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Abstract 
 
Unlike standard auctions, we show that competitive procurement may optimally limit competition 
or use inefficient allocation rules that award the project to a less efficient firm with positive 
probability. Procurement projects often involve ex post moral hazard after the competitive process 
is over. A procurement mechanism must combine an incentive scheme with the auction to guard 
against firms bidding low to win the contract and then cutting back on effort. While competition 
helps reduce the rent of efficient firms, it exacerbates the problem due to moral hazard. If 
allocative efficiency is a requirement, limiting the number of participants may be optimal. 
Alternatively, the same incentives can be optimally provided using inefficient allocation rules. 
Keywords: competitive procurement, auctions, moral hazard. 
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1 Introduction

Government agencies and private firms routinely rely on competitive procurement to

obtain goods, services, or to complete projects. The OECD estimates that its members

spend 12.1% of their GDP on public procurement.2 It has long been known that

the benefit of competitive procurement is to ensure productive efficiency and low cost

by selecting the most efficient firm and reducing information rent (see, e.g., Demsetz

(1968)). While it is particularly effective for standard items like office supplies, many

procurement projects also involve additional work after the competitive process is over.

This is the case for construction projects like highway procurement. Such expenditures

form a large part of procurement spending.3 Procurers often use incentive schemes to

improve ex post performance of selected firms. For example, in highway construction,

incentives schemes are used to motivate timely completion of projects.4 Firms must

then estimate the value of these schemes when competing for the procurement project.

Optimal incentive schemes typically require offering ex post rent to the winning firm.

However, this begs the question whether ex ante competitive procurement leaves enough

rent to ensure ex post performance by the selected firm.5

In this paper, we study how the ex ante competitive process interferes with the ex

post moral hazard problem.6 We find that competition can be a mixed blessing for

the procurer who insists on allocative efficiency. Indeed, allocative efficiency, where the

2The number is even higher for developing countries and the World Bank estimates it to be at
14.5% of the GDP for low-income countries (Djankov, Saliola and Islam (2016)).

3Expenditure on service and construction contracts often constitute a large fraction of government
procurement, accounting for 273 out of 277 billion dollars spent on the top 10 non-defense spending cat-
egories in the 2013 U.S. federal budget. http://www.govexec.com/contracting/2015/01/10-categories-
where-federal-agencies-spend-most-contracting/102498/

4See Lewis and Bajari (2011, 2014).
5There is evidence that it may not. In the U.S., the introduction of an experimental competitive

bidding program by Medicare had a negative impact on the quality of distribution service for diabetic
products (Puckrein et al. (2016)). Reporting on competitive procurement for elderly care by the U.K.
National Health Service, The Guardian newspaper notes that companies “bid low to win contracts and
then cut back on quality to meet their profit targets.” (Leys, “NHS contracting has been a disaster,”
April 22, 2014, The Guardian.)

6Surprisingly, this crucial aspect of procurement has not been received much attention in the liter-
ature. In their survey on public contracting, Armstrong and Sappington (2007) stress the importance
of unobservable quality when they discuss competitive procurement and note that relatively little work
has been done in the topic. We discuss the literature in more detail below.
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most efficient firm must be selected, is a key requirement in many procurement settings.7

Increased competition may hurt a procurer if allocative efficiency is a requirement. The

optimal mechanism features allocative efficiency with a limit on the number of bidders.

If the procurer cannot limit the number of bidders, she must give up on allocative

efficiency to neutralize the negative impact of competition by relying on a scheme that

randomly allocates the project to a less efficient firm.

There is evidence of such procedures in the U.S. and abroad. The EU Commis-

sion (2015) recommends using a “restricted procedure” with only a subset of potential

providers invited to submit tenders, “where there is a high degree of competition (sev-

eral potential tenderers) in the marketplace.” Bajari et al. (2014) found that contracts

were not allocated to the lowest bidder in nearly 4% of the California Department of

Transportation first-price auctions.8

To study the tension between ex ante rent extraction and ex post performance, we

consider a model of competitive procurement with ex post moral hazard in an optimal

auction framework (Myerson (1981)). In the initial stage, each agent or firm is asked

to report its cost of production (cost of effort in our model). Suppose that the procurer

then selects the most efficient firm based on the reports. The selected firm must then

exert costly effort to complete the project. Both effort and the cost of effort are private

information of the firm. Thus, we study a mixed model with both adverse selection and

moral hazard.

Ex post moral hazard introduces a new element that restricts the effectiveness of

competition. Both downward and upward incentive constraints can be binding: instead

of the standard problem of firms wanting to overstate cost, firms may now also want

to understate cost and shirk. While competition is known to be an effective tool to

7For instance, a key goal of the FCC is to promote efficient access to and use of the radio spectrum
(FCC Spectrum Policy Task Force, https://www.fcc.gov/sptf/files/SEWGFinalReport 1.doc). FCC
Chairman William E. Kennard (1999) notes that efficiency in the FCC spectrum auctions means that
spectrum ends up in the hands of those who value it most highly.

8Citing examples from various countries, Eun (2019) studies a Korean procurement mechanism that
has a stochastic cutoff rule to eliminate the lowest bids. With a counterfactual analysis, he also shows
that this rule lowers social cost by 7% relative to a standard first-price auction. Split award auctions
may allocate part of the project to a less efficient firm to retain future suppliers or promote ex ante
investments (Anton and Yao (1989, 1992)). In our model, we assume that the project is allocated to
one firm so split awards cannot be used to address moral hazard.
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address the problem of overstating cost, we show that it can exacerbate the problem of

understating cost while shirking.9 Because his chance of being selected decreases with

competition, a less efficient firm will have to be given a higher information rent. This

negative effect of competition can overtake its benefits if the impact of moral hazard

is strong enough. We find that high levels of competition may not be beneficial to the

principal because the benefit from rent extraction is dominated by the cost of sustaining

high ex post effort.

Limiting the number of competing firms can then be optimal for the procurer. When

that is not possible,10 we show that the procurer can effectively neutralize the negative

impact of competition with an inefficient allocation rule. That is, the procurer may not

allocate the project to the most efficient firm with probability one. We find that giving

up on allocative efficiency relaxes the incentive compatibility constraints of less efficient

firms who now have a higher chance to win the project by telling the truth. Since those

constraints are what restricts the effectiveness of competition in extracting rent, an

inefficient allocation rule can remove the negative impact of competition. Specifically,

we show that an inefficient allocation rule is optimal and it allows the principal to mimic

a mechanism with an efficient allocation rule where she can choose the number of firms.

Then, increased competition ceases to affect her payoff, and the procurer cannot reap

any further benefit from competition even with an inefficient allocation rule.11

The literature on competitive bidding for procurement contracts goes back to the

late eighties when a set of influential papers analyzed properties of incentive schemes

that governed ex post incentives of the selected firm.12 Highlighting a separation prop-

erty, they showed how standard auction formats can be used to extract rent while

providing second-best incentives at the same time. In these models, competition has no

negative effect. The driving force behind the results in these papers is adverse selection

rather than moral hazard. In Riordan-Sappington (1987), the quality is observable, so

9This is reminiscent of Hart-Schleifer-Vishny (1997), who argue that a private contractor’s incentive
to engage in cost reduction may be too strong because of the negative impact on noncontractible quality.

10For example, because it may appear as corruption.
11Thus, when competition is beneficial, we show that restricting attention to allocative efficiency is

without loss of generality.
12See, e.g., Riordan-Sappington (1987), McAfee-McMillan (1986, 1987) or Laffont-Tirole (1987).
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there is no moral hazard. While McAfee-McMillan (1987) and Laffont-Tirole (1987)

have an unobservable effort, agents are risk neutral with unlimited liability, and the

principal can deduce the effort once the agent has revealed his type. In the terminol-

ogy of Laffont-Martimort (2002), these are “false moral hazard” models, where upward

incentive constraints are not binding: high-cost firms do not want to pretend to be low

cost. An increase in competition can only benefit the principal.

Like us, McAfee-McMillan (1986) have a true mixed model with both adverse selec-

tion and moral hazard. However, they do not study the optimal contract but rather a

linear contract that balances the cost-plus contract and the fixed-price contract. The

linear cost-sharing parameter is assumed to be independent of the agent’s type. Thus,

the optimal choice of effort is independent of types, which implies that the upward

incentive constraints are not binding. Our contribution is to solve the optimal auc-

tion mechanism in a tractable mixed model, and to show that insisting on allocative

efficiency can lead to competition being harmful.13

In a recent paper, but in a contest setting with an all-pay feature, Che-Iossa-Rey

(2017) find that it may not always be optimal to allocate the project to the most

efficient firm ex post in order to provide an incentive to exert effort ex ante. Firms have

private information on implementation cost and effort comes before being selected.14

In a procurement setting, others have also highlighted allocative inefficiency in models

where quality is exogenous. In Manelli-Vincent (1995), firms have private information

about the exogenous quality they can produce, leading to a lemons problem where the

least cost agent also generates the least value to the principal. Burguet-Ganuza-Hauk

(2012) provide a related analysis where firms have private information about their

13Piccione and Tan (1996) have shown the separation property, mentioned above, may not hold
when bidders make an ex ante investment. Their focus was on the role of the R&D technology (in
particular whether it exhibits decreasing returns to scale or not) in the implementation of the project.

Kogan and Morgan (2010) compare, both theoretically and experimentally, debt and equity auctions
followed by moral hazard. They don’t study the impact of competition. They find allocative efficiency
to be optimal in both auctions.

14Taylor (1995) and Fullerton-McAfee (1999) have shown that admitting too many contestants in a
research tournament reduces the ex ante effort of each contestant because their probability of winning
becomes too low. See Bénabou-Tirole (2016) for the effect of competition on ex post incentive in a
Hotelling model. Montagnes-Van Weelden (2019) discuss the benefit of curtailing competition in the
presence of polarized bidders.
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financial status. In Chillemi-Mezzetti (2014), the winning bidder privately discovers

the value of the cost overruns during the project’s completion. All these papers find

allocative inefficiency to be optimal in models with exogenous quality or ex ante effort.

Our objective, instead, is to focus on the effect of competition in the presence of ex post

moral hazard that are observed in many private and public procurement situations.

The literature on scoring auctions is also relevant but, again, it typically assumes

that quality is observable (see, e.g., Che (1993), and Asker-Cantillon (2010)) and there

is no moral hazard. Contractual externality across agency problems also plays an im-

portant role in dynamic procurement models such as Arve and Martimort (2016). Our

paper is also related to the literature that combines adverse selection and moral hazard

(such as Picard (1987), Ollier-Thomas (2013), and Gottlieb-Moreira (2019)). Those

papers are single agent model without an optimal auction. Recently, the empirical lit-

erature has also stressed the importance of moral hazard in procurement auctions (see

for instance Lewis-Bajari (2011, 2014)).

The paper is organized as follows. We present the model in Section 2 and the

principal’s problem in Section 3. In Sections 4 and 5, we present our main results. In

Section 4, we derive the impact of competition assuming allocative efficiency. In Section

5, we derive the optimal mechanism without the restriction of allocative efficiency, and

we find conditions when an inefficient allocation rule is optimal. In Section 6, we study

the case of continuous effort and show that our key results continue to hold when the

principal can screen using different efforts for each type.

2 The Model

A principal (she) must select one of n agents (he) bidding to complete an indivisible

project. The success of the project depends on the selected agent’s effort, and agents

have different costs of effort. The selected agent privately chooses effort e ∈ {0, 1}.
With probability πe, the output is high, h, and the principal receives V > 0, while,

with probability (1 − πe), the output is low, l, and she receives zero. The output is

publicly observed. The low output may capture a variety of outcomes such as costly

delays. For example, incentive schemes based on time of completion are used in highway
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projects (Lewis-Bajari (2011, 2014)). While the time of completion is observable, it

depends on the contractor’s unobservable effort and random shocks. This corresponds

well to a moral hazard framework where contractors can put in extra effort to reduce

the chance of negative shocks (for instance, better planning and maintenance to prevent

equipment failure). We assume that 0 < π0 < π1 ≤ 1. We also assume type-independent

probabilities to focus on the effect of competition to screen the agents and extract rent.15

The cost of effort is privately known to the agent, and an agent can be one of two

types, x ∈ {g, b}.16 It is commonly known that the probability that an agent is of type

g is given by q ∈ (0, 1). With both effort and cost of effort private information of an

agent, we have a model with both moral hazard and adverse selection.

Denoting the cost of effort by ψxe , we assume the following conditions about the cost

of effort.

Condition L. (i) ψb1 > ψg1 and ψb0 > ψg0 ≥ 0, (ii) ψb1 − ψb0 > ψg1 − ψ
g
0 > 0, and (iii)

ψg1 ≥ π1
π0
ψb0.

The first condition ranks the cost of effort and determines that “g” is a good type

with a lower cost of effort. The second condition is akin to a standard single-crossing

property that the marginal cost of effort is higher for the bad type. The third condition

simplifies the exposition and captures the intensity with which ex post moral hazard

interferes with rent extraction. Specifically, it creates an incentive for a bad type to

mimic a good type by exerting low effort (e = 0). The condition L(iii) requires that

π0 > 0, which means that the agent has a chance to succeed even when supplying low

effort. The larger the π0, the more serious the moral hazard problem. We discuss the

implications of relaxing condition L after Proposition 1.

Agents are assumed to have a zero outside option, and they also have limited liability,

such that the transfers from the principal are non-negative.17 The principal’s ex post

payoff is the output net of paid transfers. The ex post payoff for an agent is the transfer

15As we will show, if the principal wants to induce high effort by both types, she would not be able
to screen agents unless there is competition.

16We show in Chakraborty, Khalil, and Lawarree (2019) that our key results continue to hold in a
model with a continuum of types.

17Limited liability makes our moral hazard problem relevant with risk neutral agents. Alternatively,
we could have assumed risk aversion without limited liability.
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from the principal net of effort cost.

When we derive the optimal procurement mechanism, we assume that agents with

identical costs of effort are treated symmetrically in terms of transfers and probability

of being selected. By the Revelation Principle (see Myerson (1981)), we can restrict

ourselves to truth-telling direct mechanisms. In the game that follows, we restrict

ourselves to symmetric Perfect Bayes-Nash equilibria. The mechanism proceeds along

the following timeline:

Stage 1. The principal announces the mechanism, for type x ∈ {g, b}:

{txl (n), txh(n), ex(n), φxr (n)} ,

where, txl , t
x
h and ex are the output-based transfers and efforts for type x, and φxr (n)

is the allocation rule, i.e., the probability of allocating the contract to a type x agent

if r agents report type g. Since the principal must allocate the contract to one of the

n agents, we have φgr(n) + φbr(n) = 1. To save on notation, we will suppress n when

presenting terms in the mechanism.

Stage 2. The agents report their types and the contract is allocated to an agent accord-

ing to the allocation rules set in stage 1.

Stage 3. The selected agent chooses the privately observable effort.

Stage 4. The output is realized and payments are made accordingly.

It is without loss of generality to (i) restrict the transfers and efforts to depend

only on an agent’s own report; (ii) assume that only the winning agent is paid in the

mechanism. The first point follows from the types being independent. In the Appendix,

we prove the second point as a preliminary claim.

The mechanism has two parts: (i) an allocation rule that selects an agent based on

the type announcements; (ii) an incentive contract that gives incentives to the selected

agent to exert effort in completing the project. In Stage 2, when one agent is selected

among the n competitors, there is adverse selection as the competing agents’ types

are unobservable. In Stage 3, there is moral hazard as the winning agent’s effort is

unobservable.

8



Allocation rule: The allocation rule pins down the probability that an agent will win

the contract upon reporting type x, which we denote by γxn. As is well known, it is

convenient to write and solve the principal’s problem in terms of γxn.
18 To see how γxn is

computed, consider the case when all agents report truthfully, and r ≥ 1 agents report

type g :

γgn =
n∑
r=1

(
n− 1

r − 1

)
qr−1 (1− q)n−r φ

g
r

r
. (1)

The probability that a good type is selected is nqγgn. For r = 0, we have φgr = 0.

For the solution (γbn, γ
g
n) to correspond to a well defined (implementable) allocation

rule (φgr , φ
b
r), it must satisfy certain conditions:19

qnγgn ≤ 1− (1− q)n (2)

(1− q)nγbn ≤ 1− qn (3)

qnγgn + (1− q)nγbn = 1. (4)

The first two conditions ensure that the probability that type x is chosen is no

greater than the probability that there is a type x. The third condition ensures that

the probability the contract is allocated at all can be no greater than one. Since we

assume that the contract must be allocated to an agent, it holds as an equality.

Allocative efficiency : As mentioned in the introduction, in many procurement settings,

allocative efficiency is a requirement. We impose the restriction that the mechanism

is allocatively efficient in Section 4 but remove it in Section 5. Allocative efficiency

requires that the principal allocates the contract to an agent who reports to be a good

type, i.e., φgr = 1 for r ≥ 1. Thus, under allocative efficiency, if all agents report

18See, e.g., Maskin and Riley (1984), or Fudenberg and Tirole (1991).
19Border (1991) proves that these conditions are also sufficient. See also Armstrong (2000).
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truthfully, we can replace φgr = 1 in (1):

γgn =
n∑
r=1

(
n− 1

r − 1

)
qr−1 (1− q)n−r 1

r

=
1

nq

n∑
r=1

n!

(n− r)!r!
qr (1− q)n−r

=
1

nq
(1− (1− q)n) (5)

and, we have

γbn =
1

n
(1− q)n−1 .

Thus, for r ≥ 1, the condition (2) is binding and (3) is slack. However, as we will

show in Section 5, an efficient allocation rule may not be optimal. We study the case

of possibly inefficient allocation rules in Section 5 by allowing for φgr ∈ [0, 1] and show

that φgr < 1 can be optimal for at least some r ≥ 1.

3 The principal’s problem

Our goal is to explore the effect of competition between agents on the principal’s payoff,

and we start by assuming that the principal wants to implement high effort levels

and participation by both types of agent for expositional reasons. Later we specify

conditions under which inducing high efforts eg = 1, eb = 1 are indeed optimal. In

Section 6 on screening with effort, we study the case of continuous effort and show that

our key results continue to hold when the principal can induce different efforts for each

type.20

We begin our analysis by clarifying the feasible set of contracts starting with the

constraints that induce high effort by the selected agent. Given truthful reports of

types, the optimal contract has to satisfy the following moral hazard constraints for

each type of agent:

π1t
g
h + (1− π1)tgl − ψ

g
1 ≥ π0t

g
h + (1− π0)tgl − ψ

g
0 (MHg)

π1t
b
h + (1− π1)tbl − ψb1 ≥ π0t

b
h + (1− π0)tbl − ψb0. (MHb)

20In that extension section, we also note that our results hold in the binary case when inducing
efforts eg = 1, eb = 0.
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To induce truth telling, the optimal contract must satisfy incentive compatibility con-

straints that account for the possibility of each type working (high effort) or shirking

(low effort) if they misreport their type. Thus, moral hazard plays a critical role even

in the truth-telling constraints, and we write two incentive compatibility constraints for

each type of agent:

γgn (π1t
g
h + (1− π1)tgl − ψ

g
1) ≥ γbn

(
π1t

b
h + (1− π1)tbl − ψ

g
1

)
(ICg

1 )

γgn (π1t
g
h + (1− π1)tgl − ψ

g
1) ≥ γbn

(
π0t

b
h + (1− π0)tbl − ψ

g
0

)
(ICg

0 )

γbn
(
π1t

b
h + (1− π1)tbl − ψb1

)
≥ γgn

(
π1t

g
h + (1− π1)tgl − ψ

b
1

)
(ICb

1)

γbn
(
π1t

b
h + (1− π1)tbl − ψb1

)
≥ γgn

(
π0t

g
h + (1− π0)tgl − ψ

b
0

)
, (ICb

0)

where (ICx
1 ) prevents misreporting while working and (ICx

0 ) prevents misreporting

while shirking, with x ∈ {g, b}. Indeed, we will find that the constraint (ICb
0) plays a

central role in capturing the impact of ex post moral hazard in our analysis.

Note that the level of competition, n, affects payoffs on each side of the (IC) con-

straints through γgn and γbn. Note also that if types were observable, the (IC) constraints

would be absent and only the (MH) constraints would remain. Since those constraints

do not depend on γgn and γbn, competition would have no impact, as is expected in a

pure moral hazard model. If efforts were observable, the (MH) constraints would be

absent and only (ICg
1 ) and (ICb

1) would remain, with only (ICg
1 ) binding. Competition

would help the principal as is expected in a pure adverse selection procurement model

similar to Laffont-Tirole (1987).

Finally, the optimal contract must satisfy the following IR constraints to induce

each type of agent to participate:

γgn (π1t
g
h + (1− π1)tgl − ψ

g
1) ≥ 0 (IRg)

γbn
(
π1t

b
h + (1− π1)tbl − ψb1

)
≥ 0. (IRb)

Recalling that the probability of allocating the contract to a good type is nqγgn, the

optimal mechanism is the solution to the following problem.
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The principal’s problem. The principal’s problem is to maximize the expected

payoff,

Π(n) = nqγgn (π1V − π1tgh − (1− π1) tgl ) + (1− nqγgn)
(
π1V − π1tbh − (1− π1) tbl

)
,

subject to the above eight constraints and the non-negativity conditions on all four

transfers.

Next, we simplify the principal’s problem by first proving that we can set tgl = tbl = 0

without loss of generality. Since high effort is induced for both types, it is not optimal to

reward either type after a low outcome. Suppose txl are strictly positive for x = {b, g}.
Then, lower txl to zero and raise txh to keep π1t

x
h + (1 − π1)txl constant. The two (IR),

the (ICg
1 ) and (ICb

1), and the principal’s payoff are unaffected. Since π1 > π0, the

constraints (ICg
0 ), (ICb

0), (MHb) and (MHg) are relaxed. Thus, we have proved the

following lemma.

Lemma. Given any transfer vector (tgh, t
g
l , t

b
h, t

b
l ) that satisfy the (IC), (MH) and (IR)

constraints, there is a transfer vector (t
g
h, t

g
l , t

b
h, t

b
l ) with t

g
l = 0, t

b
l = 0 that gives the

same payoff to the principal and satisfies the (IC), (MH) and (IR) constraints.

We can simplify the problem further by eliminating some constraints. First, the

(MHg) and (MHb), coupled with L(iii), make the (IRg) and (IRb) redundant. Second,

(ICg
0 ) is implied by (ICg

1 ) and (MHb), i.e., the rent given to the bad type to satisfy

(MHb) also induces the good type to work rather than shirk when misreporting. The

bad type’s incentive constraint cannot be ignored, which is unlike what is standard in

models of contracting under adverse selection. In our setting, we anticipate that the

bad type will have an incentive to claim to be a good type. To increase his chance of

being selected, he will pursue this option by putting in low effort rather than high effort,

i.e., we expect (ICb
0) to be relevant. Finally, we will ignore (ICb

1) and can verify later

that the optimal contract satisfies this constraint. The surviving constraints describe

the reduced problem below.

12



The reduced problem. We use the following notation for the ratio of the two

probabilities:

γn ≡
γgn
γbn
.

The principal’s payoff when she induces high effort by both types is given by

Π(n) = π1
[
V −

(
nqγgnt

g
h + (1− nqγgn) tbh

)]
(6)

we can rewrite the principal’s problem in a simpler form:21

max Π(n)

subject to22

γn (π1t
g
h − ψ

g
1) ≥ π1t

b
h − ψ

g
1 (ICg

1 )

tgh ≥
ψg1 − ψ

g
0

π1 − π0
(MHg)

π1t
b
h − ψb1 ≥ γn

(
π0t

g
h − ψ

b
0

)
(ICb

0)

tbh ≥
ψb1 − ψb0
π1 − π0

. (MHb)

It is useful to briefly consider a benchmark case of contracting with a single agent

(n = 1, γgn = 1 = γbn). Also, it will be shown below that it is sometimes optimal to

interact with only one agent. The pair of transfers (tgh, t
b
h) must satisfy the moral hazard

constraint for each type. However, there can be no screening since each type will claim

the higher transfer given type-independent probabilities of success. Intuitively, given

limited liability, both types can command a moral hazard rent in this model. However,

the transfer required to induce the bad type to work, tbh, is strictly higher than that

required to induce the good type to work, tgh. Thus, the good type has an incentive to

21Note that maximizing Π(n) is equivalent to minimizing the expected payment. Also, under alloca-
tive efficiency, γgn is given, and the principal only chooses the two transfers tgh and tbh.

22When discussing (ICg1 ), (MHg), (IC
b
0) and (MHb) in the rest of the paper, we will be referring to

these simpler inequalities instead of their equivalent forms mentioned earlier.
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pretend to be a bad type and earns a rent that is strictly larger than what he would

earn in a problem with pure moral hazard. The bad type only receives a rent due to

moral hazard, i.e., the amount needed to just satisfy(MHb).
23

This is also depicted in Figure 1 below. Technically, we can see that tgh = tbh from

(ICg
1 ) and (ICb

1). Then (ICb
0) reduces to (MHb), so the optimal transfers are given by

tgh = tbh =
ψb
1−ψb

0

π1−π0 , making (MHg) slack. In sum, when n = 1, the constraints (ICg
1 ),

(ICb
0) and (MHb) all hold as equalities.

Our model allows us to focus on the effect of competition to screen the agents and

extract the good-type’s rent, which we study next.

4 Competitive Procurement under Allocative Effi-

ciency

Competition is a critical part of the incentive mechanism as the principal uses it to

screen the agents. This is reflected by the presence of γgn and γbn in the (IC) constraints.

However, the (MH) constraints are not affected directly by competition because the

effort decision occurs once the agent has been selected. We assume allocative efficiency

for this section, which is a requirement in many procurement settings. It implies that the

contract is allocated to the most efficient firm. Technically, this means that condition

(2) is binding and γgn is given by (5).

There are two standard effects of increased competition under allocative efficiency.

First, there is a selection effect because an increase in n raises the principal’s payoff as

the probability of awarding the contract to a good type increases. Second, competition

relaxes a good type’s incentive constraint (ICg
1 ) by increasing his cost of lying, which

allows the principal to reduce his rent. By favoring a good type in the allocation rule,

she gives him a greater chance of being selected if he tells the truth. This is reflected

in γgn > γbn when n > 1. As n increases, the ratio γn increases and relaxes (ICg
1 ). We

call this the good-type transfer effect of increased competition. These are two standard,

positive effects of competition in adverse selection models with several agents.

23See Picard (1987), Ollier-Thomas (2013), and Gottlieb-Moreira (2017) for single-agent models with
both moral hazard and adverse selection.

14



Ex post moral hazard introduces a new element that restricts the effectiveness of

competition in extracting a good-type’s rent as a bad type’s incentive constraint (ICb
0) is

also binding. This constraint is typically not binding in pure adverse selection settings.24

With unobservable effort, a bad type can misreport his type and exert low effort – a

double-deviation. This ability to shirk makes it profitable for a bad type to pretend to

be a good type, unless the principal gives a rent to a bad type. Competition exacerbates

this problem.25 In other words, to induce truth-telling, a bad type has to be given a

higher transfer as his chance of being selected decreases with competition. We refer

to this as the bad-type transfer effect of increased competition, which is a new cost of

competition due to the ex post moral hazard problem. The principal pays a rent to a

bad type in order to extract rent from a good type as n increases.

To precisely demonstrate the combined impact of these three effects on the princi-

pal’s payoff, we derive the optimal contract in Section 4.1 and explain the impact of

competition in Section 4.2.

4.1 The Optimal Contract under Allocative Efficiency

As n increases from 1, the ratio γn increases and two possible cases emerge depending on

which constraints are binding. For small n, we are in Case I. The good type’s transfer

tgh is smaller compared to when n = 1. His rent is reduced, but it is still large enough to

induce high effort. So, his moral hazard constraint (MHg) remains slack. The solution

in this case is given by the binding (ICb
0) and (ICg

1 ):

Case I

tgh =
γnψ

g
1 − ψ

g
1 − γnψb0 + ψb1

(π1 − π0) γn
(7)

tbh =
γn
(
π0ψ

g
1 − π1ψb0

)
+ π1ψ

b
1 − π0ψ

g
1

π1 (π1 − π0)
.

For larger n, we are in Case II, where the principal can no longer reduce tgh as

the good type’s moral hazard constraint (MHg) is binding. Constraint (ICg
1 ) becomes

24This effect of shirking is absent in earlier models of competitive procurement, with false moral haz-
ard as in Laffont-Tirole (1987) and McAfee-McMillan (1987), or with observable effort as in Riordan-
Sappington (1987).

25Again, since the ratio γn increases with n, it tightens (ICb0).
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slack as the rent due to moral hazard is now larger than the rent required to induce

truth-telling by the good type. The solution in this case is given by the binding (ICb
0)

and (MHg):

Case II

tgh =
ψg1 − ψ

g
0

π1 − π0
(8)

tbh =
γnπ0
π1

ψg1 − ψ
g
0

π1 − π0
−
(
γnψ

b
0 − ψb1

)
π1

.

These results are illustrated in Figure 1 and summarized in Proposition 1 and Corol-

lary 1. In Figure 1, as n increases from n = 1, the solution moves north-west as tgh

decreases and tbh increases. This is Case I. Despite the increase in tbh, the selection

effect is strong enough to help the principal reduce tgh. However, this reduction in tgh is

less than that under a procurement problem with pure adverse selection and no ex post

moral hazard. Once the solution reaches the (MHg) line, tgh cannot be further reduced.

This is Case II. The solution moves up vertically with n along (MHg).

Proposition 1 The solution to the principal’s problem entails:

(i) the constraint (ICb
0) is binding for all γn,

(ii) for γn ∈
[
1,

ψb
1−ψ

g
1

ψb
0−ψ

g
0

]
, the constraint (ICg

1 ) is binding, and the Case I transfers given

by (7) are optimal,

(iii) for γn ∈
[
ψb
1−ψ

g
1

ψb
0−ψ

g
0
,∞
)
, the constraint (MHg) is binding, and the Case II transfers

given by (8) are optimal.

Proof. See Appendix. �

Taking a derivative of the transfers above with respect to γn gives the impact of

increased competition on the bad- and good-type transfers:

Corollary 1 As γn increases, the bad type’s transfer tbh increases. The good type’s

transfer tgh decreases with γn if γn ≤ ψb
1−ψ

g
1

ψb
0−ψ

g
0

and remains constant for γn >
ψb
1−ψ

g
1

ψb
0−ψ

g
0
.

Technically, it is useful to first recall that both (ICg
1 ) and (ICb

0) are satisfied as

equalities when n = 1. With multiple agents, the (ICg
1 ) will become slack and (ICb

0)
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݊ସ ൐ ݊ଷ ൐ ݊ଶ ൐ ݊ଵ ൌ 1

݊ସ

݊ଶ

݊ଵ ൌ 1

݊ଷ

Figure 1: Optimal mechanism

will be violated unless the transfers are adjusted. In the optimal contract, the principal

adjusts the transfers to both types. With (ICg
1 ) slack, she definitely reduces tgh. However,

the decrease in tgh is not enough to satisfy (ICb
0) unless tbh is increased to remove the bad

type’s incentive to pretend to be good. More precisely, the fact that tbh increases with n

is implied by condition L(iii), which reflects a strong moral hazard problem. The main

reason for imposing L(iii) is that it simplifies the analysis. Indeed, condition L(iii)

implies that (ICb
0) is binding for all n, i.e., for both Cases I and II of Proposition 1.

While a binding (ICb
0) in itself does not guarantee that tbh will increase with n, condition

L(iii) is necessary and sufficient to ensure that tbh increases in Case I, and sufficient for

tbh to increase in n for Case II.26 If condition L(iii) does not hold, there are several

26In Case II, a weaker condition L(iv) is necessary and sufficient for tbh to increase with n.
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cases to consider, but the bad-type transfer effect will continue to hold under weaker

conditions.27

It is also useful to discuss condition L(ii) ψg1 − ψ
g
0 < ψb1 − ψb0. Without L(ii), the

good-type transfer effect is absent, and the bad-type transfer effect comes into play

immediately (for any n > 1).28 Since this condition is akin to a standard single-crossing

property, the opposite of L(ii) would imply that the moral hazard of the good type is

now more serious than the moral hazard of the bad type.

4.2 Does Competition help under Allocative Efficiency?

We say that a given level of competition n hurts the principal if her expected payoff

is higher with fewer agents competing for the project.29 Recall that there are three

potential effects of increased competition:

• selection effect : an increase in n increases the probability of awarding the contract

to a good type. This effect is positive for the principal since tgh < tbh (see the

principal’s payoff (6)).

• good-type transfer effect : from Corollary 1, an increase in n weakly decreases the

transfer tgh. This effect is again positive for the principal.

• bad-type transfer effect : from Corollary 1, an increase in n increases the transfer

tbh. This effect is negative for the principal.

In Case I, all three effects are present. The first two are standard effects due

to adverse selection. The third one, the negative effect, is new and arises from the

Condition L(iv) : ψg1 >
π1

π0
ψb0 −

(
ψb0 − ψ

g
0

)
.

27Without L(iii), we cannot ignore (IRg) since it is no longer implied by (MHg). If we assume
that (MHg) implies (IRg), and L(iv) (see footnote 26) holds, the solution will be given by (ICb0) and
(MHg) and tbh is increasing in n for a high enough n. If (IRg) is more restrictive than (MHg) when
lowering tgh, then a weaker condition than L(iv) would be enough to obtain the bad-type transfer effect
for high enough n.

28For n = 1, we still have tbh = tgh but it is the good type’s moral hazard constraint (MHg) that is
binding. As n increases, because the (MHg) remains binding, tgh is constant at (MHg).

29We say that increasing competition always helps if her expected payoff increases as n increases.
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interaction of ex post moral hazard and adverse selection. With increased competition,

the bad type is less likely to be selected and has to be compensated more for not

mimicking the good type and then shirking. The third effect would be absent without

moral hazard, which indicates that ex-post moral hazard (or precisely its interaction

with the adverse selection problem) is the key reason for why competition may hurt the

principal.

The net effect of competition on the principal’s payoff depends on the combined

impact of the three effects. Competition helps when the two positive effects (the selec-

tion effect and the good-type transfer effect) dominate the negative effect (the bad-type

transfer effect). In the proof of Proposition 2, we show that competition hurts in Case

I, when γn ∈
[
1,

ψb
1−ψ

g
1

ψb
0−ψ

g
0

]
, if and only if

π1q
(
ψb1 − ψ

g
1

)
< (1− q)

[
π0ψ

g
1 − π1ψb0

]
. (9)

Extracting the good type’s adverse-selection rent is the raison d’être of increased com-

petition. We interpret the difference in cost of high effort between types, ψb1−ψ
g
1 , as the

strength of the adverse selection problem. When ψg1 is very close to ψb1, the two types

of agents are very similar, and rent extraction through the selection and the good-type

transfer effects has low significance. However, the moral hazard problem must still be

addressed, and increased competition hurts the principal through the bad-type trans-

fer effect. When condition (9) is violated, the adverse selection problem is severe and

competition helps.

As competition intensifies, the good-type transfer effect is limited by the need to

provide the good type with a rent to satisfy (MHg). Thus, the good type’s transfer tgh

cannot be reduced indefinitely or the transfer would be so low that the agent would no

longer exert effort. Constraint (MHg) is now binding, and we are in Case II.

In Case II, the good-type transfer effect, one of the two positive effects, vanishes.

Only the selection and bad-type transfer effects remain. Competition helps when the

remaining positive effect (the selection effect) dominates the negative effect (the bad-

type transfer effect). In the proof of Proposition 2, we show that competition hurts in

Case II, when γn ∈
[
ψb
1−ψ

g
1

ψb
0−ψ

g
0
,∞
)
, if and only if

π1q
(
ψb1 − ψ

g
1

)
< (1− q)

[
π0ψ

g
1 − π1ψb0

]
+ (1− q)

(
ψb0 − ψ

g
0

)
π0 + q

(
π0ψ

b
1 − π1ψ

g
0

)
(10)
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Since the good-type transfer effect is now absent, the condition for competition to hurt

is less strict than condition (9). This can be seen by the two extra positive terms on

the right hand side of (10), making it easier to satisfy than the condition (9) for Case

I.

In the following proposition, we present our key result about the net impact of

competition in the two cases discussed above.

Proposition 2 Under allocative efficiency, competition helps if and only if the differ-

ence in the cost of high effort between types is large enough, i.e. the adverse selection

problem is strong enough. Competition is less effective as n becomes larger.

Proof. See Appendix. �

Given conditions (9) and (10), we can also infer that if competition hurts the prin-

cipal for small n, it cannot help her when n is large. This is reflected in the following

corollary, which also raises the question of an optimal n discussed next.

Corollary 2 If Π(n) decreases with n for γn ∈
[
1,

ψb
1−ψ

g
1

ψb
0−ψ

g
0

]
, then it also decreases for

γn ∈
[
ψb
1−ψ

g
1

ψb
0−ψ

g
0
,∞
)
.

Proof. See Appendix. �

Choosing the number of agents n under allocative efficiency

Up to now we have assumed that the principal takes n as given. We have seen that the

interaction of the three effects can lead to increased competition hurting the principal’s

payoff. In this section, we ask what is the optimal number of agents for the principal if

n were a choice for the principal.

Denoting by n∗ the number of agents for which the principal’s payoff is the highest,

Proposition 2 and Corollary 2 imply that there are three possible cases depending on

the strength of the adverse selection problem. We collect the three cases in the following

Proposition:
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Proposition 3 Under allocative efficiency, the optimal number of agents for the prin-

cipal is either (i) n∗ = ∞, (ii) n∗ = 1, or (iii) 1 < n∗ < ∞ , depending on whether

π1q
(
ψb1 − ψ

g
1

)
> (1− q)

[
π0ψ

g
1 − π1ψb0

]
+ (1− q)

(
ψb0 − ψ

g
0

)
π0 + q

(
π0ψ

b
1 − π1ψ

g
0

)
,

< (1− q)
[
π0ψ

g
1 − π1ψb0

]
, or

∈
[

(1− q)
[
π0ψ

g
1 − π1ψb0

]
,

(1− q)
[
π0ψ

g
1 − π1ψb0

]
+ (1− q)

(
ψb0 − ψ

g
0

)
π0 + q

(
π0ψ

b
1 − π1ψ

g
0

) ]

The first case (n∗ = ∞) is the standard case obtained in adverse selection models

without moral hazard. Increased competition always helps the principal by extracting

the rent of the good type through the selection and the good type transfer effects. This

occurs when the difference in cost of high effort between types is large, i.e., when the

adverse selection problem is severe. In this case, the principal would never want to limit

the number of agents.

The second case (n∗ = 1) is the other extreme where competition always hurts the

principal. This case occurs when the adverse selection problem is relatively minor com-

pared to the moral hazard problem. For instance, if ψb1 is close to ψg1 , the two types of

agents are very similar and the principal would not benefit much from increased com-

petition through the selection and the good-type transfer effects. However, the moral

hazard constraints must still be satisfied, and competition hurts the principal through

the bad-type transfer effect. Thus, the principal does not benefit from competition

between agents who are very similar in their cost of effort.

The third case ( 1 < n∗ < ∞) has low levels of competition helping the principal,

but higher levels of competition hurting the principal.30 The optimal number of agents,

n∗, is the solution to γn =
ψb
1−ψ

g
1

ψb
0−ψ

g
0
.31 The principal would prefer to limit the number of

agents to the optimal level.

Our analysis may explain why some existing procurement mechanisms try to restrict

the number of agents (see Eun (2019) for examples). This may also explain the criticisms

30Note that if we assumed ψg0 = ψb0, case II disappears and (MHg) never binds. In that case, either
competition always helps or competition never helps.

31If there is no integer that satisfies the equality, consider n satisfying γn−1 <
ψb

1−ψ
g
1

ψb
0−ψ

g
0
< γn, and

define n∗ to be n− 1 or n depending on which results in a higher expected payoff for the principal.
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in the earlier examples of NHS and Medicare procurement that too much competition

adversely affects ex post quality of service. Next, we study an alternative to restricting

the number of agents by using inefficient allocation mechanisms.

5 The Optimal Mechanism: an inefficient allocation

rule can be optimal

So far we have considered the optimal mechanism under efficient allocation rules only,

where the principal committed to allocating the contract to a good type with proba-

bility one when at least one agent reported to be a good type. Here, we remove the

requirement of allocative efficiency and consider inefficient allocation rules, which give

a chance for a bad type to be selected even when another agent has reported to be a

good type.

To see the intuition why an inefficient allocation rule may help, note that the bad

type’s incentive to mimic the good type with zero effort can be lowered in two different

ways. We have already discussed one method, increasing his transfer tbh, which leads

to the the bad-type transfer effect. An alternative approach is to use an inefficient

allocation rule that gives the bad type a positive probability of being selected despite

the presence of good types. By doing so, the principal increases the probability for a

bad type to be selected, which used to be zero under an efficient allocation rule even if

there were only one good type present. This relaxes (ICb
0) and benefits the principal.32

We will show that whenever competition hurts under an efficient allocation rule,

the optimal mechanism requires an inefficient allocation rule. Thus, if a given level of

competition hurts her payoff under an efficient allocation rule, i.e., n > n∗, optimality

requires that she give up on allocative efficiency. Furthermore, we show that the optimal

(inefficient) rule with n agents gives the principal the same payoff as she would obtain

with n∗ agents under an efficient allocation rule.33 This means that the principal does

32Strausz (2006) shows that a stochastic contract can also relax the upward binding constraint in a
single-agent model if there is bunching and the agent’s types differ in the degree of risk aversion. See
Kadan et al. (2017) for a recent discussion on the role of randomization in principal agent models.

33The optimality is of course subject to the caveat that n is an integer as discussed at end of Section
4.2 in footnote 30. For expositional ease, we will ignore this issue for the rest of the paper.
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not gain from additional competition when n > n∗. Thus, by giving up on allocative

efficiency, the principal can in fact entirely neutralize the negative effect of competition

on her payoff even when she cannot reduce the number of agents competing for the

contract.

Technically, besides the transfers, the principal can now also choose γbn and γgn. These

choices were determined by the binding (2) and (4) under allocative efficiency. To allow

for inefficient allocation rules, we remove the restriction that the first constraint (2)

must hold as an equality. Given (4), it is sufficient to consider her choice of γgn. Indeed,

if the solution involves qnγgn < 1−(1− q)n , the optimal allocation rule must necessarily

be inefficient, i.e., a bad type must have a chance of being awarded the contract even

when a good type is present.34 Whenever competition hurts under an efficient allocation

rule, we show that the principal’s payoff is decreasing in γgn and constraint (2) is slack,

which implies that the optimal allocation rule is inefficient. The opposite is true when

competition helps under an efficient allocation rule. The constraint (2) is binding and

an efficient allocation rule is optimal.

Proposition 4 Whenever competition hurts under an efficient allocation rule (i.e., n >

n∗), the optimal allocation rule is inefficient, and it makes the principal’s expected payoff

equal to her payoff when n = n∗ under the efficient allocation rule. When competition

helps under an efficient allocation rule, the optimal allocation is efficient.

Proof. See Appendix. �

The proposition implies that the mechanism where the allocation is efficient but the

number of agents is potentially restricted is optimal among all mechanisms. For n > n∗,

competition ceases to be useful even if the principal can use an inefficient allocation

rule.

We now explain how the principal optimally chooses γgn when competition helps or

hurts under allocative efficiency. Suppose competition hurts for all n under an efficient

allocation rule. This occurs when condition (9) holds. Then, the principal wants to

choose the smallest possible γgn, making the allocation rule inefficient and the principal’s

34In that case, it cannot be that φgr = 1 for all r, given (1) and (5). We discuss allocation rules to
implement the optimal γn below.
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payoff identical to her payoff when there is only one agent (n∗ = 1).35 If competition

helps for all n under efficient allocation, then the allocative efficiency is optimal for all

n. This occurs when condition (10) is violated.

Finally, we consider the interesting case when competition helps for small n but hurts

for large n under an efficient allocation rule. This case occurs when condition (10) holds

but not (9). For small n, the optimal allocation rule is efficient. For large n, the optimal

allocation rule is inefficient, such that the optimal γn is given by γn =
ψb
1−ψ

g
1

ψb
0−ψ

g
0
. This makes

the principal’s payoff identical to that for n = n∗ under allocative efficiency.36

Allocation rule φgr to implement the optimal γn

To characterize this allocation rule, consider first the case where competition always

helps under an efficient allocation rule. In this case, the principal allocates the contract

to a good type whenever there is one. If competition hurts for all n under an efficient

allocation rule, then the principal allocates the contract randomly to an agent regardless

of their announcement. Finally, consider the interesting case when competition helps for

small n but hurts for large n under an efficient allocation rule. For small n, the principal

allocates the contract to a good type whenever there is one. For large n, she allocates

the contract to a bad type with a high enough probability such that γn =
ψb
1−ψ

g
1

ψb
0−ψ

g
1
. We

prove the following corollary in the Appendix:

Corollary 3 When competition helps under allocative efficiency for all n, i.e., n∗ =∞,
it is optimal to choose φgr = 1 for r ≥ 1 for all n. When competition hurts under

allocative efficiency for all n, i.e., n∗ = 1, it is optimal to choose φgr = r
n

for all

r and n > 1. When competition helps for small n but hurts for large n, i.e., 1 <

n∗ < ∞, then, for r ≥ 1, it is optimal to choose φgr = 1 when n ≤ n∗ and φgr =(
q

1−(1−q)n

)
ψb
1−ψ

g
1

((1−q)(ψb
0−ψ

g
0)+q(ψb

1−ψ
g
1))

when n > n∗. Finally, φg0 = 0 for all n.

Proof. See Appendix. �

35In the appendix, we show that the smallest value of γgn makes γn = 1, which is the lower bound
given by the monotocity condition γn ≥ 1 implied by the incentive constraints.

36In the appendix, we show that the smallest value of γgn makes γn =
ψb

1−ψ
g
1

ψb
0−ψ

g
0

which is the smallest

value of γn consistent with case II, Proposition 1.
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For implementation, we can follow Myerson (1981) or Riordan-Sappington (1987),

where the principal announces the mechanism and asks each competing agent to report

their cost of production. Under an efficient allocation rule, the principal allocates the

contract to a lowest cost agent. Under an inefficient allocation rule, the principal follows

the random allocation rule committed to as part of the mechanism.

There are examples of inefficient allocations, where the most efficient agent is not

guaranteed to win the contract. In the Korean example mentioned above (Eun (2019)),

the procurer uses a publicly drawn random variable as a cut-off for acceptable bids.

In an Average Price Auction (Decarolis (2018)), the winning bid is the average of

submitted bids. Ariely-Ockenfels-Roth (2005) report on an auction used by Amazon

that can only end when ten minutes have passed without a bid. These mechanisms are

motivated by the desire to curtail overly aggressive bidding.

We conclude the discussion on the optimal mechanism by arguing that the principal

will always want to induce high effort if the project is very valuable, i.e., V is large

enough. Our next proposition gives a formal proof. We discuss in Section 6 the case

when the principal may want to induce different efforts for different types.

Proposition 5 If V is high enough, eg = eb = 1 is optimal.

Proof. See Appendix. �

6 Screening with Effort

So far we have considered the case where effort was binary and the principal found it

optimal to induce high effort by both types (eb = eg = 1). As a result, the principal

did not use effort as a screening instrument and the agents were restricted to only one

alternative effort level when shirking. In this section, we relax that restriction by letting

the agent adjust effort e ≥ 0 continuously. There is a trade-off for the principal. On the

one hand, by adjusting effort continuously, the principal can screen the agents better.

On the other hand, the bad type agent now has more options in choosing effort when

mimicking the good type.
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Except that competition is beneficial under allocative efficiency when n is small,

our results are largely analogous to those from the binary model. We again find that,

under allocative efficiency, the bad type’s incentive constraint (ICb) is binding for all

n, and that the need to sustain effort makes (ICg) slack for high n. Also, being able to

adjust effort continuously is not enough for the principal to guarantee that high levels

of competition are beneficial under efficient allocation. We outline the key arguments

and results below.

We consider a model where the agent privately chooses effort e ∈ [0, 1]. We focus

on interior solutions such that effort adjusts continuously as n increases. Accordingly,

we will assume that V is not too large.37 Let ψx (e) = xe2 be the cost of effort to type

x ∈ {b, g}, where 0 < g < b. We assume that the probability of high outcome given

effort e is π (e) , and π(e) = e.

With continuous effort the agent has more options when shirking, and the (ICb) is

binding for all n without the need for parameter restrictions. As in the binary effort

model, we again have two cases depending on whether (ICg) is binding. The (ICg) is

binding for γn <
(

2 + g
b
(1−q)
q

)2
but slack for γn ≥

(
2 + g

b
(1−q)
q

)2
. As before, we denote

by n∗ the number of agents for which the principal’s payoff is the highest under an

efficient allocation rule.

For competition to hurt, under allocative efficiency, we do need restrictions on pa-

rameters that are reminiscent of results from the binary model. We show that if

(b− g)2 /g2 < 1/q, (11)

which is equivalent to
(
b
g

)2
<
(

2 + g
b
(1−q)
q

)2
, then n∗ is the solution to γn =

(
b
g

)2
under

allocative efficiency.38 We define γ∗n by γ∗n ≡
(
b
g

)2
. When condition (11) is satisfied,

the adverse selection problem is not too strong (b and g are close to each other), and

37Our binary model presents a corner solution where V is so large that e = 1 is always optimal.
When effort is binary a smaller V would result in effort choices (eg = 1, eb = 0) or (eg = 0, eb = 0) . In
that case, the solution is given by (ICb0) and (MHg), but our key results continue to hold.

38If there is no integer that satisfies the equality under allocative efficiency, consider n satisfying

γn−1 <
(
b
g

)2
< γn under allocative efficiency, and define n∗ to be n − 1 or n depending on which

results in a higher expected payoff for the principal.
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competition hurts for n > n∗ under an efficient allocation rule. On the other hand, if

(b− g)2 /g2 > 1/q, competition can only help.

We can again show that an inefficient allocation rule with φgr ≤ 1, with strict in-

equality for some r, is optimal whenever the principal’s payoff is decreasing in n under

an efficient allocation rule. We can also show that the principal prefers to have some

competition. That is, if he can choose the number of agents, he will pick at least two

agents to participate in the mechanism. Because the solution under a general allocation

rule is γ∗n =
(
b
g

)2
> 1, and γ1 = 1, the principal is better off with at least two agents

and an inefficient allocation rule (φgr < 1) than having exactly one agent. Thus, some

competition is always helpful.

We summarize these results in the proposition below.

Proposition 6 With continuous effort,

(i) under an efficient allocation rule there exists n∗ such that competition hurts the

principal for n > n∗ if and only if (b− g)2 /g2 < 1/q, i.e. the adverse selection problem

is not too strong;

(ii) whenever competition hurts under an efficient allocation rule (i.e., n > n∗), the

optimal allocation rule is inefficient, and it makes the principal’s expected payoff equal

to her payoff when n = n∗ under the efficient allocation rule;39 when competition helps

under an efficient allocation rule, the optimal allocation is efficient;

(iii) some degree of competition is always helpful.

Proof. See Appendix. �

7 Conclusion

There is widespread concern that competitive bidding can lead to poor quality ex post.

This connection has been largely ignored in the theoretical literature that has focused

on the adverse selection problem to emphasize ex ante rent extraction. Procuring a

project requires not only to select the most efficient firm (adverse selection), but also

39Again, the equality is approximate, as before, since n can take only discrete values.
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to make sure that the selected firm has the correct incentives to implement the project

(moral hazard). Our analysis highlights the interaction between the two and explains

how competition for the project results in a trade-off that may hurt the procurer.

While competition is typically expected to be beneficial in reducing rent due to adverse

selection, the presence of moral hazard can significantly interfere with rent extraction.

Introducing the option to shirk allows a high-cost firm to mimic a low-cost firm and

put in low effort, which results in an additional rent for the high-cost firm. Attempts

to use increased competition to extract a low-cost firm’s rent may lead to an increased

rent to a high-cost firm. As a consequence, the procurer may find it optimal to limit

the number of potential firms.

We show that insisting on allocative efficiency is costly from an incentive point of

view and gives a strong incentive for a bad type to claim to be a good type as it lowers

the probability that a bad type will be awarded the contract – it is zero as soon as there

is only one good type present. By randomly assigning the contract to a bad type even

when a good type is present, the procurer can lower the cost of inducing truth-telling

significantly. Remarkably, we show that the procurer can use inefficient allocations to

mimic her payoff from an allocatively efficient mechanism with an optimal number of

agents without actually limiting the number of agents.

These results are in line with practical attempts to address well-publicized concerns

about bidding low and shirking mentioned in the introduction. Such concerns have led

to various random (inefficient) allocation rules in practice. For example, the Korean

government has uses a publicly drawn random variable as a cut-off for acceptable bids to

award road construction contracts (Eun (2019)). There are many examples of procurers

using an Average Price Auction (Decarolis (2018)), where the winning bid is the average

of submitted bids.

The framework presented here captures an important element of procurement auc-

tions. At the same time, it is highly tractable which should allow exploration of a

variety of relevant interesting questions in competitive procurement. For instance, sup-

pose that the procurer can use an audit technology to verify ex post the efficiency of

the selected firm (adverse selection) or its effort (moral hazard). Which one should she

concentrate her resources on? We have also ignored the cost of suppliers to participate
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in the procurement process. What if it is costly to prepare a submission? Similarly, the

procurer could also decide to impose a fee to participate in the mechanism. We could

study the role of endogenous entry instead of assuming that there is a fixed number of

agents. The model presented here is simple enough that it would be possible to explore

these and other related questions in procurement with moral hazard.

8 Appendix

Claim. The principal cannot be better off making a payment to a losing agent.

Proof of Claim. For a given allocation rule, suppose the principal paid f g ≥ 0

and f b ≥ 0 to losing good and bad type agents, respectively. Then, the transfers{
(f g, tgh, t

g
l ) ,
(
f b, tbh, t

b
l

)}
would have to satisfy the incentive and participation con-

straints:

π1t
g
h + (1− π1) tgl − ψ

g
1 ≥ π0t

g
h + (1− π0) tgl − ψ

g
0 (MHg)

π1t
b
h + (1− π1) tbl − ψb1 ≥ π0t

b
h + (1− π0) tbl − ψb0 (MHb)

(1− γgn) f g + γgnπ1t
g
h + γgn (1− π1) tgl − γ

g
nψ

g
1 (ICg

1 )

≥
(
1− γbn

)
f b + γbnπ1t

b
h + γbn (1− π1) tbl − γbnψ

g
1

(1− γgn) f g + γgnπ1t
g
h + γgn (1− π1) tgl − γ

g
nψ

g
1 (ICg

0 )

≥
(
1− γbn

)
f b + γbnπ0t

b
h + γbn (1− π0) tbl − γbnψ

g
0

(
1− γbn

)
f b + γbnπ1t

b
h + γbn (1− π1) tbl − γbnψb1 (ICb

1)

≥ (1− γgn) f g + γgnπ1t
g
h + γgn (1− π1) tgl − γ

g
nψ

b
1(

1− γbn
)
f b + γbnπ1t

b
h + γbn (1− π1) tbl − γbnψb1 (ICb

0)

≥ (1− γgn) f g + γgnπ0t
g
h + γgn (1− π0) tgl − γ

g
nψ

b
0

(1− γgn) f g + γgnπ1t
g
h + γgn (1− π1) tgl − γ

g
nψ

g
1 ≥ 0 (IRg)(

1− γbn
)
f b + γbnπ1t

b
h + γbn (1− π1) tbl − γbnψb1 ≥ 0 (IRb)
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Suppose f g and f b are strictly positive. Now construct payments

t̂gh =
(1− γgn) f g + γgnπ1t

g
h + γgn (1− π1) tgl

γgnπ1
, t̂gl = 0

t̂bh =

(
1− γbn

)
f b + γbnπ1t

b
h + γbn (1− π1) tbl

γbnπ1
, t̂bl = 0

and consider the transfers
{(

0, t̂gh, t̂
g
l

)
,
(
0, t̂bh, t̂

b
l

)}
, instead. The two IR, the (ICg

1 ) and

(ICb
1) are satisfied under these transfers. Since π1 > π0, the constraints (ICg

0 ), (ICb
0),

(MHb) and (MHg) are relaxed.

Furthermore, the expected payment by the principal to a typical agent i under the

constructed transfers is

(1− q) γbnπ1t̂bh + qγgnπ1t̂
g
h.

Substituting the expressions for t̂bh and t̂gh we have the expected payment by the principal

to a typical agent:

(1− q)
[(

1− γbn
)
f b + γbnπ1t

b
h + γbn (1− π1) tbl

]
+ q [(1− γgn) f g + γgnπ1t

g
h + γgn (1− π1) tgl ]

which is the same as that with the transfers
{

(f g, tgh, t
g
l ) ,
(
f b, tbh, t

b
l

)}
. Thus, the princi-

pal is not worse off under the constructed transfers that pays only the winning agent.

This completes the proof of the Claim. �

Proof of Proposition 1. First observe that ICg
1 and ICb

1 can be rewritten as

ICg
1 : γnπ1t

g
h − γnψ

g
1 + ψg1 ≥ π1t

b
h

ICb
1 : π1t

b
h ≥ γnπ1t

g
h − γnψ

b
1 + ψb1

which imply

γn
(
ψb1 − ψ

g
1

)
≥ ψb1 − ψ

g
1

or,

γn ≥ 1

We have γ1 = 1 and γn is increasing in n when the allocation rule is efficient.
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Now consider the reduced problem given in Section 3. The principal chooses the

two transfers {tbh, t
g
h} to solve

max Π(n) = π1
[
V −

(
nqγgnt

g
h + (1− nqγgn) tbh

)]
subject to,

γn (π1t
g
h − ψ

g
1) ≥ π1t

b
h − ψ

g
1 (ICg

1 )

tgh ≥
ψg1 − ψ

g
0

π1 − π0
(MHg)

π1t
b
h − ψb1 ≥ γn

(
π0t

g
h − ψ

b
0

)
(ICb

0)

tbh ≥
ψb1 − ψb0
π1 − π0

. (MHb)

To start, consider the problem of maximizing

π1V −
[
(1− (1− q)n) π1t

g
h + (1− q)n π1tbh

]
subject only to the ICg

1 and ICb
0 constraints. Since the principal’s payoff is decreasing

in tgh and tbh, the inequality and the fact that the LHS of ICg
1 and the RHS of ICb

0 above

are both increasing in tgh together imply that the solution of the reduced problem is

given by

tgh =
γn
(
ψg1 − ψb0

)
+
(
ψb1 − ψ

g
1

)
γn (π1 − π0)

tbh =
γnπ0
π1

tgh −
(
γnψ

b
0 − ψb1

)
π1

=
γn
(
π0ψ

g
1 − π1ψb0

)
+ π1ψ

b
1 − π0ψ

g
1

π1 (π1 − π0)

We will now show that for γn ∈
[
1,

ψb
1−ψ

g
1

ψb
0−ψ

g
0

]
the remaining constraints are satisfied.

Substituting for tgh we have

MHg : tgh −
ψg1 − ψ

g
0

π1 − π0
=
ψb1 − ψ

g
1 − γn

(
ψb0 − ψ

g
0

)
(π1 − π0) γn

≥
ψb1 − ψ

g
1 −

ψb
1−ψ

g
1

ψb
0−ψ

g
0

(
ψb0 − ψ

g
0

)
(π1 − π0) γn

= 0
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Substituting for tbh

MHb : tbh −
ψb1 − ψb0
π1 − π0

= (γn − 1)
π0ψ

g
1 − π1ψb0

π1 (π1 − π0)
> 0

and under our assumption

ICb
1 :
(
π1t

b
h − ψb1

)
− γn

(
π1t

g
h − ψ

b
1

)
= (γn − 1)

(
ψb1 − ψ

g
1

)
> 0.

Next for γn ∈
[
ψb
1−ψ

g
1

ψb
0−ψ

g
0
,∞
)

consider the restricted problem of maximizing π1V −[
(1− (1− q)n)π1t

g
h + (1− q)n π1tbh

]
subject only to the MHg and ICb

0 constraints. Fol-

lowing similar arguments as above, the solution is given by

tgh =
ψg1 − ψ

g
0

π1 − π0

tbh =
γnπ0
π1

ψg1 − ψ
g
0

π1 − π0
− γnψ

b
0 − ψb1
π1

We will now show that all the remaining constraints are satisfied by this solution:

ICg
1 :

1

π1
(γn (π1t

g
h − ψ

g
1) + ψg1)− tbh

=
ψg1 − ψb1 + γn

(
ψb0 − ψ

g
0

)
π1

>
ψg1 − ψb1 +

ψb
1−ψ

g
1

ψb
0−ψ

g
0

(
ψb0 − ψ

g
0

)
π1

=
ψg1 − ψb1 + ψb1 − ψ

g
1

π1
= 0

ICb
1 :
(
π1t

b
h − ψb1

)
− γn

(
π1t

g
h − ψ

b
1

)
= γnπ0

ψg1 − ψ
g
0

π1 − π0
− γnψb0 − γnπ1

ψg1 − ψ
g
0

π1 − π0
+ γnψ

b
1

=
γn

π1 − π0
(π1 − π0)

[(
ψb1 − ψb0

)
− (ψg1 − ψ

g
0)
]

> 0 by L(ii)

MHb : tbh −
ψb1 − ψb0
π1 − π0

=
1

π1(π1 − π0)
[
γn
[
π0ψ

g
1 − π1ψb0 + π0

(
ψb0 − ψ

g
0

)]
+ ψb1 (π1 − π0)− π1

(
ψb1 − ψb0

)]
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(using L(iii) the coefficient of γn is positive, hence replacing γn by its minimum value)

≥ 1

π1 (π1 − π0)
(
ψb0 − ψ

g
0

) [ (
ψb1 − ψ

g
1

) [
π0ψ

g
1 − π1ψb0 + π0

(
ψb0 − ψ

g
0

)]
+ψb1 (π1 − π0)

(
ψb0 − ψ

g
0

)
− π1

(
ψb1 − ψb0

) (
ψb0 − ψ

g
0

) ]
=

1

π1 (π1 − π0)
(
ψb0 − ψ

g
0

) [(ψb1 − ψb0)− (ψg1 − ψ
g
0)
] (
π0ψ

g
1 − π1ψb0

)
> 0 by Condition L.

This completes the proof of Proposition 1.

Proof of Proposition 2. The expected payoff to the principal is

(1− (1− q)n) π1 (V − tgh) + (1− q)n π1
(
V − tbh

)
= π1V −

[
(1− (1− q)n) π1t

g
h + (1− q)n π1tbh

]
For γn ∈

[
1,

ψb
1−ψ

g
1

ψb
0−ψ

g
0

]
the payoff at the optimal transfers is

Π(n) = π1V −

 (1− (1− q)n)π1
(γnψg

1−ψ
g
1−γnψb

0+ψ
b
1)

(π1−π0)γn

+ (1− q)n π1
γn(π0ψg

1−π1ψb
0)+π1ψb

1−π0ψ
g
1

π1(π1−π0)


and for γn ∈

[
ψb
1−ψ

g
1

ψb
0−ψ

g
0
,∞
)

it is

Π(n) = π1V −
(

(1− (1− q)n)π1
ψg1 − ψ

g
0

π1 − π0
+ (1− q)n

(
γnπ0

ψg1 − ψ
g
0

π1 − π0
− γnψb0 + ψb1

))
We have for γn ∈

[
1,

ψb
1−ψ

g
1

ψb
0−ψ

g
0

]
Π(n+ 1)− Π(n) =

(1− q)n−1

π1 − π0
(
π1
(
ψb0 (1− q) +

(
ψb1 − ψ

g
1

)
q
)
− π0ψg1 (1− q)

)
Thus, Π(n) is increasing for γn ∈

[
1,

ψb
1−ψ

g
1

ψb
0−ψ

g
0

]
if and only if

π1
(
ψb0 (1− q) +

(
ψb1 − ψ

g
1

)
q
)
− π0ψg1 (1− q) > 0

or,

π1q
(
ψb1 − ψ

g
1

)
> (1− q)

[
π0ψ

g
1 − π1ψb0

]
(12)
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Therefore, competition helps if and only if the difference in the cost of high effort

between types is large enough.

For γn ∈
[
ψb
1−ψ

g
1

ψb
0−ψ

g
0
,∞
)

we have

Π(n+ 1)− Π(n) =
(1− q)n

π1 − π0

(
π1
(
ψb0 − ψb0q +

(
ψg0 + ψb1 − ψ

g
1

)
q
)

−π0
(
ψb0 + ψg1 + ψg0 (−1 + q)− ψb0q + ψb1q − ψ

g
1q
) )

In this case Π(n) is increasing if and only if(
π1
(
ψb0 − ψb0q +

(
ψg0 + ψb1 − ψ

g
1

)
q
)
− π0

(
ψb0 + ψg1 + ψg0 (−1 + q)− ψb0q + ψb1q − ψ

g
1q
))
> 0

or, simplifying,

π1q
(
ψb1 − ψ

g
1

)
> (1− q)

[
π0ψ

g
1 − π1ψb0

]
+ (1− q)

(
ψb0 − ψ

g
0

)
π0 + q

(
π0ψ

b
1 − π1ψ

g
0

)
(13)

Again, competition helps if and only if the difference in the cost of high effort be-

tween types is large enough. Note that the requirement (13) is stricter than (12).This

completes the proof of Proposition 2.

Proof of Corollary 2. The proof follows from Proposition 2 upon observing that

condition L implies π0ψ
b
1 − π1ψ

g
0 ≥ 0 and ψb0 > ψg0 , so

(1− q)
(
ψb0 − ψ

g
0

)
π0 + q

(
π0ψ

b
1 − π1ψ

g
0

)
≥ 0.

In this case, if

π1q
(
ψb1 − ψ

g
1

)
< (1− q)

[
π0ψ

g
1 − π1ψb0

]
holds, so does

π1q
(
ψb1 − ψ

g
1

)
< (1− q)

[
π0ψ

g
1 − π1ψb0

]
+ (1− q)

(
ψb0 − ψ

g
0

)
π0 + q

(
π0ψ

b
1 − π1ψ

g
0

)
.

This completes the proof of Corollary 2.
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Proof of Proposition 4. We start by characterizing the optimal mechanism for all

n. Recall that in the proof of Proposition 1 we found the optimal transfers to the

principal’s problem stated in Section 3 for a given γn. In this proof we will find the

solution to the principal’s problem stated in Section 3, where the principal chooses

not only the transfers but also (γbn, γ
g
n) subject to the feasibility constraints (2), (3),

and (4). In particular, the principal is now free to consider inefficient allocation rules.

Thus, it is not required that the constraint (2) must hold as an equality. Indeed, if the

solution involves qnγgn < 1 − (1− q)n , the optimal allocation rule must necessarily be

inefficient.40

We know that ICg
1 and ICb

1 imply the monotonicity condition that the probability

of winning the contract with a type g report is at least as high as that with a type b

report:

γn ≥ 1. (14)

Under allocative efficiency, monotonicity is implied and (14) is redundant, but it is

relevant when inefficient allocation rules are allowed. When determining the solution,

we can ignore condition (3) since it is implied by (4) and (14). Using the binding

constraint (4), we have γbn = 1−qnγgn
(1−q)n .

Since the results of Proposition 1 hold for every feasible
(
γgn, γ

b
n

)
, and in particular

do not depend on the restriction qnγgn = 1 − (1− q)n , the optimal transfers are given

as before in Cases (I) and (II) by (7) if γn ≤ ψb
1−ψ

g
1

ψb
0−ψ

g
0
, and (8) if γn >

ψb
1−ψ

g
1

ψb
0−ψ

g
0
.

Since we will substitute these transfers into the principal’s payoff, we must pay

attention to the conditions under which the optimal transfers change from Case I to

II depending on γn according to:

γn ≤
ψb1 − ψ

g
1

ψb0 − ψ
g
0

(15)

γn ≥
ψb1 − ψ

g
1

ψb0 − ψ
g
0

. (16)

40There must be some φgr < 1 for some r, i.e., a bad type would have a chance of being awarded the
contract even when a good type is present.
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Next, we can rewrite (2), (14), (15) and (16) as a function of γgn only:

γgn ≤
1− (1− q)n

nq
(17)

γgn ≥
1

n
(18)

γgn ≤
ψb1 − ψ

g
1

n
(
(1− q)

(
ψb0 − ψ

g
0

)
+ q

(
ψb1 − ψ

g
1

)) (19)

γgn ≥
ψb1 − ψ

g
1

n
(
(1− q)

(
ψb0 − ψ

g
0

)
+ q

(
ψb1 − ψ

g
1

)) (20)

We define n̂ as the largest integer such that

1− (1− q)n

nq
≤ ψb1 − ψ

g
1

n
(
(1− q)

(
ψb0 − ψ

g
0

)
+ q

(
ψb1 − ψ

g
1

)) . (21)

Multiplying both sides by n, we see that the resulting RHS is independent of n, whereas
1−(1−q)n

q
is increasing in n. Thus, we know that the RHS of (17) is smaller than the

RHS of (19) when n ≤ n̂. We will analyze the case n ≤ n̂, and the case n > n̂ in turn

next.

Small n (n ≤ n̂)

Given n ≤ n̂, the upper bound on γgn is 1−(1−q)n
nq

≤ ψb
1−ψ

g
1

n((1−q)(ψb
0−ψ

g
0)+q(ψb

1−ψ
g
1))

and

Case I transfers are optimal. Substituting the optimal Case I transfers, the principal’s

expected payoff is given by

nqγgnπ1

(
V − γnψ

g
1 − ψ

g
1 − γnψb0 + ψb1

(π1 − π0) γn

)
+ n (1− q) γbnπ1

(
V −

γn
(
π0ψ

g
1 − π1ψb0

)
+ π1ψ

b
1 − π0ψ

g
1

π1 (π1 − π0)

)
,

and, after substituting γbn = 1−qnγgn
(1−q)n , her payoff becomes

nγgn

(
qπ1

(
V − ψg1 − ψb0

(π1 − π0)

)
− (1− q) π1

(
π0ψ

g
1 − π1ψb0

)
π1 (π1 − π0)

)
(22)

+
1− qnγgn
(1− q)

(
(1− q) π1

(
V − π1ψ

b
1 − π0ψ

g
1

π1 (π1 − π0)

)
− qπ1

ψb1 − ψ
g
1

(π1 − π0)

)
.
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Taking derivative with respect to γgn we have:

− nqπ1ψ
g
1 − nπ1ψb0 − nqπ1ψb1 + nπ0ψ

g
1

π1 − π0
(23)

+
1

(1− q)
nq2π1ψ

b
1 − nq2π1ψ

g
1

(π1 − π0)
,

which is positive if and only if,

π1q
(
ψb1 − ψ

g
1

)
> (1− q)

(
π0ψ

g
1 − π1ψb0

)
. (24)

Thus, for small n ≤ n̂, revenue is increasing in γgn if (24) holds, and the optimal γgn is

at the highest extreme given by (17), γgn = 1−(1−q)n
nq

. In this solution, we have allocative

efficiency. If the condition (24) does not hold, her payoff is decreasing in γgn and the

optimal γgn is given by the binding monotonicity condition at the lowest extreme of (18),

where γgn = γbn = 1
n
. In this case, the optimal allocation rule is inefficient when n > 1.

When n = 1, γgn = 1, and equation (2) is binding, i.e., the allocation is efficient.

Large n (n > n̂)

With n > n̂, condition (21) no longer holds and we have to consider both Case I

and II contracts as γgn can satisfy both (19) and (20).

For 1
n
≤ γgn ≤

ψb
1−ψ

g
1

n((1−q)(ψb
0−ψ

g
0)+q(ψb

1−ψ
g
1))

, the principal’s payoff is given by (22) above

with the Case I transfers. For
ψb
1−ψ

g
1

n((1−q)(ψb
0−ψ

g
0)+q(ψb

1−ψ
g
1))
≤ γgn ≤

1−(1−q)n
nq

, the principal’s

payoff is given by[
qπ1V − qπ1

ψg1 − ψ
g
0

π1 − π0
− (1− q) π0

ψg1 − ψ
g
0

π1 − π0
+ (1− q)ψb0

]
nγgn

+
[
(1− q) π1V − (1− q)ψb1

] 1− qnγgn
(1− q)

. (25)

with the Case II transfers and after substituting γbn = 1−qnγgn
(1−q)n
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For 1
n
≤ γgn ≤

ψb
1−ψ

g
1

n((1−q)(ψb
0−ψ

g
0)+q(ψb

1−ψ
g
1))

(Case I), taking derivative with respect to γgn

we have (23) above.

For
ψb
1−ψ

g
1

n((1−q)(ψb
0−ψ

g
0)+q(ψb

1−ψ
g
1))
≤ γgn ≤

1−(1−q)n
nq

(Case II), taking derivative with re-

spect to γgn we have[
nqπ1V − nqπ1

ψg1 − ψ
g
0

π1 − π0
− n (1− q) π0

ψg1 − ψ
g
0

π1 − π0
+ n (1− q)ψb0

]
−
[
n (1− q) π1V − n (1− q)ψb1

] qn

(1− q)n

The last derivative is positive if and only if

π1q
(
ψb1 − ψ

g
1

)
> (1− q)

[
π0ψ

g
1 − π1ψb0

]
+ (1− q) π0

(
ψb0 − ψ

g
0

)
+ q
(
π0ψ

b
1 − π1ψ

g
0

)
. (26)

Thus, when (26) holds (24) also holds so the principal’s payoff increases with γgn

over 1
n
≤ γgn ≤

1−(1−q)n
nq

(i.e., the entire range of γgn) and the optimal γgn is given

by γgn = 1−(1−q)n
nq

. In this case the optimal allocation rule is efficient. When (24) is

violated then (26) is also violated and the objective function decreases with γgn over
1
n
≤ γgn ≤

1−(1−q)n
nq

. So the optimal γgn = 1
n
. In this case the optimal allocation rule is

inefficient.

Finally, when (24) holds but (26) is violated, her payoff increases over 1
n
≤ γgn ≤

ψb
1−ψ

g
1

n((1−q)(ψb
0−ψ

g
0)+q(ψb

1−ψ
g
1))

and decreases over
ψb
1−ψ

g
1

n((1−q)(ψb
0−ψ

g
0)+q(ψb

1−ψ
g
1))
≤ γgn ≤

1−(1−q)n
nq

.

So the optimal γgn =
ψb
1−ψ

g
1

n((1−q)(ψb
0−ψ

g
0)+q(ψb

1−ψ
g
1))

(i.e., γn =
ψb
1−ψ

g
1

ψb
0−ψ

g
0
). In this case the optimal

allocation rule is inefficient.

Having characterized the optimal mechanism for all n, we now show that whenever

competition hurts under an efficient allocation rule (i.e., n > n∗), the optimal allocation

rule is inefficient. Note that the conditions (24) and (26) for the principal’s payoff to

increase with γgn under the optimal allocation rule is identical to the conditions (12)

and (13) for her payoff to increase with n under an efficient allocation rule.

When n ≤ n̂, i.e., (21) holds, and competition hurts under efficient allocation, i.e.,

(12) does not hold, then the optimal γgn = 1
n

as we have shown above. Hence, the

optimal allocation is inefficient.
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When n > n̂, and competition hurts under efficient allocation, i.e., (13) does not

hold, then the optimal γgn =
ψb
1−ψ

g
1

n((1−q)(ψb
0−ψ

g
0)+q(ψb

1−ψ
g
1))

(i.e., γn =
ψb
1−ψ

g
1

ψb
0−ψ

g
0
) if (24) holds and

γn = 1
n

if (24) does not hold. In either case, the optimal allocation is inefficient.

When competition helps under efficient allocation for all n, the optimal γn = 1−(1−q)n
nq

and allocation is efficient for all n, with n∗ = n.

Finally, we show whenever competition hurts under an efficient allocation rule (i.e.,

n > n∗), the optimal allocation rule makes the principal’s expected payoff equal to her

payoff when n = n∗ under the efficient allocation rule. Note that in the optimal mech-

anism the principal’s payoff, (22) and (25), depends on n only through nγgn. Consider

the case when competition hurts under efficient allocation, and therefore the optimal

allocation is inefficient. Then, in the optimal mechanism, nγgn =
ψb
1−ψ

g
1

((1−q)(ψb
0−ψ

g
0)+q(ψb

1−ψ
g
1))

and nγgn = 1, are independent of n and equal to the corresponding cases for 1 < n∗ <∞
and n∗ = 1 under efficient allocation defined in Section 4.41

This completes the proof of Proposition 4. �

Proof of Corollary 3. When n∗ = 1, if n > n∗, the optimal allocation is inefficient

and given by γgn = 1
n
. This corresponds to φgr = r

n
.

When n∗ = ∞ then for all n the efficient allocation is optimal so that the optimal

φgr = 1 for r ≥ 1.

If 1 < n∗ <∞ and n ≤ n∗ then the efficient allocation is still optimal by Proposition

4 which means the optimal φgr = 1 for r ≥ 1. If n > n∗ then the optimal allocation is

inefficient and we want to find the φgr that give

ψb1 − ψ
g
1

n
(
(1− q)

(
ψb0 − ψ

g
0

)
+ q

(
ψb1 − ψ

g
1

)) =
n∑
r=1

(
n− 1

r − 1

)
qr−1 (1− q)n−r φ

g
r

r

From efficient allocation rules we have

1 =
n∑
r=1

(
n− 1

r − 1

)
qr−1 (1− q)n−r 1

r

(
nq

1− (1− q)n
)

41Recalling that γbn =
1−qnγg

n

(1−q)n and γgn =
ψb

1−ψ
g
1

n((1−q)(ψb
0−ψ

g
0)+q(ψb

1−ψ
g
1))

, we have the optimal γn =
γg
n

γb
n

=

ψb
1−ψ

g
1

ψb
0−ψ

g
0

when 1 < n∗ <∞.
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which, after multiplying both sides, becomes

ψb1 − ψ
g
1

n
(
(1− q)

(
ψb0 − ψ

g
0

)
+ q

(
ψb1 − ψ

g
1

))
=

n∑
r=1

(
n− 1

r − 1

)
qr−1 (1− q)n−r 1

r

(
nq

1− (1− q)n
)

ψb1 − ψ
g
1

n
(
(1− q)

(
ψb0 − ψ

g
0

)
+ q

(
ψb1 − ψ

g
1

))
Let

φgr =

(
nq

1− (1− q)n
)

ψb1 − ψ
g
1

n
(
(1− q)

(
ψb0 − ψ

g
0

)
+ q

(
ψb1 − ψ

g
1

))
The φgr are well-defined allocation probabilities if φgr ≤ 1. So it is enough to show that(

nq

1− (1− q)n
)

ψb1 − ψ
g
1

n
(
(1− q)

(
ψb0 − ψ

g
0

)
+ q

(
ψb1 − ψ

g
1

)) < 1

or,
ψb1 − ψ

g
1

n
(
(1− q)

(
ψb0 − ψ

g
0

)
+ q

(
ψb1 − ψ

g
1

)) < (1− (1− q)n)

nq

which is true for n > n̂ by definition of n̂. Therefore, φgr defined above gives the

allocation that implements the allocation probability in this case. This completes the

proof of Corollary 3. �

Proof of Proposition 5. Denoting the probability of allocating the contract to a

good type by δn ≡ nqγgn, the expected payoff to the principal under a given contract is

given by

δn
(
πegV − πegt

g
h −

(
1− πeg

)
tgl
)

+ (1− δn)
(
πebV − πebtbh − (1− πeb) tbl

)
which can be rewritten as

δnπegV + (1− δn) πebV −
[
δn
(
πegt

g
h +

(
1− πeg

)
tgl
)

+ (1− δn)
(
πebt

b
h + (1− πeb) tbl

)]
First, notice that given a good type is favored in an auction and the effort levels as-

signed to the two types, the additive separability of V and the transfers imply that

the principal’s expected payoff maximization problem defined in Section 3 is equivalent

to her expected transfer minimization problem. Second in the minimization problem
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subject to the relevant constraints, the minimum is well defined. Let the minimum

expected transfer be defined for a given effort assignment eg and eb by τ(eg, eb).

The principal’s problem is then to solve

max
eg ,eb

δnπegV + (1− δn) πebV − τ(eg, eb).

Specifically, we need to identify the maximum among

π1V − τ(1, 1), (δnπ1 + (1− δn) π0)V − τ(1, 0), and π0V − τ(0, 0)

It follows that for V large enough the maximum is given by setting eg = 1, eb = 1 since

π1 > (δnπ1 + (1− δn) π0) > π0 and for large enough V we have

π1V − (δnπ1 + (1− δn) π0)V > τ(1, 1)− τ(1, 0)

and

(δnπ1 + (1− δn) π0)V − π0V > τ(1, 0)− τ(0, 0).

This completes the proof of Proposition 5.

Proof of Proposition 6 Rewriting the probability of allocating the contract to a

good type in terms of γn, we have δn = qγn
1−q+qγn . The principal chooses the transfers to

maximize

(δnπ (eg) + (1− δn) π (eb))V − δn (π (eg) t
g
h + (1− π (eg)) t

g
l )

− (1− δn)
(
π (eb) t

b
h + (1− π (eb)) t

b
l

)
s.t.

ICg : γn (π (eg) t
g
h + (1− π (eg)) t

g
l − ψg (eg)) ≥ π (egb) t

b
h + (1− π (egb)) t

b
l − ψg (egb)

ICb : π (eb) t
b
h + (1− π (eb)) t

b
l − ψb (eb) ≥ γn (π (ebg) t

g
h + (1− π (ebg)) t

g
l − ψb (ebg))

where the optimal effort by a type x agent who reports type y is denoted by

exy ∈ arg max
e
{π (e) tyh + (1− π (e)) tyl − ψx (e)} .
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Note that we write egg as eg and ebb as eb.

We show in the online appendix that in the optimal mechanism the constraint

(ICb) is always binding. Writing ∆y ≡ tyh − t
y
l for y = g, b, we also show that when

γn <
(

2 + g(1−q)
qb

)2
, (ICg) is binding and the solution to the principal’s problem is given

by:

∆g =

(
δnb+ (1− δn)

√
γng
)

2 (bδn + gγn (1− δn))
V, ∆b =

√
γn
(
δnb+ (1− δn)

√
γng
)

2 (bδn + gγn (1− δn))
V

tgl = 0, tbl = 0

When γn ≥
(

2 + g(1−q)
qb

)2
, (ICg) is slack, and the solution to the principal’s problem is

given by:42

∆g =
bV q

2bq + (1− q) g
,∆b = V

tgl = 0, tbl =
1

4b

(
γn

(
qbV

2qb+ (1− q) g

)2

− V 2

)
.

Thus, we have solved for the optimal transfers given γn.We next analyze how the ob-

jective function depends on γn.

Putting the transfers into the objective function when γn <
(

2 + g(1−q)
qb

)2
, i.e., (ICg)

is binding, and using δn = qγn
1−q+qγn the principal’s objective function can be written as(

qb
√
γn + (1− q) g

)2
(1− q + qγn)

V 2

8bg (bq + g (1− q))

Then taking derivative with respect to
√
γn and simplifying we have

b− g√γn
(1− q + qγn)2

q (1− q)
(
qb
√
γn + (1− q) g

)
V 2

4bg (bq + g (1− q))

which is positive if and only if

γn <

(
b

g

)2

.

42Note that when g =
√
γn−2

(1−δn)γn δnb the solution ICg holds with equality and the two solutions

coincide.
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Observation 1 : This also implies that under allocative efficiency whenever
(

2 + g(1−q)
qb

)2
>

γn >
(
b
g

)2
competition decreases the principal’s expected payoff in this case.

Next putting the transfers into the objective function when γn ≥
(

2 + g(1−q)
qb

)2
, i.e.,

ICg is slack, and using δn = qγn
1−q+qγn the principal’s objective function can be written

as [
b2q2γn + (1− q) g (2qb+ (1− q) g)

(1− q + qγn)

]
1

2bg (2qb+ (1− q) g)
V 2

The derivative of the bracketed term with respect to γn is given by

b2q − g (2qb+ (1− q) g)

(1− q + qγn)2
(1− q) q

Observation 2 : Hence the principal’s expected payoff is decreasing with γn if and only

if (
b

g

)2

<

(
2 +

g (1− q)
qb

)2

≤ γn.

Proof of Part (i). Under allocative efficiency, when
(
b
g

)2
>
(

2 + g(1−q)
qb

)2
, then

competition only helps the principal by Observations 1 and 2 above. Again, under

allocative efficiency and by Observations 1 and 2 above, if
(
b
g

)2
<
(

2 + g(1−q)
qb

)2
competition helps the principal when γn <

(
b
g

)2
and hurts the principal both when(

b
g

)2
< γn <

(
2 + g(1−q)

qb

)2
and γn ≥

(
2 + g(1−q)

qb

)2
.

When
(
b
g

)2
<
(

2 + g(1−q)
qb

)2
is satisfied, define n∗ by the n that solves γ∗n =

(
b
g

)2
if there is an integer that satisfies the equality under allocative efficiency; otherwise

consider n satisfying γn−1 <
(
b
g

)2
< γn under allocative efficiency, and define n∗ to be

n− 1 or n depending on which results in a higher expected payoff for the principal. It

follows that when
(
b
g

)2
<
(

2 + g(1−q)
qb

)2
competition hurts the principal if and only if

n > n∗. When
(
b
g

)2
>
(

2 + g(1−q)
qb

)2
, competition always helps the principal.

The part (i) of the proof is completed upon observing the following equivalence(
b

g

)2

<

(
2 +

g (1− q)
qb

)2

⇐⇒ (b− g)2 /g2 < 1/q.

�
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Proof of Part (ii). Suppose competition hurts under efficient allocation rule, i.e.,(
b
g

)2
<
(

2 + g(1−q)
qb

)2
and n > n∗. This implies that under efficient allocation rule

γn = 1−(1−q)n

q(1−q)n−1 >
(
b
g

)2
whereas the optimal γn is equal to γ∗n =

(
b
g

)2
. Under a general

allocation rule the only way to obtain γn =
(
b
g

)2
in this case is through choosing φr < 1

for at least some r, i.e., by choosing an inefficient (random) allocation rule. �

Proof of Part (iii). Since γ∗n =
(
b
g

)2
> 1 and γ1 = 1, the principal is better off with

at least two agents and an inefficient allocation rule than having exactly one agent.

Thus, some competition is always helpful. �
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