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Abstract 
 
We investigate the sources, scope, and implications of landowner market power. We show how 
zoning regulations generate spillovers through increased markups and derive conditions under 
which restricting landownership concentration reduces rents. Using newbuilding-level data from 
New York City, we find that a 10% increase in ownership concentration in a Census tract is 
correlated with a 1% increase in rent. Market power is substantial: on average, markups account 
for nearly a third of rents in Manhattan. Furthermore, pecuniary spillovers between zoning 
constraints and markups at other buildings are appreciable. Up-zoning that results in 417 
additional housing units at zoning-constrained buildings reduces markups on policy-
unconstrained units and generates between 5 and 19 additional units through increased 
competition. 
JEL-Codes: R310, R380, L130. 
Keywords: monopolistic competition, market power, concentration, rent, housing demand, 
zoning. 
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1 Introduction

Property rights grant landowners exclusive use over parcels of land. Since Chamberlin
(1933), and as far back as Adam Smith, economists have considered whether this ar-
rangement endows landowners with monopoly pricing powers.1 A priori, property rights
need not generate monopoly power, and it is standard for models of real estate markets
to assume competition is perfect.2 Moreover, the empirical relevance of any potential
landowner market power and, as a result, its policy implications are poorly understood.

This paper investigates the economic impact of market power due to land rights. We
answer two questions: is this power economically meaningful, and how should this alter
our understanding of urban land use policies? Using data on multi-unit residential rental
buildings in New York City (NYC), we find that monopoly markups are on average about a
third of rental prices. We show how monopoly markups interact with zoning regulations,
and examine the possibility that restrictions on land ownership concentration can reduce
rents.

Using a model that nests two monopoly power generating mechanisms—vertical
and horizontal differentiation—we first explore the theoretical implications of monopoly
markups for urban policy. Previous work has focused almost exclusively on a justification
of rent control based on landowner monopoly power (Arnott, 1989; Arnott and Igarashi,
2000; Basu and Emerson, 2003). Our framework allows us to explore how monopoly
pricing and a larger set of urban policies interact in general equilibrium.3

For instance, on the one hand, monopoly power attenuates the impact of up-zoning at
up-zoned parcels themselves, as rent and quantity changes revert to monopolistic rather
than efficient levels. On the other hand, zoning regulations have an additional impact on
rents at other locations through markups, and we show that when the cost function for
developing and renting units is nondecreasing, heavier zoning constraints in one parcel
always raise rents at other, unzoned parcels by raising markups.

1For Smith, that the landowners could rent unimproved land lead him to believe that rent was a
“monopoly price” (Smith, 1776). Ricardo (1817) considered land a differentiated factor of production, so
that rents reflected differentials in marginal product. Marx argued that monopoly land rents came from
three sources: quality differences, markups designed to limit access to land, and extraction of rents from
producers selling at markups (Evans, 1991).

2See Brueckner (1987) for a unified, formal Alnso-Muth-Mills (AMM) model and Glaeser (2007) for
standard modelling of competitive developers.

3Diamond, McQuade, and Qian (2019) consider the equilibrium effects of rent controls on landowner
entry and exit. Urban policies could also interact with monopoly profits through equilibrium entry and
exit. We do not know of any paper that explores this interaction.
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We also explore the potential for municipalities to reduce rents by limiting the con-
centration of land ownership. Restrictions on concentration have been recently proposed
by Berlin housing activists (Stone, 2019). We apply the results of Nocke and Schutz
(2018a), part of a growing literature on multi-product oligopoly (Affeldt, Filistrucchi, and
Klein, 2013; Jaffe and Weyl, 2013; Nocke and Schutz, 2018a), to the impact of zoning on
monopoly markups, and show that with non-decreasing marginal cost, landowners with
higher concentration always raise markups. Intuitively, landowners with multiple lots
can potentially internalize the impact of one parcel’s pricing decision on that of their other
parcels. When cost-related substitution effects between parcels are sufficiently small, this
can lead to higher rents and markups. Furthermore, we extend the results of Nocke and
Schutz (2018b), finding conditions under which increased concentration also generates
increases in prices for all other products, or, in our case, parcels.

While these theoretical channels may exist, a separate question, over which the litera-
ture is silent, is whether they are empirically relevant. The extent to which landowners’
market power affect rents will depend on the strength of complementarities between renter
and building types, as well as the degree to which consumers see housing at similar build-
ings as substitutes. To answer this question, we construct a new building-level dataset for
multi-unit residential buildings in NYC. We obtain building rental income from a com-
bination of scraped public owner communications and deconstructing formulas used by
the NYC Department of Finance (DOF) for calculating tax assessment. Our main results
focus on Manhattan buildings, although we probe robustness and derive additional power
where necessary from buildings in the Bronx, Brooklyn, and Queens.

First, we find that patterns in the data are consistent with the predictions of our
model. In particular, we find that over a seven year period, a 10% increase in Census
tract concentration is correlated with a 1-1.6% increase in average building rents. The
relationship holds even when fully accounting for time-invariant building characteristics.
These correlations are not causal, but they are consistent with the existence of meaningful
monopoly power.

Next, we estimate our model in order to ascertain the quantitative scope of markups.4
The first step in our markup estimation is the estimation of building-level own-price
elasticity of demand, accounting for sorting and unobserved building quality. Previous

4Our estimation method is based on differentiated product demand estimation developed by Berry,
Levinsohn, and Pakes (1995) and Grigolon and Verboven (2014). Within urban housing demand literature,
our work is most closely related to Bayer, McMillan, and Rueben (2004), who estimate housing demand and
resident sorting within San Francisco. See Kuminoff, Smith, and Timmins (2013) for a literature overview.
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housing demand elasticity estimates focus on the housing-consumption trade-off and, as
a result, tend to find inelastic results (Albouy and Ehrlich, 2018), which, if taken literally,
would be inconsistent with monopoly pricing.5 However, the relevant elasticity for a
landowner’s pricing decision is the own-price elasticity that accounts for substitution
between rival buildings. We estimate this elasticity and find median building own-price
demand elasticity of −3.3 in our preferred specification.6

An important aspect of our empirical environment is the ubiquity of constraints on
prices and quantities in the form of rent restrictions and zoning regulations.7, 8 In order
to use our estimated parameters to further estimate markups, we use detailed building
characteristics to isolate the set of buildings in our sample which are neither rent stabilized
nor constrained by zoning.9 We call this sample policy-unconstrained. We find that in the
policy-unconstrained sample, rents include an average markup over marginal costs of $705
per month, with the mean and median markup being 30% of the rent in our preferred
specification. These markups are over “shaddow” marginal costs including amortized
purchase and maintenance costs and outside options.

In addition, our model assumes quantity can be set optimally for current-period de-
mand, a condition unlikely to be met in our setting where fixed costs of construction and
durable housing stocks make quantity adjustments lumpy. While we show that our model
is isomorphic to one with separated developers and landowners with rational expecta-
tions, much of the housing stock in our sample was likely constructed (and quantity set) at
a time when 21st century demand was unforeseeable. Accordingly, we isolate the subset
of the policy-unconstrained sample which were constructed in the last decade of our data,
and separately calculate markups for these. We find markups are similarly on average 31-
32% of rent for these buildings. In an additional specification, we estimate elasticities and

5Using hedonic approaches with building-level data, Gyourko and Voith (2000) and Chen, Clapp, and
Tirtiroglu (2011) find elasticities compatible with monopoly pricing, but only the latter notes the connection
with monopolistic landowners.

6When we estimate the change in aggregate rental demand if all building rents increased by 1%, which
is closer in spirit to previous estimates, we then find an inelastic result of −0.14.

7NYC has two forms or rent regulation, rent control and rent stabilization; we use the term rent
stabilization for all rent regulation. Control is now rare as it applies only to buildings built before 1947 for
tenants in place before 1971. Stabilization by far more common based on a building having 6+ units and
built before 1974 and and may pass between different tenants; stabilized units’ rent annual growth set by
NYC Rent Guidelines Board.

8For zoning constraints, we ask whether a building could add one additional minimum sized residential
unit based on floor-area-ratios and density limits.

9We calculate that 92% of Manhattan rental buildings with four or more units are either zoning con-
strained or rent stabilized.
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markups using data from the Bronx, Brooklyn, and Queens in addition to Manhattan. We
find average markups range by borough between 21-30% for new, policy-unconstrained
buildings.

Finally, we use our results to assess the quantitative impact of up-zoning on markups,
using the cross-price elasticities generated by our estimates in order to quantify the impact
of a marginal relaxation of zoning constraints on rents at policy-unconstrained parcels.
As noted by our model’s predicted interaction between zoning and markups, the large
markups we find may in part reflect the pecuniary spillovers of the (many) zoning-
constrained lots on the policy-unconstrained sample. Indeed, we find the ubiquity of
zoning constraints appears to have an appreciable impact on rents at policy-unconstrained
lots. On average, a policy change resulting in the construction of roughly 417 additional
units at zoning-constrained parcels reduces markups by between $6.72 and $7.41 per
unit at policy-unconstrained buildings, which implies an additional 5-19 units through
increased price competition. For context, the magnitude of this spillover on rents at the
significantly smaller unconstrained sample is over 10% of what the magnitude of the
(first-order) average rent effect on the up-zoned lots themselves would be.

2 Model

We first set up the optimization routines for each agent in our model: landowners endowed
with locations and choosing rental rates, and renters endowed with income and choosing
residences. We then define and solve the equilibrium in two cases: first, without vertical
differentiation in location quality, and, second, without horizontal differentiation. We
review how, in each case, the model delivers landowner pricing power.

2.1 Setup

Parcels and Landowners The space, a city, is comprised of a set A of J discrete parcels,
which differ according to their underlying quality a, drawn without replacement from a
distribution G1(a). Higher values of a have higher amenity value to renters. We refer to a

as “location quality" and differences in a as vertical differentiation in parcels. A location’s
realized quality awill also be used henceforth to index each location in the setA. We make
the simplifying assumption that a is exogenous, while noting that in the data building and
parcel characteristics are a mix of endogenously chosen and exogenously given.
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Each parcel has a unique landowner f ∈ F who maximizes profits by choosing the
rent level at her location. Here, we also assume landowners each own a unique parcel,
although we relax this later on.

Landowners provide a mass of renters housing at a positive, differentiable marginal
cost ca(q), where q is the mass of renters the landowner accommodates in equilibrium.
Total revenue is rent r collected times q. A given landowner f ’s profits from parcel a
are ⇡a = r ⋅ q − ca(q). Landowners determine the constructed quantity and rental price of
units, and subtracting markups from rent backs out a “shadow” marginal costs combining
both of these activities. Our estimation will not rely on observing these costs. Appendix
B shows that equilibrium prices and quantities are unchanged when we separate the
development and rental price problems and the markup is capitalized into the price of
the building. In Section 6.3, we discuss how we navigate this assumption in our empirical
setting, where landowners are constrained by policy and supply is set in advance.

Renters A mass M of heterogeneous renters, indexed by i ∈ N , draw types y from
distribution G2(y). Renter utility is derived from consumption and location amenities.
Renters also draw idiosyncratic tastes for each location a, ✏i,a, from a type-one extreme
value distribution G3(✏)with scale parameter �✏. Utility may vary independently by type
as well:

Ui(a; y) = F (a, Iy − r(a), y) + ✏i,a, (1)

where consumption is equivalent to type-specific income Iy minus rent. Renters choose
among all locations a and an outside-option location aout ∈ A to maximize utility.

2.2 Equilibrium

An equilibrium will be defined by a schedule of rents and quantities {(ra, qa)}a∈A that
maximize landowner profits, assign renters to locations a such that no renter can increase
utility by choosing to pay rents at any other parcel, and clear the real estate market. Thus,
for each type y, the original density of types y is accounted for across all their chosen
locations a and the outside option, g(y) = ∑A qa(y) + q0(y).10

We make additional assumptions on the renter’s payoff functionF and the distributions
of types to briefly review each source of landowner monopoly in equilibrium.

10We do not consider combinations of G2(y), cost functions, and G1(a) which result in the full mass of
renters choosing the outside option.
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2.2.1 Equilibrium Under Horizontal Differentiation

Normalizing the outside option utility to zero, when distributions of types a and y are
degenerate, the model delivers standard multinomial logit choice probabilities for market
demand:

Da = eF (a,y,Iy−r(a))��✏

1 + ∑
a′∈A
{eF (a′,y,Iy−r(a′))��✏} ⋅M = M

J + e−F (a,y,Iy−r(a))��✏ . (2)

We solve the symmetric pricing equilibrium assuming landowners compete in rents and
noting that all amenities are equivalent, which yields an inverse elasticity markup rule:11

r
�(a) =mc(Da) − Da

@Da�@r �⇒
r�(a) −mc(Da)

r�(a) = −1
"a

, (3)

where "a is the own-price elasticity.
The equilibrium rent at each building equals marginal cost plus a markup related to the

curvature of demand, which is a function of the marginal utility of consumption, the scale
of the idiosyncratic tastes, and substitution behavior of renters; i.e., equation (3) yields an
implicit equilibrium rent function, r� = r(J, a,mc(), F (),�✏).12 The solution implies strictly
positive markups in rents.13 To close the model, we apply the market clearing condition
that the total number of renters housed in and out of the city equals the total number of
renters:

� ��
a′∈A

da′(r�, y)�dG(y)dy = � g(y)dy = G(y). (4)

2.2.2 Equilibrium Under Vertical Differentiation

With the alternative assumptions that the renters’ utility function displays increasing
complements between renter type y and location type a and that idiosyncratic draws, ✏i,a,
are all zero (i.e., no horizontal differentiation), the model yields vertical oligopoly as in
Shaked and Sutton (1983). We assume utility is log-supermodular in renter and parcel

11Given the degenerate distribution of amenities, a symmetric solution to the landowner’s problem can
be reasoned verbally. Suppose all landowners with amenity value a set rent at some equilibrium r�(a). Any
individual deviation to a higher rent leads to less demand since amenities are equivalent, but any deviation
to a lower rent would lead to greater demand.

12Caplin and Nalebuff (1991) and Perloff and Salop (1985) show that such an always equilibrium exists.
13An economic consequence of the markup is that some renters do not enter though they would if parcels

were priced at marginal cost; i.e., Da(rM) < Da(mc(Da)). Thus, there exist renters with a willingness to
pay for space greater than their impact on marginal cost, but are nevertheless priced out of the market. See
Bajari and Benkard (2003) for more implications from the horizontal discrete choice model.
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type:
F (a, y, Iy) = F1(a, y) ⋅ F2(Iy − r), (5)

where function F1 is log-supermodular in a and y, and F2 is some increasing function
of consumption Iy − r. Landowners set rents according to individual willingness to pay
(WTP). Because dF1

da
> 0, it’s clear that all else equal, all types prefer higher a locations, and

therefore that dra
da
> 0. Moreover, conditional on rents at other locations, different types y

will have different WTP for a given parcel of type a. WTP of type y for location a is

WTP (y, a) = min
∀b∈A�a

F1(a, y) ⋅ F2(Iy − ra) − F1(b, y) ⋅ F2(Iy − rb). (6)

The equilibrium is given by a set of rents ra and cutoffs y1, ..., yN−1. Between any cutoff
ya−1 and ya, the willingness to pay of individuals assigned to location a is heterogeneous
and single-peaked in type y at some ya,peak ∈ [ya−1, ya]. In other words, increasing comple-
mentarity acts within assignments of continuous types to the discrete number of parcels
to create variation in WTP.

The landowner pricing rule chooses q, and effectively ya−1 and ya such that

ra −mca(q) = − G2(ya) −G2(ya−1)
g2(ya)dyadra

− g2(ya−1)dya−1dra

. (7)

Note that dya

dra
< 0, dya−1

dra
> 0, and therefore markups are positive. As landowners adjust rent

ra upwards, they lose renters on two margins, the lowest-type assigned to their parcel, ya,
who flee to the cheaper next-best option a− 1, and those near the top of the distribution at
their location that spend more for the option a + 1.

To close the model, the housing market must clear. Note that cutoffs are continuous,
and for any y1, if y1 chooses a parcel in the city all y > y1 do as well. If WTP is negative
for the lowest type y at the lowest location a, some mass of types will choose the outside
option. A parcel is unoccupied if ya = ya−1.

3 Policy Implications: Theory

In this section, we assess the effects of several policies in the context of monopoly markups.
First, we discuss the impact of zoning. We show that in the horizontal case, zoning raises
rents of parcels that are not constrained by zoning, even when marginal costs are constant.
Second, we discuss how, under non-decreasing marginal costs, concentration of land
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ownership raises markups and rents at all parcels. We conclude by discussing the scope
for analysis of monopoly power in several other urban policies. Appendix A presents
proofs of our propositions.

3.1 Old Policies, New Implications

An immediate implication of the above model is that, even in the absence of spillovers, a
policy of no zoning is not first-best. Because a monopolist landowner restricts quantity,
the quantity difference between zoning-restricted and an identical, unrestricted parcel
with a monopolist landowner is less than the difference between zoning-restricted parcels
and a competitively priced parcel. Height minimums could reduce rents.

What happens when zoning constraints are not binding everywhere? To the extent that
zoning constrains bind at a particular parcel, the quantity must be restricted beyond the
monopoly-optimal quantity, and rents as a result must be higher. However, in a city where
only some parcels are constrained by zoning rules, those constraints also impact rents at
unzoned parcels by affecting equilibrium monopoly power at unconstrained parcels. In
both the vertical and horizontal case, the rent at a given parcel is inversely proportional
to rents at other parcels. When we restrict ourselves to the horizontal case, we can state
the following:

Proposition 1. With logit demand and non-decreasing marginal cost, all else equal, the imposition
of binding zoning constraints on a given parcel increases the rent at all other parcels, including
unzoned parcels and parcels where zoning constraints do not bind. When marginal cost is constant,
markups at those parcels go up as well.

Appendix A presents a proof. By raising rents at competing locations, binding zon-
ing constrains have spillover effects on rents at policy-unconstrained locations through
monopoly pricing. Likewise, relaxing zoning constraints at one parcel brings down rents
everywhere. Of course, even when units are priced competitively, if marginal costs are
increasing, by limiting supply at one location, zoning can impact rents and quantities at
other locations. But Proposition 1 points out that monopoly power exacerbates the price
effects by changing optimal markups. In other words, even in a world of constant marginal
costs, zoning constraints at one parcel would raise rents at all other parcels in the city by
increasing monopoly markups. This effect operates through the cross-price elasticities,
which, in the multinomial logit case can be signed and compared across any equilibria.
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In Section 8, we assess the empirical magnitude of this force by considering a marginal,
across the board loosening of zoning constraints in Manhattan.

3.2 New Policies, New Implications

Under monopoly pricing, higher rents can generate a positive pecuniary externality on
other landowners, and, by increasing demand and affecting elasticity, monopoly markups
at one parcel may positively impact markups, rents, and profits at other locations. When
landowners own multiple parcels, they internalize these pecuniary externalities, which
may result in higher markups and rents overall. Intuitively, monopolists with greater
market share may reduce quantity to a greater extent in order to maximize total profits.

In general, however, the impact of changes in land ownership concentration is anal-
ogous to mergers in the multi-product oligopoly setting. As in that setting, we cannot
make statements on the effects of concentration on the equilibrium without additional
assumptions. We extend Nocke and Schutz (2018b) to generate the following proposition:

Proposition 2. With logit demand and non-decreasing marginal cost, all else equal, landowners
with higher market share have higher markups and rents; an increase in the ownership share of
one landowner will generate increases in markups and rents at all the landowner’s parcels, and
increases in rents at all other parcels.

Because we cannot assume marginal cost is constant, we introduce an even more
flexible cost function than those found in Nocke and Schutz (2018b,a). That, in turn,
requires an extension to the result on the relationship between own share and others’
share on markup and rent. Appendix A provides a proof.

Note that Proposition 2 is only guaranteed to hold when we can exclude the possibilities
of scale economies and when there are no systematic variations in individual valuations
by individual characteristics; i.e., no sorting. Intuitively, if landowners can raise profits
by forcing more individuals into one parcel, generating scale, or if they can affect the
sorting equilibrium through manipulations to the rents of multiple parcels, they may find
it optimal to reduce, rather than increase rents and markups.

An important implication of this result is that manipulating the ownership structure of
parcels affects rents through monopoly pricing. In particular, under specific conditions,
reducing ownership concentration will reduce rents. In Section 5, we look for evidence of
scope for such policies in our New York City dataset.
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3.3 Additional Policies

We close our policy discussion by briefly and informally discussing the potential interac-
tions of monopoly pricing with three other urban policies: rent regulation, inclusionary
zoning, and use laws.

Where previously introduced into the housing literature, the concept of monopoly
power among landowners has been used to advocate for rent regulation. The intuition
is that reducing rents in the presence of monopoly markups can achieve the efficient
equilibrium. By contrast, Diamond, McQuade, and Qian (2019), who do not explore
monopoly markups, show that rent controls generate an extensive margin impact. While
it is beyond the scope of this paper to discuss exit and entry, Appendix B shows how
monopoly markups are capitalized into land rents and could impact such decisions.

In this context, inclusionary zoning policies, which mandate affordable housing be
included in new developments, can be considered as a policy which moves monopoly
quantities to efficient levels similarly to rent controls, but without reducing monopoly
profit and therefore without affecting entry decisions.

Finally, we point out that zoning use laws may also operate on monopoly margins.
While we only consider markups in a residential market, if demand elasticities vary be-
tween residential and commercial markets, use laws may reduce markups by constraining
landowners to build in less profitable markets with more elastic demand.

4 Data

Sources Our main data are derived from public administrative building-level records, as
well as scraped data, from several New York City departments, including the Departments
of City Planning, Finance, and Housing Preservation & Development. Our primary
dataset combines the Primary Land Use Tax Lot Output (PLUTO) and the Final Assessment
Roll (FAR) for all buildings in NYC, as well as current and historic Multiple Dwellings
Registration and Contacts (MDRC) datasets (with prior years graciously provided to us
by the NYU Furman Center).14 The PLUTO provides location, zoning, and building
characteristics while the FAR provides market values, land values, and building ownership
information.

We merge these with data derived from communications between the DOF and

14The MDRC links building owners to shareholders revealing common ownership across buildings.
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landowners, scraped off the Property Tax Public Access web portal, which we call the
Notice of Property Value (NPV) dataset. It includes information mailed to building own-
ers including gross revenue and cost estimates and the number of rent stabilized units.15

We use the 2010 Decennial Census to allocate rental households to buildings to estimate
building vacancies.16 To determine the size of the rental market, we use the total number
of NYC renter households that are in buildings with four or more units.17

Sample Our data spans from 2008 to 2015. We use all years when analyzing ownership
concentration but focus on 2010 for demand estimation.

For demand estimation, we use all private buildings classified as multi-family rental
buildings in Manhattan with four or more units, where all units are residential units and
there is no missing data. When we construct the instruments based on rival building char-
acteristics, detailed in Section 6.2, we expand the sample to include mixed-use, residential
rental buildings. We exclude mixed-use buildings in the estimation because we cannot
separate building income due to residential versus commercial tenant sources.18

For analyzing rents and ownership concentration, we use a subset of our estimation
sample that excludes buildings that are zoning constrained or rent stabilized, which we
call the unconstrained sample.19 For the ownership concentration results, we additionally
drop buildings where the listed building owner in the FAR data did not match the MDRC
data and buildings with less than six units.20 For more details, see Appendix D.

For computation and expositional purposes, our main analysis focuses on buildings
in Manhattan. For additional power and robustness, we expand our sample to include
buildings from Brooklyn, the Bronx, and Queens; we exclude Staten Island due to relatively
small number of multi-unit rental buildings.

15The NPV dataset was originally web-scraped by a third-party from the DOF’s Prop-
erty Tax Public Access web portal. Full details about this process are available at
http://blog.johnkrauss.com/where-is-decontrol/.

16To allocate rental households, we multiply building residential units by the block level rental occupancy
rate. This method assumes that vacancy rates are uniform within Census blocks.

17The 2010 Census reports the number of renter households but not stratified by building units, so we
scale the 2010 Census value by the ratio of renters in 4+ unit buildings to all renters from the 2010 ACS.

18In the context of our demand model discussed later, we do not push mixed-use buildings to the ‘outside’
good; instead, we simply do not include them in the estimation.

19Specifically, a building is zoning constrained if the building would not be allowed to create an additional
unit based on building floor-area-ratios and minimum unit area requirements, and is rent stabilized if more
than 10% of units are rent stabilized.

20We are able to match over 80% of all building owners across years. We drop buildings with {4,5} units
due to NYC assessment methodology changes for these buildings.
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Geographic Units We use Census tracts as a unit of observation for ownership con-
centration as well as for nests in one specification of our elasticity estimation. The large
number of tracts provides us greater variation in the data. In addition, as discussed in
Appendix E, ownership concentration is more easily calculated at the tract level, a feature
which will help us in Section 5. An obvious downside to this choice is that markets are
likely geographically continuous. Individuals at the borders of tracts are more likely to
search at adjacent tracts than in other neighborhoods. The nested logit structure we adopt
will not fully capture this, nor will our concentration measures, which will likely attenuate
results. We also use an NYC specific geography, Neighborhood Tabulation Areas (NTAs),
that is a sub-county collection of Census tracts.

Building Rental Income For 80% of our multi-year sample, we use scraped data from
communications between the city and landowners about building income. For the rest of
our sample, we rely on public data on assessments records from the DOF, which include
methodologies for generating assessments from building income, that allows us to back
out income from the assessment data.21

In NYC, rental buildings are assessed based on their income generation. The DOF
collects annual revenue and cost information for all rental buildings and then applies a
statistical formula to translate annual revenue into ‘market value’ (MV) of the building
if it were sold, which is the basis of a building’s tax assessment. Importantly, MV is
determined by a simple Gross Income Multiplier (GIM) formula:

Market Valuej
SQFTj

= GIMj ⋅ Annual Revenuej
SQFTj

, (8)

where the GIM is determined by the DOF based on actual sales in a given income decile
range and location.22 The DOF reports MV and SQFT for all buildings in the FAR dataset,
and so for 80% of the sample we observe both income and MV. We non-parametrically
estimate the GIM term as a function of MV/SQFT, borough, and year based on DOF
guidance documents.23 We assess our procedure by using the estimated GIM and reported
MV to calculate a fitted income value for the matched sample, and find a correlation of

21See – nyc.gov/site/finance/taxes/property-assessments.page.
22Effectively, if a building’s MV/SQFT is in the qth quantile, then its AR/SQFT is also in that quantile,

and all buildings in a given quantile and location will have the same GIM.
23For each borogh-year, we estimate the empirical GIM within 50 quantile bins of MV/SQFT (which we

observe for all buildings) and then apply this to the unmatched buildings.
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0.99 and coefficient of determination of 0.98. For more details, see Appendix F.
Once we have building income for all buildings, we must subset the data to single-use

residential buildings due to our inability to distinguish between residential and commer-
cial income. We divide building income by the number of units for average annual unit
rent in a building, and again by twelve for average monthly rent. A limitation of this
approach is that we rely on building averages as we do not see individual unit income.

Other Variables We link buildings based on their “borough-block-lot” (BBL) identifica-
tion that is uniquely assigned to real estate parcels, with additional verification based on
lot characteristics.24

The building-level characteristics that we include are building age, log miles to the
central business district (CBD, which we define as City Hall), log miles to nearest sub-
way station, years since the last major building renovation, average unit square-feet, and
whether the building has an elevator. We also measure the number of residential build-
ings, office buildings, retail buildings, and open parks in the Census block group. For
location controls we include polynomials of building latitude and longitude coordinates
and include location fixed effects.25 We also use reported land value of parcels, which is
constructed by the NYC DOF using a database of building and vacant parcel transactions.

An important limitation of our data is the inability to control for unit-level characteris-
tics. We approach this issue as an omitted variables issue. In our analysis of concentration
changes, building fixed effects will be an important control that, together with informa-
tion on renovations, help us control for these unobservables. In our elasticity estimation,
unobsevable unit characteristics will show up as building unobservables and will be an
important motivation for our instrumental variable approach.

Summary Statistics Table 1 presents summary statistics for 2010 Manhattan rental build-
ings. Each column represents a cut of the data that we use. As explained above, the first
is used for calculating our instruments, the second is used in our estimation, the third is
the set of policy-unconstrained buildings—for which we can calculate markups, and the
fourth is a subset of the policy-unconstrained buildings that are 10 years old or less in
2010. Figure 1 plots the total number of households and mean unit rents by Census tract.
In Appendix D we plot additional spatial distributions, such as zoning constraints and

24Most parcels contain a single building, but large parcels can contain multiple buildings with open
space between them. We refer to buildings and BBLs interchangeably throughout.

25We use Census tract FEs for the RCL and Neighborhood Tabulation Area FEs for the RCNL.
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rent stabilization.

Table 1: Summary Stats:
2010 Manhattan Rental Buildings

IV Sample Estimation Sample Unconstrained Sample New, Unc. Sample
Total Market Share 26.5% 11.7% 0.7% 0.1%
Res.Units per Building 25.3 21.1 20.5 46.3
Households per Building 24.9 20.0 19.4 43.4
Vacancy Rate 5.4% 5.5% 5.7% 5.8%
Percent Mixed-Use 47% 0% 0% 0%
Percent Rent Stabilized 63% 60% 0% 0%
Percent Zoning Constrained 77% 80% 0% 0%
Median Monthly Rent* – $1,309 $2,071 $2,247
Median Rent by Median Income* – 30% 48% 52%
Median Monthly Land Value per Unit $2,989 $2,520 $5,314 $2,381
Years Since Construction 94 95 87 4
Years Since Renovation 48 48 35 4
log(Distance CBD) 1.34 1.58 1.45 1.32
log(Distance Subway) -1.94 -1.89 -1.96 -1.72
Avg Unit Sqft 769 752 1,135.11 1,339
Buildings 17,828 9,484 566 53
Note: The table reports summary statistics for our main samples using Manhattan buildings with four or more residential units. The first column, IV Sample, includes mixed-use

buildings. The second column, Estimation Sample, includes buildings with only residential units. The third column, Unconstrained Sample, includes buildings with no rent-
stabilized units and which are able to add an additional unit according to zoning regulations. The New, Unconstrained Sample (last column) is hte subset of the Unconstrained
Sample which were constructed between 2001-2010. Building data from PLUTO, NPV, and FAR files. Market share is the sum of total households in all buildings by large building
total renter population in NYC. Households are allocated to buildings based on building units and 2010 Decennial Census and American Community Survey. The vacancy rate
is one minus the total households in building divided by total building units. A building is mixed-use if the building has positive commercial area. A building is considered
rent stabilized if more than 10% of units are rent stabilized. A building is zoning constrained if the building would not be allowed to create an additional unit based on building
floor-area-ratios and minimum unit area requirements. Monthly rental income is building income divided by total units divided by 12. Median income in 2010 for NYC is $
50,711. Monthly land value per unit is [Land Value / (12 x Residential Units)]. Years since construction and renovation equal 2010 minus the construction year and most recent
major renovation year. Geodesic distances are in log miles based on building (lat,lon) coordinates. Avg Unit Sqft is total building area divided by total units.
(*) – Rent data is only available for single use buildings

5 Concentration and Rents in New York City

We now examine the correlation in the data between ownership concentration and rents.
We note that results in this section are not causally identified. Nonetheless, we find,
reassuringly and in line with predictions of Proposition 2, that increases in concentration
are correlated with increases in rents.

To examine whether the data are consistent with the predictions of Proposition 2,
we first construct ownership shares at the Census tract level from 2008 to 2015. Section
4 summarizes the trade offs of tract-level analysis, as well as our construction of tract-
level ownership data, in tandem with Appendix E. As noted in Section 4, we calculate
concentration, which will be a Herfindahl-Hirschman Index (HHI), off of the full sample
of buildings in each year but for rents, our outcome variable, we restrict our sample here
to unconstrained buildings with matched ownership information. Note that our sample
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Figure 1: Distribution of 2010 Manhattan Renters & Rents

1000 2000 3000 4000 5000
Total
Households 1000 2000 3000 4000 5000

Avg Unit
Month Rent

Note: The figure displays the geographic distribution of households and rent in the Manhattan data. The map on the left plots total
renter households by Census tract in 2010. The map on the right displays the mean monthly unit rent by Census tract in 2010. Missing
values are Census tracts where we have insufficient data, in part due to the exclusion of mixed-use buildings. Red tracts indicate higher
households and rents respectively, using a log scale. Data from PLUTO, FAR, NPV, and 2010 Census.

differs from our estimation sample in Table 1 because we pool eight years of data and only
use buildings with six or more units in each year.26 Summary statistics for this sample are
available in Table A1 in Appendix D. We begin with our main geography, Manhattan, and
then extend the sample to equivalent buildings in the whole of New York City to improve
power.

Using our constructions of ownership, we calculate tract-level concentration. LetAf,g,t

be the set of buildings owned by landowner f in tract g in time period t, and let Fg,t be the
set of landowners in that tract and time. We thus calculate landowner market shares as:

s
f

g,t
∶= �∑j∈Af,g,t

Dj,t�
∑f ′∈Fg,t

�∑j∈Af ′,g,t Dj,t� . (9)

Figure 2, plots tract-level HHI measures for Manhattan, where HHI is the sum of squared
owners’ shares, HHIg,t ∶= ∑f ′∈Fg,t

�sf ′
g,t
�2.

To more closely match the predictions of Proposition 2, which links ownership con-

26In Section 7 our results use rental income for buildings with four or five units. These are obtained
using DOF assessment procedures linking reported market values to rental income. We cannot use these
here because of assessment procedures changes over the course of this panel for this group.
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Figure 2: Distribution of Ownership Concentration in Manhattan

2008 2015

0.05 0.1 0.25 0.5 1
HHI

Note: The figure plots the tract-level ownership concentration index HHIg,t in 2008 (left map) and 2015 (right map) on log scales. Reds
indicate more concentration. FTC Horizontal Merger Guidelines consider values above 0.25 to be highly concentrated. Sample is all
residential buildings with 4+ units in Manhattan. Data from PLUTO, MDRC.
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centration elsewhere to rents, we construct a modified “leave-out” HHI index. For each
landowner f , we recalculate the market share of a rival landowner, h, as:

s̃
h

f,g,t
∶= �∑j∈Ah,g,t

Dj�
∑

f ′∈F¬fg,t �∑j∈Af ′,g,t Dj� , (10)

where F
¬f

g,t
is the set of rivals to landowner f , and then calculate the leave-out HHI

for landowner f as the sum of these rival landowners’ squared shares: HHIf(j),g,t ∶=
∑

h∈F
¬f
g,t
�s̃h

f,g,t
�2.27

We then test the basic prediction that rent increases in concentration. Our main
specification estimates

ln[rj,g,t] = ↵0 + ↵1 ⋅ ln[HHIf(j),g,t] + ↵2 ⋅Xj,g,t + ✏j,g,t, (11)

where rj,g,t is the average unit rent of building j in tract g at time t, HHIf(j),g,t is described
above, and ↵2 is a vector of coefficients on controls Xj,g,t. We also include ln[sf(j)

g,t
] in

some specifications to separately test for the impact of owners’ shares on rents at their
own buildings. Note that while we use general subscripts {j, g, t} for Xj,g,t, in specific
specifications some controls will be time variant, e.g., when using building fixed effects.

Column (1) of Table 2 Panel (A) estimates the specification in Equation (10) for Man-
hattan buildings using year fixed effects, building age, square of building age, the log of
distance to nearest subway and the log of distance to the CBD, average square feet of living
space per unit, and years since last renovation. The inclusion of year fixed effects treats
the data as a repeated cross section, and suffers from clear unobserved variable bias. We
refrain from interpreting the small and insignificant resulting coefficient on HHIf,g,t.

In Column (2) of Panel (A), we add tract fixed effects. Here, identifying variation is
changes over the course of the panel at the tract level, removing unobserved time-invariant
tract-level variation. A 10% increase in tract concentration index is associated with a 1.6%
increase in rents. The significant coefficient is consistent with Proposition 2: buildings in
tracts where ownership elsewhere in the tract is concentrating experience larger increases
in rents.

Column (3) of Panel (A), our most stringent specification, further imposes building
fixed effects. Here, building time-consistent controls drop, though years since renovation

27In Appendix E, we probe robustness using the more standard construction of HHI and shares in
Equation (9).
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Table 2: The Relationship Between Ownership Concentration and Rent

(1) (2) (3) (4) (5) (6)
ln[Average r

j,g,t
]

Panel (A): Manhattan
ln[HHIf(j),g,t] -0.012 0.161 0.075 0.009 0.162 0.075

(0.032) (0.080) (0.076) (0.038) (0.076) (0.076)

ln[sf(j)
g,t
] -0.028 0.002 -0.013

(0.026) (0.025) (0.027)
Year FEs Y Y Y Y Y Y
Tract FEs N Y N N Y N
Building FEs N N Y N N Y
Observations 2,519 2,504 2,393 2,519 2,504 2,393
R2 0.29 0.63 0.75 0.29 0.63 0.75

Panel (B): Bronx, Brooklyn, Manhattan, Queens
ln[HHIf(j),g,t] 0.047 0.122 0.102 0.043 0.128 0.095

(0.016) (0.056) (0.037) (0.018) (0.053) (0.037)

ln[sf(j)
g,t
] 0.006 0.006 -0.027

(0.013) (0.012) (0.014)
Borough-Year FEs Y N N Y N N
Tract and Year FEs N Y N N Y N
Building and Year FEs N N Y N N Y
Observations 13,651 13,576 12,743 13,651 13,576 12,743
R2 0.40 0.64 0.77 0.40 0.64 0.77

Note: The table reports the results from regressions of log of building average unit monthly rent on the log of the ‘leave-out’ HHI index,
calculated at the building level by leaving out the building owner’s units. Regressions are at the building-year level and are weighted
by building units. Columns (4)-(6) add log of building owner’s market share as a control. The sample in Panel (A) are all matched,
unconstrained buildings in Manhattan; Panel (B) expands the sample to all matched, unconstrained buildings in NYC. Columns (1)
and (3) in Panel (A) use year / Panel (B) borough-year fixed effects, running a repeated cross-section. Columns (2) and (4) include
tract and year fixed effects, running a panel at the tract level. Columns (3) and (6), our most stringent specifications, include building
and year fixed effects, exploring variation in tract-level concentration while controlling for building-level, time-invariant differences.
Building controls for all columns include building age, age squared, years since renovation, indicator if building has an elevator; for
columns (1,2,4,5) log distance to CBD and log distance to closest subway (omitted in columns (3,6) due to building FEs. Standard errors
in parentheses are clustered two ways by tract and year.

is an important control that remains. Because of the difficulty in observing key building
characteristics, this specification ensures that of Column (2) is not identified off of un-
observed differences in building quality. The coefficient is positive but insignificant – a
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motivation for our inclusion of more data in Panel (B) below.
Finally, Columns (4)-(6) introduce controls for building owners’ own share of the tract

as a control. According to Proposition 2, we expect owners with growing shares and thus
market power to increase rents. An important condition in the Proposition is that costs
be non-decreasing, which would be violated if there were scale economies in ownership.
Across specifications, the coefficient is small but noisy and inconclusive.

Because our most stringent specifications appear to lack power in Columns (3) and
(6), we expand our sample to include three more boroughs: the Bronx, Brooklyn, and
Queens (with too few observations per tract in Staten Island, we do not include it in
our sample). Here, coefficients are generally in the same direction, and in particular,
the coefficients on tract HHI in Columns (3) and (6) are now positive, significant, and
economically meaningful, with a 10% increase in concentration again associated with a
roughly 1% increase in rents.

An important caveat in this analysis is the inability to observe changing tract conditions
that are correlated with both rents and ownership concentration. Tracts with improving
overall neighborhood qualities may experience rising rents and rising ownership concen-
tration in tandem. We therefore caution against interpreting these coefficients causally,
but instead take reassurance from the stylized fact that increases in concentration are cor-
related with increases in rents. We use this stylized fact as motivation for our identified
estimation results.

6 Estimating Elasticities and Markups

To empirically assess the monopoly forces described above, we estimate the building-
level demand elasticity for Manhattan rental buildings in 2010. We follow the literature
empirically estimating differentiated product models with consumer heterogeneity based
Berry, Levinsohn, and Pakes (1995) (BLP) and the citing literature.28 Below, we describe
our empirical model and identification strategy.

28In particular, we follow the methodological advice in Dubé, Fox, and Su (2012); Knittel and Metaxoglou
(2014); Gandhi and Houde (2018); Conlon and Gortmaker (2020).
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6.1 Renter Demand Econometric Model

As in our theoretical model, the urban rental market is made up of all individuals who will
choose to live in a rental property.29 In our main specification, we differentiate the choice
set geographically, such that we consider all rental properties in Manhattan as ‘inside’
goods and all rental properties in the other boroughs as part of an ‘outside’ good.30 We
then probe robustness using NYC data from four boroughs as separate markets, where
the outside goods are smaller buildings in the same borough.

We estimate two versions of our model. Closest to our exposition in Section 2, we esti-
mate a random coefficients logit (RCL) model. Second, we estimate a random coefficient
nested logit (RCNL) model where nests are Census tracts, which by necessity remove our
most stringent location controls—tract-level fixed effects—due to collinearity with our
definition of building nests. The RCL model is simpler to estimate and allows greater
location controls; however, the RCNL model allows for within-nest preference correlation
with nearby buildings at the expense of less robust location controls.

We assume that renter i’s utility from choosing unit j is:

Uij = µj + ij + ✏ij ∶= �j +Xj� + ↵
yi
rj + �

k∈K2

{�kvihxjh} + ✏ij. (12)

The term µ represent the common vertical differentiation component and the terms { , ✏}
represent the parametric and stochastic idiosyncratic horizontal components, respectively.
Equation (12) parameterizes utility as a function of renter income, y, observed covariates
and rent, {X,r}, a scalar unobservable amenity, �, and covariate-specific taste shifters, vh.
Building covariates inX include a constant, age, years since last renovation, log distance to
CBD, log distance to nearest subway, avgerage unit square feet, and the location controls
mentioned in Section 4: Other Variables, including Census tract FEs for the RCL and
NTA FEs for the RCNL models.31

Under the assumption that ✏ij is distributed Type 1 Extreme Value, the RCL model
relates observed building shares to building characteristics and model parameters in the

29Our market definition may be better stated as large rental properties as we only consider rental properties
with four or more units.

30This is analogous of comparing utility from a Manhattan property to the average non-Manhattan
property for each individual renter.

31For the K2 subset of covariates with random coefficients, we use a constant, age, years since renovation,
log distance to CBD, log distance to nearest subway, and avg. unit square feet.
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following way:

Dj = �
i

e(µj+ ij)

1 + ∑
k∈A

e(µk+ ik)
dF (✓). (13)

Alternatively, under the assumption that ✏ij = �✏̃i,h(j) + (1 − ⇢)✏̃ijh�, where ✏̃ijh is distributed
Type 1 Extreme Value, the same building share in the RCNL model relates to characteristics
and parameters as:

Dj = �
i

e((µj+ ij)�(1−⇢))

∑
k∈h(j)

e((µk+ ik)�(1−⇢))
⋅

∑
k∈h(j)

e(µk+ ik)

1 + ∑
h∈H

∑
k∈h

e(µk+ ik)
dF (✓). (14)

The random variable ✏̃i,h introduces taste variation across nests and ⇢ governs preference
correlations within nests.32

6.2 Identification and Instruments

There are two endogenous variables for every observation: market share and rent.33 Our
estimation strategy allows us to identify demand parameters while being agnostic to the
supply side of the market. While we observe some building amenities directly, rents are
likely correlated with unobserved amenities, �j . Broadly, these unobervables may either
be about buildings’ amenities or area amenities not in our data. To identify ↵, we require
an instrument Z(r) that shifts rent but is unrelated to these amenities. To identify the �
coefficients, we require instruments that shift the substitution patterns between products,
Z(x). With instruments, Z = (X,Z(x), Z(r)), the identifying moment condition is

E[�(X,r, s; ✓) � Z] = 0, (15)

which leads to our use of E[Z ′�] as the empirical moment we wish to minimize.
We construct Z(x) using functions of rival building characteristics. When creating the

rival set K(j), we exclude rivals within a 1km radius of a given building, based on Bayer,
McMillan, and Rueben (2004) and Bayer, Ferreira, and McMillan (2007)34 For the RCNL

32The parameter is defined over the interval ⇢ ∈ [0,1), where ⇢ = 0 collapses to the RCL model and ⇢ = 1 is
inconsistent with utility maximization. The r.v. ✏̃i,h is integrated out, but could be included at the expense
of increasing the number of non-linear parameters.

33We assume that the building-level characteristics are exogenous and can additionally serve as instru-
ments. For a rigorous discussion of identification, see Berry and Haile (2014, 2016).

34The authors use rings of five and three miles, respectively for their instrument construction using
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model, we also create ‘local rivals’ who are in the same tract (i.e., nest) but not in the
same block group. We use “Quadratic Differentiation Instruments” based on Gandhi
and Houde (2018). These are a finite order basis function approximation of the optimal
instruments in the sense of Amemiya (1977) and Chamberlain (1987). For a given covariate
h for building j with rivals K(j), each instrument is defined as:

Z
DQ
hj
= �

k∈{K(j)}

(xhk − xhj)2. (16)

For Z(r), we use the land value of the building parcel; i.e., the market value of vacant
land where the building is located, which captures the opportunity cost of the landowner
for renting the space out. The exclusion restriction is violated if constructed land value
from sales around the city are correlated with unobservable amenities at the building-
level, conditional on building observables and location controls. While actual land value in
general may be correlated with nearby building characteristics, our measure is constructed
by NYC DOF using sales of similar parcels which are not necessarily close. Furthermore,
we control directly for location observables (which include tract fixed effects in our RC
Logit specification), and as such the residual measure should not be systematically corre-
lated with local building-level unobservable residential amenities. Appendix G describes
further details on instrument construction and other aspects of estimation.

Armstrong (2016) discusses the asymptotics of differentiated product estimation when
there are few markets and many products and provides sufficient conditions such that
markup converges to a constant. If markups converge to a constant ‘faster’ than the instru-
mental variables estimator, then the latter is inconsistent because there is not variation in
markups to use.

We address with this issue in three ways. First, our RCNL specification follows Arm-
strong (2016) by splitting products into nests. Armstrong (2016) shows in this setting
that nests effectively bound the number of rival products within in a nest, so neither
within-nest shares, Dj�h(j), nor markups converge to a constant even if the total number
of products in the full market goes to infinity.35 Second, we use a marginal cost shifter in
Z(r) that is valid even if the conditions of Armstrong (2016) hold, as that variation is not
due to markups. Third, we perform statistical tests for under-identification of the “BLP
instruments” on the model implied markups (Armstrong, 2014), and we also calculate

homes in the San Francisco bay area.
35The median number of buildings per nest is 32, the average is 43, and the maximum is 195.
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a robust first stage F statistic from a linear regression of the endogenous rents on the
instrument vector (Z(x), Z(r)), advocated in Armstrong (2016).

6.3 Estimating Markups in the Presence of Supply-Side Restrictions

While our elasticity estimation is agnostic to the supply side of the market, to derive
markups from estimated demand elasticities, we must account for how landowners set
rents and quantities in our setting. In particular, our model assumed landowners are
(policy-)unconstrained in their ability to set rents by adjusting supply. Two features of
our setting are particularly problematic for this assumption: rent and quantity constraints
(through rent stabilization and zoning), and constraints on quantity adjustments due to
fixed redevelopment costs and the durability of the housing stock.

In particular, constraints on rent in the form of rent control and rent stabilization, and
constraints on supply in the form of zoning restrictions mean that the observed pricing
and quantity behavior of a constrained landowner will not be reflective of optimally
chosen prices and quantities. In addition, the markups in our model do not account for
lumpy redevelopment or the durability of the housing stock. Appendix B shows how
our model can be extended to a model with separated developer and landowner quantity
and price decisions, but clarifies that monopolist quantities, and thus the ability to derive
markups from the price elasticity, are only achieved when developers correctly anticipate
the demand faced by landowners. In reality, fixed costs may delay redevelopment and
the durability of the housing stock means that current quantities may not reflect current
demand.

We approach these limitations by subsetting our data twice. First, our main results
derive markups only for policy-unconstrained parcels, which could raise rents and adjust
quantities unencumbered by zoning constraints or rent regulation. Second, we separately
examine the 53 policy-unconstrained buildings that were built in the last 10 years of our
2010 data, where developers will have been more likely to have correctly anticipated
contemporary demand and set monopolist-optimal quantities, according to Appendix B.

With those restrictions in mind, we turn to our markup calculation.

6.4 Elasticities and Markup Calculations

Using estimated parameters, ✓, we can calculate building-level elasticities and markups
that will inform our understanding of monopoly power in the Manhattan market. We
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calculate the building-level demand elasticities using the analytical derivatives of the
demand functions, and we calculate the percent markup assuming landowners solve a
Bertrand price competition game:

"j = @Dj

@rj

rj

Dj

=
���������
�∫i � ↵yi�dij(1 − dij)dF (✓)� rj

Dj
if RCL

�∫i �↵�yi1−⇢ �dij �1 − ⇢dij�h(j) − (1 − ⇢)dij�dF (✓)� rj

Dj
if RCNL

(17)

Lernerj = rj −mcj

rj
= �−1

"j
� (18)

Again, we use Bertrand pricing only for interpretation but not estimation.
Most housing demand literature estimates inelastic demand seemingly incompatible

with monopoly pricing (Chen, Clapp, and Tirtiroglu, 2011; Albouy, Ehrlich, and Liu, 2016).
We reconcile this by the fact that the relevant elasticity for landowners is the own-price
elasticity, "j , rather than the “aggregate elasticity,” the change in total housing consumed
with a change in (aggregate) rents. To connect our setting to previous housing demand
estimates, we calculate the aggregate elasticity which provides the responsiveness of
renters to a 1% increase in rent for all ‘inside’ buildings (Berry and Jia, 2010; Conlon and
Gortmaker, 2019):

"
Agg = �

k∈A

Dj({rk +�rk}k∈J ) −Dj

�

������������=1%. (19)

Foreshadowing results, we will find both monopoly-consistent elasticities "j as well as
literature-consistent inealistic aggregate elasticity "Agg.

6.5 Estimation Routine

We estimate the econometric model using market-level variables on building choice shares,
rents, and characteristics, {Dj, rj,Xj}. We simulate R renters by drawing (yi, �vi) to cal-
culate the individual demands, and then use pseudo Monte Carlo integration for market
demand.36

Estimation has four steps, which are iterated until parameters converge.37 First, a
non-linear inversion step finds mean product utility, µ , given an initial set of non-linear

36We use Halton sequences to approximate uniform random draws. Income is simulated by using a log
normal distribution with mean and variance based on the ACS 2010 file.

37In finite samples the 2-Step parameters depend on the initial weight matrix and can be subject to greater
misspecification errors, leading us to use an Iterated GMM approach (Hansen and Lee, 2019).
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parameters, ✓.38 Second, we use linear GMM to estimate mean utility parameters, � ,
which identify the unobserved mean utility characteristic, �. Third, we use a non-linear
IVGMM search routine to estimate the non-linear parameters using the moment condition
E[Z ′ ⋅ �]. Fourth, we update the weight matrix using the residuals from Step 3, and repeat
until the parameter vector converges, �✓s+1 − ✓s� ≈ 0.

7 Estimation Results

In this section, we report our main results for Manhattan and as a robustness check
a similar model using Manhattan, the Bronx, Brooklyn, and Queens as four separate
markets.

7.1 Results using Manhattan

Table 3 presents our main empirical results for Manhattan. We estimate utility param-
eters based on our empirical model, then calculate building-level elasticities. For the
unconstrained subset of our sample as well as the “new” subsample, we then calculate
the markup share of rent. We present both the Logit and Nested Logit models, both
estimated via IGMM and using “Quadratic Differentiation Instruments,” as described in
Section 6.2. Of our estimated parameters, we only present our estimates of {↵,⇢} and
their heteroskedasticy robust standard errors. Using Equation (17) we calculate the own-
price elasticity, Equation (18) the markup share or “Lerner index,” and Equation (19) the
aggregate elasticity.

The first four rows of Table 3 report our estimates of model parameters ↵ and ⇢,
with standard errors in parentheses. Our estimates of the rent coefficient, ↵̂, are similar in
magnitude between the models with roughly equal standard errors. Our estimate ⇢̂ is close
but statistically different from zero implying only slightly greater within-nest correlation
relative to the RCL model. For the full sample, we estimate median own-price elasticities
of −2.99 and −3.16 for Logit and Nested Logit specifications, respectively. We calculate
but do not interpret the Lerner index for this sample. The model implied building-level
own-price elasticities are all elastic, which is consistent with monopoly pricing.

For the unconstrained buildings, the first subset for which we will find meaningful
markup results, we find elasticities of −3.40 and −3.30, respectively. We expect these

38The nonlinear parameters are (↵, ��) for the RCL model and (↵, ��,⇢) for the RCNL model. For the
inversion, we use a tolerance of �µr+1

j
− µr

j
�∞ < 10−12. See Appendix C for more details.
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unconstrained landowners have the most control over their rents compared to landowners
with rent-stabilized units or pressed against zoning constraints. For the second subset,
“new” unconstrained buildings built between 2000-2010, we find elasticities of −3.48 and
−3.31.

We find that the median markup share of total rent, the Lerner index, is between
32-33% of total rent for the full sample, with a slightly greater mean (33-35%). For the
unconstrained samples the median and mean markup shares are between 29% and 31%.
Among the new constructions subset of unconstrained, means and medians range from
29-32%. Overall, were units priced at the marginal cost reflective of the production
and maintenance of buildings, we would expect rents to be about 70% of their current
levels. Figure 3 plots the full distribution of the own-price elasticities and Lerner Index by
building for all three samples and both the RC and RCNL models. All three samples of
the nested logit model, drawn in thinner lines, are less dispersed. Figure 4 plots the mean
own-price elasticity and the dollar value of markups in monthly rent by Census tract for
the full sample only.

Again, we note that our results differ from the literature on the elasticity of housing
demand. Our elasticity of interest is conceptually different than that targeted by that
literature, which seeks to measure the substitution between quantity of housing and
consumption. In that literature, housing demand is typically found to be inelastic. When
we estimate the aggregate elasticity in our data, which is more akin to the parameter
estimated in the prior housing demand literature, we find similarly inelastic demand with
an elasticity is between (−0.14,−0.16). This estimate is slightly lower than the consensus
range in the prior literature: (−0.64,−0.3) (Albouy, Ehrlich, and Liu, 2016). This may
be due to a differences in setting (Manhattan rental markets) or in methodology as our
outside good includes other housing choices in NYC rather than pure consumption.

7.2 Results for Manhattan, the Bronx, Brooklyn, and Queens

In this subsection, we report results using all four NYC boroughs for which we have
adequate data, using each as a separate market. Our estimation broadly follows that for
Manhattan with some necessary changes. First, for computational reasons, we run 2-step
rather than iterated GMM. Second, with four markets, we define the outside option as
smaller 1-3 unit NYC buildings. As with Manhattan, we run both RC and RCNL models.
Appendix I provides more details on this robustness check and reports summary statistics
by borough.
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Table 3: Main Estimation Results: Manhattan

RC Logit RC Nested Logit
↵ -43.79 -34.80

(11.66) (11.96)
⇢ 0.065

(0.037)
Full Sample

Mean "j -2.95 -3.09
Median "j -2.99 -3.16
Mean Lernerj 35% 33%
Median Lernerj 33% 32%
Percent "j < −1 100% 100%
"Agg -0.16 -0.14
N 9,484 9,484

Policy-Unconstrained Sample
Mean "j -3.36 -3.31
Median "j -3.40 -3.30
Mean Lernerj 31% 30%
Median Lernerj 29% 30%
N 566 566

New, Policy-Unconstrained Sample
Mean "j -3.35 -3.29
Median "j -3.48 -3.31
Mean Lernerj 32% 31%
Median Lernerj 29% 30%
N 53 53
BLP F Stat 42.7 24.9
Linear F Stat 94.2 49.9
GMM Obj 10.3 36.3

Note: The table displays results from the Random Coefficient Logit (RCL) and Random Coefficient Nested
Logit (RCNL) models using data on Manhattan multi-unit (four or more) residential buildings. Nests for
RCNL are Census tracts. The coefficient↵ corresponds to the marginal utility of consumption and ⇢ governs
within-nest preference correlations. Both models include random coefficients are on a constant, age, log
distance to CBD, log distance to nearest subway, avg unit sqft. RCL uses Census tract fixed effects (FEs), and
RCNL uses NYC NTA FEs plus additional location controls: measures residential buildings, commercial
buildings, and parks in Census block-group and polynomials of latitude and longitude coordinates. Both
models estimated using GMM and use “Quadratic Differentiation Instruments” based on Gandhi and
Houde (2018), as described in Section 6.2. The own-price elasticity is "j , the Lerner index is −1�"j , and
the aggregate price elasticity, "Agg, is based on Berry and Jia (2010). Buildings are ‘unconstrained’ if not
rent stabilized and not zoning-constrained; new buildings were built after 2000. The Robust F statistics are
from on regressions of building rent on building characteristics, location controls, and instruments. The
BLP-F statistic tests identification of differentiation IVs for the RC model and is based on Armstrong (2014).
Standard errors in parentheses are robust to heteroskedasticity.
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Figure 3: Distribution of Results

(a) Own-Price Elasticity
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(b) Markup as a Percent of Rent
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Note: The figure plots the kernel density plot of own-price elasticities (Panel (a)) and markups (Panel (b), Lerner Index), for main
results using Manhattan buildings. Thin lines plot results from Random Coefficient Nested Logit model. Thicker lines plot results
from Random Coefficient model. Orange dashed and red long-dashed lines plot elasticities and markups for the full sample. Purple
short-dashed and navy dot-dashed lines plot results for the unconstrained sample. Green and black solid lines plot results for the new
and unconstrained sample. Results based on Table 3. The full sample is comprised of all Manhattan single-use residential buildings
with four or more units. The unconstrained sample is comprised of all buildings in the full sample that are not zoning constrained
and where units are not rent stabilized. The new and unconstrained sample is the subset of the unconstrained sample for which
buildings are 10 years old or less. The vertical line in Panel (a) indicates elasticities greater than -1, which would be incompatible with
monopolistic pricing. RCL and RCNL models and estimation are described in the text.

Table 4 reports the models’ parameter estimates and Table 5 reports borough-level
elasticities and markups. Again nearly all building elasticities are estimated as being
consistent with monopoly pricing. Average elasticities and markups for Manhattan are in
line with those reported in Section 7.1. Markups in other boroughs vary between 20-30%.

8 Up-Zoning’s Spillover Effects Through Monopoly Power

In this section, we use our data and the results of our model to quantify the potential effects
loosening zoning restriction. In our setting, additional competition from up-zoning puts
downward pressure on the rents of policy-unconstrained buildings. By contrast, were
policy-unconstrained buildings to be priced at marginal cost (e.g., if there was no markup
in rent), then we would not expect a loosening of zoning constraints in other buildings to
affect rents of already unconstrained buildings, excepting changes in marginal cost.

To illustrate and quantify the rent effect of up-zoning constrained buildings on policy-
unconstrained buildings, we use the model-estimated elasticities to examine the effect of
a marginal change in zoning in the form of a 1% across-the-board reduction in zoning
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Figure 4: Results for Manhattan

(a) Own-Price Elasticity
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Note: The figure plots Census tract level average own-price elasticities in Panel (a) and monthly markups (Lerner Index) in Panel (b)
for the RCL model (left) and the RCNL model (right). Reds indicate higher own-price elasticities and markups on a log scale. Results
based are based on the Full Sample estimation presented in Table 3, which use all 2010 Manhattan single-use residential buildings
with four or more units. Missing values are Census tracts where we have insufficient data, in part due to the exclusion of mixed-use
buildings. RCL and RCNL models and estimation are described in the text.

quantity constraints. The price effect that we estimate is the change in monopoly markups
for the 566 unconstrained buildings given a marginal reduction in zoning constraints for
the set of 3,226 zoning-constrained, non-rent regulated residential buildings.39

We consider a marginal change in constraints rather than a full counterfactual with
changes in actual numbers of whole units for specific buildings. For example, a one-
unit change for five-unit buildings is a 20% change in demand, and such non-marginal
changes would require re-solving the monopolist problem. We also assume marginal
cost is constant at unconstrained buildings. Increases in marginal costs would dampen
the positive quantity and negative price effects we find. In light of these constraints on

39We exclude rent stabilized buildings where estimated own-price elasticities may not reflect rents of
additional units on the margin.
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Table 4: Model Parameter Estimates for Four NYC Boroughs

RC Logit RC Nested Logit
↵ -27.80 -23.74

(13.97) (4.23)
⇢ 0.069

(0.043)
BLP F Stat 88.0 32.4
Linear F Stat 111.6 121.9

Note: The table presents results for the Random Coefficient Logit (RC Logit, RCL) and Random Coefficient
Nested Logit (RC Nested Logit, RCNL) estimations using Manhattan, the Bronx, Queens, and Brooklyn as four
separate markets. The coefficient ↵ corresponds to the marginal utility of consumption and ⇢ governs within-
nest preference correlations. Both models include random coefficients are on a constant, age, log distance to
CBD, log distance to nearest subway, average unit square feet, and building controls described in the text. The
RCL model uses Census Tract fixed effects (FEs) and the RCNL uses NYC NTA FEs and additional location
controls described in the text. Both models use “Quadratic Differentiation Instruments” based on Gandhi
and Houde (2018), as described in Section 6.2. Both models are estimated using Two-Step Efficient GMM
due to computation constraints. The Robust F statistics are from on regressions of building rent on building
characteristics, location controls, and instruments. The BLP-F statistic tests identification of differentiation
IVs for the RC model and is based on Armstrong (2014). Standard errors robust to heteroskedasticity are in
parentheses.

our exercise, we view this exercise as an illustration of the interactions between zoning
constraints and monopoly rents rather than a policy evaluation.

We implement the exercise as follows. First, we use the estimated own-price elasticities
to calculate the percent change in rents required to increase the market share of all zoning-
constrained buildings by 1%, {%�rcf

k
}k∈Z . Second, we totally differentiate the monopoly

pricing rule with respect to all rents and solve for a given unconstrained building’s rent
change, {%�rcf

j
}j∈U . The change can be expressed as

%�r
cf
j
= �

k∈{Z}

�������
#
j

k
⋅%�rcf

k�"j − #j

j
�
������� , (20)

where " is the own-price elasticity and #
j

k
= @"j

@rk

rk
"j

. In addition, we calculate the change in
demand for unconstrained buildings from the price and quantity change at constrained
buildings: %�Dcf

j
= "j%�rcf

j
. This tells us the first order effects of the increased com-

petition for residences on the overall quantity of space provided. Note that we exclude
cross-price elasticities between policy-unconstrained buildings, as well as higher-order
effects on all constrained plots. To the extent that these are negative, our estimates are a
lower bound on the result. For more details, see Appendix J.

Table 6 presents our results. We find that the RC Logit and RC Nested Logit yield
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Table 5: Estimation Results: Four NYC Boroughs

Manhattan The Bronx Brooklyn Queens
(1) (2) (3) (4) (5) (6) (7) (8)

RCL RCNL RCL RCNL RCL RCNL RCL RCNL
Full Sample

Mean "j -3.67 -3.41 -5.10 -4.67 -4.40 -4.08 -3.49 -3.28
Median "j -3.76 -3.54 -5.17 -4.75 -4.50 -4.17 -3.54 -3.33
Mean Lernerj 28% 30% 20% 21% 23% 25% 29% 31%
Median Lernerj 27% 28% 19% 21% 22% 24% 29% 30%
Percent "j < −1 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9%
N 9,484 9,484 7,128 7,128 26,136 26,136 10,573 10,573

Policy-Unconstrained Sample
Mean "j -3.75 -3.32 -4.94 -4.60 -4.27 -3.98 -3.51 -3.32
Median "j -3.77 -3.36 -4.99 -4.67 -4.39 -4.07 -3.55 -3.36
Mean Lernerj 27% 30% 20% 22% 24% 25% 29% 26%
Median Lernerj 27% 30% 20% 21% 23% 25% 28% 25%
N 566 566 408 408 3,457 3,457 784 784

New, Policy-Unconstrained Sample
Mean "j -3.54 -3.35 -4.80 -4.44 -4.01 -3.78 -3.54 -3.35
Median "j -3.58 -3.38 -4.92 -4.59 -4.05 -3.78 -3.58 -3.38
Mean Lernerj 28% 30% 21% 23% 26% 27% 28% 30%
Median Lernerj 28% 30% 20% 22% 25% 26% 28% 30%
N 53 53 32 32 261 261 159 159

Note: The table presents results for the Random Coefficient Logit (RC Logit, RCL) and Random Coefficient Nested Logit (RC Nested
Logit, RCNL) estimations using Manhattan, the Bronx, Queens, and Brooklyn as four separate markets. Both models include random
coefficients are on a constant, age, log distance to CBD, log distance to nearest subway, avgerage unit square feet, and building controls
described in the text. The RCL model uses Census Tract fixed effects (FEs) and the RCNL uses NYC NTA FEs and additional location
controls described in the text. Both models use “Quadratic Differentiation Instruments” based on Gandhi and Houde (2018), as
described in Section 6.2. Both models are estimated using Two-Step Efficient GMM due to computation constraints. "j is the own-price
elasticity and the Lerner index is −1�"j . Sample definitions follow, by borough, those in Table 3; buildings are ‘unconstrained’ if not
rent stabilized and not zoning-constrained; new buildings were built after 2000.
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roughly similar results in aggregate. A 1% loosening of zoning constraints for rival
buildings leads to a mean markup decrease of $7.41 and $6.72 per unit for the RCL and
RCNL models, respectively, on unconstrained buildings. These are over 10% of the first-
order price effects on the directly-impacted units. We find small mean elasticities of −0.017
and −0.012, respectively. Loosening the zoning constraints by 1% would yield a direct
increase of about 417 households and the spillover effects from increased competition
would add 19 and 5 additional households through lower rents for the the RCL and RCNL
models, respectively—a 0.16% and 0.04% increase at the unconstrained plots.

Table 6: Spillover Effects from Up-Zoning Manhattan Buildings

RCL RCNL

Direct Price Effect of Looser Zoning: E �drcf
k
� -$59.64 -$58.55

Spillover Markup Effect of Looser Zoning: E �drcf
j
�dmcj=0� -$7.41 -$6.72

Implied Spillover Zoning Elasticity: E �drcfj
rj
�dDcf

k
Dk
� -0.017 -0.012

Net Increase in Households
Direct and Spillover 436 421
Spillover Only 19 5

Note: The table reports the effects of up-zoning zoning constrained buildings that are not rent stabilized by a marginal amount;
i.e., a 1% increase in allowable quantity, which corresponds to a total addition of 417 whole units. Results are presented
separately for the Random Coefficient Logit (RCL) and Random Coefficient Nested Logit (RCNL) models described in the
text. E �drcfk � is the first-order average annual price effect on buildings k in the set Z of 3,226 directly impacted buildings.
E �drcfj �dmcj=0� is the average effect on annual rents on the zoning unconstrained buildings j in the set U of 566 non-zoning
constrained, non-rent regulated buildings, assuming constant marginal costs. This number does not include cross-price effects
between buildings j ∈ U or other higher order effects. The implied spillover elasticity is the average percent change in annual
rents at buildings j ∈ U given a 1% increase in maximum quantity allowed at buildings k ∈ Z . For more details, see Appendix J.

Altogether, we interpret these results as additional rationales for easing residential
zoning restrictions. Without monopoly power, only changes in marginal cost would affect
rent. The price effect we calculate represents additional downward pressure on rents that
arises purely through the monopoly forces in the model. In addition, these results imply
that at least part of the large equilibrium markups on unconstrained parcels we find in our
estimation may be a result of spillovers from (the numerous) zoning-constrained parcels.

9 Conclusion

While previous housing and urban literatures have considered the scope for monopoly
power, we believe we are the first to quantify its importance in urban rental markets,
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finding that its scope appears economically significant and policy relevant. We find that
a 10% increase in Census tract level ownership concentration correlates to roughly a 1%
increase in building rents, and that in Manhattan markups account for 30% of rents.

Second, we explore the link between monopoly pricing and urban policies, specifi-
cally zoning constraints. We show the theoretical link between zoning constraints and
monopoly markups and quantify the relationship in our estimation, finding modest but
appreciable spillover effects.

Lastly, we caution that an important aspect of the residential real estate market beyond
the scope of this paper is the decision of landowners to enter and exit the market. We
have highlighted the existence of monopoly pricing power and the complex interaction
between that and urban policies. However, monopoly profits from renting, and thus
urban policies affecting those profits, impact entry and exit decisions. Policies which
impact those markups will likely impact the size of the rental market.
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A Propositions 1 and 2

A.1 Proposition 1

Binding zoning restrictions, by reducing quantities at a plot k, increase rents at that plot.
The rest of Proposition 1 will follow as long as plots, as competing products, are strategic
complements in pricing decisions.

Definition A.1. Strategic Complements: If the cross derivative of a given player’s own
payoff function with respect to her action and that a rival’s action is positive, then the
actions are strategic complements.

In our Bertrand oligopoly setting, rents are strategic complements if

@2⇡j

@rj@rk
= @ [@Dj�@rj]

@rk
⋅ (rj −Cj(Dj)) + @Dj

@rj
⋅ �−@Cj

@Dj

@Dj

@rk
� + @Dj

@rk
≥ 0. (21)

Denote the derivative of marginal cost as @Cj

@Dj
∶= cj . When we apply Logit demand

functions, this becomes:

@2⇡j

@rj@rk
= −↵2

DjDk(1 − 2Dj)(rj −Cj) − cj↵Dj(1 −Dj) − ↵DjDk (22)

= −↵DjDk�������������������������������
>0

����������
Dj(1 −Dj)�����������������������������������
>0

+ (−cj↵Dj(1 −Dj))�������������������������������������������������������������������������������������������������������
>0 if cj>0

����������
. (23)

Note, we use the equilibrium relationship that (rj −Cj) = −rj�"j .
Thus, generally the strategic nature of pricing decisions is ambiguous. A sufficient con-

dition for strategic complements in the logit case is that cj ≥ 0∀j. This is true with constant
marginal costs or diseconomies of scale for the building. With decreasing marginal costs,
the strategic complementary of pricing decisions is ambiguous and may vary between
pairs of buildings.

If marginal cost is constant, then the rent increase could only be due to an increase in
monopoly markups. With variable marginal cost, this the degree that the markup changes
is ambiguous. Decreasing marginal costs would push the landowner to expand quantity
supplied and travel further down the demand curve, which may lead to a smaller markup
per unit but greater profit (and lower rent). On the other hand, increasing marginal costs
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attenuate the landowner’s desire to expand keeping the landowner in a steeper part of the
demand curve but with greater marginal costs eating into the markup.

If long as marginal cost is ‘locally constant’ in equilibrium (i.e., its change is ‘small
enough’), then we can say buildings are strategic complements in the logit case. Given
strategic complements of price strategies, an increase in zoning constrained building k’s
rent will increase demand for unzoned building j, and increases the price at j accordingly.

If there is sorting; e.g., preference heterogeneity for building attributes, then the rela-
tionship is again theoretically ambiguous even with constant marginal cost. Within our
Manhattan data, we explore this empirically in Section 8.

A.2 Proposition 2

A more detailed proof of Proposition 2 follows. First, we prove that when an landlord’s
parcel ownership concentration increases, the landlord increases the prices at all proper-
ties. We apply the framework of Nocke and Schutz (2018b) and Nocke and Schutz (2018a)
to calculate the price effect by utilizing the ◆-markup of the landlord. The authors use a
nested-logit model, but we simplify the result removing the nesting structure.40

We wish to show that in the logit case with non-decreasing marginal cost, @rj
@sf
> 0, ∀ j ∈

f , which proves the proposition. Below, we show this in the two product for intuition and
then in the general case with arbitrary number of products.

A.3 Oligopolist Pricing Equation

First, we show that landowner f chooses a common markup (Nocke and Schutz, 2018a,b).
Let each landlord solves the following joint-profit equation:

max
{rj}j∈f

�
j∈f

rjDj −Cj(Dj). (24)

Following the insight from Nocke and Schutz (2018b), the first order for each property
satisfies:

�rj − @Cj

@Dj

� = −1
↵
+ ⇡f = −1

↵(1 − sf) . (25)

40These results also remove individual heterogeneity in renter preferences in order to take advantage of
the IIA property.
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We can rearrange 25 to solve for rent:

rj = @Cj

@Dj

− 1

↵(1 − sf) > 0, (26)

where marginal cost is positive to yield an upward sloping supply curve. Denote marginal
cost as @Cj

@Dj
= cj . We will assume that its derivative is positive: c̃j ∶= @c`

@D`
≥ 0, ∀` ∈ J .41

A.4 Two Product Case

Recall again that under logit demand:

@Dj

@rj
= ↵Dj(1 −Dj) < 0 (27)

@Dk

@rj
= −↵DjDk > 0 (28)

Price Effects:

rj = −1
↵(1 − sf) + cj(Dj) (29)

�⇒ @rj

@sf
= −1
↵(1 − sf)2 +

@cj

@Dj

�@Dj

@rj

@rj

@sf
+ @Dj

@rj

@rk

@sf
� (30)

by symmetry

@rj

@sf
=

−1
↵(1−sf )2

+ @cj

@Dj

@Dj

@rk

������
−1

↵(1−sf )2 +
@ck
@Dk

@Dk
@rj

@rj
@sf

�1−
@ck
@Dk

@Dk
@rk
�

������
�1 − @cj

@Dj

@Dj

@rj
� (31)

= −1
↵(1 − sf)2

�������
1 − @ck

@Dk

@Dk
@rk
+ @cj

@Dj

@Dj

@rk

�1 − @ck
@Dk

@Dk
@rk
� �1 − @cj

@Dj

@Dj

@rj
� − � @cj

@Dj

@Dj

@rk
�� @ck

@Dk

@Dk
@rj
�
�������

(32)

imposing Logit

= −1
↵(1 − sf)2

������
1 − @ck

@Dk

@Dk
@rk
+ @cj

@Dj

@Dj

@rk

1 − @ck
@Dk

@Dk
@rk
− @cj

@Dj

@Dj

@rj
− @cj

@Dj

@ck
@Dk

@Dk
@rj

↵(1 − sf)
������ > 0 (33)

41A micro-foundation is that the residential space production function is concave in inputs which implies
that the cost function in convex in quantity; hence, marginal cost is non-decreasing in quantity.
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A.5 General Product Case

Note that we have the following:

[ri] = [�(sf) ⋅ 1f ] + [ci(Di)] (34)
Dsf

r = [�′(sf) ⋅ 1f ] +DDc ⋅DrD ⋅Dsf
r (35)

�⇒ Dsf
r ⋅ [I −DDc ⋅DrD] = [�′(sf) ⋅ 1f ] (36)

�⇒ Dsf
r = [I −DDc ⋅DrD]¬1 ⋅ [�′(sf) ⋅ 1f ] (37)

A.5.1 Definitions and Lemmas

Definition A.2. Strictly (Row) Diagonally Dominant : for every row, i, the element along
the diagonal, aii, is greater in magnitude than the sum of the magnitudes of each non-
diagonal element in the row ai,j, j ≠ i. That is, �ai,i� > ∑

j≠i

�ai,j �.
Definition A.3. Z-matrix : a matrix whose off-diagonal entries are less than or equal to
zero.

Definition A.4. M-matrix : a Z-matrix where every real eigenvalue of A is positive.

Lemma 1. If A is a Z-matrix that is strictly diagonally dominant, then A is an M-matrix by
Gershgorin Circle Theorem.

Lemma 2. If A is an M-matrix with positive diagonals and negative off diagonals, then B = A¬1 is
monotone positive; i.e., bij > 0, ∀ i, j; proof in Fan 1958.

A.5.2 General Case Proof

We need to show that the lemma holds and that the vector B ⋅�′(s) is a monotone positive
vector. Let [I −DDc ⋅DrD] = A.
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First, see that A is (a) a Z-matrix that is (b) Strictly (Row) Diagonally Dominant :

(a) for each row, using logit demand, we have
ai,i = 1 − c̃i↵Di(1 −Di) > 0 (38)
ai,j = c̃i↵DiDj < 0 (39)
(b) plug into definition of (row) diagonally dominant
�⇒ 1 + c̃i�↵�Di(1 −Di) > �

j∈f�i

c̃i�↵�DiDj = c̃i�↵�Di �
j∈f�i

Dj (40)

�⇒ 1 + c̃i�↵�Di > c̃i�↵�Di ⋅ sf . (41)

Thus A satisfies lemma 2, so B is a monotone positive matrix.
Second, �′(sf) = d

dsf
−1

↵(1−sf )
= −1
↵(1−sf )2

> 0.
Thus as B ⋅ �′(sf) is a series of multiplication and addition of positive numbers, so Dsf

r

must be a monotone positive vector.

B Separate Developer and Landlord Decisions

The standard assumption in the urban literature is that a competitive construction sector
purchases land to produce urban space that is then put on the rental market (or sold to
initial owners). We have modeled the choice environment as landowners producing the
urban space they provide to the rental market. In this section, we show that under the
assumption of competitive construction and the existence of owners of differentiated land
that our model leads to the same allocation. This implies that the standard assumptions
imply that urban space is constrained. We show this in the horizontal sorting case.

Consider a developer who as already purchased land from a land-owner and must now
decide how much urban space to provide to the rental market. The construction firms are
price takers in factors and space, but can make a quantity choice. We consider the dual
builder’s problem of maximizing location conditional profit or minimizing costs subject
to a level of demand by choosing labor and capital:

max
k,h

{r ⋅ qj(k, h) − ik −wh} ⇐⇒ min
k,h

{ik +wh s.t. qj(k, h) = dj(r)}
Given that these are dual problems, they each yield the same solution. Let’s consider
the cost minimization problem’s solution of a building cost Bj(r, dj(r)). With free entry,
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⇡j = r ⋅ dj(r) −Bj(r, dj(r)) ≥ 0. This provides the builder’s solution if the builder buys the
right to develop location j ∈ J . The builder will develop a plan for each j ∈ J and seeks to
purchase land from land-owners.

Now, we must consider how land-owners set the price of land, rj . Clearly, rj = ⇡j ,
else another developer would bid up the price. This creates an open bid auction for each
location, so the land price must also be bid up to the highest potential location profit,
which is the monopoly location profit. Suppose a builder decides to set rent at cost and
provide enough space to clear the market, then this builder must bid ⇡ce = 0. Another
builder decides to reduce space and increase rent to clear the market, and so bids ⇡m > 0.
The land-owner will choose the second bidder.

Here, free entry into the construction sector creates the incentives to engage in mo-
nopolistic behavior in the rental market when there is downward sloping demand. If
urban space was viewed as homogeneous by renters, then developers would not be able
to adjust market rents and space and make profits since all renters would have the same
willingness to pay.

C BLP Inversion Step

For intuition, if we omit the random coefficients, then the model becomes a standard logit
specification using grouped data. Berry (1994) shows that the mean utility can be solved
for in closed form as:

ln[sj] − ln[s0] = �j +Xj� + ↵rj. (42)

One can use a linear 2SLS specification to estimate {↵,�}.
With random coefficients, the above does not work. However, BLP show that the

following is a contraction mapping algorithm guaranteed to converge:

µ
r+1
j
= µr

j
+ �ln[sj] − ln[Dj(µr

j
; ✓)]� ,∀j. (43)

When �µr+1
j
− µr

j
�∞ ≈ 0 the algorithm has converged.42 For the nested logit case, Grigolon

and Verboven (2014) show that the following modification is also a contraction mapping
and necessary:

µ
r+1
j
= µr

j
+ �ln[sj] − (1 − ⇢) ln[Dj(µr

j
; ✓)]� ,∀j. (44)

42We use a tolerance of 10−12, and we always start the algorithm with the linear specification mean value.
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Once µ is recovered, then we can use the model’s moment conditions to estimate
{�,↵,�}.

D Detailed Construction of Samples

Here, we discuss the exact steps in sample construction. Recall, the samples we use in the
paper are as following:

• 2008-2015 NYC: Ownership matched, unconstrained;
• 2010 Manhattan: IV, Estimation, Unconstrained, New Unconstrained.

D.1 2008-2015 NYC

We begin with all buildings in NYC, and then drop buildings based on:
1. missing location information, plots that are under construction, vacant, or are parks;
2. residential area is zero, there are zero residential units, or market values equal zero;
3. plots where the building is not classified as a private rental building (i.e., we drop

owner occupied single family residences, condominium and cooperative buildings,
100% publicly owned buildings, any remaining commercially classified buildings,
buildings designated as land-marks);

4. missing building characteristic information;
5. building has less than four units.

Next, we link this sample to the MDRC files that link reported building owners to share-
holders using the BBL building identifiers. We then test if the reported building owner
name matched the MDRC owner name (the owning entity, not shareholders) using a fuzzy
string matching algorithm. This results in a match rate of roughly 80% for each year. We
drop buildings that do not match.43 Using this matched group, we then calculate HHI
and leave-out HHI measures.
Finally, we arrive at our HHI Estimation sample by dropping buildings that

1. have over 10% of units rent stabilized;
2. are zoning constrained;
3. are mixed-use.

43We believe matching failures happen primarily for two reasons. First, there does not seem to be
oversight of the ownership registrations so misspellings are common. Second, the MDRC is a snap-shot
that does not save information across years or transactions, so it is possible that a building owner changes
and it is not recorded when we have access to the files.
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This yields the same that is in Table 2.
In Table A1 we present summary statistics for the HHI data.

Table A1: Summary Stats:
2008-2015 NYC Unconstrained Rental Buildings

Bronx Brooklyn Manhattan Queens

Tract Level
HHIg,t 0.24 0.21 0.22 0.33

Building Level
Owner Share in Tract 11% 5% 8% 3%

Leave-Out HHI in Tract 0.13 0.07 0.11 0.06
Median Monthly Rent $1,046 $961 $1,813 $925

Median Rent by Median Income 25% 23% 43% 22%
Median Monthly Land Value per Unit $205 $250 $2,270 $222

Res.Units per Building 33.5 15.5 25.9 11.4
Years Since Construction 81 83 88 72
Years Since Renovation 46 65 36 69

log(Distance CBD) 2.36 1.41 1.53 1.75
log(Distance Subway) -1.53 -1.69 -1.95 -1.60

Avg Unit Sqft 1004 954 1,031 901
Buildings 1,792 7,621 2,531 1,773

Note: Building data from PLUTO, NPV, FAR, MDRC files. Census tract HHI defined using shares in equation 9. Owner share in tract is building level average.
Leave-out building HHI defined using adjusted shares in equation 10. All dollar values nominal, 2008-2015. Median income in 2010 for NYC is $ 50,711, used for all
years. Building data from PLUTO, NPV, and FAR files. Monthly rental income is building income divided by total units divided by 12. Median income in 2010 for
NYC is $ 50,711. Monthly land value per unit is [Land Value / (12 x Residential Units)]. Years since construction and renovation equal 2010 minus the construction
year and most recent major renovation year. Geodesic distances are in log miles based on building (lat,lon) coordinates. Avg Unit Sqft is total building area divided
by total units.

D.2 2010 Manhattan

We begin with all buildings in Manhattan, and then drop buildings based on:
1. missing location information, plots that are under construction, vacant, or are parks;
2. residential area is zero, there are zero residential units, or market values equal zero;
3. plots where the building is not classified as a private rental building (i.e., we drop

owner occupied single family residences, condominium and cooperative buildings,
100% publicly owned buildings, any remaining commercially classified buildings,
buildings designated as land-marks);

4. missing building characteristic information;
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5. building has less than four units.
To arrive at the estimation sample, we drop buildings where

1. there is positive commercial building area;
2. the census tracts has fewer than 3 remaining buildings;

This set of buildings constitutes the estimation sample on which we estimate the model.
We drop buildings with commercial area – mixed use buildings – because we cannot be
sure that we area measuring average residential rents as we cannot separate commercial
and tenant income sources. As noted earlier, this is not the same as treating these buildings
as outside goods for the model. Utility parameters are identified under the assumption
that the parameters do not depend on whether the building has commercial space.44
We arrive at the 2010 Unconstrained Manhattan samples by dropping buildings that

1. have over 10% of units rent stabilized;
2. are zoning constrained;
3. are mixed-use.

Finally, the 2010 New Unconstrained Manhattan / NYC sample subsets this by dropping
buildings built before 2000. Summary statistics for the 2010 Manhattan samples are in
Table 1.

D.3 Spatial Distribution of Single Use, Zoning Constrained, & Rent
Control

In Figures A.1 and A.2, we plot the spatial distribution of building use status, zoning
constrained status, and rent control status. We define a building as being mixed use if
we observe positive commercial space in the building; else, single use. Commercial space
includes retail space, office space, or (for a minority of buildings) industrial space. For
mixed use buildings, we cannot differentiate commercial versus residential sources of
building income.

For figure A.2, a building is considered zoning constrained if the landlord could not
legally add another unit at the minimum legally allowed area without affecting existing
building units. Within our data we able to observe that whether a building’s Floor Area
Ration (FARj) is below its maximum allowable FAR (MaxFARj). A building can be below
its MaxFAR but still zoning constrained if (MaxFARj) − FARj) is less than the minimum
allowable unit FAR, meaning a landlord cannot legally add an additional unit. Thus, a

44Unreported monte carlo tests show that under the assumptions of the model, parameters remain
unbiased. At worst, we believe the model is less efficiently estimated due to smaller samples.
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Figure A.1: Distribution of Building Use in Manhattan

0.00 0.25 0.50 0.75 1.00
% Single Use

Source: NYC Planning, Watson & Ziv (2019)

Note: Census tract percent of building that are mixed-use, defined as whether there is positive commercial building space. 2010
Manhattan residential buildings with 4+ units. Data from PLUTO, FAR for Manhattan 2010.

building is zoning constrained if (1) (MaxFARj) − FARj) ≤ 0 or (2) (MaxFARj) − FARj) ≤
(Legal Min Unit FAR). We find that while 80% of rental buildings are zoning constrained
only 30% are constrained due to (1).45 This potentially implies that developers incorporate
zoning constraints, which if binding would limit revenues, by building larger units that
may attract higher income renters.

Finally, in figure A.2, we plot the spatial distribution of rent controlled buildings. We
define rent controlled status by whether a building is on the 2012 NYC Department of
Homes and Community Building Registration File. A building is on this list if the building
has at least one unit that is rent controlled or rent stabilized. Being rent controlled implies
that a landlord is not in complete control of unit pricing, so to some extent the landlord is
constrained.

45For single-use buildings this is 81.7% and 34.2% and for mixed-use buildings this is 79.2% and 25.8%,
respectively.
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Figure A.2: Distribution of Zoning Constraints and Rent Stabilization in Manhattan

(a) Zoning Constraints

0.00 0.25 0.50 0.75 1.00
% Zoning Constrained

Source: NYC Planning, Watson & Ziv (2019)

(b) Rent Stabilization

0.00 0.25 0.50 0.75 1.00
% Rent Controlled

Source: NYC Planning, Watson & Ziv (2019)

Note: Panel (a) plots by Census tract the percent of buildings that are zoning constrained. Panel (b) plots, by Census tract, the percent
of buildings that are rent stabilized. The data is 2010 Manhattan residential buildings with 4+ units. Zoning constrained is defined as
building being legally not allowed to add one minimum size residential unit based on floor-area-ratios. A building is rent stabilized if
more than 10% of building units are rent stabilized.

E HHI and Ownership Matching

E.1 Ownership Matching

Here we describe how we match buildings to owner groups. This procedure is necessary
because a large portion of reported rental building owners are a corporate entity that is
itself owned a holding company.46 Thus the reported ownership structure underestimates
the degree of common ownership. The NYC Department of Housing Preservation and
Development (HPD) requires that building owners register each building with multiple
dwellings (or inhabited by non-family members) and compiles this registration list to
create the Multiple Dwelling Registry and Contacts (MDRC). Importantly, the MDRC
assigns a unique ID to each building-owner pair and for each owner lists the names of
the main shareholders of the corporate owner or partnership. Building owners must re-
register annually so the list updates annually. Thus we have a list of buildings with their

46We speak loosely with the terms ’corporate entity’ and ’holding company’; some building owners are
literally a corporation while others are limited liability companies, sole proprietorship, partnerships, or
cooperatives.
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corporate owner names and shareholder names.47
However, we face two data challenges in matching buildings to owners using the

MDRC. First, we only have MDRC lists for three years: 2012, 2015, and 2020. Second, the
MDRC does not link buildings by common owners. We deal with each in turn.

To create a building owner panel, we append the three MDRC annual files together
and ‘back-fill’ the ownership from MDRC information for missing years. That is, if we
observe a building-owner pair for year 2020, then we assume the owner is the same from
2020, 2019, 2018, and so on.48 We then merge this with our DOF/PLUTO building year
panel of rental buildings. Finally, we use a text matching procedure to ensure that the
reported building corporate owner matches the MDRC corporate owner name.49 Table
A2 reports the match rate for the main four boroughs by year used in the rent sample.

Table A2: Match Rate Across Boroughs

BK BX MN QN

2008 0.79 0.82 0.81 0.80
2009 0.80 0.83 0.83 0.81
2010 0.83 0.86 0.86 0.84
2011 0.83 0.87 0.87 0.84
2012 0.84 0.89 0.87 0.85
2013 0.85 0.88 0.87 0.85
2014 0.84 0.89 0.87 0.84
2015 0.84 0.88 0.87 0.84

Note: 2008-2015 NYC residential buildings with
4+ units. Data from DOF, PLUTO, MDRC
files. Match rate between reported owner from
PLUTO & FAR and MDRC owner name.

To find all buildings that have common shareholders, we again perform a text matching
procedure. We perform this procedure for each tract-year pair in the four main boroughs
of NYC for three sets of shareholder names. The first is matching the primary shareholder,
the second is matching the primary and secondary shareholders, and the third is matching
across all shareholders. Using only the first shareholder name is the most conservative

47We arrange the shareholder names based on frequency. For example, if name A is associated with 5
buildings and name B with 4 buildings, then for any set of buildings with both names {A,B}we designate
name A as the primary name.

48We find that the 2015 file matches better to years 2016 and 2017 than back-filling the 2020 file, so we
extend the 2015 file two years as well as back fill 2014 and 2013.

49We use the Stata command matchitwith a threshold of 0.5.
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measure of common ownership and is the one with the least expected errors.50 For any
building that does not match to the MDRC, we use the reported ownername (usually a
corporate entity) and require an exact string match within the tract-year.51

To get a sense of the scale of the issue. For Manhattan rental buildings, we find that the
average number of distinct owner groups (‘landlords’) in a tract-year are 48.6 using the
reported ownership structure and 34.8 using the MDRC matched ownership structure.
For the same set of buildings, we find that within a census tract the average landlord owns
3 buildings when we use the reported ownership structure and 4.3 buildings when we
use the MDRC matched ownership structure Table A3 reports these values by year for
Manhattan and the other three major boroughs.

Table A3: Difference Between Reported and MDRCC Common Ownership

Manhattan Brooklyn, Bronx, Queens
Distinct Owners Avg Bld per Owner Distinct Owners Avg Bld per Owner

MDRC Reported MDRC Reported MDRC Reported MDRC Reported

2008 34.2 46.9 4.3 3.0 20.9 24.4 2.5 2.1
2009 34.6 47.8 4.3 3.1 21.1 24.7 2.5 2.1
2010 34.8 48.1 4.2 3.1 21.3 25 2.5 2.1
2011 35.0 48.5 4.3 3.0 21.5 25.2 2.5 2.1
2012 35.3 49.2 4.3 3.0 21.6 25.4 2.5 2.1
2013 35.3 49.4 4.4 3.0 21.8 25.6 2.5 2.1
2014 34.7 49.4 4.3 3.0 21.6 25.7 2.5 2.1
2015 34.8 49.4 4.2 3 21.6 25.7 2.5 2.1

Note: 2008-2015 NYC residential buildings with 4+ units. Data from DOF, PLUTO, MDRC files. Comparison between reported owners in
PLUTO & FAR versus MDRC files. Owners matched within tract-years.

E.2 Additional HHI Results

In this section, we probe robustness to our results in Section 5 using two alternative
specifications. First, we replace the leave-one-out HHI variable HHIf(j),g,t, which calcu-
lates for each building, the concentration index at the tract level excluding the building’s
landowner’s own buildings, with the tract-level variableHHIg,t, which more simply calcu-

50We again use the Stata command matchit but increase the match threshold to 0.55 for primary name
matching and to 0.6 for the multi-name matching. As the length of a string increases, the fuzzy text matching
procedure is more likely to find false-positive matches.

51We use an exact matching because our fuzzy string matching procedure cannot tell the difference
between corporate names of the form 555 Street LLC and 554 Street LLC.
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Table A4: The Relationship Between Aggregate Ownership Concentration and Prices

(1) (2) (3) (4) (5) (6)
ln[Average r

j,g,t
]

Panel (A): Manhattan
ln[HHIg,t] -0.012 0.161 0.075 0.009 0.162 0.075

(0.032) (0.080) (0.076) (0.038) (0.076) (0.076)

ln[sf(j)
g,t
] -0.028 0.002 -0.013

(0.026) (0.025) (0.027)
Year FEs Y Y Y Y Y Y
Tract FEs N Y N N Y N
Building FEs N N Y N N Y
Observations 2,519 2,504 2,393 2,519 2,504 2,393
R2 0.29 0.63 0.75 0.29 0.63 0.75

Panel (B): Bronx, Brooklyn, Manhattan, Queens
ln[HHIg,t] 0.053 0.092 0.076 0.047 0.094 0.079

(0.016) (0.076) (0.039) (0.019) (0.076) (0.039)

ln[sf(j)
g,t
] 0.007 -0.005 -0.038

(0.014) (0.013) (0.014)
Borough-year FEs Y N N Y N N
Tract and year FEs N Y N N Y N
Building and year FEs N N Y N N Y
Observations 13,669 13,592 12,758 13,669 13,592 12,758
R2 0.4 0.64 0.77 0.40 0.64 0.77

Note: The table replicates the results of Table 2 using tract-level HHI measures HHIg,t, instead of the leave-one-out HHI, HHIf(j),g,t.
Otherwise, controls and specifications match Table 2. Standard errors clustered two ways by Census tract and year.

lates the total tract-level concentration. Results are largely similar to our main specification,
although the point estimates are slightly attenuated.

Second, we explore an alternative specification where price-per-square-foot rather than
total rent is the building-level outcome variable. Accordingly, in this specification, total
square feet is no longer a control. Results are broadly slimiar to our main specification.
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Table A5: The Relationship Between Ownership Concentration and Price per Square Foot

(1) (2) (3) (4) (5) (6)
ln[(Building r

j,g,t
)�(Building Square Feet) ]

Panel (A): Manhattan
ln[HHIf(j),g,t] -0.049 0.210 0.130 -0.012 0.206 0.158

(0.038) (0.097) (0.094) (0.050) (0.094) (0.098)

ln[sf(j)
g,t
] -0.046 -0.006 -0.015

(0.033) (0.025) (0.037)
Year FEs Y Y Y Y Y Y
Tract FEs N Y N N Y N
Building FEs N N Y N N Y
Observations 2,517 2,502 2,392 2,517 2,502 2,392
R2 0.27 0.65 0.74 0.28 0.65 0.75

Panel (B): Bronx, Brooklyn, Manhattan, Queens
ln[HHIf(j),g,t] 0.035 0.163 0.139 0.036 0.164 0.133

(0.023) (0.072) (0.050) (0.023) (0.069) (0.050)

ln[sf(j)
g,t
] -0.002 0.001 -0.035

(0.017) (0.014) (0.018)
Borough-year FEs Y N N Y N N
Tract and year FEs N Y N N Y N
Building and year FEs N N Y N N Y
Observations 13,646 13,572 12,738 13,646 13,572 12,738
R2 0.28 0.59 0.72 0.28 0.59 0.73

Note: The table replicates the results of Table 2 using rent per square foot as the dependent variable and omitting the total square foot
variable as a control. Otherwise, controls and specifications match Table 2. Standard errors clustered two ways by Census tract and
year.

F Detailed Construction of Average Building Rent

Recovering building average unit rents is a key feature of this analysis that relies on three
facts. First, by law, the DOF assesses rental buildings based on their income generation. For
single-use, residential rental buildings, this corresponds to the rent paid to landlords. For
mixed-use rental buildings, we cannot separate the source of income between commercial
and residental tenants. This leads to our sample restriction of single-use buildings in our
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estimations.
Second, we use the web-scraped NPV data. We believe the NPV data is high quality

because it is based on communications with owners who have a financial stake in ensuring
the information is correct. However, because we rely on a third party’s efforts in web-
scraping, we must deal with the fact that the third party did not collect information on
all buildings. Primarily, the web-scraped data does not include any building with 4 or 5
units and is randomly missing others.

To remedy this, we rely on the third fact. The DOF uses building income data in
its assessment process to derive “market value” which is then used for property taxes.
Specifically, the DOF calculates market value using the following formula:

MarketValuej = GIMj ⋅Avg (Annual Rent)
j
⋅ unitsj, (45)

where the Gross Income Multiplier (GIM) is determined by the DOF based on the build-
ing’s market value per square foot and its location.

Since we observe market value for all buildings in the FAR dataset, we can use the
buildings that overlap the NPV data to backout the the function GIMj = G( MVj

SQFTj
,Units ≥

10,borough,year). We estimate the GIM function via the following:
1. For the matched set, divide market value by income to recover GIMj ;
2. Calculate market value by square feet (mvsqft);
3. By borough and year, calculate the 50-point quantiles of mvsqft;
4. By borough, year, and large building status (units ≥ 10), find the average GIMj –

Avg(GIM � B,Y,U>10);
5. For the set of buildings that are not in the matched set, calculate MVj

Avg(GIM�B,Y,U>10) = Ŷj .
We use the reported value Yj for the matched buildings and Ŷj for the unmatched build-
ings.

F.1 Additional Information

The income data is ultimately sourced from the Real Property Income and Expense (RPIE)
statements that all income generating property owners are required to file annually and
face financial penalties for not filing. Nevertheless, not all property owners will file this
report. If an owner does not file, the DOF has the right to assign a market value based on
its best judgement. In addition, the DOF documentation says that they will adjust report
amounts that seem extreme; e.g., a building reporting high costs and no income in an
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area where other buildings are report incomes above costs. Without access to the RPIE
statements, it is not possible to determine which properties have been adjusted.

The DOF Assessment Guidelines show how Income and Market Value relate to each
other and how one can be directly inferred using the other. In the table below, we describe
the DOF mapping that goes from observed income to market value: G∶Y × SqFt→M .

Table A6: Example Mapping of Market Value to Income

y GIMLow GIMHigh m Yj

[y1, y2] m1
y1

m2
y2

[m1,m2] =MVj ⋅ y2m2[y2, y3] - m3
y3

[m2,m3] =MVj ⋅ y3m3[y3, y4] - m4
y4

[m3,m4] =MVj ⋅ y4m4

Note: This table provides a simplified example of the Gross Income Multiplier
(GIM) method used by the NY DOF that we utilize to infer building income
from observed building market value. For 80% of our multi-year sample, we
observe both market value and income, which we use to estimate the GIM for the
remaining properties, as described in the main text.

F.1.1 Robustness of Calculations

We can check the robustness of our calculations by using an auxilary dataset by the DOF,
the Condo/Coop Comparable Rental Income data. By law, condominium buildings must
be valued for tax purposes as-if they were rental buildings. To accomplish this, the DOF
matches condominiums with rental properties and calculates and expected, market value
and income of the condominiums. They publish these comparisons and include the rental
building income and market value used in the comparisons. Thus, we are able to check our
results for the matched buildings. Our values are nearly identical except for inconsistent
rounding behavior on the part of the NYC DOF, typically in the owner’s favor.52

G Instrument Construction

We use “Quadratic Differentiation Instruments,” based on Gandhi and Houde (2018),
with a spatial radius, as in Bayer, McMillan, and Rueben (2004); Bayer, Ferreira, and

52For Manhattan, we are able to check against 1,883 rental buildings, and we find 83 buildings where the
absolute difference between our assigned GIM and the empirical ratio of market value to income is greater
than 0.1; this represents an error rate around 4% of buildings. Again, these errors are due to inconsistent
behavior by the NYC DOF.
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McMillan (2007). For the Nested Logit specifications, we create within nest differentiation
instruments that exclude rivals in the same Census block-group. These instruments are
meant to be an approximation to the optimal instruments in the sense of Amemiya (1977)
and Chamberlain (1987).53

The ‘true’ optimal instruments are based on the partial derivative of the structural
error term:

Z
opt = Var(�j)−1 ⋅ E �@�j@� @�j

@↵

@�j

@�
�Z � . (46)

This has exactly as many moments as parameters, so is exactly identified and no iterative
weighting matrix is necessary.

To calculate this object, one must take a stand on the conditional distribution of the
structural error, solve the Bertrand pricing problem, back out model-implied structural
errors, and then calculate the derivatives. In a major methodological advancement, Conlon
and Gortmaker (2019) describe how, given an initial set of estimates, one can calculate this
object relatively quickly for most problems. Their pyblp software automates most of these
steps with various options; however, this is not possible in our problem. Because we
do not accurately observe prices for mixed-use buildings, which is roughly half of the
choice set, we cannot credibly solve the Bertrand pricing problem.54 Even conditional on
obtaining the true parameter vector, our implied substitution between buildings will be
biased up or down based on whether commercial rents are greater or less than residential
rents in those buildings, which will bias the calculated ‘optimal instrument.’

Nevertheless, Gandhi and Houde (2018) show that the optimal instruments can be
approximated, in any dataset, by symmetric functions of the differences in building level
covariates without needing to solve the Bertrand pricing problem. Their results formalize
the intuition of the more traditional “BLP Instruments” that mark-ups are shifted by
utilizing the ‘product-space-distance’ between products, where more isolated products
as more immune to price shocks. However, there are still many choices of potential finite
basis functions that can be used.

The authors suggest two ‘flavors’ for practitioners. First, they propose “Quadratic

53Somewhat more formally they are a finite-order basis-function approximation to the optimal instru-
ments.

54In addition, with rent control and zoning constraints, we would need to solve a constrained Bertrand
pricing problem, which is not coded in pyblp.
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Differentiation Instruments” (DQ):

Z
DQ
hj
= �

k∈{K(j)}

(xhk − xhj)2, (47)

where K(j) is a set of rivals for plot j. This is the set that we use in the main text.
Second, they propose “Local Differentiation Instruments”:

Z
DL
hj
= �

k∈{K(j)}

1 [ �xhk − xhj � < sd(Xh) ] , (48)

where sd(Xh) is the empirical standard deviation of variableXh. In unreported results, we
find that these instruments have less strength relative to the DQ instruments; although,
they do still find elastic results. These results are available upon request.

To deal with endogeneity of prices (or any covariate), the authors recommend using
a predicted price using plausibly exogenous variation, such as the following additional
example:

Z
DQ
r,j
= �

k∈{K(j)}

(E[rk �X,W ] − E[rj �X,W ])2 , (49)

where E[rk �X = xk,W = wk] is from a first stage regression on all exogenous information,
(X,W ), where W are any variables excluded from the utility function.55

G.1 BLP-F Statistic

To assess the validity and ability of our instruments in identifying demand parameters, we
report the ‘first stage’ statistics of our instruments, as advised in Armstrong (2016). We
report a robust first stage F statistic of the linear regression of building rents on the model
controls and instruments and the BLP-F statistic as devised in Armstrong (2014).

The robust F statistic has the virtue that it is robust to heteroskedasticity but cannot
discern between the cases when excluded instruments are correlated with rents but “the
researcher imposes a model that leads to product characteristics having an asymptotically
negligible effect on markups (Armstrong, 2014).” The BLP-F statistic is based on the
‘concentration parameter’ and is designed to have power in cases when the usual F statistic

55Note, Gandhi and Houde (2018) specify W as any already available instrument, which Conlon and
Gortmaker (2019) interpret to include {ZDQ

hj
}h∈H for the building X ′s. Currently, we do not use {ZDQ

hj
}h∈H

as part of W , so that X are building characteristics in the utility function and W is land value from the NYC
DOF.
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would falsely reject a null hypothesis of no identification.56
The BLP-F statistic is a post-estimation procedure calculated in five steps. First, regress

price on all model controls and instruments and then save the residual, ṙj . Second,
calculate the sample variance of the residual. Third, regress the model-implied markup,
muj = −Dj�[@Dj�@rj], and instruments on the included model controls, and save the
residuals: {ṁuj, Żj}. Fourth, regress ṁuj on Żj and save the predicted values, ˆ̇muj .
Finally, calculate the BLP-F statistic as the following, where k is the number of instruments:

FBLP ∶= Var( ˆ̇muj)
Var(ṙj) ⋅

J − k
k

. (50)

Critical values of the BLP-F statistic do not exist. However, as this is based on an standard
F statistic, one could rely on ‘rules of thumb’ in that a statistic should be greater than some
number, such as 10 or 25.

H Additional Estimation Details

To aid our estimation, we follow most modern practices in estimating demand parameters.
Many of these are based on advice found in Nevo (2000) (N), Knittel and Metaxoglou (2014)
(KM), and Conlon and Gortmaker (2020) (CG).
First, we scale all Z = (X,Z(x), Z(r)) variables by their empirical standard deviations

to put their variances on the same order of magnitude. As in Brunner et al. (2017), we find
this alleviates most model convergence issues.
Second, we use an ‘overflow safe’ method of calculating market shares which gives

some protection when a solver inadvertently uses a parameter vector that is far from the
true vector, as described in section 3.4 of CG.
Third, for the inversion step we always use the Berry (1994) logit inversion as the

starting value, we use an accelerated fixed point algorithm, called SQUAREM, as described
in section 3.2 of CG, and we use a fixed tolerance of �µs+1 −µs�∞ < 10−12. KM show a loose
or variable tolerance can cause catastrophic error propagation from the inversion step to
the GMM estimates to the gradient, which can veer the optimization algorithm far off
course.
Fourth, we use supply the analytical gradients of the GMM objective function using a

gradient based solver, as described in N and benchmarked by KM and CG. This not only

56If y =X� + u, then the concentration parameter is defined as Var(X�)�Var(u).
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speeds up computation relative to gradient-free or approximated gradients but is also
more reliable.
Finally, for technical and theoretical reasons we do not include a supply side for

the model in estimation. Our main theoretical reasons are that we do not know enough
about the marginal cost function for rental buildings nor do we wish to fully model the
zoning and rent control constraints for a landlord. Brushing theoretical concerns aside,
the analytical derivative of the supply moments effectively requires storing a J × J × J
three-dimensional matrix (where J = 9,484) in computer memory, which is not feasible
using even for many super computers. We believe the primary empirical benefit of a
supply moment would be to increase precision and ensure elastic demand. However, as
the majority of our results do not suffer from either problem – see appendix I – we do not
think the supply side is necessary for the model’s estimation.

I Additional Estimation Results

Our 2010 Manhattan demand estimation is estimated on a single cross section of data. To
probe the robustness of this, we expand the dataset to include the Bronx, Brooklyn, and
Queens.

We reinterpret the model as now having four separate markets–the boroughs–within
NYC. To do this we also now assume the outside good is composed of small building
(1-3 units) rental market. Otherwise, we use the same conceptual sample of single-use,
residential buildings to estimate demand. One computational change is that given the size
of the new demand estimation problem, we only use a two-step GMM procedure rather
than the iterated procedure in the main text.

Below we provide summary statistics for this sample as well as results. We find that
the results are almost identical for Manhattan as in the main text. However, we find that
the outer-boroughs have lower markup shares of rent.

Summary statistics for the 2010 NYC samples is in Table A7.
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Table A7: Summary Stats:
2010 NYC Rental Buildings

IV Estimation Unconstrained New Unc.

Res.Units per Building 17.9 15.3 10.4 14.1
Households per Building 17.0 14.6 9.9 13.2

Vacancy Rate 5% 5% 5% 6%
Percent Mixed-Use 13% 0% 0% 0%

Percent Rent Stabilized 46% 45% 0% 0%
Percent Zoning Constrained 76% 79% 0% 0%

Median Monthly Rent* – $1,028 $1,328 $1,637
Median Rent by Median Income* – 33% 43% 52%

Median Monthly Land Value per Unit $4,783 $4,134 $7,659 $4,260
Years Since Construction 84 82 79 3.8
Years Since Renovation 65 67 62 3.8

log(Distance CBD) 1.63 1.71 1.53 1.58
log(Distance Subway) -1.67 -1.63 -1.61 -1.59

Avg Unit Sqft 813 817 1,033 1,294
Buildings 73,145 53,321 5,215 505

Note: Building data from PLUTO, NPV, FAR, MDRC files. Households allocated based on building units and 2010 Decennial Census and American Community Survey. Median
income in 2010 at borough level from 2010 ACS. Vacancy rate is one minus the total households in building divided by total building units. A building is mixed-use if the building
has positive commercial area. A building is considered rent stabilized if more than 10% of units are rent stabilized. A building is zoning constrained if the building would not
be allowed to create an additional unit based on building floor-area-ratios and minimum unit area requirements. A building is ‘new’ if it is was built in or after 2000. Geodesic
distances are in log miles based on building (lat,lon) coordinates. Monthly land value per unit is [Land Value / (12 x Residential Units)].
(*) – Rent data is only available for single use buildings
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J Total Derivative of Monopoly Pricing Rule

The monopoly pricing rule is

r
�

j
=mcj − D(r�

j
;{r�

k
}k)

m(r�
j
;{r�

k
}k)) . (51)

Totally differentiating this function, we get
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To arrive at equation 20, we set dmcj = 0, solve 53 for drcf
j

, and then manipulate the equation
to arrive at an elasticity form.57

With preference heterogeneity – i.e., random coefficients – then the expression has
no closed form solution, but is easily calculated with our estimated parameters and
Monte Carlo integration. For intuition, if there were no individual agent heterogeneity in
preferences, then

drj = (1 −Dj)dmcj + Dj(1 −Dj) �k∈Z {Dkdrk} (54)

= (1 −Dj)dmcj + Dj(1 −Dj) AvgD(drk). (55)

Without a full model of building costs, we cannot calculate dmcj , so we cannot calculate
the true partial equilibrium change in unconstrained prices. Under the assumption of
(locally) constant marginal costs, then our measure equals the partial equilibrium change
in rental prices. Under the assumption of strictly increasing marginal costs, then dmcj < 0,
so our measure would be the lower bound of the magnitude of the rent change. Without
additional assumptions, our measure calculates the partial equilibrium change in the
monopoly mark-up of unconstrained buildings due to a zoning-shock.

57A useful equivalence is the following: @[@Dj�@rj]
@rk

rk

@Dj�@rj = @"j

@rk

rk

"j
+ @Dj

@rk

rk

Dj
.
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