,j =
1

λm,j

1− βξm,j
(
π̃m,j

πm,j

) λm,j

1−λm,j

1− βξm,j
(
π̃m,j

πm,j

) 1

1−λm,j

1− ξm,j
(
π̃m,j

πm,j

) 1
1−λm,j

(
1− ξm,j

)


1−λm,j

. (12.30)

Assuming full indexation, so that π̃x = πx and π̃m,j = πm,j , we get

mcx =
1

λx
(12.31)

and
mcm,j =

1

λm,j
. (12.32)

We again note that the markups λx and λm,j are related to the elasticities of substitution between
differentiated goods in the export and import aggregates, respectively, as follows:

λx =
ηx

1− ηx
,

λm,j =
ηm,j

1− ηm,j
.
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We note that λx and λm,j for j = c, i, x, ce are calibrated.
We can now also solve for price and wage dispersion, as well as expressions for the different firms’

fixed costs. We start with the domestic firm. p̊d is given by the steady-state version of (6.4):

p̊d =


(1− ξd)

1−ξd
(
π̃d

πd

) 1
1−λd

1−ξd

λd

(
1− ξd

(
π̃d

πd

) λd

1−λd

)


1−λd
λd

. (12.33)

Assuming full indexation implies that π̃d = πd, so that p̊d = 1. The fixed cost term, φd, is computed
such that profits equal zero in steady state. Using equation (3.41) evaluated in steady state, and
equating total profits to zero, we obtain

φd = y

(
1

mcd
−
(
p̊d
) λd

1−λd

)
. (12.34)

Assuming full indexation and using (12.28) we have

φd = y
(
λd − 1

)
. (12.35)

For the importing firms, we can evaluate (3.89) at steady state, for j = c, i, x, ce, to get

p̊m,j =


(
1− ξm,j

)1−ξm,j
(
π̃m,j

πm,j

) 1
1−λm,j

1−ξm,j

λm,j

(
1− ξm,j

(
π̃m,j

πm,j

) λm,j

1−λm,j

)


1−λm,j
λm,j

. (12.36)

Assuming full indexation implies that
p̊m,j = 1, (12.37)

for j = c, i, x, ce. Evaluating (3.196) at steady state, for the exporting firm we have

p̊x =


(1− ξx)

1−ξx
(
π̃x

πx

) 1
1−λx

1−ξx

λx

1− ξx
(
π̃x

πx

) λx

1−λx



1−λx
λx

. (12.38)

Assuming full indexation implies that π̃x = πx, so that

p̊x = 1. (12.39)

We also need to pin down the expressions for the various fixed costs associated with imports and
exports. These costs are computed such that profits equal zero in steady state. In the case of the
importers of consumption goods, we can use (3.93) together with the zero profit condition to obtain:

φm,c = cm
(

1

mcm,c
− (p̊m,c)

λm,c

1−λm,c

)
. (12.40)
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Similarly, we use (3.94), (3.95) and (3.96) to obtain:

φm,i = im
(

1

mcm,i
−
(
p̊m,i

) λm,i

1−λm,i

)
, (12.41)

φm,x = xm
(

1

mcm,x
− (p̊m,x)

λm,x

1−λm,x

)
, (12.42)

φm,ce = ce,m
(

1

mcm,ce
− (p̊m,ce)

λm,ce

1−λm,ce

)
. (12.43)

Assuming full indexation, we can combine with (12.32) to obtain

φm,c = cm (λm,c − 1) , (12.44)

φm,i = im
(
λm,i − 1

)
, (12.45)

φm,x = xm (λm,c − 1) , (12.46)

φm,ce = ce,m (λm,ce − 1) . (12.47)

For the exporters’fixed costs, we evaluate (3.208) at steady state and impose zero profits to obtain:

1 =
φx

x
p̊x,temp +mcx (p̊x)

λx

1−λx

φx =
x

p̊x,temp

(
1−mcx (p̊x)

λx

1−λx
)
.

As already mentioned in Section 3.5, under full indexation we have that p̊x,temp = 1. To prove this,
we need to evaluate (3.207) at steady state, which yields:

p̊x,temp =
(1− ξx) p̃x(
1− ξx π̃

x

πx

) .
Recall from (12.15) that, under full indexation, π̃x = πx. We also know that p̃x = 1 under full
indexation. Hence, exporters’fixed costs are given by

φx = x
(

1−mcx (p̊x)
λx

1−λx
)
. (12.48)

Assuming full indexation, and using equation (12.31), we have

φx = x

(
λx − 1

λx

)
. (12.49)

Finally, we find the steady-state solution for ẘ using (4.51) as follows:

ẘ =


(1− ξw)

1−ξw
(
π̃w

πw

) 1
1−λw

(1−ξw)

λw

(
1− ξw

(
π̃w

πw

) λw

1−λw
)



1−λw
λw

. (12.50)

Under full indexation, we have that π̃w = πw, which implies that

ẘ = 1. (12.51)

Up to here, we were able to solve analytically for the steady-state expressions of some variables.
The rest of the steady state needs instead to be solved as a system of equations in the remaining
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variables of the model. We list the needed steady-state equations below, starting with the steady-
state relative prices of consumption, investment and exports. We can use import producers’marginal
costs in equations (3.61), (3.68) and (3.73), together with the definitions of relative prices in Section
2.2, to obtain the following expression for pm,j , j = c, i, x,:

pm,j =
Pm,j

P d
P c

P c
P c,∗

P c,∗
=

1

mcm,j
SP c,∗

P c
P d,∗

P c,∗
P c

P d
Rwc,m

pm,j =
qpcRwc,m

pc,∗mcm,j
. (12.52)

Similarly, using (3.78), we get the following expression for pm,ce:

pm,ce =
Pm,ce

P d
P c

P c
P c,∗

P c,∗
P d,∗

P d,∗
=

1

mcm,ce
StP

c,∗

P c
P c

P d
P ce,∗

P d,∗
P d,∗

P c,∗
Rwc,m

pm,ce =
qpcpce,∗Rwc,m

pc,∗mcm,ce
. (12.53)

From (3.136), we have

pcxe =
[
(1− ωc) + ωc (pm,c)1−ηc

]1/(1−ηc)
, (12.54)

while from (3.137), we have

pce =

[
(1− ωem)

(
pd,ce

)1−ηem
+ ωem (pm,ce)1−ηem

]1/(1−ηem)

. (12.55)

From (3.138), next, we have

pc =
[
(1− ωe) (pcxe)1−ηe + ωe (pce)1−ηe

]1/(1−ηe)
. (12.56)

From the investment price index, (3.170), we have

pi =
[
(1− ωi) + ωi

(
pm,i

)1−ηi] 1
1−ηi . (12.57)

We solve for px using the expression for the exporting firms’marginal costs, (3.202), evaluated in
steady state, which yields

px =
Rwc,xpc,∗

qpcmcx

[
ωx (pm,x)1−ηx + (1− ωx)

] 1
1−ηx . (12.58)

We note that we are still missing an expression for the steady-state real exchange rate q, which is why
we cannot solve analytically for any of the relative prices.

We now derive expressions for the price of physical capital and the rental rate of capital. From
the households’FOC w.r.t investment and bond holdings, (4.71) and (4.65), we have

pi = p̆k′ΥF1 (i, i) +
πd

R
p̆k′

1

µΨ

ΥF2 (i, i) ,

and we know from Section 4.3 that S̃ (x) = S̃′ (x) = 0 is assumed to hold in steady state, with
x = µz+µΨ. Thus, (4.74) and (4.75) imply

F1 (i, i) = 1− S̃
(
µz+µΨi

i

)
− S̃′

(
µz+µΨi

i

)
µz+µΨi

i
= 1

F2 (i, i) = S̃′
(
µz+µΨi

i

)(
µz+µΨi

i

)2

= 0,
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which allows us to solve for the steady-state price of physical capital

p̆k′ =
pi

Υ
. (12.59)

Using (4.69) together with (4.65), and using that a (u) = 0, we can solve for r̄k to obtain

r̄k = p̆k′

(
R

πd
µΨ − (1− δ)

)
. (12.60)

From the households’ FOC w.r.t. capital utilization (4.73), we can then derive an expression for
σb = a′ (u):

σb =
r̄k

pi
. (12.61)

Note that σb is a parameter, determined by the values of r̄k and pi.
We can find a solution for w̄ using the expression for domestic intermediate goods producers’

marginal costs, (3.30), which gives

w̄ =

[
1

mcd

(
Rwc,d

)1−α (
r̄k
)α

(1− α)1−α ααε

]− 1
1−α

. (12.62)

The steady-state capital-to-labour ratio is computed using a second expression for the domestic inter-
merdiate goods producers’marginal costs, (3.31):

k

N
= µΨµz+

(
1

mcd
w̄Rwc,d

ε (1− α)

) 1
α

. (12.63)

Note that this equation implicitly solves for k, as we will derive another expression to solve for N
below. Before proceeding with our calculations, we need also to note the following. In steady state,
we impose that the capital utilization rate, u, is 1, so using the relation between physical and effi cient
capital, (4.28), in scaled form we have

k = kp. (12.64)

We next consider the aggregate ressource constraint, (6.11), evaluated in steady state:

y = g + cd + ce,d + id + xd, (12.65)

where g = ηgy. From equation (3.145), we get the following steady-state expression for cd:

cd = (1− ωc) (pcxe)ηc cxe, (12.66)

while from (3.147), we get the following steady-state expression for ce,d:

ce,d = (1− ωem)

[
pd,ce

pce

]−ηem
ce. (12.67)

We here also note that equations (3.149) and (3.150) evaluated in steady state give

cxe = (1− ωe)
[
pcxe

pc

]−ηe
c, (12.68)

and

ce = ωe

[
pce

pc

]−ηe
c, (12.69)
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respectively. From equation (3.174), we have that

id = (1− ωi)
(
pi
)ηi (i+ a (u)

kp

µz+µΨ

)
.

Recall that a (u) = 0. The steady-state expression for id then becomes:

id = (1− ωi)
(
pi
)ηi i. (12.70)

From (3.203), we have the following steady-state expression for xd:

xd =
(
ωx (pm,x)1−ηx + (1− ωx)

) ηx
1−ηx (1− ωx) (p̊x)

λx

1−λx
x. (12.71)

From equation (3.223), we have the following steady-state expression for exports

x = (px)−ηf
(
cxe,∗ + ce,∗ + id,∗

)
, (12.72)

We next derive expressions for y and i, which will allow for c to be implicitly determined by the
resource constraint in equation (12.65), together with equations (12.66)—(12.72).

We begin with the steady-state expression for y. Evaluating in steady state the expression for
total production in equation (6.8), we get

y =
(
p̊d
) λd

λd−1

[
ε

(
k

µΨµz+

)α
(N)1−α − φd

]
. (12.73)

Combining (12.73) and (12.34), we have the following steady-state expression for aggregate production

y =

(
p̊d
) λd

λd−1 ε
(

1
µΨµz+

k
N

)α
1 + (p̊d)

λd

λd−1

(
1

mcd
− (p̊d)

λd

1−λd

)N.
Assuming full indexation, we have that

y = ε

(
1

µΨµz+

k

N

)α
mcdN. (12.74)

We proceed with deriving an expression for steady-state investment i. This can be derived from
(4.76):

i =
k

Υ

(
1− 1− δ

µz+µΨ

)
, (12.75)

where we have used that k = kp.
We use the Euler equation (4.57) to derive an expression for ψz+ , yielding

ψz+ =
1

pc
ζc

c (µz+ − b)
(µz+ − βb) . (12.76)

We can then derive an expression for steady-state employment, N , from the scaled optimal-wage
expression in equation (4.79). The steady-state version of (4.79) is given by

w̃
1−λw(1+ϕ)

1−λw =
λwζnΘNϕ

ψz+w̄

1− βξw
(

π̃w

µz+π
d

) 1
1−λw

1− βξw
(

π̃w

µz+π
d

)λw(1+ϕ)
1−λw

.
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Plugging in the steady-state version of the second expression of the optimal wage (4.47), which we
derived from the aggregate wage, together with (4.48) which in steady state gives that πw = µz+πd,
we have 1− ξw

(
π̃w

πw

) 1
1−λw

(1− ξw)

1−λw(1+ϕ)

=
λwζnΘNϕ

ψz+w̄

1− βξw
(
π̃w

πw

) 1
1−λw

1− βξw
(
π̃w

πw

)λw(1+ϕ)
1−λw

.

Assuming full indexation, this simplifies to

w̄ =
λwζnΘNϕ

ψz+

. (12.77)

From this equation (in combination with the rest of the system of steady-state equations) we can solve
for N .

Evaluating equation (4.52) in steady state, we get the following expression for the preference shifter
Θ:

Θ = zC ῡN , (12.78)

where from (4.53) and (4.54) we have

zC =
1

ῡN

(
1

µz+

) 1−ν
ν

(12.79)

and

ῡN =
ζβζc

c (µz+ − b)
(µz+ − βb) , (12.80)

respectively. We note that we can combine equations (12.78) and (12.79) to obtain

Θ =
1

ῡN

(
1

µz+

) 1−ν
ν

ῡN =

(
1

µz+

) 1−ν
ν

, (12.81)

which is a function only of variables which we have already solved for earlier.
We noted earlier, when deriving steady-state expressions for relative prices, that we were still

missing an expression for the steady-state real exchange rate q. Adding the net foreign assets equation
to the equation system above will allow us to solve for q together with the rest of the variables.
Evaluating the expression for the evolution of net foreign assets (7.3) in steady state yields

ā+
qpc

pc,∗
Rwc,m

(
cm (p̊m,c)

λm,c

1−λm,c + im
(
p̊m,i

) λm,i

1−λm,i + xm (p̊m,x)
λm,x

1−λm,x

+φm,c + φm,i + φm,x
)

+
qpcpce,∗

pc,∗
Rwc,m

(
ce,m (p̊m,ce)

λ
m,ce
t

1−λm,cet + φm,ce

)

=
qpcpx

pc,∗

(
(p̊x)

λx

1−λx x− φx
)

+R∗Φχs
ā

πdµz+

.

Assuming full indexation implies that π̃m,j = πm,j , so that p̊m,j = 1, for j = c, i, x, ce, and similarly
p̊x = 1. Simplifying the expression above and supposing that ā = ηay, we obtain, under full indexation:

ηay
pc,∗

qpc

(
1− R∗Φχs

πdµz+

)
+ pce,∗Rwc,m (ce,m + φm,ce)

+Rwc,m
(
cm + im + xm + φm,c + φm,i + φm,x

)
= px (x− φx) . (12.82)

Under the assumption that ηa = 0, which we normally assume, we have that

Rwc,m
(
cm + im + xm + φm,c + φm,i + φm,x

)
+ pce,∗Rwc,m (ce,m + φm,ce) = px (x− φx) .
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Evaluating (3.146), (3.175), (3.204), and (3.148) in steady state to obtain expressions for cm, im, xm,
and ce,m, respectively, yields

cm = ωc

(
pm,c

pc

)−ηc
c, (12.83)

im = ωi

(
pm,i

pi

)−ηi (
i+ a (u)

kp

µz+µΨ

)
= ωi

(
pm,i

pi

)−ηi
i, (12.84)

xm =
(
ωx + (1− ωx) (pm,x)ηx−1

) ηx
1−ηx ωx (p̊x)

λx

1−λx
x

=
(
ωx + (1− ωx) (pm,x)ηx−1

) ηx
1−ηx ωxx, (12.85)

ce,m = ωem

(
pm,ce

pce

)−ηem
ce, (12.86)

where the second expression uses the fact that a (u) = 0, and the third expression assumes full
indexation implying p̊x = 1.

We now have a complete system of equations, consisting of expressions (12.52) for j = c, i, x, ce,
(12.54), (12.55), (12.56), (12.57), (12.58), (12.59), (12.60), (12.62), (12.63), (12.64), (12.65), (12.66),
(12.67), (12.68), (12.69), (12.70), (12.71), (12.72), (12.74), (12.75), (12.76), (12.77), (12.82), (12.83),
(12.84), (12.85), and (12.86) which, under the assumption of full indexation, can be used to solve for
the steady-state values of the following variables:

pm,c, pm,i, pm,x, pm,ce, pcxe, pce, pc, pi, px, p̆k′ , r̄
k, w̄, k, kp,

c, cd, ce,d, cxe, ce, id, xd,

x, y, i, ψz+ , N, q, cm, im, xm, ce,m,

given a steady-state solution of the structural foreign-economy model.
We can then solve for m using the total import demand equation (3.227) evaluated in steady state:

m = cm + im + xm + ce,m. (12.87)

We can also solve for the steady-state households’aggregate labour, n, using (4.49):

n = Nẘ
λw

1−λw .

Using (12.50) under the assumption of full indexation, we have that ẘ = 1. Hence,

n = N. (12.88)

Using equation (4.56) and integrating over all labour types, we get the following expression for the
steady-state marginal rate of substitution:

mrs =
ζβζnΘNϕ

ῡN
. (12.89)

From (4.78), we have
w̄

pc

∫ 1

0

Wj

W
dj = ζβζnzC

∫ 1

0
Lϕj dj.

Assuming full indexation gives that
∫ 1

0
Wj

W dj = 1. We then have that L = Lj for all j and

L =

(
w̄

pcζβζnzC

) 1
ϕ

. (12.90)
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Equation (4.38) implies that steady-state unemployment is given by

U =
L−N
L

. (12.91)

Finally, we have that
Un = U. (12.92)

12.2 Steady state of the foreign-economy model

We begin to solve the steady state for the monetary policy rule. With the exception of consumer
price inflation, all variables are in log-deviation from their steady-state values, or in deviation from
its steady-state value in the case of unemployment. We have, in steady state, that

log

(
R∗

R∗

)
= ρR∗ log

(
R∗

R∗

)
+ (1− ρR∗)

[
log

(
π̄c,∗

π̄c,∗

)
+ rπ∗ log

(
πc,∗

π̄c,∗

)
+rRU∗ (U∗ − U∗)] + r∆π∗∆ log

(
πc,∗

πc,∗

)
+ r∆RU∗∆U

∗,

yielding

log

(
πc,∗

π̄c,∗

)
= 0

⇒ πc,∗ = π̄c,∗. (12.93)

From (11.20), (11.21) and (11.22), we have

πcxe,∗ = πd,∗, (12.94)

πc,∗ = πd,∗, (12.95)

πce,∗ = πd,∗. (12.96)

From equation (11.25), we further have that

πi,∗ =
π∗

µΨ∗
. (12.97)

Moreover, (11.24) yields
pi,∗ = 1.

Price indexation yields

π̃d,∗ =
(
πd,∗

)κ∗
(π̄c,∗)1−κ∗−κ∗ (π̆∗)κ

∗
=
(
πd,∗

)1−κ∗
(π̆∗)κ

∗
.

Assuming full indexation, i.e. that κ∗ = 0, this simplifies to

π̃d,∗ = πd,∗. (12.98)

This assumption also implies that the marginal cost in steady state is given by

mc∗ =
1

λ∗
, (12.99)

where λ∗ is related to the elasticity of substitution between the different foreign goods, which we
denote by η∗, in the following way:

λ∗ =
η∗

1− η∗ .
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From equation (11.51), we can solve for wage inflation

πw,∗ =
w̄∗µz+,∗πd,∗

w̄∗
= µz+,∗πd,∗, (12.100)

while wage indexation yields

π̃w,∗ = (πc,∗)κ
∗
w (π̄c,∗)1−κ∗w−κ∗w (π̆∗)κ

∗
w (µz+,∗)ϑ

∗
w

π̃w,∗ =
(
πd,∗

)1−κ∗w
(π̆∗)κ

∗
w (µz+,∗)ϑ

∗
w .

Under the additional assumptions that κ∗w = 0 and ϑ∗w = 1, we have that

π̃w,∗ = πd,∗µz+,∗ . (12.101)

Given the expression for πw,∗ above, we moreover have that π̃w,∗

πw,∗t
= 1, which yields

w̃∗ = 1. (12.102)

From equation (11.17), we have that

pc,∗ =
[
(1− ω∗e) + ω∗e (pce,∗)1−η∗e

]1/(1−η∗e)
, (12.103)

where we recall that pce,∗t is given by an exogenous process, and pce,∗ is calibrated.
We have that

µz+,∗ = µ
α∗

1−α∗
Ψ∗ µz∗ . (12.104)

From the household’s consumption Euler equation, we can then solve for the steady-state interest rate

R∗ =
µz+,∗

β∗
πd,∗. (12.105)

Having determined R∗, we can now solve for the steady-state gross effective nominal interest rate
faced by the firms:

Rwc,∗ = νwc,∗R∗ + 1− νwc,∗. (12.106)

From the household’s FOC w.r.t investment and bond holdings, we have

pi,∗ = p̆∗k′Υ
∗F1 (i∗, i∗) +

πd,∗

R∗
p̆∗k′

1

µΨ∗
Υ∗F2 (i∗, i∗) .

Assuming, just as for the domestic economy, that S̃ (x∗) = S̃′ (x∗) = 0 holds in steady state, with
x∗ = µz+,∗µΨ∗ , we have that F1 (i∗, i∗) = 1 and F2 (i∗, i∗) = 0. The steady-state price of physical
capital is then given by

p̆∗k′ =
pi,∗

Υ∗
=

1

Υ∗
.

From the household’s FOC, we can also solve for r̄k as follows:

r̄k,∗ = p̆∗k′

(
R∗

πd,∗
µΨ∗ − (1− δ∗)

)
, (12.107)

where we have used that a (u∗) = 0 holds in steady state. We can also derive the following expression
for σ∗b = a′ (u∗):

σ∗b = r̄k,∗, (12.108)

where we have used that pi,∗ = 1.
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From the foreign expressions for the firms’marginal costs, corresponding to (3.30) and (3.31), we
can derive the following expressions for w̄∗ and for the steady-state capital-to-labour ratio:

w̄∗ =

[
1

mc∗
(Rwc,∗)1−α∗ (r̄k,∗)α∗

(1− α∗)1−α∗ (α∗)α
∗
ε∗

] 1
α∗−1

, (12.109)

k∗

N∗
= µΨ∗µz+,∗

(
1

mc∗
w̄∗Rwc,∗

ε∗ (1− α∗)

) 1
α∗

. (12.110)

Just as for the domestic economy case, we impose that the capital utilization rate, u∗, is 1. Using the
relation between physical and effi cient capital, we then have

k∗ = kp,∗. (12.111)

As for the domestic economy, we will derive an expression for aggregate homogeneous labour, N∗,
from the expressions for consumption and investment from the household optimization, combined with
the aggregate resource constraint. We begin by deriving an expression for consumption as a function
of hours. The optimal-wage expression corresponding to equation (4.79) for the domestic economy,
evaluated in steady state under the assumption of full indexation, yields

w̄∗ =
λw,∗ζn,∗Θ∗ (N∗)ϕ

∗

ψz+,∗
.

Using the consumption Euler equation, we can derive the following expression for ψz+,∗ :

ψz+,∗ =
1

pc,∗
ζc,∗

c∗ (µz+,∗ − b∗)
(µz+,∗ − β∗b∗) . (12.112)

Combining the two above equations, we obtain the following relationship determining the steady-state
value of consumption:

c∗ =
w̄∗

pc,∗λw,∗ζn,∗Θ∗ (N∗)ϕ
∗
ζc,∗ (µz+,∗ − β∗b∗)

(µz+,∗ − b∗)
,

where

Θ∗ =

(
1

µz+,∗

) 1−ν∗
ν∗

,

or
c∗ (N∗)ϕ

∗
= Ξc∗N∗ , (12.113)

where

Ξc∗H∗ =
w̄∗ (µz+,∗)

1−ν∗
ν∗

pc,∗λw,∗ζn,∗
ζc,∗ (µz+,∗ − β∗b∗)

(µz+,∗ − b∗)
.

From the law of motion for capital, we can derive the following expression for steady-state invest-
ment:

i∗ =
k∗

Υ∗

(
1− 1− δ∗

µz+,∗µΨ∗

)
. (12.114)

Next, we derive a steady-state expression for the aggregate ressource constraint, which will allow
us to determine N∗ and, in continuation, y∗ together with the above equations (12.113) and (12.114).
For this, we first need to consider the expression for total production in equation (6.8). Evaluating in
steady state, we get

y∗ = (p̊∗)
λ∗
λ∗−1

[
ε∗
(

k∗

µΨ∗µz+,∗

)α∗
(N∗)1−α∗ − φ∗

]
.
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Assuming full indexation implies that p̊∗ = 1. We can then obtain the following expression for the
fixed cost term φ∗, setting profits to zero in steady state:

φ∗ = y∗
(

1

mc∗
− 1

)
. (12.115)

Combining the above two equations, using that ε∗ = 1, we get

y∗ =

(
1

µΨ∗µz+,∗

)α∗ ( k∗

N∗

)α∗
N∗mc∗,

or
y∗ = Ξy∗N

∗, (12.116)

where

Ξy∗ =

(
1

µΨ∗µz+,∗

)α∗ ( k∗

N∗

)α∗
mc∗.

Note that we treat the capital-to-labour ratio as one variable, which we have already solved for above.
We have that the foreign good is allocated among the alternatives uses as follows:

y∗ = g∗ + cd,∗ + ce,∗ + id,∗,

where
cd,∗ = cxe,∗

cxe,∗ = (1− ω∗e) (pc,∗)η
∗
e c∗, (12.117)

ce,∗ = ω∗e

(
pce,∗

pc,∗

)−η∗e
c∗, (12.118)

and

id,∗t = i∗t +
a (u∗t ) k

p,∗
t

µz+,∗,tµΨ∗,t
.

Usign the assumption that a (u∗) = 0, we can write

y∗ = g∗ +

(
(1− ω∗e) (pc,∗)η

∗
e + ω∗e

(
pce,∗

pc,∗

)−η∗e)
c∗ + i∗. (12.119)

Substituting in (12.113) and (12.114) into (12.119), and using that g∗ = η∗gy
∗ = η∗gΞy∗N

∗, and
that Υ∗ = 1, we can derive the following expression for steady-state aggregate homogeneous hours:

N∗ =


(

(1− ω∗e) (pc,∗)η
∗
e + ω∗e

(
pce,∗

pc,∗

)−η∗e)
Ξc∗N∗(

1− η∗g
)

Ξy∗ −
(

1− 1−δ∗
µz+,∗µΨ∗

)
k∗
N∗


1

1+ϕ∗

.

Having found an expression for N∗, we can now easily solve for y∗ from (12.116), c∗ from (12.113),
cxe,∗ from (12.117), ce,∗ from (12.118), ψz+,∗ from (12.112), k∗ from (12.110). Having solved for k∗,
we can use (12.114) to solve for i∗. We can also solve for aggregate household labour, using

n∗ = N∗ (ẘ∗)
λw,∗

1−λw,∗ .

We note that full indexation implies that ẘ∗ = 1, and so

n∗ = N∗.
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13 Summary of the model with a structural foreign economy

We here list the set of log-linear equations needed to simulate the model with a structural foreign
economy. Above each respective log-linear equations, we show the non-linear equation(s) from which
it has been derived. This section summarizes the endogenous variables of the model. The exogenous
variables are listed in Sections 10 for the domestic and 11.1.5 for the foreign economy.

13.1 Domestic equations

From the domestic intermediate good firms’problem, we have the gross effective nominal interest rate
faced by domestic good firms in equation (3.42)

Rwc,dt ≡ νwc,dt Rt + 1− νwc,dt

R̂wc,dt =
νwc,d (R− 1)

Rwc,d
ν̂wc,dt +

νwc,dR

Rwc,d
R̂t, (13.1)

marginal costs in equation (3.46)

mcdt =
w̄tR

wc,d
t

mplt

m̂cdt = ̂̄wt + R̂wc,dt − m̂plt, (13.2)

the marginal product of labour in equation (3.48)

mplt = (1− α) εt

(
kt

µz+,tµΨ,tNt

)α

m̂plt = α

(̂
k

N

)
t

+ ε̂t, (13.3)

the capital-to-labour ratio in equation (3.50)(
k

N

)
t

=
kt

µz+,tµΨ,tNt(̂
k

N

)
t

= k̂t − N̂t −
(
µ̂z+,t + µ̂Ψ,t

)
, (13.4)

marginal costs in equation (3.47)

mcdt =
r̄kt
mpkt

m̂cdt = ̂̄rkt − m̂pkt, (13.5)

the marginal product of capital in equation (3.49)

mpkt = αεt

(
kt

µz+,tµΨ,tNt

)−(1−α)

m̂pkt = − (1− α)

(̂
k

N

)
t

+ ε̂t, (13.6)
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and the domestic price Phillips curve in equation (3.56)49

p̃dtEt

∞∑
s=0

(βξd)
sζβt+sψz+,t+syt+s

(
π̃dt+1 . . . π̃

d
t+s

πdt+1 . . . π
d
t+s

) 1

1−λdt+s

= Et

∞∑
s=0

(βξd)
sζβt+sψz+,t+syt+sλ

d
t+smc

d
t+s

(
π̃dt+1 . . . π̃

d
t+s

πdt+1 . . . π
d
t+s

) λdt+s

1−λdt+s

π̃dt =
(
πdt−1

)κd
(π̄ct)

1−κd−κd (π̆)κd

p̃dt =


1− ξd

(
π̃dt
πdt

) 1

1−λdt

(1− ξd)


1−λdt

π̂dt − ̂̄πct =
(1− βξd) (1− ξd)
ξd (1 + βκd)

(
m̂cdt + λ̂

d

t

)
+

κd
1 + βκd

(
π̂dt−1 − ̂̄πct) (13.7)

+
β

1 + βκd
Et

(
π̂dt+1 − ̂̄πct+1

)
− βκd

1 + βκd
Et
(̂̄πct − ̂̄πct+1

)
.

We also include the evolution of the combination of investment-specific and neutral technology in
equation (3.51)

µz+,t = µ
α

1−α
Ψ,t µz,t

µ̂z+,t =
α

1− αµ̂Ψ,t + µ̂z,t, (13.8)

and the expression for the domestic price dispersion in equation (3.57)

p̊dt =

ξd
(
π̃dt
πdt
p̊dt−1

) λdt
1−λdt

+ (1− ξd)

1− ξd
(
π̃dt
πdt

) 1

1−λdt

1− ξd


λdt


1−λdt
λdt

̂̊pdt = ξd
̂̊pdt−1. (13.9)

From the importing firms’ problem, we have the gross effective nominal interest rate faced by
importing firms in equation (3.97)

Rwc,mt = νwc,mt R∗t + 1− νwc,mt

R̂wc,mt =
νwc,m (R∗ − 1)

Rwc,m
ν̂wc,mt +

νwc,mR∗

Rwc,m
R̂∗t , (13.10)

marginal costs for the import consumption, import investments, and import-to-export importers in
equation (3.98)

mcm,jt =
qtp

c
t

pc,∗t pm,jt

Rwc,mt , j = c, i, x

49The log-linear Phillips curve is a combination of the log-linearized versions of the three included non-linear equations.
Note that the log-linearized equation included here has been derived under the assumption that there is full indexation,
that is assuming that κd = 0.
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m̂cm,ct = q̂t + p̂ct − p̂
c,∗
t − p̂

m,c
t + R̂wc,mt , (13.11)

m̂cm,it = q̂t + p̂ct − p̂
c,∗
t − p̂

m,i
t + R̂wc,mt , (13.12)

m̂cm,xt = q̂t + p̂ct − p̂
c,∗
t − p̂

m,x
t + R̂wc,mt , (13.13)

marginal costs for the imported energy consumption in equation (3.99)

mcm,cet =
qtp

c
tp
ce,∗
t

pc,∗t pm,cet

Rwc,mt

m̂cm,cet = q̂t + p̂ct + p̂ce,∗t − p̂c,∗t − p̂
m,ce
t + R̂wc,mt , (13.14)

the Phillips curves for the four different types of importers in equation (3.100)50

p̃m,jt Et

∞∑
s=0

(βξm,j)
sζβt+sψz+,t+sp

m,j
t zjt+s

(
π̃m,jt+1 . . . π̃

m,j
t+s

πm,jt+1 . . . π
m,j
t+s

) 1

1−λm,jt+s

= Et

∞∑
s=0

(βξm,j)
sζβt+sψz+,t+sp

m,j
t zjt+sλ

m,j
t+smc

m,j
t+s

(
π̃m,jt+1 . . . π̃

m,j
t+s

πm,jt+1 . . . π
m,j
t+s

) λ
m,j
t+s

1−λm,jt+s
,

j = c, i, x, ce, zjt =


cmt if j = c
imt if j = i
xmt if j = x
ce,mt if j = ce

π̃m,jt ≡
(
πm,jt−1

)κm,j
(π̄ct)

1−κm,j−κm,j (π̆)κm,j , j = c, i, x, ce

p̃m,jt =


1− ξm,j

(
π̃m,jt

πm,jt

) 1

1−λm,jt

(
1− ξm,j

)


1−λm,jt

, j = c, i, x, ce

π̂m,ct − ̂̄πct =

(
1− βξm,c

) (
1− ξm,c

)
ξm,c (1 + βκm,c)

(
m̂cm,ct + λ̂

m,c

t

)
+

κm,c
1 + βκm,c

(
π̂m,ct−1 − ̂̄πct) (13.15)

+
β

1 + βκm,c
Et
(
π̂m,ct+1 − ̂̄πct+1

)
− βκm,c

1 + βκm,c
Et
(̂̄πct − ̂̄πct+1

)
,

π̂m,it − ̂̄πct =

(
1− βξm,i

) (
1− ξm,i

)
ξm,i (1 + βκm,i)

(
m̂cm,it + λ̂

m,i

t

)
+

κm,i
1 + βκm,i

(
π̂m,it−1 − ̂̄πct) (13.16)

+
β

1 + βκm,i
Et

(
π̂m,it+1 − ̂̄πct+1

)
− βκm,i

1 + βκm,i
Et
(̂̄πct − ̂̄πct+1

)
,

π̂m,xt − ̂̄πct =

(
1− βξm,x

) (
1− ξm,x

)
ξm,x (1 + βκm,x)

(
m̂cm,xt + λ̂

m,x

t

)
+

κm,x
1 + βκm,x

(
π̂m,xt−1 − ̂̄πct) (13.17)

+
β

1 + βκm,x
Et
(
π̂m,xt+1 − ̂̄πct+1

)
− βκm,x

1 + βκm,x
Et
(̂̄πct − ̂̄πct+1

)
,

50Just as for the domestic good producer, the log-linear Phillips curve for the importer is a combination of the log-
linearized versions of the three included non-linear equations. Note that the log-linearized equation included here has
been derived under the assumption that there is full indexation, that is assuming that κm,j = 0, j = c, i, x.
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π̂m,cet − ̂̄πct =

(
1− βξm,ce

) (
1− ξm,ce

)
ξm,ce (1 + βκm,ce)

(
m̂cm,cet + λ̂

m,ce

t

)
+

κm,ce
1 + βκm,ce

(
π̂m,cet−1 − ̂̄πct) (13.18)

+
β

1 + βκm,ce
Et
(
π̂m,cet+1 − ̂̄πct+1

)
− βκm,ce

1 + βκm,ce
Et
(̂̄πct − ̂̄πct+1

)
,

and the expression for the import consumption, import investments, import-to-export, and energy
import price dispersion in equation (3.102)

p̊m,jt =

ξm,j
(
π̃m,jt

πm,jt

p̊m,jt−1

) λ
m,j
t

1−λm,jt
+
(
1− ξm,j

)


1− ξm,j
(
π̃m,jt

πm,jt

) 1

1−λm,jt

1− ξm,j


λm,jt



1−λm,jt

λ
m,j
t

, j = c, i, x, ce

̂̊pm,ct = ξm,c
̂̊pm,ct−1, (13.19)

̂̊pm,it = ξm,i
̂̊pm,it−1, (13.20)̂̊pm,xt = ξm,x
̂̊pm,xt−1 , (13.21)̂̊pm,cet = ξm,ce
̂̊pm,cet−1 . (13.22)

From the exporting firms’ problem, we have the gross effective nominal interest rate faced by
exporting firms in equation (3.210)

Rwc,xt = νwc,xt Rt + 1− νwc,xt

R̂wc,xt =
νwc,x (R− 1)

Rwc,x
ν̂wc,xt +

νwc,xR

Rwc,x
R̂t, (13.23)

marginal costs in equation (3.209)

mcxt =
Rwc,xt pc,∗t
qtpxt p

c
t

(
ωx (pm,xt )

1−ηx + (1− ωx)
) 1

1−ηx

m̂cxt = R̂wc,xt + p̂c,∗t − q̂t − p̂xt − p̂ct +
ωx (pm,x)1−ηx

ωx (pm,x)1−ηx + (1− ωx)
p̂m,xt , (13.24)

the export Phillips curve in equation (3.211)51

p̃xtEt

∞∑
s=0

(βξx)sζβt+sψz+,t+s

qt+sp
c
t+sp

x
t+s

pc,∗t+s
xt+s

(
π̃xt+1 . . . π̃

x
t+s

πxt+1 . . . π
x
t+s

) 1
1−λxt+s

= Et

∞∑
s=0

(βξx)sζβt+sψz+,t+s

qt+sp
c
t+sp

x
t+s

pc,∗t+s
xt+sλ

x
t+smc

x
t+s

(
π̃xt+1 . . . π̃

x
t+s

πxt+1 . . . π
x
t+s

) λxt+s
1−λxt+s

π̃xt ≡
(
πxt−1

)κx (π̄∗t )
1−κx−κx (π̆)κx

p̃xt =

1− ξx
(
π̃xt
πxt

) 1
1−λxt

(1− ξx)


1−λxt

51Just as for the domestic and import goods producers, the log-linear Phillips curve for the exporter is a combination
of the log-linearized versions of the three included non-linear equations. Note that the log-linearized equation included
here has been derived under the assumption that there is full indexation, that is assuming that κx = 0.
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π̂xt − ̂̄π∗t =
(1− βξx) (1− ξx)

ξx (1 + βκx)

(
m̂cxt + λ̂

x

t

)
+

κx
1 + βκx

(
π̂xt−1 − ̂̄π∗t ) (13.25)

+
β

1 + βκx
Et
(
π̂xt+1 − ̂̄π∗t )− βκx

1 + βκx
Et
(̂̄π∗t − ̂̄π∗t+1

)
,

and the expression for the export price dispersion in equation (3.213)

p̊xt =

ξx( π̃xtπxt p̊xt−1

) λxt
1−λxt

+ (1− ξx)

1− ξx
(
π̃xt
πxt

) 1
1−λxt

1− ξx


λxt


1−λxt
λxt

̂̊pxt = ξx
̂̊pxt−1. (13.26)

We also include the demand equation for domestically produced goods used in export production in
equation (3.214)

xdt =
(
ωx (pm,xt )

1−ηx + (1− ωx)
) ηx

1−ηx (1− ωx) (p̊xt )

λxt
1−λxt

xt

x̂dt =
ηxωx (pm,x)1−ηx

ωx (pm,x)1−ηx + (1− ωx)
p̂m,xt +

λx

1− λx
̂̊pxt + x̂t, (13.27)

and the one for imported goods used in export production in equation (3.215)

xmt =
(
ωx + (1− ωx) (pm,xt )

ηx−1
) ηx

1−ηx ωx (p̊xt )

λxt
1−λxt

xt

x̂mt = − ηx (1− ωx) (pm,x)ηx−1

ωx + (1− ωx) (pm,x)ηx−1 p̂
m,x
t +

λx

1− λx
̂̊pxt + x̂t. (13.28)

From the final consumption and investment good firms’problem, we include the expression for the
aggregate non-energy consumption demand in equation (3.155)

cxet = (1− ωe)
[
pcxet

pct

]−ηe
ct

ĉxet = −ηe (p̂cxet − p̂ct) + ĉt, (13.29)

and the expression for energy consumption demand in equation (3.156)

cet = ωe

[
pcet
pct

]−ηe
ct

ĉet = −ηe (p̂cet − p̂ct) + ĉt, (13.30)

as well as demand for domestic consumption goods in equation (3.151)

cdt = (1− ωc) (pcxet )ηc cxet

ĉdt = ηcp̂
cxe
t + ĉxet , (13.31)

for imported consumption goods in equation (3.152).

cmt = ωc

[
pm,ct

pcxet

]−ηc
cxet

ĉmt = −ηc (p̂m,ct − p̂cxet ) + ĉxet , (13.32)
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for domestically produced energy in equation (3.153)

ce,dt = (1− ωem)

[
pd,cet

pcet

]−ηem
cet

ĉe,dt = −ηem
(
p̂d,cet − p̂cet

)
+ ĉet , (13.33)

and for imported energy in equation (3.154)

ce,mt = ωem

[
pm,cet

pcet

]−ηem
cet

ĉe,mt = −ηem (p̂m,cet − p̂cet ) + ĉet . (13.34)

We further include demand for domestic investment goods in equation (3.176)

idt = (1− ωi)
(
pit
)ηi (it + a (ut)

kpt
µz+,tµΨ,t

)

ı̂dt = ηip̂
i
t + ı̂t +

1

i

σbk
p

µz+µΨ

ût, (13.35)

and for imported investment goods in equation (3.177).

imt = ωi

(
pm,it

pit

)−ηi (
it + a (ut)

kpt
µz+,tµΨ,t

)

ı̂mt = −ηi
(
p̂m,it − p̂it

)
+ ı̂t +

1

i

σbk
p

µz+µΨ

ût. (13.36)

We also include the expression for the CPI inflation in equation (3.159)

πct =

[
(1− ωe) (P cxet )1−ηe + ωe (P cet )1−ηe

(1− ωe)
(
P cxet−1

)1−ηe + ωe
(
P cet−1

)1−ηe
]1/(1−ηe)

π̂ct = (1− ωe)
(
pcxe

pc

)1−ηe
π̂cxet + ωe

(
pce

pc

)1−ηe
π̂cet , (13.37)

as well as equation (3.157) for the non-energy consumer price inflation

πcxet =

[
(1− ωc)

(
P dt
)1−ηc + ωc (Pm,ct )

1−ηc

(1− ωc)
(
P dt−1

)1−ηc + ωc
(
Pm,ct−1

)1−ηc
]1/(1−ηc)

π̂cxet = (1− ωc)
(

1

pcxe

)1−ηc
π̂dt + ωc

(
pm,c

pcxe

)1−ηc
π̂m,ct , (13.38)

and equation (3.158) for the energy price inflation

πcet =
P cet
P cet−1

=

 (1− ωem)
(
P d,cet

)1−ηem
+ ωem (Pm,cet )

1−ηem

(1− ωem)
(
P d,cet−1

)1−ηem
+ ωem

(
Pm,cet−1

)1−ηem


1/(1−ηem)

π̂cet = (1− ωem)

(
pd,ce

pce

)1−ηem
π̂d,cet + ωem

(
pm,ce

pce

)1−ηem
π̂m,cet . (13.39)
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Moreover, we need to include the expressions of the relative prices of the three differrent aggregate
consumption goods in equations (3.162), (3.160) and (3.161),

pct =
[
(1− ωe) (pcxet )1−ηe + ωe (pcet )1−ηe

]1/(1−ηe)

p̂ct = (1− ωe)
(
pcxe

pc

)1−ηe
p̂cxet + ωe

(
pce

pc

)1−ηe
p̂cet , (13.40)

pcxet =
[
(1− ωc) + ωc (pm,ct )

1−ηc
]1/(1−ηc)

p̂cxet = ωc

(
pm,c

pcxe

)1−ηc
p̂m,ct , (13.41)

pcet =

[
(1− ωem)

(
pd,cet

)1−ηem
+ ωem (pm,cet )

1−ηem
]1/(1−ηem)

p̂cet = (1− ωem)

(
pd,ce

pce

)1−ηem
p̂d,cet + ωem

(
pm,ce

pce

)1−ηem
p̂m,cet , (13.42)

and the relative price of the aggregate investment good in equation (3.179)

pit =

[
(1− ωi) + ωi

(
pm,it

)1−ηi
]1/(1−ηi)

p̂it = ωi

(
pm,i

pi

)1−ηi
p̂m,it . (13.43)

From the household problem, we have the endogenous preference shifter in equation (4.80)

Θt = zCt ῡ
N
t

Θ̂t = ẑCt + ̂̄υNt , (13.44)

the trend consumption in equation (4.81)

zCt =

(
zCt−1

1

µz+,t

)1−ν ( 1

ῡNt

)ν
ẑCt = (1− ν)

(
ẑCt−1 − µ̂z+,t

)
− ν̂̄υNt , (13.45)

the marginal utility of consumption in equation (4.88)

ῡNt =
ζβt ζ

c
t

ct − bct−1
1

µz+,t

− βbEt
ζβt+1ζ

c
t+1

ct+1µz+,t+1 − bct

̂̄υNt = µz+ (µz+ − b) ζ̂βt + µz+ (µz+ − b) ζ̂ct − µ2
z+ ĉt + bµz+ ĉt−1 − bµz+ µ̂z+,t (13.46)

−βb
[
(µz+ − b)Etζ̂

β

t+1 + (µz+ − b)Etζ̂
c

t+1 − µz+Etĉt+1 + bĉt − µz+Etµ̂z+,t+1

]
.

the marginal rate of substitution in equation (4.83)

mrsj,t =
ζβt ζ

n
t ΘtN

ϕ
j,t

ῡNt
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Nt =

[∫ 1

0
(Nj,t)

1
λwt dj

]λwt
m̂rst = ζ̂

β

t + ζ̂
n

t + Θ̂t + ϕN̂t − ̂̄υNt , (13.47)

We also have the UIP condition in equation (4.84)

Rt = R∗tΦtEtst+1

R̂t = R̂∗t + Φ̂t + Etŝt+1 (13.48)

and the expression for the endogenous risk premium term in equation (4.85)

Φt = exp
(
−φ̃a (āt − ā)− φ̃s

(
Etst+1st − s2

)
+ φ̃t

)
Φ̂t = −φ̃aăt − φ̃s (Etŝt+1 + ŝt) +

̂̃
φt, (13.49)

the log-linearized consumption Euler equation in (4.89)

ῡNt = βEt
Rtχt

πct+1µz+,t+1

ῡNt+1

̂̄υNt = R̂t + χ̂t − Etπ̂ct+1 − Etµ̂z+,t+1 + Et̂̄υNt+1, (13.50)

the first-order condition for capital in equation (4.70)

Et

[
r̄kt+1ut+1 − pit+1a (ut+1) + (1− δ) p̆k′,t+1

]
= Et

Rtχt
πdt+1

µΨ,t+1p̆k′,t

̂̆pk′,t =
β (1− δ)
µz+µΨ

̂̆pk′,t+1 +
βr̄k

µz+µΨp̆k′
Et

(̂̄rkt+1 + ût+1

)
(13.51)

−Etµ̂Ψ,t+1 − Et
(
R̂t − Etπ̂dt+1 + χ̂t

)
,

the first-order condition for investment in equation (4.93)

pit = p̆k′,tΥt

[
1− S̃

(
µz+,tµΨ,tit

it−1

)
− S̃′

(
µz+,tµΨ,tit

it−1

)
µz+,tµΨ,tit

it−1

]
+βEt

ζβt+1

ζβt

ψz+,t+1

ψz+,t

p̆k′,t+1Υt+1S̃
′
(
µz+,t+1µΨ,t+1it+1

it

)(
it+1

it

)2

µz+,t+1µΨ,t+1

ît − ît−1 + µ̂z+,t + µ̂Ψ,t = βEt

(̂
it+1 − ît + µ̂z+,t+1 + µ̂Ψ,t+1

)
+

1

(µz+µΨ)2 S̃′′

[̂̆pk′,t + Υ̂t −
pi

p̆k′Υ
p̂it

]
,

(13.52)
and the expression determining the capital utilization in equation (4.95)

r̄kt = pita
′ (ut)

̂̄rkt = p̂it + σaût. (13.53)

We moreover include the law of motion for capital in equation (4.96)

kpt+1 =
1− δ

µz+,tµΨ,t

kpt + Υt

(
1− S̃

(
µz+,tµΨ,tit

it−1

))
it
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k̂pt+1 =
1− δ
µz+µΨ

(
k̂pt − µ̂z+,t − µ̂Ψ,t

)
+

Υi

kp

(
Υ̂t + ît

)
, (13.54)

and the relationship between effi cient and physical capital in equation (4.97)

kt = utk
p
t

k̂t = ût + k̂pt . (13.55)

We also have the expression determining the labour participation rate in equation (4.100)

w̄t
pct

∫ 1

0

Wj,t

Wt
dj = ζβt ζ

n
t z

C
t

∫ 1

0
Lϕj,tdj

W
1

1−λwt
t =

∫ 1

0
(Wj,t)

1
1−λwt dj

̂̄wt − p̂ct = ζ̂
n

t + ζ̂
β

t + ẑCt + ϕL̂t, (13.56)

the unemployment rate in equation (4.99)

Ut =
Lt −Nt

Lt

Ût = L̂t − N̂t, (13.57)

the natural rate of unemployment in equation (4.110)

Ûnt =
1

ϕ
λ̂
w

t , (13.58)

and the wage markup in equation (4.101)

µ̂w,t = ϕÛt. (13.59)

Finally, we include the expression for the wage inflation in equation (4.106)

πwt =
w̄tµz+,tπ

d
t

w̄t−1

π̂wt = ̂̄wt − ̂̄wt−1 + π̂dt + µ̂z+,t, (13.60)

the wage Phillips curve in equation (4.111)52

w̃

1−λwt+s(1+ϕ)

1−λwt+s
t =

λwt+sEt
∞∑
s=0

(βξw)s ζβt+sζ
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w
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) 1
1−λwt+s

π̃wt+1 ≡ (πct)
κw
(
π̄ct+1

)1−κw−κw (π̆)κw (µz+)ϑw

52Just as the log-linear price Phillips curves, the log-linear wage Phillips curve is a combination of the log-linearized
versions of the three included non-linear equations. Note that the log-linearized wage equation included here has been
derived under the assumption that there is full indexation, that is assuming that κw = 0 and that ϑw = 1. We have also
used the log-linearized equations (4.100), (4.80), (4.81) and (4.90) to arrive at its final form.
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w̃t =

1− ξw
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π̃wt
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) 1
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w
t+1 + (1− βρπ̄) ̂̄πct (13.61)
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Ût − Ûnt

)
,

dw =
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ξwbw
, bw =

λw (1 + ϕ)− 1
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,

the expression for aggregate household hours in terms of aggregate homogeneous hours worked in
equation (4.114)

nt = Nt (ẘt)
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1−λwt

n̂t = N̂t +
λw

1− λw
̂̊wt, (13.62)

and the expression for the wage dispersion in equation (4.115)
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ξw ( π̃wtπwt ẘt−1

) λwt
1−λwt

+ (1− ξw)

1− ξw
(
π̃wt
πwt

) 1
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̂̊wt = ξw
̂̊wt−1. (13.63)

We also need to include the central bank policy rule in equation (5.5)
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π̄c

)
+ rπ log

(
πct−1

π̄ct

)
+rRU (Ut−1 − U) + rq log

(
qt−1

q

)]
+ r∆π∆ log

(
πct
πc

)
+ r∆RU∆Ut + log εR,t,

R̂t = ρRR̂t−1 + (1− ρR)
[̂̄πct + rπ

(
π̂ct−1 − ̂̄πct)+ rRU Ût−1 + rq q̂t−1

]
+ r∆π∆π̂ct + r∆RU∆Ût + ε̂R,t,

(13.64)
the aggregate resource constraint in equations (6.12) and (6.13)

yt = gt + cdt + ce,dt + idt + xdt

ŷt =
g

y
ĝt +

cd

y
ĉdt +

ce,d

y
ĉe,dt +

id

y
îdt +

xd

y
x̂dt . (13.65)

yt =
(
p̊dt

) λdt
λdt−1

εt( kt
µΨ,tµz+,t

)α(
ẘ
− λwt

1−λwt
t nt

)1−α

− φd


ŷt =
1

y

(
k

µΨµz+

)α
n1−α × (13.66)

×
[
ε̂t + α

(
k̂t − µ̂Ψ,t − µ̂z+,t

)
− λw (1− α)

1− λw
̂̊wt + (1− α) n̂t

]
− λd

λd − 1
̂̊pdt ,
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the evolution of net foreign assets in equation (7.4)

āt +
qtp

c
t

pc,∗t
Rwc,mt

cmt (p̊m,ct )
λ
m,c
t

1−λm,ct + imt

(
p̊m,it

) λ
m,i
t

1−λm,it

+xmt (p̊m,xt )
λ
m,x
t

1−λm,xt + φm,c + φm,i + φm,x

)

+
qtp

c
tp
ce,∗
t

pc,∗t
Rwc,mt

(
ce,mt (p̊m,cet )

λ
m,ce
t

1−λm,cet + φm,ce

)

=
qtp

x
t p
c
t

pc,∗t

(
(p̊xt )

λxt
1−λxt xt − φx

)
+R∗t−1Φt−1χt−1st

āt−1

πdtµz+,t

,

pc,∗

qpc
ăt = px (x− φx) p̂xt + pxx

(
x̂t +

λx

1− λx
̂̊pxt)+

pc,∗

qpc
R∗Φχs

πdµz+

ăt−1 (13.67)

−px (x− φx) R̂wc,mt − pce,∗Rwc,m (ce,m + φm,ce) p̂ce,∗t

−Rwc,mcm
(
ĉmt +

λm,c

1− λm,c
̂̊pm,ct

)
−Rwc,mim

(
ı̂mt +

λm,i

1− λm,i
̂̊pm,it

)
−Rwc,mxm

(
x̂mt +

λm,x

1− λm,x
̂̊pm,xt

)
− pce,∗Rwc,mce,m

(
ĉe,mt +

λm,ce

1− λm,ce
̂̊pm,cet

)
.

and total export demand in equation (3.224)

xt = (pxt )−ηf (c∗t )
ωxc
(
id,∗t

)1−ωxc

x̂t = −ηf p̂xt + ωxc ĉ
∗
t + (1− ωxc ) îd,∗t . (13.68)

To complete the description of the domestic economy block, we also need to include the dynamics
of relative prices in equations (8.11)53 and (8.12)—(8.16)

πd,cet =
pd,cet

pd,cet−1

πdt

π̂d,cet = p̂d,cet − p̂d,cet−1 + π̂dt , (13.69)

pxt =
πxt

πd,∗t

(
µz+,∗,t

µz+,t

)− 1
ηf
pxt−1

p̂xt = π̂xt − π̂
d,∗
t −

1

ηf

(
µ̂z+,∗,t − µ̂z+,t

)
+ p̂xt−1, (13.70)

pm,ct =
πm,ct

πdt
pm,ct−1

p̂m,ct = π̂m,ct − π̂dt + p̂m,ct−1, (13.71)

pm,it =
πm,it

πdt
pm,it−1

p̂m,it = π̂m,it − π̂dt + p̂m,it−1, (13.72)

53Note that we will assume that the relative price of domestically produced energy evolves as an exogenous process,
why we have rewritten equation (8.11) with inflation on the right hand side.
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pm,xt =
πm,xt

πdt
pm,xt−1

p̂m,xt = π̂m,xt − π̂dt + p̂m,xt−1 , (13.73)

pm,cet =
πm,cet

πdt
pm,cet−1

p̂m,cet = π̂m,cet − π̂dt + p̂m,cet−1 , (13.74)

and the definition of the real exchange rate in equation (9.4)

qt =
stπ

c,∗
t

πct
qt−1

q̂t = ŝt + π̂c,∗t − π̂ct + q̂t−1. (13.75)

We include some additional variables that are not needed to solve the above system, but that may
be of interest. Specifically, for the domestic economy, we include the aggregate investment inflation
in equation (3.178)

πit =
Ψt−1

Ψt

 (1− ωi)
(
P dt
)1−ηi + ωi

(
Pm,it

)1−ηi

(1− ωi)
(
P dt−1

)1−ηi + ωi

(
Pm,it−1

)1−ηi


1/(1−ηi)

π̂it = (1− ωi)
(
pi
)ηi−1

π̂dt + ωi

(
pm,i

pi

)1−ηi
π̂m,it − 1

1− ηi
µ̂Ψ,t, (13.76)

and total import demand in equation (3.230)54

mt = cmt (p̊m,ct )
λ
m,c
t

1−λm,ct + imt

(
p̊m,it

) λ
m,i
t

1−λm,it + xmt (p̊m,xt )
λ
m,x
t

1−λm,xt + ce,mt (p̊m,cet )
λ
m,ce
t

1−λm,cet

m̂t =
cm

m

[
ĉmt +

λm,c

1− λm,c
̂̊pm,ct

]
+
im

m

[̂
imt +

λm,i

1− λm,i
̂̊pm,it

]
(13.77)

+
xm

m

[
x̂mt +

λm,x

1− λm,x
̂̊pm,xt

]
+
ce,m

m

[
ĉe,mt +

λm,ce

1− λm,ce
̂̊pm,cet

]
.

13.2 Foreign equations

We now turn to the foreign economy block. As the foreign economy is assumed closed, the below set
of equations constitute a complete model that could be solved independently of the domestic economy
block.

From the foreign intermediate good firm’s problem, we have the gross effective nominal interest
rate faced by the foreign firms

Rwc,∗t = νwc,∗t R∗t + 1− νwc,∗t

R̂wc,∗t =
νwc,∗ (R∗ − 1)

Rwc,∗
ν̂wc,∗t +

νwc,∗R∗

Rwc,∗
R̂∗t , (13.78)

54Note that this expression is the log-linearized version of total imports used in the domestic economy, as previously
discussed in Section 3.2. Total import demand mt and gross total imports m̃t differ by the inclusion of fixed costs, which
affects their steady state values. The log-linear version of m̃t would look the same as the one for mt, except for m̂t and
m being replaced by ̂̃mt and m̃, respectively.
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marginal costs in terms of marginal product of labour

mc∗t =
w̄∗tR

wc,∗
t

mpl∗t

m̂c∗t = ̂̄w∗t + R̂wc,∗t − m̂pl
∗
t , (13.79)

the marginal product of labour

mpl∗t = (1− α∗) ε∗t
(

k∗t
µz+,∗,tµΨ∗,tN

∗
t

)α

m̂pl
∗
t = α∗

(̂
k

N

)∗
t

+ ε̂∗t , (13.80)

the capital-to-labour ratio (
k

N

)∗
t

=
k∗t

µz+,∗,tµΨ∗,tN
∗
t(̂

k

N

)∗
t

= k̂∗t − N̂∗t −
(
µ̂z+,∗,t + µ̂Ψ∗,t

)
, (13.81)

marginal costs in terms of marginal product of capital

mc∗t =
r̄k,∗t
mpk∗t

m̂c∗t = ̂̄rk,∗t − m̂pk∗t , (13.82)

the marginal product of capital

mpk∗t = α∗ε∗t

(
k∗t

µz+,∗,tµΨ∗,tN
∗
t

)−(1−α∗)

m̂pk
∗
t = − (1− α∗)

(̂
k

N

)∗
t

+ ε̂∗t . (13.83)

and the price Phillips curve55

p̃d,∗t Et

∞∑
s=0

(β∗ξ∗)sζβ,∗t+sψz+,∗,t+sy
∗
t+s

(
π̃d,∗t+1 . . . π̃

d,∗
t+s

πd,∗t+1 . . . π
d,∗
t+s

) 1
1−λ∗t+s

= Et

∞∑
s=0

(β∗ξ∗)sζβ,∗t+sψz+,∗,t+sy
∗
t+sλ

∗
t+smc

∗
t+s

(
π̃d,∗t+1 . . . π̃

d,∗
t+s

πd,∗t+1 . . . π
d,∗
t+s

) λ∗t+s
1−λ∗t+s

π̃d,∗t =
(
πd,∗t−1

)κ∗ (
π̄c,∗t

)1−κ∗−κ∗
(π̆∗)κ

∗
,

p̃d,∗t =


1− ξ∗

(
π̃d,∗t
πd,∗t

) 1
1−λ∗t

(1− ξ∗)



1−λ∗t

55The log-linear Phillips curve is a combination of the log-linearized versions of the three included non-linear equations.
Note that the log-linearized equation included here has been derived under the assumption that there is full indexation,
that is assuming that κ∗ = 0.
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π̂d,∗t − ̂̄πc,∗t =
(1− β∗ξ∗) (1− ξ∗)
ξ∗ (1 + β∗κ∗)

(
m̂c∗t + λ̂

∗
t

)
+

κ∗

1 + β∗κ∗

(
π̂d,∗t−1 − ̂̄πc,∗t ) (13.84)

+
β∗

1 + β∗κ∗
Et

(
π̂d,∗t+1 − ̂̄πc,∗t+1

)
− β∗κ∗

1 + β∗κ∗
Et
(̂̄πc,∗t − ̂̄πc,∗t+1

)
.

We also need to include the evolution of the combination of investment-specific and neutral technology

µz+,∗,t =
(
µΨ∗,t

) α∗
1−α∗ µz∗,t

µ̂z+,∗,t =
α∗

1− α∗ µ̂Ψ∗,t + µ̂z∗,t, (13.85)

and the price dispersion equation

p̊d,∗t =

ξ∗
(
π̃d,∗t

πd,∗t
p̊d,∗t−1

) λ∗t
1−λ∗t

+ (1− ξ∗)


1− ξ∗

(
π̃d,∗t
πd,∗t

) 1
1−λ∗t

1− ξ∗


λ∗t


1−λ∗t
λ∗t

̂̊pd,∗t = ξ∗̂̊pd,∗t−1. (13.86)

From the final good firms’problem, we have the expression for non-energy consumption demand
in equation (11.32)

cxe,∗t = (1− ω∗e)
(

1

pc,∗t

)−η∗e
c∗t

ĉxe,∗t = η∗ep̂
c,∗
t + ĉ∗t , (13.87)

and the expression for energy consumption demand in equation (11.33)

ce,∗t = ω∗e

(
pce,∗t

pc,∗t

)−η∗e
c∗t

ĉe,∗t = −η∗e
(
p̂ce,∗t − p̂c,∗t

)
+ ĉ∗t . (13.88)

We further include demand for domestic investment goods in equation (11.44)56

id,∗t = i∗t +
a (u∗t ) k

p,∗
t

µz+,∗,tµΨ∗,t

ı̂d,∗t = ı̂∗t +
1

i∗
σ∗bk

p,∗

µz+,∗µΨ∗
û∗t . (13.89)

We also include the expression for the CPI inflation in equation (11.39)

πc,∗t =
P c,∗t
P c,∗t−1

=

 (1− ω∗e)
(
P d,∗t

)1−η∗e
+ ω∗e

(
P ce,∗t

)1−η∗e
(1− ω∗e)

(
P d,∗t−1

)1−η∗e
+ ω∗e

(
P ce,∗t−1

)1−η∗e


1
1−η∗e

π̂c,∗t = (1− ω∗e)
(

1

pc,∗

)1−η∗e
π̂d,∗t + ω∗e

(
pce,∗

pc,∗

)1−η∗e
π̂ce,∗t . (13.90)

56Note that foreign firms do not use imported goods in their production. The demand for domestic investment goods
still exceeds investment used in the accumulation of physical capital, i∗t , however, as investment goods are assumed to
be used also in capital maintenance, as illustrated by the second term on the righ hand side of the equation.
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as well as the expressions for non-energy price inflation in equation (11.40)

πcxe,∗t = πd,∗t

π̂cxe,∗t = π̂d,∗t , (13.91)

and for energy inflation in equation (11.41)

πce,∗t =
pce,∗t

pce,∗t−1

πd,∗t

π̂ce,∗t = p̂ce,∗t − p̂ce,∗t−1 + πd,∗t . (13.92)

Moreover, we need to include the expression of the relative prices of the aggregate consumption good
in equation (11.43)

pc,∗t =
[
(1− ω∗e) + ω∗e

(
pce,∗t

)1−η∗e]1/(1−η∗e)

p̂c,∗t = ω∗e

(
pce,∗

pc,∗

)1−η∗e
p̂ce,∗t . (13.93)

and the relative price of the aggregate investment good in equation (11.45)

pi,∗t = 1

p̂i,∗t = 0. (13.94)

From the household problem, we have the endogenous preference shifter

Θ∗t = zC,∗t ῡN,∗t

Θ̂∗t = ẑC,∗t + ̂̄υN,∗t , (13.95)

the evolution of trend consumption

zC,∗t =

(
zC,∗t−1

1

µz+,∗,t

)1−ν∗
(

1

ῡN,∗t

)ν,∗

ẑC,∗t = (1− ν∗)
(
ẑC,∗t−1 − µ̂z+,∗,t

)
− ν∗̂̄υN,∗t , (13.96)

the marginal utility of consumption

ῡN,∗t =
ζβ,∗t ζc,∗t

c∗t − b∗c∗t−1
1

µz+,∗,t

− β∗b∗Et
ζβ,∗t+1ζ

c,∗
t+1

c∗t+1µz+,∗,t+1 − b∗c∗t

̂̄υN,∗t = µz+,∗ (µz+,∗ − b∗) ζ̂β,∗t + µz+,∗ (µz+,∗ − b∗) ζ̂c,∗t − µ2
z+,∗ ĉ

∗
t + b∗µz+,∗ ĉ∗t−1 − b∗µz+,∗ µ̂z+,∗,t(13.97)

−β∗b∗
[
(µz+,∗ − b∗)Etζ̂

β,∗
t+1 + (µz+,∗ − b∗)Etζ̂

c,∗
t+1 − µz+,∗Etĉ

∗
t+1 + b∗ĉ∗t − µz+,∗Etµ̂z+,∗,t+1

]
.

the marginal rate of substitution

mrs∗j,t =
ζβ,∗t ζn,∗t Θ∗t

(
N∗j,t

)ϕ∗
ῡN,∗t

N∗t =

[∫ 1

0

(
N∗j,t

) 1

λ
w,∗
t dj

]λw,∗t
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m̂rs∗t = ζ̂
β,∗
t + ζ̂

n,∗
t + Θ̂∗t + ϕ∗N̂∗t − ̂̄υN,∗t , (13.98)

the consumption Euler equation

ῡN,∗t = β∗Et
R∗tχ

∗
t

πc,∗t+1µz+,∗,t+1

ῡN,∗t+1

̂̄υN,∗t = Et̂̄υN,∗t+1 + ̂̄R∗t − Etµ̂z+,∗,t+1 + χ∗t , (13.99)

the first-order condition for capital

Et

[
r̄k,∗t+1u

∗
t+1 − p

i,∗
t+1a

(
u∗t+1

)
+ (1− δ∗) p̆∗k′,t+1

]
=

1

β∗
Et
ζβ,∗t

ζβ,∗t+1

ψz+,∗,t

ψz+,∗,t+1

µz+,∗,t+1µΨ∗,t+1p̆
∗
k′,t

−ζβ,∗t ψ∗z+,t + β∗Et
ζβ,∗t+1ψ

∗
z+,t+1

µz+,∗,t+1

R∗tχ
∗
t

πd,∗t+1

= 0

̂̆p∗k′,t =
β∗ (1− δ∗)
µz+,∗µΨ∗

Et̂̆p∗k′,t+1 +
β∗r̄k,∗

µz+,∗µΨ∗ p̆
∗
k′
Et

(̂̄rk,∗t+1 + û∗t+1

)
(13.100)

−Etµ̂Ψ∗,t+1 − Et
(
R̂∗t − Etπ̂

d,∗
t+1 + χ∗t

)
,

the first-order condition for investment57

pi,∗t = p̆∗k′,tΥ
∗
t

[
1− S̃

(
µz+,∗,tµΨ∗,ti

∗
t

i∗t−1

)
− S̃′

(
µz+,∗,tµΨ∗,ti

∗
t

i∗t−1

)
µz+,∗,tµΨ∗,ti

∗
t

i∗t−1

]
+β∗Et

ζβ,∗t+1

ζβ,∗t

ψz+,∗,t+1

ψz+,∗,t
p̆∗k′,t+1Υ∗t+1S̃

′
(
µz+,∗,t+1µΨ∗,t+1i

∗
t+1

i∗t

)(
i∗t+1

i∗t

)2

µz+,∗,t+1µΨ∗,t+1

î∗t−î∗t−1+µ̂z+,∗,t+µ̂Ψ,∗,t = β∗Et
(̂
i∗t+1 − î∗t + µ̂z+,∗,t+1 + µ̂Ψ,∗,t+1

)
+

1

(µz+,∗µΨ∗)
2 S̃′′,∗

[̂̆p∗k′,t + Υ̂∗t −
pi,∗

p̆∗k′Υ
∗ p̂

i,∗
t

]
(13.101)

and the expression for the capital utilization

r̄k,∗t = pi,∗t a
′ (u∗t )

̂̄rk,∗t = p̂i,∗t + σ∗aû
∗
t . (13.102)

We further include the law of motion for capital

kp,∗t+1 =
1− δ∗

µz+,∗,tµΨ∗,t
kp,∗t + Υ∗t

(
1− S̃

(
µz+,∗,tµΨ∗,ti

∗
t

i∗t−1

))
i∗t

k̂p,∗t+1 =
1− δ∗

µz+,∗µΨ∗

(
k̂p,∗t − µ̂z+,∗,t − µ̂Ψ∗,t

)
+

Υ∗i∗

kp,∗

(
Υ̂∗t + î∗t

)
, (13.103)

and the relationship between effi cient and physical capital

k∗t = u∗tk
p,∗
t

k̂∗t = û∗t + k̂p,∗t . (13.104)

57Note that the second derivative of the function S is a function of steady state variables only and therefore treated
as a parameter. This explains why is has a superscript ∗, even though the function S itself doesn’t.
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We also have the expression determining the labour participation rate

w̄∗t
pc,∗t

∫ 1

0

W ∗j,t
W ∗t

dj = ζβ,∗t ζn,∗t zC,∗t

∫ 1

0

(
L∗j,t
)ϕ∗

dj

(W ∗t )
1

1−λw,∗t =

∫ 1

0

(
W ∗j,t

) 1

1−λw,∗t dj

̂̄w∗t − p̂c,∗t = ζ̂
n,∗
t + ζ̂

β,∗
t + ẑC,∗t + ϕ∗L̂∗t , (13.105)

the unemployment rate

U∗t =
L∗t −N∗t
L∗t

Û∗t = L̂∗t − N̂∗t , (13.106)

the natural rate of unemployment

Ûn,∗t =
1

ϕ∗
λ̂
w,∗
t , (13.107)

and the wage markup
µ̂∗w,t = ϕ∗Û∗t . (13.108)

Moreover, from the wage setting problem, we have the expression for the wage inflation

πw,∗t =
w̄∗tµz+,∗,tπ

d,∗
t

w̄∗t−1

π̂w,∗t = ̂̄w∗t − ̂̄w∗t−1 + π̂d,∗t + µ̂z+,∗,t. (13.109)

the wage Phillips curve in equation (11.53)58
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w,∗
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+κ∗w
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π̂c,∗t−1 − ̂̄πc,∗t )− β∗κ∗wEt (π̂c,∗t − ̂̄πc,∗t+1
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− d∗wϕ∗
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Û∗t − Û

n,∗
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,

d∗w =
λw,∗ − 1

ξ∗wb
∗
w

, b∗w =
λw,∗ (1 + ϕ∗)− 1

(1− β∗ξ∗w) (1− ξ∗w)
,

58Just as the log-linear price Phillips curves, the log-linear wage Phillips curve is a combination of the log-linearized
versions of the three included non-linear equations, as well as a number of log-linearized equations from the household
problem (as the domestic wage Phillips curve). Note that the log-linearized wage equation included here has been derived
under the assumption that there is full indexation, that is assuming that κw = 0 and that ϑw = 1.
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the expression for aggregate household hours in terms of aggregate homogeneous hours worked

n∗t = N∗t (ẘ∗t )
λ
w,∗
t

1−λw,∗t ,

n̂∗t = N̂∗t +
λw,∗

1− λw,∗
̂̊w∗t , (13.111)

and the wage dispersion equation

ẘ∗t =

ξ∗w ( π̃w,∗tπw,∗t ẘ∗t−1

) λ
w,∗
t

1−λw,∗t
+ (1− ξ∗w)

1− ξ∗w
(
π̃w,∗t
πw,∗t

) 1

1−λw,∗t

(1− ξ∗w)


λw,∗t


1−λw,∗t
λ
w,∗
t

̂̊w∗t = ξ∗w ̂̊w∗t−1. (13.112)

We next need to include the central bank policy rule

log

(
R∗t
R∗

)
= ρR∗ log

(
R∗t−1

R∗

)
+ (1− ρR∗)

[
log

(
π̄c,∗t
π̄c,∗

)
+ rπ∗ log

(
πc,∗t−1

π̄c,∗t

)
+rRU∗

(
U∗t−1 − U∗

)]
+ r∆π∗∆ log

(
πc,∗t
πc,∗

)
+ r∆RU∗∆U

∗
t + log εR∗,t

R̂∗t = ρR∗R̂
∗
t−1 + (1− ρR∗)

[̂̄πc,∗t + rπ∗
(
π̂c,∗t−1 − ̂̄πc,∗t )+ rRU∗Û

∗
t−1

]
+ r∆π∗∆π̂

c,∗
t + r∆RU∗∆Û

∗
t + ε̂R∗,t,

(13.113)
and the following two equations from the derivations aggregate resource constraint:

y∗t = g∗t + cd,∗t + ce,∗t + id,∗t

ŷ∗t =
g∗

y∗
ĝ∗t +

cxe,∗

y∗
ĉxe,∗t +

ce,∗

y∗
ĉe,∗t +

id,∗

y∗
ı̂d,∗t , (13.114)

y∗t = (p̊∗t )
λ∗t
λ∗t−1

ε∗t ( k∗t
µz+,∗,tµΨ∗,t

)α∗ (
n∗t (ẘ∗t )

− λ
w,∗
t

1−λw,∗t

)1−α∗

− φ∗


ŷ∗t =
λ∗

1− λ∗
̂̊p∗t +

1

y∗

(
k∗

µz+,∗µΨ∗

)α∗
(n∗)1−α∗ × (13.115)

×
[
ε̂∗t + α∗

(
k̂∗t − µ̂z+,∗,t − µ̂Ψ∗,t

)
+ (1− α∗)

(
n̂∗t −

λw,∗

1− λw,∗
̂̊w∗t)] .

We again include an additional variables of interest, that is not needed to solve the above system,
namely the foreign investment inflation rate as given by the following expression:

πi,∗t =
πd,∗t
µΨ∗,t

π̂i,∗t = π̂d,∗t − µ̂Ψ∗,t. (13.116)
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13.3 The complete system

The equations listed in Sections 13.1 and 13.2 above constitute a system of equations for the following
lite of variables:

π̂dt , π̂
m,c
t , π̂m,it , π̂m,xt , π̂m,cet , π̂xt , π̂

c
t , π̂

xe
t , π̂

ce
t , π̂

d,ce
t , π̂wt , π̂

i
t,

m̂cdt , m̂c
m,c
t , m̂cm,it , m̂cm,xt , m̂cm,cet , m̂cxt , R̂

wc,d
t , R̂wc,mt , R̂wc,xt ,

m̂pl, m̂kpt,

(̂
k

N

)
t

, ̂̄rkt , ̂̄wt, Θ̂t, ẑ
C
t , ̂̄υNt , m̂rst, L̂t, Ût, Ûnt , µ̂w,t, k̂t, N̂t, R̂t, ŷt, µ̂z+,t,

ĉt, ĉ
xe
t , ĉ

e
t , ĉ

e,d
t , ĉe,mt , ĉdt , ĉ

m
t , ăt, ît, î

d
t , î

m
t , x̂t, x̂

d
t , x̂

m
t , m̂t, ût, ̂̆pk′,t, k̂pt+1, n̂t,
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t , p̂

ce
t , p̂

m,c
t , p̂m,it , p̂m,xt , p̂m,cet , p̂xt , p̂

i
t, q̂t, ŝt, Φ̂t,̂̊pdt , ̂̊pm,ct , ̂̊pm,it , ̂̊pm,xt , ̂̊pm,cet , ̂̊pxt , ̂̊wt,

π̂d,∗t , π̂cxe,∗t , π̂ce,∗t , π̂c,∗t , π̂i,∗t , π̂
w,∗
t , m̂c∗t , R̂

wc,∗
t , m̂pl

∗
, m̂kp

∗
t ,

(̂
k

N

)∗
t

,

̂̄rk,∗t , ̂̄w∗t , Θ̂∗t , ẑC,∗t , ̂̄υN,∗t , m̂rs∗t , L̂
∗
t , Û

∗
t , Û

n,∗
t , µ̂∗w,t, k̂

∗
t , N̂

∗
t , R̂

∗
t , ŷ
∗
t , µ̂z+,∗,t,

ĉ∗t , ĉ
xe,∗
t , ĉe,∗t , î∗t , î

d,∗
t , û∗t , ̂̆p∗k′,t, k̂p,∗t+1, n̂

∗
t ,

p̂c,∗t , p̂i,∗t ,
̂̊p∗t , ̂̊w∗t .

14 Time-varying neutral rate

In the model above, we assume that the monetary policy maker sets the interest rate, Rt, in relation
to its steady-state value, R. In other words, the central bank reacts to the deviation of inflation,
unemployment, etc. from their steady-state values by making the interest rate deviate from its steady-
state value. Also, households take into account the deviations of the interest rate from steady state
in their allocation decisions. An alternative assumption would be to assume that the agents in the
economy instead consider deviations of the interest rate from some time-varying medium term value,
Rtt, which we shall refer to as the neutral rate and which, in turn, itself varies around the steady-state,
R. The idea is that there are slow movements in the real interest rate that are driven by global factors,
such as global savings developments or demographics, that do not affect allocations, as this seem to
be in line with what we have observed in data in recent years. We think of the neutral rate as the rate
that is neither expansionary nor contractionary if the economy operates near its potential. We specify
a simple auxiliary model for the trend component of real and nominal Swedish and foreign interest
rates. Importantly, we assume that shocks which affect the trend components have no effects on the
cyclical components, and vice versa. The trend-cycle decomposition of interest rates will be jointly
determined by the structural model and the auxiliary model.

Denoting by bar the real version of the corresponding nominal rate, we assume that

Rtt = R̄ttπ̄
c
t , (14.1)

where Rtt is the nominal neutral rate, R̄
t
t is the real neutral rate, and π̄

c
t is the central bank’s inflation

target. Similarly, for the foreign economy, we have that

Rt,∗t = R̄t,∗t π̄
c,∗
t , (14.2)

where we have now used the foreign central bank’s inflation target to derive the expression for the
nominal neutral rate. The real interest rate trend is allowed to depend on technology growth, µz+,t.
It is also allowed to depend on the risk premium shock, χt, in order to capture the effects of shifts in
the demand for safe assets on policy rates, which could be viewed as an attempt to endogenize part of
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the variation in the real neutral rate, which would otherwise be attributed to exogenous factors. The
resulting specification of the real interest rate trend is then given by

log

(
R̄tt
R

)
= logR+ rµz+ log

(
µz+,t

µz+

)
− rχ log

(
χt
χ

)
+ log

(
zRt
zR

)
, (14.3)

where zRt is a shock to the real interest rate trend, intended to capture non-modelled factors, such
as the effects of demographic changes on the real interest rate. For the foreign economy, we similarly
have

log

(
R̄t,∗t
R∗

)
= logR∗ + rµz+,∗ log

(
µz+,∗,t

µz+,∗

)
− rχ∗ log

(
χ∗t
χ∗

)
+ log

(
zR,∗t

zR,∗

)
, (14.4)

Note that, in steady state, the neutral rates are equal to the actual rates, so that Rt = R and Rt,∗ = R∗.
The shocks to the real interest rate trends are assumed to evolve according to the following

processes:
log zRt = (1− ρzR) log zR + ρzR log zRt−1 + σzRεzR,t, (14.5)

log zR,∗t = (1− ρzR,∗) log zR,∗ + ρzR,∗ log zR,∗t−1 + σzR,∗εzR,∗,t. (14.6)

An innovation to the real interest rate trend affects the policy rate but no other variables in the model,
since it does not affect the policy rate gap. This specification of the real neutral rate is similar to its
modelling in semi-structural models aimed to provide estimates of the neutral interest rate, as in e.g.
Laubach and Williams (2015), and Holston, Laubach, and Williams (2016).

In case we want to include a time-varying neutral rate in the model, we need to log-linearize
equations (14.1)—(14.6) above. This gives the following expressions: for the domestic nominal neutral
rate

R̂tt = ̂̄Rt,∗t + ̂̄πct , (14.7)

for the foreign nominal neutral rate

R̂t,∗t = ̂̄Rt,∗t + ̂̄πc,∗t , (14.8)

for the domestic real neutral rate trend̂̄Rtt = rµz+ µ̂z+,t − rχχ̂t + ẑRt , (14.9)

for the foreign real neutral rate trend̂̄Rt,∗t = rµz+,∗ µ̂z+,∗,t − rχ∗χ̂∗t + ẑR,∗t , (14.10)

and for the exogenous processes

ẑRt = ρzR ẑ
R
t−1 + σzRεzR,t, (14.11)

ẑR,∗t = ρzR,∗ ẑ
R,∗
t−1 + σzR,∗εzR,∗,t. (14.12)

We finally note that, in estimation, the measurement equations of the interest rates need to be
changed accordingly. We think of the observed interest rate level as composed by two gaps: the
deviation of the time-varying neutral rate from steady state, and the deviation from the actual interest
rate from the time-varying neutral one. In the model, however, it is only the latter gap that is relevant,
so the observed interest rate deviations need to map the difference between the actual interest rate
and the time-varying neutral one.

15 The EHL model of the labour market

In this section, we describe how the model changes when the labour market is modelled as in Erceg,
Henderson, and Levin (2000) (EHL), instead of as in Galí, Smets, and Wouters (2012) (GSW) as
assumed above. The changes primarily concern the household optimization and wage setting, leaving
the modelling of the firms largely unaffected.
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15.1 Households

The EHL model assumes continuum of households in the economy, indexed by j ∈ (0, 1). They attain
utility from consumption and leisure, as in Christiano, Trabandt, and Walentin (2011) and Adolfson
et al. (2013). Compared to the specification in Section 4, the preferences with respect to consumption
are unchanged. Household j has the following preferences:

Ej0

∞∑
t=0

βtζβt

[
ζct log (Cj,t − bCj,t−1)− ζnt AL

h1+σL
j,t

1 + σL

]
, (15.1)

where Cj,t and hj,t denote level of aggregate consumption and work effort, respectively, of household
j at time t. The parameter σL is the inverse of the Frisch elasticity of labour supply, measuring the
substitution effect of a change in the wage rate on labour supply, holding constant the marginal utility
of wealth.59 Finally, AL is a labour disutility constant.

The budget constraint (4.10) is slightly modified due to the assumption of a continuum of house-
holds, rathert han a large representative one as in GSW. Here, household j optimizes its utility subject
to the following budget constraint:

P ct Cj,t + P it

(
Ij,t + a (uj,t)K

p
j,t

)
+ Pk′,t∆j,t +Bj,t+1 + StB

F
j,t+1

= Wj,thj,t +Rkt uj,tK
p
j,t +Rt−1χt−1Bj,t +R∗t−1Φt−1χt−1StB

F
j,t + Πt + TRt, (15.2)

Just as in Section 4, the left-hand side contains the expenditure terms and the right-hand side the
income terms. Note that Wj,t denotes the wage set by household j. Note further that the wage is now
defined as the wage per hour rather than the wage per worker, as reflected by the product of wages
and hours worked replacing the integral over the household members’wages.

We finally note that hours enter the firm problem identically to household employment in the GSW
model. Hence, the firm side of the economy need not be modified, with the exception that Nj,t has to
be replaced by Hj,t. As in (3.5), firm i is assumed to have the technology

Yi,t = (ztHi,t)
1−α εtK

α
i,t − z+

t φ
d, (15.3)

where Hi,t is demand for hours worked of firm i. Firms buy Hi,t from labour contractors as in the
GSW version of the model.60

15.2 Wage setting

Just as in the GSW version of the model, we assume that household members are monopoly suppliers
of differentiated labour services hired by the firm. Thus, households can determine their wages. We
assume that the differentiated labour hj,t is sold by households to labour contractors who combine it
into a homogeneous input good Ht using the following technology:

Ht =

[∫ 1

0
(hj,t)

1
λwt dj

]λwt
, 1 ≤ λwt <∞, (15.4)

where λwt is a time-varying wage markup given by the following process (just as in equation 4.41):

log λwt = (1− ρλw) log λw + ρλw log λwt−1 + σλwελw,t. (15.5)

59 In general, wage changes also have wealth effects on labor supply. The Frisch elasticity, hence, does not capture the
total effect on hours from wage shocks but only the component that is due to intertemporal substitution effects.
60Note that, for estimation purposes, the observed variables and the observation equations of the model need to

be changed accordingly. The two observation equations for employment and unemployment are now replaced by one
observation equation for hours. Moreover, even though the observation equation for wages itself doesn’t change, the
appropriate wage measure does.
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These labour contractors take the price of the jth differentiated labour input Wj,t, and the price of
the homogeneous labour service Wt as given. Profit maximization writes

max
hj,t

WtHt −
∫ 1

0
Wj,thj,tdj

and leads to the following first-order condition:

hj,t =

(
Wj,t

Wt

) λwt
1−λwt

Ht, (15.6)

which is a demand curve for the individual households’labour services. Integrating (4.42) and using
the definition of Ht, we obtain the expression for the aggregate wage rate

Wt =

[∫ 1

0
(Wj,t)

1
1−λwt dj

]1−λwt
. (15.7)

As in the GSW version of our model, we assume that households are subject to Calvo wage setting
frictions as in Erceg, Henderson, and Levin (2000). If the jth household is not able to reoptimize in
period t, the wage it will charge in period t+ 1 will be set according to the following indexation rule:{

Wj,t+1 = π̃wt+1Wj,t

π̃wt+1 ≡ (πct)
κw
(
π̄ct+1

)1−κw−κw (π̆)κw (µz+)ϑw .
(15.8)

Let us denote by W̃j,t the reoptimized nominal wage of household j set in period t, and consider that
this household has not been able to reoptimize during s periods ahead. The wage in t+s will be given
by

Wj,t+s = π̃wt+s . . . π̃
w
t+1W̃j,t.

In period t, when setting its wage W̃j,t, the jth households will maximize its future discounted utility
(i.e. individual utility, as opposed to the utility of all household members in the large representative
household) subject to the budget constraint as in Section 4.4, taking into account that there is a
probability ξw in each period that it cannot reoptimize. Using (15.1) and ignoring the irrelevant terms
(of the utility function) for the wage setting problem, the problem becomes

max
W̃j,t

Et
∞∑
s=0

(βξw)s ζβt+s

[
−ζnt+sAL

(hj,t+s)
1+σL

1+σL
+ υt+sWj,t+shj,t+s

]
s.t. hj,t =

(
Wj,t

Wt

) λwt
1−λwt Ht

. (15.9)

Replacing both hj,t and the expression for the wage, we get

max
W̃j,t

Et
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(βξw)s ζβt+s

 −ζ
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−

λwt+s
1−λwt+s Ht+s

(
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) 1
1−λwt+s

 .
Note that the objective is almost the same as in the GSW model. Instead of ζnt+s

Θt+s
1+ϕ multiplying

the first term in the summation, we instead have ζnt+s
AL

1+σL
and the term within the square brackets

is raised to 1 + σL instead of 1 + ϕ. The first-order condition are then also almost identical. Taking
derivatives w.r.t. W̃j,t gives(

W̃j,t

)1−
σLλ

w
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1−λwt+s Et
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w
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.
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As each household faces the same optimization problem, we can drop the index j. Proceeding as in
Section 4.6, we get

w̃

1−λwt+s(1+σL)
1−λwt+s

t =

λwt+sALEt
∞∑
s=0

(βξw)s ζβt+sζ
n
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) 1
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. (15.10)

Note that the expression is very similar to (4.46). Only AL and σL are different.

15.3 Scaling

Proceeding as in Section 4.7.5, expression (15.10) becomes

w̃
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1−λwt+s
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(15.11)

15.4 Log-linearization

To log-linearize equation (15.11), we start by re-expressing it as follows:
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Note that the right hand side is similar to the GSW model, with the exception that AL replaces Θt+s

and σL replaces ϕ. A first-order Taylor expansion of the left-hand side yields:
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A first-order Taylor expansion of the right-hand side yields:

∞∑
s=0

(βξw)s ζβζnλwALH
1+σL

(
π̃w

πdµz+

)sλw(1+σL)
1−λw

+Et

∞∑
s=0

(βξw)s ζnλwALH
1+σL

(
π̃w

πdµz+

)sλw(1+σL)
1−λw (

ζβt+s − ζβ
)

+Et

∞∑
s=0

(βξw)s ζβλwALH
1+σL

(
π̃w

πdµz+

)sλw(1+σL)
1−λw (

ζnt+s − ζn
)

+Et

∞∑
s=0

(βξw)s ζβζnλwAL (1 + σL)HσL

(
π̃w

πdµz+

)sλw(1+σL)
1−λw

(Ht+s −H)

+Et
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(

π̃w
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)s (
π̃w
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)sλw(1+σL)
1−λw

(λwt+s − λw)

+Et
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1+σL

(
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πd

(
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− 1
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(
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)
 .

Using steady-state relationships, we equate both sides of the optimal-wage equation derived above
and, after simpliflying, we obtain

1− λw (1 + σL)

1− λw
̂̃wtζβψz+w̄H

∞∑
s=0

(βξw)s

+ Et

∞∑
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1

1− λw
(̂̄wt − λw ̂̄wt+s + ̂̃πwt+1 + . . .+ ̂̃πwt+s

−π̂dt+1 − . . .− π̂dt+s − µ̂z+,t+1 − . . .− µ̂z+,t+s

)]
= Et

∞∑
s=0

(βξw)s ζβζnλwALH
1+σL

[
ζ̂
β

t+s + ζ̂
n

t+s + (1 + σL) Ĥt+s + λ̂
w

t+s

. +
λw (1 + σL)

1− λw
(̂̄wt − ̂̄wt+s + ̂̃πwt+1 + . . .+ ̂̃πwt+s − π̂dt+1 − . . .− π̂dt+s − µ̂z+,t+1 − . . .− µ̂z+,t+s

)]
.

Solving for steady state in equation (15.11) implies ψz+w̄H = λwALζ
nH1+σL . Using this and rear-

ranging the expressions above (proceeding as in Section 4.8.5) gives the loglinearized version of the
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wage Phillips curve (15.11):

ξwbw ̂̄wt−1 +
(
λwσL − bw

(
1 + βξ2

w

)) ̂̄wt + βξwbwEt ̂̄wt+1 − ξwbw
(
π̂dt − ̂̄πct)

+βξwbwEt

(
π̂dt+1 − ̂̄πct+1

)
+ κwξwbw

(
π̂ct−1 − ̂̄πct)− βξwκwbwEt (π̂ct − ̂̄πct+1

)
+ (1− λw)

(
ψ̂z+,t − ζ̂

n

t − σLĤt − λ̂
w

t

)
− ξwbwµ̂z+,t + βξwbwEtµ̂z+,t+1

= 0, (15.12)

where bw = λw(1+σL)−1
(1−βξw)(1−ξw) . Note that the last row of this equation contains the shock to labour supply

and the wage markup shock.61 Importantly, this is the only equation in the EHL where those two
shocks enter, meaning that they are observationally equivalent and cannot both be identified.62 We
leave in both shocks in the final equation, nevertheless, for consistency with the GSW model, noting
that one of them needs to be shut off for estimations of the EHL version of the model. The estimated
shock can then be interpreted as either a labour supply shock or a wage markup shock —for estimation
purposes this does not matter. However, it does matter for normative purposes, as it will affect the
model-implied measures of the effi cient output gap.63 An alternative approach, explored in Sala,
Söderström, and Trigari (2010), could be to assume that the processes of the two shocks are different,
allowing us to potentially identify both shocks. Sala, Söderström, and Trigari (2010) find, however,
that the one-shock and two-shock models are virtually identical in their estimations.

15.5 Foreign economy

For the foreign economy, we modify the household’s problem and the wage setting in an analogous
way to the domestic economy. Household preferences in the foreign economy are now given by

Ej0

∞∑
t=0

(β∗)t ζβ,∗t

ζc,∗t log
(
C∗j,t − b∗C∗j,t−1

)
− ζn,∗t A∗L

(
h∗j,t

)1+σ∗L

1 + σ∗L

 .
The foreign wage setting problem results in the following equation, corresponding to equation (15.10)
for the domestic economy:

(w̃∗t )

1−λw,∗t+s(1+σ∗L)
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∗
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∞∑
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d,∗
t+s

) λ
w,∗
t+s

1−λw,∗t+s H∗t+s


1+σ∗L

Et
∞∑
s=0

(β∗ξ∗w)s ζβ,∗t+sψz+,∗,t+sw̄
∗
t+sH

∗
t+s

(
w̄∗t
w̄∗t+s

π̃w,∗t+s...π̃
w,∗
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µz+,∗,t+1...µz+,∗,t+sπ
d,∗
t+1...π

d,∗
t+s

) 1

1−λw,∗t+s

.

(15.13)

15.6 Exogenous processes

In the EHL version of the model, the labour supply shock is assumed to evolve according to the
following AR process:

ζ̂
h

t = ρζh ζ̂
h

t−1 + σζhεζh,t, (15.14)

with ρζh no longer being calibrated to a very high value as in the GSW model, but estimated.

61 It contains also the discount rate shock, but this shock enters also in the consumption Euler equation from the
household’s problem.
62That the wage markup shock is isomorphic to the preference shock to disutility from labor in the log-linearized

version is a standard problem in this class of models.
63As discussed in Sala, Söderström, and Trigari (2010), the the labor supply shock is effi cient while the wage markup

shock is not, as markups are zero in the effcient (flex-price) allocation. The latter shock thus affects the effi cient output
gap, while the former does not, with different implications for monetary policy.
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15.7 Summary of the model with the EHL labour market

Comparing to the GSW model above, the inclusion of the EHL labour market removes the following
variables from the model: the labour force, L̂t, employment, N̂t and n̂t, the unemployment rate,
Ût, the natural rate of unemployment, Ûnt , the endogenous preference shifter, Θ̂t, the smooth trend
consumption, ẑCt , the marginal utility of consumption, ̂̄υNt , the marginal rate of substitution, m̂rst, and
the average wage markup, µ̂w,t. We thus remove the following equations: the expressions determining
the labour participation rate in equation (4.100), the unemployment rate in equation (4.99), the
natural rate of unemployment in equation (4.110), the endogenous preference shifter in equation
(4.80), the trend consumption in equation (4.81), the marginal utility of consumption in equation
(4.90), the marginal rate of substitution in equation (4.83), and the wage markup in equation (4.101).
We instead add hours, Ĥt and ĥt.

We replace the wage setting in equation (13.61) by the wage setting expression in equation (15.12)

w̃

1−λwt+s(1+σL)
1−λwt+s

t =

λwt+sALEt
∞∑
s=0

(βξw)s ζβt+sζ
h
t+s

( w̄t
w̄t+s

π̃wt+s...π̃
w
t+1

µz+,t+1...µz+,t+sπ
d
t+1...π

d
t+s

) λwt+s
1−λwt+s

Ht+s

1+σL

Et
∞∑
s=0

(βξw)s ζβt+sψz+,t+sw̄t+sHt+s

(
w̄t
w̄t+s

π̃wt+s...π̃
w
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µz+,t+1...µz+,t+sπ
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t+1...π

d
t+s

) 1
1−λwt+s

π̃wt+1 ≡ (πct)
κw
(
π̄ct+1

)1−κw−κw (π̆)κw (µz+)ϑw

w̃t =

1− ξw
(
π̃wt
πwt

) 1
1−λwt

(1− ξw)


1−λwt

ξwbw ̂̄wt−1 +
(
λwσL − bw

(
1 + βξ2

w

)) ̂̄wt + βξwbwEt ̂̄wt+1 − ξwbw
(
π̂dt − ̂̄πct)

+βξwbwEt

(
π̂dt+1 − ̂̄πct+1

)
+ κwξwbw

(
π̂ct−1 − ̂̄πct)− βξwκwbwEt (π̂ct − ̂̄πct+1

)
+ (1− λw)

(
ψ̂z+,t − ζ̂

h

t − σLĤt − λ̂
w

t

)
− ξwbwµ̂z+,t + βξwbwEtµ̂z+,t+1

= 0, bw =
λw (1 + σL)− 1

(1− βξw) (1− ξw)
. (15.15)

Note that hours in EHL replace the employment rate in the GSW model. Hence, the equations
including employment in the GSW version are now replaced with corresponding expressions including
hours. Going from the GSW to the EHL model, we replace the marginal and products of labour and
capital, in equations (13.3) and (13.6), respectively, by

mplt = (1− α) εt

(
kt

µz+,tµΨ,tHt

)α

m̂plt = α

(̂
k

H

)
t

+ ε̂t (15.16)

and

mpkt = αεt

(
kt

µz+,tµΨ,tHt

)−(1−α)

m̂pkt = − (1− α)

(̂
k

H

)
t

+ ε̂t, (15.17)
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and the capital-to-labour ratio in equation (13.4) by(
k

H

)
t

=
kt

µz+,tµΨ,tHt(̂
k

H

)
t

= k̂t − Ĥt −
(
µ̂z+,t + µ̂Ψ,t

)
. (15.18)

We also replace the resource constraint in equation (13.66) by

yt =
(
p̊dt

) λdt
λdt−1

εt( kt
µΨ,tµz+,t

)α(
ẘ
− λwt

1−λwt
t ht

)1−α

− φd


ŷt =
1

y

(
k

µΨµz+

)α
h1−α × (15.19)

×
[
ε̂t + α

(
k̂t − µ̂Ψ,t − µ̂z+,t

)
− λw (1− α)

1− λw
̂̊wt + (1− α) ĥt

]
− λd

λd − 1
̂̊pdt ,

and aggregate household labour in terms of aggregate homogeneous labour in equation (13.62) by the
expression for aggregate household hours in terms of aggregate homogeneous hours worked

ht = Ht (ẘt)
λwt

1−λwt

ĥt = Ĥt +
λw

1− λw
̂̊wt. (15.20)

Finally, as unemployment is dropped from the model, the Taylor rule is respecified accordingly.
We now assume that monetary policy is conducted according to the following rule:

log

(
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R

)
= ρR log

(
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R

)
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(
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+ r∆y∆ log
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)
+ εR,t
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]
+ r∆π∆π̂ct + r∆y∆ĥt + εR,t, (15.21)

instead of the one specified in equation (13.64).
For the foreign economy, we add and replace the same equations as for the domestic. We thus

have the wage setting equation
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the marginal and products of labour and capital,
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and
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the capital-to-labour ratio (
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, (15.25)

the resource constraint from the supply side
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and aggregate household hours in terms of aggregate homogeneous hours worked
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Finally, we now assume that the foreign monetary policy is conducted according to the following rule:
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