Picchio, Matteo; Santolini, Raffaella

Working Paper
The COVID-19 Pandemic’s Effects on Voter Turnout

GLO Discussion Paper, No. 812

Provided in Cooperation with:
Global Labor Organization (GLO)

Suggested Citation: Picchio, Matteo; Santolini, Raffaella (2021) : The COVID-19 Pandemic’s Effects on Voter Turnout, GLO Discussion Paper, No. 812, Global Labor Organization (GLO), Essen

This Version is available at:
http://hdl.handle.net/10419/232506

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
The COVID-19 Pandemic’s Effects on Voter Turnout

Matteo Picchioa,h,c,d, Raffaella Santolinia*

a Department of Economics and Social Sciences, Marche Polytechnic University, Italy
b Department of Economics, Ghent University, Belgium
c IZA – Institute of Labor Economics, Bonn, Germany
d GLO – Global Labor Organization

April 1, 2021

Abstract

The COVID-19 pandemic has increased the risk of participating in public events, among them elections. We assess whether the voter turnout in the 2020 local government elections in Italy was affected by the COVID-19 pandemic. We do so by exploiting the variation among municipalities in the intensity of the COVID-19 outbreak as measured by the mortality rate among the elderly. We find that a 1 percentage point increase in the elderly mortality rate decreased the voter turnout by 0.5 percentage points, with no gender differences in the behavioural response. The effect was especially strong in densely populated municipalities. We do not detect statistically significant heterogeneous effects between the North and the South or among different levels of autonomy from the central government.

Keywords: COVID-19 outbreak; pandemic; voter turnout; mortality rate; Italian municipalities

JEL classification codes: D72, D81, H70
1 Introduction

In late December 2019 a severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) was first identified in the city of Wuhan of the Republic of China and then rapidly spread to the rest of the world, causing a pandemic known as COVID-19. It has radically changed the lifestyle of people forced to stay at home, to wear face masks, and to maintain social distancing. These are only some of the restrictions imposed by national governments to curb the spread of the new coronavirus. Italy was the second country after China to have been hard hit by COVID-19, with a significant increase in positive cases in March 2020. Italy immediately took draconian measures by stopping most economic activities, closing schools and universities, severely limiting the movement of people, and restricting social contacts.

Restrictive policies to contain the spread of COVID-19 have also led to a transformation of the political agenda by postponing the renewal of regional governments and of numerous municipal councils. Going to the polls to exercise the right to vote could indeed increase cases of virus infection among voters and the incidence of mortality from COVID-19, especially among elderly people (Bertoli et al., 2020; Santana et al., 2020). Moreover, participation in assemblies and rallies during the election campaign may make gatherings risky and spread the virus infection among political candidates (Bach et al., 2020) and participants. Voters can choose between not voting or exercising their civic duty with the risk of infection. This decision may depend on the voter’s perception of the severity of the disease and the risk of catching it. In areas where citizens observe a higher number of positive cases and deaths from COVID-19, there may be a sharp decline in the voter turnout due to the fear of being infected at the polling station. Recent studies validate these hypotheses. Santana et al. (2020) show a significant decrease in electoral participation in those countries and regions where there have been a high number of deaths from COVID-19. Likewise, Fernández-Navia. et al. (2021) find for the Basque regional election held in Spain on 12 July 2020 a reduction in voter turnout of between 2.6 and 5.1 percentage points in those municipalities which had experienced a positive number of COVID-19 cases.

The scientific literature dealing with the electoral consequences of a pandemic is scant. The main contribution of our study is therefore to fill this gap by analyzing whether and to what extent voter turnout has decreased during the COVID-19 pandemic. The COVID-19 pandemic is still ongoing at the time of writing, more than one year after its outbreak, and
there are signs that it is not going to fade away soon (Skegg et al., 2021). Understanding how electoral participation is affected is of utmost importance to prevent the eventual weakening of the democratic process, for example by designing different voting systems for the upcoming election or by making it easier to access already existing voting systems alternative to voting in person.

Our analysis is carried out on Italian municipalities holding elections in September and October 2020 and observed also in the previous electoral round of 2015. In a panel data framework, we estimate the differential effect of the mortality rate of elderly people on voter turnout after the COVID-19 outbreak, where the elderly mortality rate is a measure of the intensity of the COVID-19 outbreak. The source of variation in the elderly mortality rate induced by the COVID-19 outbreak is plausibly exogenous with respect to unobserved determinants of the voter turnout, once one has controlled for the municipality fixed effects and a set of observed time-varying covariates. We will exploit this identification assumption to infer whether and to what extent the voter turnout has been affected by the mortality rate of the elderly since the COVID-19 outbreak.

We find that a 1 percentage point increase in the mortality rate of elderly people decreased the voter turnout by 0.5 percentage points. The effect was particularly strong in densely populated municipalities: where the virus circulation was perceived as more likely due to lesser social distancing and the greater mobility of individuals, electoral participation may have been discouraged more. We do not detect statistically significant heterogeneous effects between the North and the South of Italy, or across different degrees of autonomy from the central government.

In the empirical analysis, we place especial emphasis on different gender behavioural responses. This is interesting for two main reasons. On the one hand, since there is emerging evidence that COVID-19 is deadlier for infected men (Gebhard et al., 2020), eligible male voters may be less willing to go to the polls and cast their vote, so as to avoid a situation that could expose them to a higher risk of COVID-19 infection. On the other hand, men and women differ in their risk aversion, with women being more risk averse: see e.g. Borghans et al. (2009) and the literature cited therein. There is also evidence that women are more aware of COVID-19 related risks (Dryhurst et al., 2020) and have had

1. In Italy, the mean age of patients dying from COVID-19 was 81 years in March 2021, while only 1.1% of the deceased where aged under 50 (Integrated COVID-19 Surveillance Group, 2021).
2. In Italy, the share of women who died from COVID-19 infection was 43.9% while in the first wave of the pandemic (March-May 2020) it was even smaller, i.e. about 38.4% (Integrated COVID-19 Surveillance Group, 2021).
more psychological reactions to the COVID-19 outbreak than men, with higher level of stress, anxiety, and depression (Öcal et al., 2020). Since voting in-person entails a greater risk of COVID-19 infection and transmission (Cotti et al., 2021; Flanders et al., 2020), and if women are more risk averse than men, the female voter turnout may have reacted to the COVID-19 outbreak more markedly than the male one. We empirically assess whether these gender related forces have been at work. Empirical analysis shows a significant reduction in both female and male voter turnout during the COVID-19 pandemic. The effect is slightly larger in magnitude for men, although a formal test rejects the hypothesis of gender difference in the behavioural response.

This paper is organised as follows. Section 2 introduces the emerging literature on the consequences of the COVID-19 pandemic on policy outcomes. Section 3 describes the data and the method used in our empirical investigation. Section 4 presents the main findings and a battery of checks to assess the robustness of our results. Section 5 concludes.

2 The effects of COVID-19 on political attitudes

The COVID-19 pandemic has had significant repercussions on the lifestyles of individuals, their trust in institutions, voting intentions, and electoral participation. In dramatic events such as wars, terrorist attacks, or natural disasters, citizens usually “rally around the flag” by increasing their support for the national government (Hetherington and Nelson, 2003; Dinesen and Jæger, 2013; Esaiasson et al., 2020). Emergency situations create an enormous sense of insecurity in citizens, who therefore expect the national government to find solutions, and support it through greater consensus on the national policies adopted. The occurrence of a pandemic event is one of these extraordinary circumstances in which citizens trust the national government to take effective action to eradicate the pandemic and rapidly restore normal life.

Recent empirical evidence suggests that the COVID-19 outbreak has had mixed effects on trust in institutions.3 On conducting a large web survey experiment in Italy, Spain, Germany, and the Netherlands, Daniele et al. (2020) find a drop in both interpersonal and institutional trust during the first wave of the COVID-19 pandemic; a drop especially due to economic insecurity and health concerns. They also report a rising demand for competent leadership. Brück et al. (2020) analyze the effects of the COVID-19

3See Devine et al. (2020) for an early review of the literature.
pandemic on institutional and interpersonal trust by using data collected through online surveys covering several countries. They show that the unemployed have lost more trust in institutions and people than persons who are employed. Greater support for the national government during the COVID-19 outbreak has been documented by Esaiasson et al. (2020) on a large sample of adult Swedes. Baekgaard et al. (2020) have found a significant increase in trust in the Prime Minister’s administration among the Danish unemployed after the announcement of the lockdown. Increased trust has also been found in other institutions not directly involved in the management of the COVID-19 crisis, such as the legal system and the public sector (Baekgaard et al., 2020). Drawing on a representative Dutch household survey conducted in March 2020, Schraff (2020) finds that it is not the lockdown measures per se that have increased political trust; rather, the intensity of the pandemic has caused people to rally around the government due to the anxiety induced by the virus infection. Significant cross-partisan support for both Canadian political elites and the mass public on COVID-19 related measures has been observed by Merkley et al. (2020). Bordandini et al. (2020) report an increase in the support of political institutions and in the Prime Minister in Italy during the first pandemic wave, in which the central government adopted measures intended to persuade people to “stay at home” and to limit economic activities. Bordandini et al. (2020) also find that, during the pandemic, Italian citizens have trusted the central government more when they are politically aligned with it. On using a sample of respondents to an online survey conducted in 15 Western European countries in March-April 2020, Bol et al. (2020) have found changes in vote intentions and a rallying effect due to the COVID-19 pandemic. In particular, they show that lockdown policies have increased the intentions to vote for the party of the Prime Minister/President, trust in the government, and satisfaction with democracy. Such measures did not affect the political orientation of the respondents. Leininger and Shaub (2020) show that the incumbent party and its candidates benefited in terms of higher vote share from the pandemic crisis in local elections in the state of Bavaria in Germany.

The COVID-19 pandemic has not only changed citizens’ support for the government, it has also altered their electoral participation. Many people may fear to being infected if they go to the polling station, with a consequent increase in voting abstention. Moreover, voting abstention may be higher in areas where the COVID-19 outbreak has had a more severe impact, because people perceive a greater risk to their health (Santana et al., 2020). The French national government decided to maintain the first-round of municipal elections in March 2020 and to postpone the second-round in June. This political deci-
sion raised debate on the risk of exercising the right to vote during a pandemic, despite the adopted measures of social distancing, individual sanitation, and personal protection. The level of voting abstention was very high (55.4%) compared to previous municipal elections (36.5%) (Bertoli et al., 2020), suggesting that the COVID-19 pandemic may have exerted a strong influence on electoral participation. By contrast, in some countries like Switzerland and South Korea, thanks to the postal voting system, electoral participation has increased significantly during the COVID-19 pandemic, reaching a record of voter turnout. The USA has regularly held presidential elections, in which large use has been made of postal voting.

Recent studies show a significant increase in COVID-19 cases and mortality rates a few weeks after elections. Flanders et al. (2020) have found an increased risk of COVID-19 transmission 1-2 weeks after elections in those counties of Michigan where the voter turnout was particularly high during primary elections held on March 10, 2020. Bertoli et al. (2020) show that in French municipalities, higher voter turnouts in the first-round of municipal elections held on March 15, 2020, were associated with a significantly higher death counts for the elderly in the five weeks after the elections.

Both to avoid low levels of voter turnout and to curb the spread of the virus, in 2020 many countries postponed elections.4 The UK local elections scheduled in May 2020 were postponed to 2021. Spain rescheduled the regional elections in the Basque country, Catalonia, and Galicia. The electoral appointment of Italian local governments and a national referendum were rescheduled for September 2020.5

In what follows, we assess whether and to what extent after the COVID-19 outbreak the voter turnout has been affected by the elderly mortality rate differently from what happened in the previous electoral round in 2015. We therefore test the hypothesis that, since the onset of the COVID-19 pandemic, electoral participation has been lower in areas where there was a higher mortality rate related to the pandemic event. Individuals who perceive a higher probability of contracting COVID-19 at the polls, and who associate a higher risk of dying with the disease, should be less likely to vote.

5Only in Sicily and in Sardinia were the elections rescheduled for October 2020.
3 Method

3.1 Data and sample

We used datasets at municipality level from different sources. First, we gathered from the Ministry of Interior data by gender on individuals eligible to vote and voters who actually cast a ballot in the 2020 municipality elections. In 2020, 1,170 Italian municipalities held elections. Apart from the municipalities in Sardegna and Sicilia, which voted respectively on 25-26 and 4-5 October, in the rest of the country the municipal elections took place on 20-21 September. Since in Italy the municipal governments are elected every 5 years, we also collected 2015 voting information, i.e. information on voting in the previous electoral round. In some cases, the local government is terminated earlier or lasts longer for political or juridical reasons. We retained in our sample those 933 municipalities with no missing information for electoral variables, which had elections in 2015 and 2020, and whose government remained in office for the entire 5-year electoral term. We then further removed 215 municipalities not reporting electoral data disaggregated by gender. Finally, we dropped 16 municipalities because their local government had been dismissed and elections had been prematurely held in 2015. Generally, this happens when there is evidence of mafia infiltration in the local government. When this is the case, the voter turnout may react significantly, introducing noise into the sample.

In a subsequent step, we matched the remaining sample of 709 municipalities with a series of characteristics at municipal level gathered from the National Institute of Statistics (ISTAT): population by age (January 1st of 2015 and 2020), population density, fraction of immigrants (December 31st 2014 and 2019), and taxable income per capita (2013 and 2018). In the process of matching the electoral data with municipal characteristics, we further lost 7 municipalities because of missing values in one of the covariates. The final sample was a balanced panel made up of 1,404 observations of 702 municipalities as regards both 2015 and 2020.

Figure 1 displays the geographical location of these municipalities. It shows that in our sample we did not have municipalities located in Sicilia and Friuli-Venezia-Giulia. This is because we did not have gender disaggregated electoral data for the municipalities

6At the time of writing, the 2019 taxable income is not yet available. As soon as it is published, we will use the 2014 and 2019 taxable income per capita as covariates for the 2015 and 2020 voter turnouts, respectively. Meanwhile, we approximate the economic situation as a determinant of voter turnout by using the lag of order 2 of taxable income per capita.
in these two regions which voted in 2020 and 2015. Figure 1 also shows that many observations are from Sardegna, Valle d’Aosta, and Trentino-Alto Adige. These are 3 of the 5 regions subject to a “special regime” in their relationships with the central government. Table 1 reports the relative and absolute frequency of the observed municipalities by region. The municipalities of Sardegna, Valle d’Aosta, and Trentino-Alto Adige are largely over-represented: they amount to 41% of the municipalities in our sample, whereas they correspond to 11% nationwide. The population covered by the municipalities in our final sample amounts to 4.1 million persons in 2020, which is about 6.8% of the Italian population in the same year.

Figure 1: Municipalities in the final sample

Notes: The municipalities in the final sample are in black. We report in parenthesis the number of municipalities in each category.

The other two regions with a “special regime” are Friuli-Venezia-Giulia and Sicilia.
We measured the intensity with which the COVID-19 outbreak affected the various areas by looking at the death statistics for the elderly people. More precisely, we used the 2015–2020 data on mortality and causes of death that ISTAT has produced in response to the COVID-19 pandemic outbreak.\(^8\) For both 2015 and 2020 and for each municipality, we computed the ratio between the number of people aged 70 or older who died from January until July and the population aged 70 or older on the 1st of January. In what follows, we will refer to this ratio as ‘the elderly mortality rate’ or ‘the 70+ mortality rate’. We focus on the elderly because there is firm evidence that COVID-19 is associated with a sharp increase in the death rate among people aged over 70 (see, e.g., Bophal and Bophal, 2020; Michelozzi et al., 2020; Omori et al., 2020). Hence, the 70+ mortality rate should better reflect the local intensity of the COVID-19 outbreak and be a better measure of people’s perception of the risks associated with the COVID-19 transmission than the same measure diluted over the whole population.

Table 2 reports summary statistics by election year of the elderly mortality rate and of the voter turnout across municipalities. It also reports summary statistics on the excess mortality of the elderly, as we will use this further variable to measure the intensity of the COVID-19 outbreak in a sensitivity analysis. The excess mortality rate is computed as the difference between the deaths of people aged 70 or more in January–July 2020 and the 2015–2019 average deaths in the same months per thousand inhabitants aged 70 or more. Despite the COVID-19 pandemic, the fraction of people aged 70 or more who died in the first seven months of the year was rather stable: 36.5‰ in 2015 and 35.6‰ in 2020. If

\(^8\)Data are available at www.istat.it/it/archivio/240401 (last accessed on 23 March 2021).
we focus on the 70+ excess mortality rate, we detect an increase of about 1.6 deaths per thousand inhabitants aged 70 or more.

The voter turnout, defined as the ratio between the voters who cast a ballot and individuals eligible to vote, decreased by about 0.9 percentage points (pp). Similar variations are observed when considering the voter turnout by gender. These figures can tell us little (or nothing) about the causal impact of the COVID-19 pandemic on electoral participation. Indeed, there are multiple explanations for the decrease over time in voter turnout, which may be simply due to a common time trend in electoral participation, for example population ageing, because voter turnout is low among the elderly (Revelli, 2017).

Better insight into the possible impact of the COVID-19 pandemic on electoral participation can be gained by comparing the variation in the voter turnout of municipalities with little change in the elderly mortality rate, with the variation in the voter turnout of municipalities where the mortality rate of the elderly displayed a significant increase. We split the sample into two by separating municipalities with a growth rate of the 70+ mortality rate below the 75th percentile, which played the role of the treated municipalities, from those with a growth rate of the 70+ mortality rate above the 75th percentile, which acted as controls.9 Table 3 shows that the voter turnout decreased in both slightly and highly affected municipalities. However, the decrease was significant only in the latter. By taking the difference between the time differences of the two groups, we obtained a

9The 75th percentile of the growth rate in the elderly mortality rate is 26.6%, i.e. 25% of the municipalities in our sample experienced an increase in the elderly mortality rate larger than 26.6%.
difference-in-differences (DiD) estimate of the impact on voter turnout, which is cleansed of the common time trend in voter turnout and from spurious components induced by time-constant determinants of both mortality and electoral participation rates. We find that experiencing a large increase in the mortality rate of the eldest reduced the voter turnout by about 2 pp. Female and male voter turnouts were equally affected.

Table 3: Difference-in-differences between municipalities highly (“treated”) and slightly (“controls”) affected by COVID-19(a)

<table>
<thead>
<tr>
<th>Dependent variable: voter turnout</th>
<th>Total</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>High COVID-19 intensity (“treated”)(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>67.331</td>
<td>66.804</td>
<td>67.872</td>
</tr>
<tr>
<td>2020</td>
<td>64.963</td>
<td>64.554</td>
<td>64.377</td>
</tr>
<tr>
<td>Difference 2020-2015</td>
<td>-2.367***</td>
<td>0.610</td>
<td>-2.250***</td>
</tr>
<tr>
<td>Low COVID-19 intensity (“controls”)(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>66.001</td>
<td>65.387</td>
<td>66.642</td>
</tr>
<tr>
<td>2020</td>
<td>65.600</td>
<td>65.118</td>
<td>65.103</td>
</tr>
<tr>
<td>Difference 2020-2015</td>
<td>-0.401</td>
<td>0.325</td>
<td>-0.269</td>
</tr>
<tr>
<td>Difference-in-differences</td>
<td>-1.966***</td>
<td>0.691</td>
<td>-1.981***</td>
</tr>
</tbody>
</table>

(a) We denote as municipalities highly (slightly) affected by COVID-19 as those municipalities which are above (below) the 75th percentile of the 2020-2015 relative variation in the elderly mortality rate. The 75th percentile of the relative variation in the elderly mortality rate is 26.6%. The number of treated (control) municipalities is 175 (527).

(b) Standard errors are estimated by linear regressions and are robust to heteroskedasticity and within-municipality correlation.

In the econometric analysis that described in what follows, we refined this identification strategy in two ways. First, we controlled not only for time-invariant heterogeneity but also for a set of possible time-varying determinants of both the outcome variable and the elderly mortality rate. Table 4 reports descriptive statistics of the time-varying covariates that we used as controls in the specification of the voter turnout equation. Second, we avoided the arbitrary separation of the sample into treated and control units used to build Table 3 and exploited instead the continuum of treatment intensity represented by the within-municipality variation in the 70+ mortality rate. The source of variation in the mortality rate of the elderly induced by the COVID-19 outbreak is plausibly exogenous with respect to unobserved determinants of the voter turnout, once one controls for the municipality fixed effects and a set of observed time-varying covariates. We exploited this identification assumption to infer whether and to what extent the voter turnout is affected by the elderly mortality rate since the COVID-19 outbreak.
3.2 Empirical strategy

We were interested in understanding whether and to what extent the intensity of the COVID-19 outbreak has impacted on electoral participation. The baseline variable that we used to measure this intensity was the elderly mortality rate, which we denote, for municipality \(i \) at time \(t \), as \(mr_{it} \), with \(i = 1, \ldots, 702 \) and \(t = 2015, 2020 \). In our preferred and most flexible specification, we modelled the voter turnout \(y_{it} \), for \(i = 1, \ldots, 702 \) and \(t = 2015, 2020 \), as

\[
y_{it} = \beta mr_{it} + \delta mr_{it} \times d_{2020} + \eta d_{2020} + \gamma' x_{it} + \phi_i + u_{it},
\]

where \(d_{2020} \) is a 2020 dummy, \(\phi_i \) is the municipality fixed-effect, and \(u_{it} \) is an idiosyncratic error term. \(\beta \) is the impact of the 70+ mortality rate on the voter turnout in both the pre- and the post-COVID-19 elections. \(\delta \) is the coefficient of interest, and it corresponds to the interaction term between the 2020 dummy and the 70+ mortality rate: it is the differential effect, with respect to \(\beta \), of the elderly mortality rate since the COVID-19 outbreak. It therefore captures an eventual change in the way in which the 70+ mortality rate affects the voter turnout. If \(\beta = 0 \) or if \(mr_{2015} = 0 \), \forall i \), Equation (1) would turn into
a typical DiD specification with two-way fixed effects and a continuous treatment.

The term x_{it} is a $K \times 1$ vector of covariates to control for time-varying heterogeneity. In particular, since the demographic structure of the population may play a crucial role in determining both the elderly mortality rate and electoral participation, we controlled for a large set of demographic features: the population size for different age ranges, the ratio between youths (aged 0-14) and persons older than 64, and the population density. Moreover, we also controlled for the natural logarithm of the lag of order two of the taxable income per capita (the lag of order one is not yet available from ISTAT at the time of writing), the fraction of immigrants, the month of the elections, and whether a second round of elections took place because no coalition reached the absolute majority in the first one. γ_t is the conformable vector of coefficients of the covariates. It can vary over time, so as to represent heterogeneity in outcome dynamics (Abadie, 2005). We will also present results when the impact of covariates was constrained to being time-constant.

We estimated Equation (1) by OLS after time demeaning the dataset (fixed effects estimator). We conducted inference by using the cluster robust variance estimator (CRVE) (Liang and Zeger, 1986), which is robust to heteroskedasticity and within-municipality correlation. Since in Italy the health system is organized at regional level and there are some peculiarities in terms of election organization in regions subject to the “special regime”, electoral and health related data can be clustered at regional level. Hence, to assess the reliability of our hypothesis testing, we also conducted inference robust to within-regional correlation. More in detail, since the number of regional clusters is small (18 regions in our sample) and the usual cluster-robust standard errors might be downwards biased, we computed the wild cluster bootstrap (WCB) p-values obtained from the wild cluster bootstrap-t procedure proposed by Cameron et al. (2008) with restricted residuals.

Revelli (2017) found that the demographic structure of Italian municipalities is significant in determining the voter turnout.

In Italy, if no coalition achieves an absolute majority in the first round and the municipality has more than 15,000 inhabitants, a second round takes place in two weeks. Barone and de Blasio (2013) showed that the dual ballot increases electoral participation. For municipalities that went through two rounds, we compute the voter turnout as the average voter turnout across the two electoral stages.

As we have two time periods, estimating by OLS after first differencing Equation (1) would deliver identical results and inferences.

In the WCB procedure with restricted residuals, the model is re-estimated under the null hypothesis of no covariate effect. We use the Stata module bootest (Roodman, 2015; Roodman et al., 2019). We bootstrapped the residuals 5,000 times using the Webb six-point distribution as weights (Webb, 2014).
4 Estimation results

4.1 Main findings

Table 5 reports the estimation results of the effect of the elderly mortality rate on voter turnout after the COVID-19 outbreak. It is divided into three panels. Whilst in panel a) the dependent variable is the voter turnout of the entire population, in panel b) and c) we focus instead on the female and male voter turnout, respectively. For each of these three dependent variables, we present the estimation results of three models. Model (1) is the most general specification, as discussed when commenting on Equation (1) in the previous section. In Model (2), we impose that the effect of the 70+ mortality rate is nil before the COVID-19 outbreak. This assumption is suggested by the very small point estimates and by the absence of significance of the coefficient \(\hat{\beta} \) of the 70+ mortality rate. Model (3) departs from Model (1) as we impose that the effect of the time-varying covariates \(\mathbf{x} \) is constant over time.\(^{14}\)

The estimated effect of the elderly mortality rate after the COVID-19 outbreak is very stable and similar across the 3 different specifications and between genders. Considering that, as is the usual practice, we are measuring the mortality rate in permillage points, we find that after the COVID-19 outbreak a 1 percentage point increase in the mortality rate significantly decreased the voter turnout by about 0.5 percentage points. If we compare this effect to the average voter turnout in 2015 (66.3%) to have a quantification of the relative impact (i.e. a semi-elasticity), our point estimates mean that a 1 percentage increase in the mortality rate in 2020 implied a 0.75% decrease in the voter turnout. The effect is slightly larger in size for men, although a formal test for the null hypothesis of no gender difference suggests that we cannot reject it.\(^{15}\) Finally, inference robust to within-municipality correlation (by the CRVE) and inference robust to within-region correlation (by the WCB) deliver very significance levels of the estimated parameters of interest. In what follows, for the sake of conciseness, we will only report standard errors robust to heteroskedasticity and within-municipality correlation.

\(^{14}\)Whereas in Model (1) and Model (2) we include the interactions between the time-varying covariates and the 2020 dummy, in Model (3) we do not.

\(^{15}\)After the estimation of Model (1), an equality test robust to heteroskedasticity and within-municipality correlation returned a \(p \)-value of 0.490.
Table 5: The impact of elderly mortality rate (‰) on voter turnout (%)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff.</td>
<td>p-values(^{(a)})</td>
<td>Coeff.</td>
</tr>
<tr>
<td>(70+) mortality rate (\times d_{2020}) ((\hat{\delta}))</td>
<td>-0.046(^{**})</td>
<td>0.037</td>
<td>-0.053(^{***})</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td></td>
<td>(0.019)</td>
</tr>
<tr>
<td>(70+) mortality rate ((\hat{\beta}))</td>
<td>-0.008</td>
<td>0.404</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipality fixed-effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time fixed effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(\gamma_t) varies over time</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

a) Dependent variable: Voter turnout

- \(70+\) mortality rate \(\times d_{2020}\) (\(\hat{\delta}\))
- \(70+\) mortality rate (\(\hat{\beta}\))
- Municipality fixed-effects: Yes
- Time fixed effect: Yes
- \(\gamma_t\) varies over time: Yes

b) Dependent variable: Female voter turnout

- \(70+\) mortality rate \(\times d_{2020}\) (\(\hat{\delta}\))
- \(70+\) mortality rate (\(\hat{\beta}\))
- Municipality fixed-effects: Yes
- Time fixed effect: Yes
- \(\gamma_t\) varies over time: Yes

c) Dependent variable: Male voter turnout

- \(70+\) mortality rate \(\times d_{2020}\) (\(\hat{\delta}\))
- \(70+\) mortality rate (\(\hat{\beta}\))
- Municipality fixed-effects: Yes
- Time fixed effect: Yes
- \(\gamma_t\) varies over time: Yes

Notes: In parenthesis we report CRVE standard errors, robust to heteroskedasticity and within municipality correlation. \(^{***}\), \(^{**}\), and \(^{*}\) indicate significance at 1\%, 5\%, and 10\%, respectively, according to the CRVE standard errors. The number of observations (municipalities) is 1,404 (702). All the regressions include as covariates all the time-varying regressors reported in Table 4, and apart from model (3), the interactions between these time-varying covariates and the 2020 dummy. \(^{(a)}\) WCB indicates that the p-values come from the wild cluster bootstrap-\(t\) statistics with clusters at regional level to make inference robust to within-region correlation of the observations.
4.2 Heterogeneity analysis

Being a highly contagious pathogenic viral infection (Yazdanpanah et al., 2020), COVID-19 could be and could be perceived as able to spread more rapidly in areas with high population density.\(^{16}\) Engle et al. (2020) showed, in fact, that people living in more densely populated areas are more responsive to disease prevalence and mobility restriction orders. This suggests that eligible voters living in more densely populated areas could be more responsive in terms of electoral turnout to the COVID-19 outbreak. We therefore assessed if the impact of the 70+ mortality rate is heterogeneous across municipalities with different population densities.

We split the sample between municipalities with a 2020 population density above the median and below the median. Then, we re-estimated Equation (1) for each subsample. Table 6 reports the estimation result of the differential effect of the 2020 mortality rate on the voter turnout for the most densely populated municipalities (Model (1)) and the least densely populated municipalities (Model (2)).

The results in Table 6 clearly suggest that the voting behaviour changed only in the most densely populated municipalities: an increase of 1 percentage point in the elderly mortality rate induced a 1.2 percentage points decrease in the voter turnout.\(^{17}\) In relative terms with respect to the voter turnout in the pre-COVID-19 election, this impact corresponds to a 1.8% decrease in the outcome variable. We detect no gender differences.

Italian regions have different levels of autonomy from the central government. In fact, the Italian constitution defines two levels of autonomy: there are five regions with special regime (Friuli-Venezia Giulia, Sardegna, Sicilia, Trentino-Alto Adige, and Valle d’Aosta) and all the remaining 15 are under the ordinary regime. The special regime regions have more autonomy, which is the result of bilateral negotiations with the central authority. The main reasons for this constitutional asymmetry in favour of the special regime regions are the presence of significant ethnocultural minorities, a special political system, and a historical tradition of self-government and administrative capacity (Palermo and Valdesalici, 2019). Thus, one may wonder whether, given these differences, the responsiveness of electoral participation to an external shock, like the COVID-19 outbreak, could be more rigid if voting is a way to affirm the autonomy of the cultural minorities.

\(^{16}\)See Coşkun et al. (2021) for evidence on the relevance of population density to explaining the spread of COVID-19 in Turkey.

\(^{17}\)A formal test for the equality of the effect in the high and low densely populated municipalities returns a p-value equal to 0.079.
Table 6: The impact of the elderly mortality rate (‰) on voter turnout (%) by population density

<table>
<thead>
<tr>
<th></th>
<th>(1) Coeff.</th>
<th>Std. Err.(b)</th>
<th>(2) Coeff.</th>
<th>Std. Err.(b)</th>
<th>(3) p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Dependent variable: Voter turnout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate $\times d_{2020}$ (β)</td>
<td>-0.117***</td>
<td>0.043</td>
<td>-0.028</td>
<td>0.026</td>
<td>0.079*</td>
</tr>
<tr>
<td>70+ mortality rate (β)</td>
<td>0.054</td>
<td>0.040</td>
<td>-0.022</td>
<td>0.023</td>
<td>0.099*</td>
</tr>
<tr>
<td>b) Dependent variable: Female voter turnout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate $\times d_{2020}$ (β)</td>
<td>-0.120**</td>
<td>0.047</td>
<td>-0.021</td>
<td>0.027</td>
<td>0.063*</td>
</tr>
<tr>
<td>70+ mortality rate (β)</td>
<td>0.062</td>
<td>0.044</td>
<td>-0.029</td>
<td>0.024</td>
<td>0.072*</td>
</tr>
<tr>
<td>c) Dependent variable: Male voter turnout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate $\times d_{2020}$ (β)</td>
<td>-0.114***</td>
<td>0.041</td>
<td>-0.035</td>
<td>0.028</td>
<td>0.113</td>
</tr>
<tr>
<td>70+ mortality rate (β)</td>
<td>0.046</td>
<td>0.037</td>
<td>-0.015</td>
<td>0.023</td>
<td>0.159</td>
</tr>
</tbody>
</table>

Observations (municipalities) 702 (351) 702 (351)

Notes: ***, **, and * indicate significance at 1%, 5%, and 10%, respectively. All the regressions include municipality fixed effects, a 2020 dummy, all the time-varying regressors reported in Table 4, and the interactions between these time-varying covariates and the 2020 dummy.

(a) High (low) population density means that the municipality has a population density in 2020 higher (lower) than the median. The 2020 median population density in our sample is 59.9 inhabitants per square kilometre.

(b) CRVE standard errors, robust to heteroskedasticity and within municipality correlation.

We divided the sample into municipalities in special regime regions and those in regions with ordinary autonomy and re-estimated the baseline model. The results are reported in Table 7. It can be seen that the effect we found at national level is mainly driven by municipalities in ordinary stature regions. However, this finding should be interpreted with caution and it would highly speculative to explain it on the basis of different cultural, social, and political features of the special regime regions. The municipalities analysed are indeed different from regional groups in other characteristics. For example, in our sample the municipalities in special regime regions have a much smaller population density (in 2020 it was 69 per km2 against 413 per km2 of the municipalities in ordinary regime regions. Hence, it is not easy to determine whether the different effect is induced by different population densities or by different cultural, social, and political features.

To shed more light on this issue, we further split the municipalities according to the regional regime and the level of population density (low or high population density, as defined in the previous subsection), thus obtaining 4 subsamples. Table 8 reports the findings. While for municipalities in ordinary regime regions the point estimates of the effect of the 70+ mortality rate after the COVID-19 outbreak do not depend on the population density, in special regime regions the effect is particularly strong in very densely popu-
Table 7: The impact of the elderly mortality rate (‰) on voter turnout (％) by level of autonomy from the central government

<table>
<thead>
<tr>
<th></th>
<th>(1) Special regime(^{(a)})</th>
<th>(2) Ordinary regime(^{(b)})</th>
<th>(3) Difference (2)-(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff. Std. Err.(^{(c)})</td>
<td>Coeff. Std. Err.(^{(c)})</td>
<td>p-value</td>
</tr>
<tr>
<td>a) Dependent variable: Voter turnout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate × d(_{2020}) ((\hat{\delta}))</td>
<td>-0.030 0.040</td>
<td>-0.059** 0.025</td>
<td>0.544</td>
</tr>
<tr>
<td>70+ mortality rate ((\hat{\beta}))</td>
<td>-0.020 0.032</td>
<td>-0.002 0.028</td>
<td>0.678</td>
</tr>
<tr>
<td>b) Dependent variable: Female voter turnout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate × d(_{2020}) ((\hat{\delta}))</td>
<td>-0.026 0.040</td>
<td>-0.054* 0.028</td>
<td>0.566</td>
</tr>
<tr>
<td>70+ mortality rate ((\hat{\beta}))</td>
<td>-0.020 0.033</td>
<td>-0.009 0.032</td>
<td>0.816</td>
</tr>
<tr>
<td>c) Dependent variable: Male voter turnout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate × d(_{2020}) ((\hat{\delta}))</td>
<td>-0.035 0.043</td>
<td>-0.063** 0.024</td>
<td>0.563</td>
</tr>
<tr>
<td>70+ mortality rate ((\hat{\beta}))</td>
<td>-0.020 0.033</td>
<td>0.004 0.026</td>
<td>0.569</td>
</tr>
</tbody>
</table>

Observations (municipalities) 572 (286) 832 (416) 0.569

Notes: ***, **, and * indicate significance at 1%, 5%, and 10%, respectively. All the regressions include municipality fixed effects, a 2020 dummy, all the time-varying regressors reported in Table 4, and the interactions between these time-varying covariates and the 2020 dummy.

\(^{(a)}\) There are 3 special regime regions in our sample. They are Sardegna, Trentino-Alto Adige, and Valle d’Aosta.

\(^{(b)}\) There are 15 ordinary regime regions in our sample. They are Abruzzo, Basilicata, Calabria, Campania, Emilia-Romagna, Lazio, Liguria, Lombardia, Marche, Molise, Piemonte, Puglia, Toscana, Umbria, and Veneto.

\(^{(c)}\) CRVE standard errors, robust to heteroskedasticity and within municipality correlation.
lated municipalities and nil in not densely populated ones. Hence, if population density matters in explaining our findings, it seems to matter only in the smallest municipalities of Sardegna, Trentino-Alto Adige, and Valle d’Aosta, where the mortality rate continued to have a nil effect on electoral participation despite the COVID-19 pandemic.

Another dimension along which the effect may be heterogeneous is geographical location. Italy is affected by marked North-South differences in socio-economic measures, social norms, and the ability to cooperate, so that the Southern regions are typically characterized by less trust in institutions (Banfield, 1958; Guiso et al., 2004; Bigoni et al., 2016, 2018). Thus, if voting is made riskier by the pandemic, a stronger impact should be detected where the trust in institutions is lower.

We split the sample into municipalities located in the South and in the Center-North and separately re-estimated Equation (1) for the two areas. We set out the findings in Table 9. The negative effect of the 70+ mortality rate on voter turnout is larger in the South. However, the points estimates are not so evidently different and, formally, we cannot reject the null hypothesis of equality of the effect in the South and in the Center-North (p-value equal to 0.666). Hence, we conclude that, although in the South the effect of the 70+ mortality rate is estimated to be larger in absolute value, from the statistical point of view we do not have evidence for North-South differences in the way in which the intensity of the COVID-19 outbreak has affected electoral participation.

4.3 Validity and sensitivity analysis

In this section, we initially report two placebo tests conducted to validate our identification strategy. First, we selected all the municipalities in our sample that held municipal elections also in 2010 (601 municipalities out of the original 702). We lost a further 2 municipalities because they did not exist in the past and were the result of the merger of pre-existing municipalities. For these 599 municipalities, we computed the elderly mortality rate in 2010 and 2015. Since for 2010 we did not have data disaggregated at municipal level on deaths per each day of the year, but only the total number of deaths in that year, we conducted this falsification test using the 70+ mortality rate computed over the whole year, instead of looking at the January-July period. We pretended that 2015 was the year of the COVID-19 outbreak and estimated Equation (1) using 2010 and 2015

\footnote{The Southern regions are Abruzzo, Basilicata, Calabria, Campania, Molise, Puglia, Sardegna, and Sicilia.}
Table 8: The impact of the elderly mortality rate (‰) on voter turnout (%) by population density and regional regime

<table>
<thead>
<tr>
<th></th>
<th>High population density (a)</th>
<th>Low population density (a)</th>
<th>Difference (2)−(1)</th>
<th>High population density (a)</th>
<th>Low population density (a)</th>
<th>Difference (4)−(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Coeff.</td>
<td>0.064</td>
<td>0.066</td>
<td>0.011</td>
<td>0.044</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>(2) Std. Err.</td>
<td>0.066</td>
<td>0.011</td>
<td>0.044</td>
<td>0.015</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>(3) p-value</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>(4) Difference</td>
<td>0.060</td>
<td>0.046</td>
<td>0.071</td>
<td>0.051</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td>(5) p-value</td>
<td>0.039</td>
<td>0.035</td>
<td>0.936</td>
<td>0.044</td>
<td>0.919</td>
<td></td>
</tr>
<tr>
<td>(6) Observations</td>
<td>168 (84)</td>
<td>404 (202)</td>
<td>534 (267)</td>
<td>298 (149)</td>
<td>0.817</td>
<td></td>
</tr>
</tbody>
</table>

Notes: ***, **, and * indicate significance at 1%, 5%, and 10%, respectively. All the regressions include municipality fixed effects, a 2020 dummy, all the time-varying regressors reported in Table 4, and the interactions between these time-varying covariates and the 2020 dummy.

(a) High (low) population density means that the municipality has a population density in 2020 higher (lower) than the median. The 2020 median population density in our sample is 59.9 inhabitants per square kilometre.

(b) There are 3 special regime regions in our sample. They are Sardegna, Trentino-Alto Adige, and Valle d’Aosta.

(c) There are 15 ordinary regime regions in our sample. They are Abruzzo, Basilicata, Calabria, Campania, Emilia-Romagna, Lazio, Liguria, Lombardia, Marche, Molise, Piemonte, Puglia, Toscana, Umbria, and Veneto.

(d) CRVE standard errors, robust to heteroskedasticity and within municipality correlation.
Table 9: The impact of elderly mortality rate (‰) on voter turnout (%) by geographical location

<table>
<thead>
<tr>
<th></th>
<th>(1) South(a)</th>
<th></th>
<th>(2) Center-North(b)</th>
<th></th>
<th>(3) Difference (2)−(1)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff.</td>
<td>Std. Err.(c)</td>
<td>Coeff.</td>
<td>Std. Err.(c)</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td>a) Dependent variable: Voter turnout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate $\times d_{2020}$ ($\hat{\delta}$)</td>
<td>-0.061*</td>
<td>0.037</td>
<td>-0.040</td>
<td>0.030</td>
<td>0.666</td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate ($\hat{\beta}$)</td>
<td>-0.010</td>
<td>0.026</td>
<td>-0.009</td>
<td>0.027</td>
<td>0.986</td>
<td></td>
</tr>
<tr>
<td>b) Dependent variable: Female voter turnout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate $\times d_{2020}$ ($\hat{\delta}$)</td>
<td>-0.052</td>
<td>0.040</td>
<td>-0.037</td>
<td>0.030</td>
<td>0.758</td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate ($\hat{\beta}$)</td>
<td>-0.011</td>
<td>0.028</td>
<td>-0.017</td>
<td>0.029</td>
<td>0.893</td>
<td></td>
</tr>
<tr>
<td>c) Dependent variable: Male voter turnout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate $\times d_{2020}$ ($\hat{\delta}$)</td>
<td>-0.071*</td>
<td>0.037</td>
<td>-0.042</td>
<td>0.032</td>
<td>0.566</td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate ($\hat{\beta}$)</td>
<td>-0.007</td>
<td>0.026</td>
<td>-0.004</td>
<td>0.027</td>
<td>0.916</td>
<td></td>
</tr>
<tr>
<td>Observations (municipalities)</td>
<td>726 (363)</td>
<td></td>
<td>678 (339)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: ***, **, and * indicate significance at 1%, 5%, and 10%, respectively. All the regressions include municipality fixed effects, a 2020 dummy, all the time-varying regressors reported in Table 4, and the interactions between these time-varying covariates and the 2020 dummy.

(a) The Southern regions in our sample are Abruzzo, Basilicata, Calabria, Campania, Molise, Puglia, and Sardegna.

(b) The regions in Center-North in our sample are Emilia-Romagna, Lazio, Liguria, Lombardia, Marche, Piemonte, Toscana, Trentino-Alto Adige, Umbria, Valle d’Aosta, and Veneto.

(c) CRVE standard errors, robust to heteroskedasticity and within municipality correlation.
data. Hence, in Equation (1) the 2020 dummy \((d_{2020})\) is replaced by the 2015 dummy. Panel a) of Table 10 reports the estimated effects. We find that the interactions between the mortality rate and the 2015 dummy are not significantly different from zero and have opposite sign with respect to our baseline findings. Second, we re-estimated the baseline model on the original 2015 and 2020 sample, the only difference being that we used the mortality rate of people aged between 0 and 49 years. Unless spurious biases are induced by time-varying heterogeneity, we did not expect to find any significant effect, because the first wave of the COVID-19 pandemic severely hit only elderly people (Bophal and Bophal, 2020; Michelozzi et al., 2020; Omori et al., 2020). Panel b) of Table 10 shows that the 0-49 mortality rate plays no role in explaining the voter turnout. Although these two validation analyses are not proof of the validity of our identification strategy, they are firm evidence in its favour.

Table 10: Placebo tests

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1) Voter turnout</th>
<th>(2) Female voter turnout</th>
<th>(3) Male voter turnout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff.</td>
<td>p-value(^{(a)})</td>
<td>Coeff.</td>
</tr>
<tr>
<td>(70^+) mortality rate (\times d_{2015}) ((\hat{\delta}))</td>
<td>0.017 (0.028)</td>
<td>0.646 0.024 (0.028)</td>
<td>0.627 0.012 (0.029)</td>
</tr>
<tr>
<td>(70^+) mortality rate ((\hat{\beta}))</td>
<td>0.021 (0.022)</td>
<td>0.289 0.010 (0.023)</td>
<td>0.691 0.032 (0.023)</td>
</tr>
<tr>
<td>(0^-49) mortality rate (\times d_{2015}) ((\hat{\delta}))</td>
<td>-0.173 (0.577)</td>
<td>0.730 -0.164 (0.584)</td>
<td>0.752 -0.183 (0.604)</td>
</tr>
<tr>
<td>(0^-49) mortality rate ((\hat{\beta}))</td>
<td>0.078 (0.318)</td>
<td>0.599 0.252 (0.341)</td>
<td>0.261 -0.100 (0.331)</td>
</tr>
</tbody>
</table>

Notes: In parenthesis we report CRVE standard errors, robust to heteroskedasticity and within municipality correlation. ***, **, and * indicate significance at 1%, 5%, and 10%, respectively, according to the CRVE standard errors. All the regressions include the municipality fixed effects, all the time-varying regressors reported in Table 4, the 2020 dummy, and its interaction with the time-varying variables. The number of observations (municipalities) is 1,198 (599) in panel a) and 1,404 (702) in panel b).

\(^{(a)}\) WCB indicates that the p-values come from the wild cluster bootstrap-t statistics with clusters at regional level to make inference robust to within-region correlation of the observations.

Second, we conducted further robustness checks to assess the sensitivity of our findings. In a first check, we changed the dependent variable and instead used the 70+ excess mortality from January until July of 2020 with respect to the 2015–2019 average deaths in the same months. With this outcome variable, we should capture behavioural responses similar to but different from those studied by focusing on the mortality rate. When as-
sessing the impact of the mortality rate on the voter turnout, we identified the differential impact of the 70+ mortality rate in 2020 with respect to 2015. We interpreted the 2020 change in the way in which the mortality rate affects the voter turnout by positing that people respond differently to the intensity with which individuals died in 2020. When using the excess mortality, we instead investigated whether it is the variation in 2020 with respect to what happened on average in the previous years in terms of mortality which affects the electoral participation. We used the excess mortality as an outcome variable only for a sensitivity analysis because people generally cannot easily observe deviations from averages in past years. They may therefore react more to actual deaths in a period of pandemic (the mortality rate) than to how much the number of deaths is deviating from what has happened in previous years (the excess mortality rate). We denote the 70+ excess mortality rate per 1,000 inhabitants aged 70 or more as ed_{it}. Its value is set to 0 for $t = 2015$. The voter turnout equation in this case simplifies to

$$y_{it} = \delta m_r_{it} \times d_{2020} + \eta d_{2020} + \gamma \prime x_{it} + \phi_i + u_{it}. \quad (2)$$

Table 11 reports the estimation results of the effect of the excess mortality on voter turnout. We find that a 1 more excess death out of 100 inhabitants (aged 70 or older) results in a decrease by about 0.3 pp in the voter turnout, both for men and women. These estimates closely match those of the baseline model. The only deviation is that they are statistically significant at the 10% level, instead of the canonical 5% level.

Table 11: The impact of excess mortality of the elderly (‰) on voter turnout (%)

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1) Voter turnout</th>
<th>(2) Female voter turnout</th>
<th>(3) Male voter turnout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WCB WCB WCB</td>
<td></td>
<td>WCB WCB WCB</td>
</tr>
<tr>
<td></td>
<td>Coeff. p-value(a)</td>
<td>Coeff. p-value(a)</td>
<td>Coeff. p-value(a)</td>
</tr>
<tr>
<td>70+ excess deaths</td>
<td>-0.031* 0.062 (0.017)</td>
<td>-0.032* 0.060 (0.019)</td>
<td>-0.030* 0.078 (0.017)</td>
</tr>
</tbody>
</table>

Notes: In parenthesis we report CRVE standard errors, robust to heteroskedasticity and within municipality correlation. ***, **, and * indicate significance at 1%, 5%, and 10%, respectively, according to the CRVE standard errors. All the regressions include the municipality fixed effects, all the time-varying regressors reported in Table 4, the 2020 dummy, and its interaction with the time-varying variables. The number of observations (municipalities) is 1,404 (702).

(a) WCB indicates that the p-values come from the wild cluster bootstrap-t statistics with clusters at regional level to make inference robust to within-region correlation of the observations.

22
In a second sensitivity analysis we modified the time window over which we computed the 70+ mortality rate. In the baseline specification, we computed the mortality rate over the period January-July 2020. We made this choice because on July 31 2020, in Italy the average number in the past 7 days of daily deaths from COVID-19, after constantly decreasing since the beginning of April 2020, reached the minimum of 6 and then remained stable until the second half of September.\footnote{These data are available from the official repository of the Dipartimento della Protezione Civile at \url{https://github.com/pcm-dpc/COVID-19/tree/master/dati-andamento-nazionale.}} Table 12 shows the estimates of the impact of the elderly mortality rate on voter turnout when we modify the time unit and use different time windows. Model (1) of Table 12 simply reports the baseline estimation results which we have already presented in Table 5. In Models (2), (3), and (4), the mortality rate is instead computed by counting the deaths from January the 1st until August 31, September 19 (the day before elections for all municipalities apart from those in Sardegna), and September 30, respectively. Independently of the choice of the time-window to compute the mortality rate, the point estimates are very stable and in line with those of the baseline model.

Table 12: The impact of the elderly mortality rate ($\%$) on voter turnout ($\%$) when changing the time interval over which the mortality rate is computed

<table>
<thead>
<tr>
<th>From January 1 until:</th>
<th>(1) July 31 (baseline)</th>
<th>(2) August 31</th>
<th>(3) September 19 (day before elections)</th>
<th>(4) September 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff.</td>
<td>Std. Err.$^{(a)}$</td>
<td>Coeff.</td>
<td>Std. Err.$^{(a)}$</td>
</tr>
<tr>
<td>a) Dependent variable: Voter turnout</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate $\times d_{2020}$ ($\hat{\delta}$)</td>
<td>-0.046**</td>
<td>0.022</td>
<td>-0.042*</td>
<td>0.022</td>
</tr>
<tr>
<td>70+ mortality rate ($\hat{\beta}$)</td>
<td>-0.008</td>
<td>0.020</td>
<td>-0.007</td>
<td>0.018</td>
</tr>
<tr>
<td>b) Dependent variable: Female voter turnout</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate $\times d_{2020}$ ($\hat{\delta}$)</td>
<td>-0.041**</td>
<td>0.023</td>
<td>-0.041*</td>
<td>0.023</td>
</tr>
<tr>
<td>70+ mortality rate ($\hat{\beta}$)</td>
<td>-0.013</td>
<td>0.021</td>
<td>-0.012</td>
<td>0.019</td>
</tr>
<tr>
<td>c) Dependent variable: Male voter turnout</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+ mortality rate $\times d_{2020}$ ($\hat{\delta}$)</td>
<td>-0.050**</td>
<td>0.023</td>
<td>0.023</td>
<td>0.023</td>
</tr>
<tr>
<td>70+ mortality rate ($\hat{\beta}$)</td>
<td>-0.003</td>
<td>0.020</td>
<td>-0.002</td>
<td>0.018</td>
</tr>
<tr>
<td>Observations (municipalities)</td>
<td>1,404 (702)</td>
<td>1,404 (702)</td>
<td>1,404 (702)</td>
<td>1,404 (702)</td>
</tr>
</tbody>
</table>

Notes: ***, **, and * indicate significance at 1%, 5%, and 10%, respectively. All the regressions include municipality fixed effects, a 2020 dummy, all the time-varying regressors reported in Table 4, and the interactions between these time-varying covariates and the 2020 dummy.

$^{(a)}$CRVE standard errors, robust to heteroskedasticity and within municipality correlation.
5 Conclusions

We studied whether and to what extent the voter turnout of Italians during the municipal elections held in September and October 2020 was affected by the intensity of the COVID-19 outbreak, as measured by the mortality rate among the elderly. Our empirical analysis showed that an increase of 1 percentage point in the elderly mortality rate decreased the voter turnout by 0.5 percentage points. We found no statistically significant differences in the impact on the voting behaviour of men and women.

We also investigated whether the impact of the elderly mortality rate of the eldest is heterogeneous among municipalities with different levels of population density, degree of autonomy from the central government, and geographical location. A 1 percentage point increase in the elderly mortality rate decreased the voter turnout by about 1.2 percentage points in densely populated municipalities. We did not detect statistically significant heterogeneity in the effect between the North and the South of Italy or among municipalities with different levels of autonomy from the central government.

Our findings suggest that holding elections during a pandemic may discourage voters from going to the polls and thereby weaken the democratic process. Postponing elections could be a short-term strategy to reduce the risks of the virus spreading and to ensure that the turnout will be greater in future (hopefully safer) elections. Alternatively, forms of postal and/or electronic voting could be means to limit the disruption of the democratic process, because they allow people to vote safely and they can curb the decline in the voter turnout during the pandemic. However, postal and electronic voting systems could generate other problems, like electoral fraud and poor reliability and transparency. The trade-off between reliability of voting and democratic representation should be carefully taken into account when designing the electoral procedures for voting during a pandemic.
References

