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Abstract 
 
On the basis of a single-period, guns-versus-butter, complete-information model in which two 
agents dispute control over an insecure portion of their combined output, we study the choice 
between a peace agreement that maintains the status quo without arming (or unarmed peace) and 
open conflict (or war) that is possibly destructive. With a focus on outcomes that are immune to 
both unilateral deviations and coalitional deviations, we find that, depending on war’s destructive 
effects, the degree of output security and the initial distribution of resources, peace can, but need 
not necessarily, emerge in equilibrium. We also find that, ex ante resource transfers without 
commitments can improve the prospects for peace, but only when the configuration of parameters 
describing the degree of output security and the degree of war’s destruction ensure the possibility 
of peace without such transfers at least for some sufficiently even initial resource distributions. 
JEL-Codes: D300, D740, F510. 
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1 Introduction

That most countries build military forces even when doing so represents a significant di-
version of productive resources and when practically none of these countries are actively
involved in war might seem puzzling. The literature points to two possible rationales,
both of which amount to the reasonable idea that arming is necessary to sustain peace.
One rationale builds on the notion that countries in conflict arm to gain leverage in their
negotiations that divide peacefully whatever is being contested under the threat of war
(e.g., Anbarci, Skaperdas and Syropoulos, 2002). In a static setting where war is destruc-
tive or countries are risk-averse, they have no incentive to declare war given their arming
choices. The other rationale builds on the idea that nations arm to deter a rival from attack-
ing them and thereby preserve the status quo (e.g., Powell, 1993). These analyses based on
either rationale help us understand the puzzle of armed peace.1 However, they leave us
wondering why some nations do not arm at all.2 Moreover, insofar as arming is costly, it
is worthwhile to consider what factors can contribute to or detract from the emergence of
unarmed peace.

To address these issues, the analysis of this paper focuses on the sort of peace that
is tantamount to preserving the status quo in a guns-vs.-butter model. Specifically, we
consider a single-period, complete information setting, with pre-play communication, in
which imperfect security of output gives rise to a possible conflict between two risk-neutral
agents (or countries) over their insecure output.3 Agents simultaneously choose (i) the
allocation of their respective resource endowments to arming and to the production of
consumables and (ii) whether or not to declare war in an effort to seize all of the insecure
output produced by both. If at least one agent chooses war, then war emerges with positive
arming by both agents, possibly resulting in some destruction of insecure and even of
secure output. Peace, which in contrast requires both agents to choose it, results in no
destruction, allowing each agent to enjoy all of his/her own output. War is always a non-
cooperative Nash equilibrium. But, what does this mean for peace?

1Also, see Fearon (2018) who brings these two rationales together. Building on Fearon’s (1995) seminal
work on why war breaks out, some have extended the analysis to multi-period settings and with arming
choices under war and peace made explicit. Specifically, Garfinkel and Skapaderas, (2000) and McBride and
Skaperdas (2014) find that, while arming to gain leverage in negotiations can prevent war in the short run,
long-run commitment problems can undermine peace particularly if the victor in war today gains a strategic
advantage in any future conflict—in the extreme case, by eliminating the rival and thus the need for future
arming altogether. Powell (2006) applies a similar logic for the case where arming is used for deterrence. See
Jackson and Morelli (2011) for a useful survey of the literature, including contributions by economists as well
as political scientists, on these and alternative rationales for war.

2According to Barbey (2015), 26 (of 196) countries have no armies of their own, including for example Costa
Rica and Iceland.

3Since we consider just two countries, we cannot capture the possibility that unarmed peace is supported
by “defense or friendship treaties” established between one of the parties in conflict and a third country that
provides protection, as in the case of 7 of the 26 nations that do not arm (Barbey, 2015).



Our primary objective in this paper is to ask whether and, if so, when peace that
preserves the status quo can emerge as a stable equilibrium in the sense of ”coalition-
proofness” (Bernheim et al., 1987)—i.e., a Nash equilibrium that is immune not only to
unilateral deviations but also to coalitional deviations—without resorting to repeated play
and Folk-Theorem type arguments. We start by showing there exist sufficiently asymmet-
ric distributions of resource endowments for which the less affluent agent strictly prefers
war, whereas the richer agent prefers peace. Even when the distribution is sufficiently
symmetric to render peace Pareto optimal and the contending agents can communicate
prior to making their decisions, peace need not emerge as the stable equilibrium. In partic-
ular, because peace preserves the status quo and, as a consequence, the contending agents
do not benefit from arming, no agent has an incentive to arm under peace.4 Herein lies a
short-run commitment problem that has not yet been analyzed in the literature: if an agent
does not arm in anticipation of peace, his rival could find it appealing to expand his mil-
itary capacity and declare war.5 The appeal of such a unilateral deviation, which is more
likely to hold for the less affluent agent, tends to undermine the stability of unarmed peace.
Yet, there do exist circumstances under which neither agent finds this option appealing rel-
ative to peace, such that both peace and war represent Nash equilibria in pure strategies.
In this case, unarmed peace Pareto dominates war, and pre-play communication allows
the two agents to coordinate on that outcome.

We show how the degree of output security, the pattern of war’s destructive effects on
secure vs. insecure output, and the configuration of initial resource endowments matter for
equilibrium arming decisions and the choice between war and peace. In the extreme case
where war involves no destruction, peace is simply ruled out for any degree of (imperfect)
output security and any distribution of resource endowments across agents.6 However,
even when war is destructive, peace could be vulnerable to unilateral deviations for all re-
source distributions, thereby wiping out the possibility of self-enforcing peace agreements.
Such an outcome is more likely when war’s destructive effects are mild and the degree of

4Without denying the relevance of deterrence motives for arming considered by Powell (1993) in his study
of peace that preserves the status quo, we are particularly interested in studying the stability of unarmed peace
and thus the conditions under which arming is not necessary for deterring one’s rival. It is worth noting here
that, as shown by Jackson and Morelli (2009) and De Luca and Sekeris (2013) in a setting that is closer to ours,
no pure-strategy equilibrium with positive arming that preserves peace exists when agents make their choices
at the same time (instead of in an alternating fashion as in Powell,1993). Fearon (2018) shows, by contrast, that
when the conflict between two agents is two-dimensional (one involving resource ownership and the other
involving some separate set of issues), armed peace can emerge in a pure-strategy equilibrium.

5Observe that this problem is related to, but distinct from, the well-known finding, based on the Tullock
(1980) type contest success function, that the unique Nash equilibrium involves strictly positive arming by
both parties; the key difference here is that we also consider the war/peace choice.

6It might seem a bit far fetched to suppose that war could be nondestructive. However, we can think of
conflict more broadly as it manifests itself in, for example, disputes between lobbyists who contest political
influence or between litigants in court cases. The possibility of no destruction in such contexts as in the present
paper means that the cost of “war” is limited to the resources used to “fight.”
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output security is low. Otherwise, unarmed peace can emerge as the stable equilibrium.
What is required additionally in this case is that the distribution of initial resource endow-
ments be sufficiently even. The greater is the extent of war’s destruction, the smaller are
the payoffs from a unilateral deviation from peace, and thus, the wider is the range of
resource distributions that make unilateral deviations unprofitable for both agents. Like-
wise, greater output security that reduces the relative appeal of a unilateral deviation for
the less affluent agent makes peace more likely to emerge as the stable equilibrium.

Given the possibility of pre-play communication, it seems natural to also consider the
possible role of ex ante resource transfers that presume no sort of commitment by either
agent to subsequently choose peace. We find that, by reducing the disparity in resource
endowments between agents, such transfers from the more affluent agent to the poorer
agent can expand the range of initial resource distributions under which peace is immune
to unilateral deviations and thus under which peace agreements are self-enforcing. But,
this pacifying effect is operational only when peace without transfers is possible for at least
some resource distributions. Furthermore, while an increase in output security reduces the
deviation payoff of the less affluent agent and thus lowers the transfer by the affluent agent
necessary to maintain peace, it also enhances that agent’s fallback payoff under war. As a
result, an increase in output security could weaken the pacifying effect of transfers.

Our paper is most closely related to Beviá and Corchón (2010), which is to the best of
our knowledge the only other paper that explores the choice between war and unarmed
peace that preserves the status quo in a one-period setting with and without ex ante re-
source transfers. It differs in two important respects to complement that paper. First, we
study how war’s destructive effects and imperfect output insecurity matter in governing
the stability of peace, whereas Beviá and Corchón (2010) assume complete output insecu-
rity and non-destructive war. Second, and perhaps more importantly, our assumed timing
of events, with arming and the choice between war and peace being made simultaneously,
allows us the highlight the salience of the short-run commitment problem noted above
that can undermine peace in our setting and is absent from their model.7 This timing, that
requires we compare payoffs under a unilateral deviation from peace with payoffs under
peace instead of payoffs under war with those under peace, tends to shrink the range of
sufficiently even resource distributions under which unarmed peace can emerge relative
to what Beviá and Corchón (2010) find. However, our consideration of war’s destructive
effects and partial output security has the opposite effect. What’s more, our considera-
tion of these two factors also matters for the effectiveness of ex ante resource transfers in
supporting peace as described earlier.

7Beviá and Corchón (2010) suppose the contending agents first make their peace/war choice and then their
arming choices; if peace is the outcome of the first choice, neither side arms.
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Our analysis is also related to Jackson and Morelli (2007), who also study the choice
between war and peace identified with the status quo, though their aim is to explore the
role of political biases within a country that arise when the decision maker of the coun-
try stands to gain relatively more from a victory. In any case, while accounting for war’s
destructive effects, they abstract from the agents’ arming decisions and thus a key compo-
nent of the commitment problem that tends to detract from the possibility of peace in our
setting. Indeed, in the baseline version of their model that excludes the distorting effects of
political biases on decision making, peace can always be supported by transfers, contrary
to what we find.

In what follows, the next section presents a basic one-period model of conflict over
output, including the two modes of conflict resolution (war and peace). In Section 3, we
study arming incentives and payoffs under each of these modes. The analysis in Section 4
identifies and characterizes the conditions, with and without transfers, under which peace
arises in this one-period setting as the stable equilibrium outcome. Section 5 considers a
variety of extensions (including diminishing returns, opportunity for mutually advanta-
geous trade, and preexisting military capabilities) to check the robustness of our results.
Section 6 concludes. All technical details appear in appendices.

2 Disputing the Distribution of Insecure Output

Consider a one-period, complete-information setting in which there are two risk-neutral
agents, i = 1, 2. Each agent can be thought of as an individual or a collectivity (e.g., a
group or nation).8 At the beginning of the period, agent i is endowed with Ri units of a
productive resource, where R ≡ R1 + R2 denotes the aggregate amount of the resource
across the two agents. This resource can be transformed, on a one-to-one basis, into Xi

units of “butter” for consumption. But, not all output is secure. Specifically, while a frac-
tion σ ∈ [0, 1) of each agent’s butter Xi is secure, the remaining fraction 1− σ ∈ (0, 1] is
insecure and contestable.9 The contestability of output possibly motivates war with its as-
sociated production of “guns” (or arms), denoted by Gi and also produced on a one-to-one
basis using Ri.10

The game is structured as follows: Each agent i simultaneously chooses whether or
not to declare war and the allocation of his resource Ri to the production of Gi units of

8In the case that each agent represents a group of individuals, we assume that the decision maker acts in the
interest of the collectivity, thereby abstracting from the political biases studied in Jackson and Morelli (2007)
as well as from collective action problems.

9An interesting extension left for future research would allow σ to differ across agents. Such asymmetries
would give rise to additional implications regarding the identity of the more aggressive agent, as noted in the
concluding section.

10We could allow for marginal cost of arming to differ from 1 without affecting our results qualitatively.
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guns, leaving Xi = Ri − Gi ≥ 0 units of the resource to produce butter.11 The outcome of
peace, which requires that neither agent declares war, supports the status quo, letting each
agent consume his entire output of butter, Xi. By contrast, if at least one agent declares
war, then each agent deploys his guns to contest the sum of insecure output (1 − σ)X,
where X ≡ X1 + X2 denotes total output. Importantly, war results in the destruction of a
fraction 1− γβ ∈ [0, 1) of insecure output and a fraction of 1− β ∈ [0, 1) of secure output.
Hence, β ∈ (0, 1] represents the overall rate at which output generally survives war and
βγ ∈ (0, 1] indicates the survival rate of contested output. The parameter γ ∈ (0, 1],
then, reflects the possible difference in survival rates of contested and uncontested output,
with γ = 1 implying no difference at all and decreases in γ implying greater differential
destruction of contested output.12

In this setting, we model war as a “winner-take-all” contest over (1− σ)X. The proba-
bility that agent i wins depends on the arming choices by both agents, φi = φi(Gi, Gj) for
i = 1, 2 and j 6= i. More precisely, letting G ≡ G1 + G2 denote the aggregate quantity of
guns chosen, agent i’s probability of winning is specified as follows:

φi = φi(Gi, Gj) =

{
Gi/G if G > 0
Ri/R if G = 0

, i 6= j = 1, 2. (1)

According to this specification of the conflict technology (also referred to as the “contest
success function,” CSF), when G > 0, the winning probability for agent i is increasing in
his own guns (φi

Gi > 0) and decreasing in the guns of his rival (φi
Gj < 0). Equation (1)

also implies that the conflict technology is symmetric (i.e., φi(Gi, Gj) = φj(Gi, Gj)) and
concave in Gi. For G > 0, it implies that φi

GiGj R 0 as Gi R Gj for i 6= j = 1, 2.13 In
contrast, when G = 0 so that no guns are deployed, there is no destruction and each
agent’s winning probability (given war is declared) is determined by his initial resource
relative to the aggregate resource.

For any given guns chosen (Gi, Gj), agent i’s payoff under peace Vi is

Vi = Xi, for i = 1, 2, (2)

11With a focus on a single-stage game, our analysis abstracts from some issues that can arise if agents are
allowed to communicate between the arming and war decisions. While these issues, which are taken up in
Section 5, do not affect our characterization of the conditions under which unarmed peace is stable, they do
matter in the case of war. Note further that there is no “first-mover” advantage in war.

12This parameterization is sufficiently flexible to capture several interesting cases, including one where no
output is subject to destruction (β = γ = 1) and another where only contested output is subject to destruction
(β = 1 and γ < 1).

13See Tullock (1980), who first introduced this functional form. Skaperdas (1996) axiomatizes a general class
of such functions, φ(Gi, Gj) = f (Gi)/ ∑2

k=1 f (Gk), assuming only that f (·) is non-negative and increasing.
One commonly used specification, studied by Hirshleifer (1989), is the “ratio success function,” where f (G) =
Gm with m > 0. The results to follow remain qualitatively unchanged under this more general specification
with m ∈ (0, 1]. But, to maintain clarity, we focus on the specification in (1) with m = 1.
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where Xi = Ri − Gi. As this expression shows, agent i derives no benefit from guns Gi

in the case of peace, and the production of guns is costly as it diverts resources away
from producing butter. Matters differ, however, in the case of war. In particular, agent i’s
expected payoff under war Ui is

Ui = φiβγ(1− σ)X + βσXi, for i = 1, 2, (3)

where X = ∑i Xi = ∑i(Ri − Gi) = R − G. Guns production by agent i positively in-
fluences his payoff through his probability of winning φi as shown in (1), but also nega-
tively through his residual resource Xi that also negatively impacts X. Importantly, when
Gi = Gj = 0 so that, by assumption, γ = β = 1, our specification in (1) implies Vi = Ui.

3 Arming and Payoffs Given War and Peace

In this section, we first characterize the agents’ optimizing choices of arming under peace
and war. We then turn to analyze the resulting payoffs, which provide the groundwork for
our analysis of the stability of peace when agents are allowed to communicate with each
other prior to making any decisions.

3.1 Arming Incentives Under Peace and War

Arming is always costly in that it draws resources away from the production of butter.
However, its benefits depend on whether peace prevails or war breaks out. Let Gi

k denote
equilibrium arming when peace (k = p) or war (k = w) is anticipated. From (2), when
peace is anticipated by both agents, arming yields no benefits; and, as such, neither agent
arms: Gi

p = 0 for i = 1, 2.
In the case of war, by contrast, arming does generate a benefit, as well as a cost. The

extent to which agent i arms in this case depends on the solution to maxGi Ui subject to
Xi = Ri − Gi ≥ 0. Differentiating (3) with respect to Gi shows:

∂Ui

∂Gi = φi
Gi βγ(1− σ)X−

[
φiβγ(1− σ) + βσ

]
for i = 1, 2. (4)

The first term on the right-hand side (RHS) of the expression above represents the marginal
benefit of arming for agent i (MBi), due to the effect of Gi (given Gj) to increase his prob-
ability of winning the pool of insecure butter net of destruction. MBi is increasing in the
survival rate of contested output (γβ ↑) and in output insecurity (σ ↓), as well as in the
aggregate resource (R) through its influence on X. The second term on the RHS of the
expression represents the agent’s marginal cost of arming (MCi) in terms of foregone pro-
duction of butter that would otherwise add to the pool of insecure output (1− σ)X and to
the agent’s own secure output σXi. Like MBi, MCi is increasing in the survival rate of con-
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tested output (γβ ↑). But, a change in the overall survival rate alone (β) does not influence
the net marginal benefit of arming in (4). What matters instead is the rate of differential
destruction of insecure output, reflected inversely in γ ≤ 1. Specifically, as will become
clear shortly, an increase in γ amplifies arming incentives. In addition, MCi is decreasing
in output insecurity (σ ↓). Combining this effect with its aforementioned (positive) effect
on MBi shows that an increase in σ dampens an agent’s incentive to arm.

Based on (4) along with the resource constraint Xi = Ri − Gi ≥ 0 and the conflict
technology (1), agent i’s best reply to agent j’s arming choice can be written as follows:

Bi
w(G

j; γ, σ, Ri, R) = min
{

Ri, B̃i
w(G

j)
}

, for i 6= j = 1, 2, (5a)

where B̃i
w(Gj) denotes agent i’s unconstrained best-response function, implicitly defined

by the condition ∂Ui/∂Gi = 0 and given by

B̃i
w(G

j) = −Gj +
√

GjθR, (5b)

where

θ ≡ γ(1− σ)

γ(1− σ) + σ
∈ (0, 1] (5c)

reflects the importance of his contribution to the pool of contested output net of destruc-
tion relative to his total output, again net of destruction, and positively affects an agent’s
incentive to arm.14 Consistent with our discussion above in relation to (4), an increase in
the overall rate of output destruction (β ↓) has no consequences for equilibrium arming
since it affects the marginal benefit and marginal cost of arming equi-proportionately. By
contrast, differential destruction does matter along with the insecurity of output. In par-
ticular, an increase in θ, due to a smaller differential between the rates of destruction of
contested and uncontested output (γ ↑) and/or greater output insecurity (σ ↓), fuels arm-
ing incentives. All else the same, such incentives are largest when σ = 0 implying θ = 1
or, given some output security (σ > 0), when γ = 1 implying θ = 1− σ.

Of course, resource constraints matter here as well for arming choices. Using (5b) while
explicitly taking into account agent i’s resource constraint, we define the following:

RL = 1
4 θR ≤ 1

4 R and RH = (1− 1
4 θ)R, (6)

where the subscripts “L” and “H” are used to designate the “low ”and “high” threshold
levels of resources. Together, these threshold levels define the parameter space for which
one or neither agent is resource constrained in the production of guns. In particular, when

14To avoid notational cluttering, we suppress the dependence of agent i’s unconstrained best-response func-
tion on γ, σ, Ri and R.
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Ri, Rj ∈ [RL, RH ], neither agent is resource constrained. If, however, Ri ∈ (0, RL) implying
Rj ∈ (RH, R), then agent i is constrained, while his rival (j) is not.15

Equations (5) and (6) give us the following:

Proposition 1 (Arming under war.) Assume output is not perfectly secure (σ < 1) and
both agents anticipate war. Then, there exists a unique equilibrium in arming, with posi-
tive quantities of guns produced by both agents Gi

w > 0, i = 1, 2. For any given R such
that Ri + Rj = R (i 6= j = 1, 2), these quantities have the following properties:

(a) If Ri ∈ [RL, RH ] for i = 1, 2, then Gi
w = RL, with dGi

w/dθ > 0.

(b) If Ri ∈ (0, RL) for i 6= j = 1 or 2, then Gi
w = Ri and Gj

w = B̃j
w(Ri) > Gi

w, with
dGj

w/dθ > 0.

Clearly, the distribution of R across the two agents can matter for their equilibrium arm-
ing choices. However, as established in part (a), if the distribution of initial resources is
sufficiently even such that neither agent is resource constrained, then they choose an iden-
tical amount of guns. Furthermore, exogenous transfers of the initial resource from one
agent to the other (leaving R unchanged) have no effect on equilibrium arming choices,
provided the transfer does not make one of them resource constrained. By contrast, as
shown in part (b), when one agent is constrained (i), the equilibrium is asymmetric, with
the unconstrained agent (j) naturally arming by more. In this case, an exogenous transfer
of resources from the unconstrained agent (j) to the constrained agent (i) tends to dampen
differences in their arming choices, whereas transfers in the other direction tend to amplify
such differences. Whether the distribution is sufficiently even or uneven, equilibrium arm-
ing by an unconstrained agent depends positively on θ—or, more precisely, positively on
the survival rate of contested output in war (γ ↑ given β ≤ 1) and on the insecurity of
output (σ ↓). Finally, observe from (6) with (5c) that such parameter changes also shrink
the range of distributions Ri ∈ [RL, RH ] for which neither agent is resource constrained.

3.2 Payoffs under Peace and War

We now turn to explore the implications of the above for payoffs, again given war or peace.
The finding that neither agent arms under peace implies, from (2), that

Vi
p = Ri, for i 6= j = 1, 2, (7)

which depends only on Ri, positively and linearly so.

15That both agents cannot be resource constrained at the same time contrasts with the setting of Beviá and
Corchó (2010), who suppose some guns can be “recovered” for consumption by the victor of war. In particular,
while the possibility of such recovery lowers the effective marginal cost of arming, they assume that it does
not affect the relevant resource constraint, implying that both agents could be resource constrained.
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Under war where the two agents arm according to Proposition 1, their expected payoffs
Ui

w depend on the distribution of the resource R as well as on the survival rate of output
under war (reflected in β and γ) and the degree of security of output (σ). In particular,
as shown in Appendix A, an application of Proposition 1 to (3) using the technology of
conflict (1) while keeping in mind that Rj = R− Ri yields

Ui
w(Ri) =


βγ(1− σ)Ri

(√
R

θRi − 1
)

if Ri ∈ (0, RL)

1
4 βγ (1− σ) R + βσRi if Ri ∈ [RL, RH ]

[βγ(1− σ) + βσ] R
(

1−
√

Rjθ
R

)2

if Ri ∈ (RH, R),

(8)

for i 6= j = 1, 2, which in turn gives us:

Proposition 2 (Payoffs under war.) Assuming both agents anticipate war and arm accord-
ingly, their payoffs have the following properties.

(a) If Ri ∈ [RL, RH ] for i = 1, 2, then: (i) dUi
w/dRi ≥ 0 as σ ≥ 0 with d2Ui

w/(dRi)2 = 0; (ii)
dUi

w/dβ > 0; (iii) dUi
w/dγ > 0; and (iv) dUi

w/dσ ≥ 0 when γ ≤ 1−2σ
1−σ and otherwise

(γ > 1−2σ
1−σ ) dUi

w/dσ < 0 for Ri sufficiently close to RL.

(b) If Ri ∈ (0, RL) for i 6= j = 1 or 2, then: (i) dUi
w/dRi > 0 with d2Ui

w/(dRi)2 < 0 and
limRi→0 Ui

w = 0, whereas dU j
w/dRj > 0 with d2U j

w/(dRj)2 > 0 and limRj→R U j
w =

[βγ (1− σ) + βσ] R; (ii) dUi
w/dβ > 0 and dU j

w/dβ > 0; (iii) dUi
w/dγ > 0 and

dU j
w/dγ > 0; and (iv) dUi

w/dσ > 0 when γ ≤ 1−2σ
2(1−σ)

and otherwise (γ > 1−2σ
2(1−σ)

)

dUi
w/dσ > 0 only when γ < 1−2σ

1−σ and Ri is sufficiently close to RL, while dU j
w/dσ > 0

for all σ and γ.

This proposition shows that an agent’s payoff under war depends positively on his re-
source endowment. Specifically, the first component of part (a) shows that, even when the
distribution of resources is sufficiently even such that neither agent is constrained in his
arming and they arm identically, their payoffs will differ provided that some fraction of
output is secure (σ > 0). A shift in resources from agent i to j has no effect on equilibrium
arming, but makes i worse off and j better off, again provided σ > 0. Similarly, the first
component of part (b) shows that when agent i is resource constrained in his arming, he
is generally worse off than his unconstrained opponent j, and the difference in payoffs
increases as the distribution of R shifts towards j.

Exogenous changes in destruction generate direct payoff effects shown in (3) that dom-
inate the strategic (or indirect) effects (if any) shown in Proposition 1. To be more precise,
the second and third components of both parts of the proposition establish that, whether
or not an agent is resource constrained, his payoff falls as war becomes more destructive
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(β ↓ and/or γ ↓).
Finally, exogenous changes in output security (σ) can generate both direct and strategic

effects as well, but these effects for the more affluent agent reinforce each other. Thus, as
the fourth components of parts (a) and (b) taken together show, an improvement in the
security of output (σ ↑) always increases the payoffs of the more affluent agent. The effects
of such improvements on the less affluent agent’s payoff are a little more nuanced, since
as revealed by (3) an increase in σ can generate a negative direct effect on that agent’s
payoff, if its resource endowment is sufficiently small, and that tends to offset the positive
strategic effect. When differential destruction is large enough γ ≤ 1−2σ

2(1−σ)
, the net effect is

positive for any Ri ∈ (0, R̄). Otherwise, the net effect on the less affluent agent depends
on the distribution of resource endowments as well as parameter values.16 In particular,
there exists a critical value of Ri above which improvements in output security make agent
i better off and below which the agent is worse off. In the case that γ ∈ ( 1−2σ

2(1−σ)
, 1−2σ

1−σ ), this
critical value falls within the range (0, RL); and, in the case that γ ≥ 1−2σ

1−σ , it falls within
the range [RL, 1

4 R̄].
The effects of σ and γ on Ui

w are illustrated in Fig. 1, which depicts the payoffs under
war under various distributions of resources in pink.17 Panel (a) focuses on the benchmark
case where there is no destruction (γ = β = 1), showing that an improvement in output
security (σ ↑) results in a counterclockwise rotation of the payoff function Ui

w(Ri) at the
initial value of RL.18 Panel (b) shows the effect of a decrease in the differential survival rate
γ (given β = 9

10 ) to rotate Ui
w(Ri) in a clockwise direction at Ri = 0.19

3.3 Comparing Payoffs under Peace and War

Drawing on our analysis above, we now compare payoffs for each agent i = 1, 2 across the
peace and war outcomes as they depend on the distribution of resource endowments R,
the security of output σ, and the survival rate of output in war determined jointly by β and
γ. Clearly, agent i prefers war when Ui

w(Ri) > Vi
p(Ri) and otherwise prefers peace. Taking

into account that the shape of Ui
w(Ri) depends on where Ri falls within the distribution of

R while Vi
p(Ri) = Ri for all Ri ∈ (0, R), we establish the following:

16Intuitively, an increase in σ enhances the security of each agent’s own output, but also implies that the
size of the prize up for grabs in war falls, and this negative effect can dominate for the less affluent agent.
The condition γ > (1− 2σ)/2(1− σ), which ensures such dominance is possible, is necessarily satisfied if
either output is moderately secure initially (σ ≥ 1

2 ) or if the differential survival rate of contested output is
moderately high (γ > 1

2 ).
17Ignore the blue and green curves for now.
18Observe, from (5c) and (6), that an increase in σ also decreases θ and hence RL, and accordingly increases

RH , as illustrated in Fig. 1(a).
19One can similarly visualize the effect of a decrease in β as a clockwise rotation of Ui

w(Ri) at Ri = 0.
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Proposition 3 (Comparison of payoffs.) There exists a unique threshold level of Ri, de-
noted by R̂ for i = 1, 2 and given by

R̂ =


R̂L ≡

[
β(γ(1−σ)+σ)
βγ(1−σ)+1

]2
θR ∈ (0, RL) if γ < 1−2βσ

β(1−σ)
, or

R̂H ≡ βγ(1−σ)
4(1−βσ)

R ∈ [RL, 1
4 R] otherwise,

(9)

above which agent i prefers peace and below which he strictly prefers war. These threshold
points are increasing in γ and β. In addition, dR̂H/dσ < 0, and dR̂L/dσ Q 0 as γ R

1−2σ
(2−β)(1−σ)

.

For all feasible values of β ∈ (0, 1], γ ∈ (0, 1], and σ ∈ [0, 1), the threshold value R̂ ∈
{R̂L, R̂H} is less than half of the aggregate resource R̂ < 1

2 R. Intuitively, when Ri = 1
2 R for

i = 1, 2, each agent would enjoy one-half of whatever output is available for consumption
regardless of whether war or peace prevails; however, under war that induces arming
and possibly destruction, the total amount of output available is strictly less than what
would be available under peace, to imply Vi

p(
1
2 R) > Ui

w(
1
2 R) for both i = 1, 2. Thus,

Proposition 3 establishes that there exists a non-empty subset of resource distributions
Ri ∈ [R̂, R− R̂] ⊂ (0, R) under which peace Pareto dominates war (i.e., Vi

p(Ri) ≥ Ui
w(Ri)

for i = 1, 2), and the size of that range expands as R̂ falls.
Which threshold applies depends on the configuration of parameters. For example, if

war is not destructive at all (β = γ = 1), the higher threshold R̂H applies, with R̂H =
1
4 R ≥ RL = 1

4 (1− σ)R as σ ≥ 0. This case is illustrated in Fig. 1(a), where the green line
represents Vi

p for all possible initial distributions Ri ∈ [0, R].20 As war’s overall destruction
becomes sufficiently large (β < 1

2 ), the lower threshold R̂L would apply for any σ ∈ [0, 1)
and γ ∈ (0, 1]. In the case of perfect output insecurity (σ = 0), R̂L applies for any degree
of destruction, β, γ ∈ (0, 1]. Fig. 1(b) illustrates the case where R̂ = R̂L, though under less
extreme circumstances.

But, whether R̂L or R̂H applies, the size of the range [R̂, R − R̂] expands (and there-
fore the condition for peace to Pareto dominate war is more likely to be satisfied) when
war is more destructive (β ↓ and/or γ ↓). Intuitively, from Proposition 2, an increase in
destruction reduces the payoffs to both agents under war without affecting their payoffs
under peace.21 Likewise, an increase in output security σ tends to reduce the war payoff
of the less affluent agent provided that the differential survival rate of output exceeds a
critical value conditioned on β and σ and thus tends to decrease the threshold level R̂.
By contrast, if the differential survival rate is sufficiently small, an increase in σ raises the

20Note that the figure is not drawn to scale. If it were, the green line, depicting Vi
p as a function of Ri, would

be a 45o line from the origin.
21See Fig. 1(b) that illustrates the effect of an increase in differential destruction (γ ↓).
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threshold level of the resource.22 This latter possibility suggests that an improvement in
output security can reduce the parameter space for which peace Pareto dominates war.

4 Equilibrium Choice Between War and Peace

To be sure, war is always a pure-strategy, Nash equilibrium for the following reason: if
an agent’s rival declares war and arms accordingly, then the agent’s best reply is to do the
same. Moreover, the Pareto dominance of unarmed peace does not guarantee its emer-
gence as another Nash equilibrium even when agents communicate with each other prior
to their decisions. What is required, in addition, is that neither agent have an incentive
to deviate unilaterally from the choices which support that outcome. In this section, we
explore the circumstances under which unarmed peace emerges as the stable equilibrium
outcome that is immune to unilateral deviations as well as to coalitional deviations, first
without transfers and then with transfers.23

4.1 Without Transfers

In this setting without transfers, the optimal unilateral deviation from peace for either
agent i given Gj = Gp = 0 is to produce an infinitesimal amount of guns Gi

d = ε > 0 and
declare war. To be more precise, given that the opponent j anticipates peace and chooses
Gj = 0, our specification for the conflict technology (1) implies such a deviation brings
agent i a certain victory and an associated payoff Ui

d(Ri) equal to

Ui
d(Ri) = βγ(1− σ)[R− ε] + βσ[Ri − ε] ≈ βγ(1− σ)R + βσRi, for i = 1, 2, (10)

where the second expression on the RHS follows for ε arbitrarily close to zero. Like the
payoff under war Ui

w(Ri) shown in (8) when neither agent is resource constrained, Ui
d(Ri)

increases linearly in Ri (provided σ > 0) and is also increasing in the survival rate of output
(γ ↑ and/or β ↑).24 In addition, Ui

d is increasing in output security (σ ↑) if the agent’s

22The parameter values that imply R̂ = R̂H also imply that the payoff under war for agent i with Ri less
than or equal to that threshold always falls with an increase in σ. Put differently, the value of Ri ∈ [RL, RH ]
for which dUi

w/dσ = 0 (and below which dUi
w/dσ < 0) is greater than R̂H . (In the special case that those two

points coincide, as shown in Fig. 1(a), an increase in σ has no effect on R̂H .) Similarly, the restriction on the
parameter values (stated in the proposition) for dR̂L/dσ < 0 to hold is precisely the necessary and sufficient
condition for the critical value of Ri at which dUi

w/dσ = 0 and below which dUi
w/dσ < 0 to be greater than

R̂L. Otherwise, the counterclockwise rotation in Ui
w(Ri) induced by an increase in σ occurs at a value of Ri

which is less than the initial R̂L, implying a new intersection of Ui
w(Ri) with Ri at a larger value of R̂L.

23While the equilibrium concept we employ here follows Bernheim et al.’s (1987) notion of coalition-proof
equilibrium in that it requires immunity to both sorts of deviations, the concept is weaker than that of “perfect
coalition-proofness” that would be relevant in the context of a sequential game, allowing unlimited commu-
nication throughout. We return to this issue below in Section 5.

24One might object to our implicit assumption here that a unilateral deviation involving the deployment
of only an infinitesimal quantity guns results in the destruction of some output as in the case where both
agents arm and fight. Below in Section 5, we consider an extension of the analysis that, following Slantchev
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resource is sufficiently large (Ri ≥ γR, which is more likely when the differential survival
rate of contested output γ is sufficiently small) and is otherwise strictly decreasing in σ.
Panels (a) and (b) of Fig. 1, where the blue line depicts Ui

d(Ri), illustrates the dependence
of Ui

d(Ri) on Ri as well as on σ and γ.25 Observe further that Ui
d

(
Ri) > Ui

w
(

Ri) for any
given distribution Ri ∈

(
0, R

)
, while βγ (1− σ) R = limRi→0 Ui

d < limRi→0 Ui
w = 0 (where

the strict equality follows under our maintained assumptions that βγ > 0 and σ < 1)
whereas β [γ (1− σ) + σ] R = limRi→R Ui

d = limRi→R Ui
w ≤ R (which holds with equality

only if β = γ = 1).
Turning to the comparison of payoffs under peace and under an optimal (unilateral)

deviation from it, one can see from (7) and (10) that, provided there is some destruction
(i.e., βγ ∈ (0, 1)), we have: (i) limRi→0 Ui

d > limRi→0 Vi
p while limRi→R Ui

d < limRi→R Vi
p;

and (ii) ∂Ui
d/∂Ri < ∂Vi

p/∂Ri. We thus arrive at

Lemma 1 For any σ ∈ [0, 1) and βγ ∈ (0, 1), there exists a unique allocation of resources

R∗ =
βγ (1− σ)

1− βσ
R ∈ (0, R), (11)

such that Ri Q R∗ as Ui
d(Ri) R Vi

p(Ri), with the following properties:

(a) sign{∂R∗/∂β} = sign{∂R∗/∂γ} > 0 whereas ∂R∗/∂σ ≤ 0 (with equality if β = 1);

(b) R∗ S 1
2 R as γ S γNT, where γNT ≡ γNT (σ; β) =

1−βσ
2β(1−σ)

> 0 .

This lemma establishes that, provided war is destructive, agent i finds a unilateral devia-
tion from peace to be unprofitable (profitable) when his initial resource allocation is suffi-
ciently large (small).26 Part (a) shows that the threshold R∗ is decreasing in destruction (β ↓
and/or γ ↓), as would be expected since the deviation payoff Ui

d(Ri) is decreasing in de-
struction, while the peace payoff Vi

p(Ri) is independent of destruction. Similarly, because
Ui

d(Ri) falls (rises) with improvements in output security (σ ↑) when Ri is sufficiently small
(large) whereas Vi

p(Ri) is independent of σ, an increase in σ reduces the relative appeal of

(2011), supposes each agent holds an initial stock of guns that can be deployed, possibly along with additional
guns produced; in this extension, where our assumption of destruction in the case of a unilateral deviation
seems quite reasonable, the various threshold values do change, but the central results remain qualitatively
intact. Another possible approach would be to assume that the rate of destruction is increasing in each agent’s
arming, along the lines of Chang and Luo (2017). In such an extension, the rate of destruction of a unilateral
deviation would be smaller though still strictly positive. We conjecture that, while this modification would
once again influence the various thresholds, there would be no qualitative differences in our key insights.

25In the case that β = γ = 1, an increase in output security results an a counterclockwise rotation of Ui
d(Ri)

at Ri = R as shown in panel (a) of the figure, such that Ui
d(Ri) falls with increases in σ for all Ri ∈ (0, R).

26The threshold R∗ shown in (11) is strictly greater than the threshold R̂ shown in (9) that defines the pa-
rameter space for which each agent i is better off under peace. Thus, as suggested earlier, even when an
agent prefers the outcome under peace to that under war, he could have a strictly positive incentive to deviate
unilaterally from the peaceful outcome.
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a unilateral deviation to the less affluent agent and thus reduces R∗ (provided β < 1).27

Of course, for peace to arise as a stable equilibrium, both agents must view a unilateral
deviation as being unprofitable—i.e., Ri ≤ R∗ for i = 1, 2. Such stability requires as a
necessary (but not sufficient) condition that R∗ ≤ 1

2 R.28 Part (b) of the lemma helps us to
identify the circumstances under which this condition is satisfied and when it is not. To
proceed, observe the parameter γNT introduced in this part of Lemma 1 gives the critical
value of the differential survival rate of contested output, conditioned on σ and β, above
which we have R∗ > 1

2 R. Thus, when γ > γNT, at least one agent would optimally
choose to deviate given his rival anticipates peace and so does not arm for any distribution
Ri ∈ (0, R). (The subscript “NT” indicates the case of no transfers.) This critical value is
decreasing and convex in β but increasing and concave in σ. Furthermore, depending on
the values of β and σ, γNT could exceed 1.

To flesh out the implications, consider first the special case where β = 1, which implies
that only the insecure portion of an agent’s output is subject to destruction under war. In
this case, γNT = 1

2 , and thus R∗ ≤ 1
2 R holds for any γ ≤ 1

2 and all σ ∈ [0, 1). Exactly
the opposite is true for γ > 1

2 , implying peace cannot be a stable equilibrium for such
parameter values. This case is illustrated by the pink horizontal line in Fig. 2(a) that cuts
the (σ, γ) plane into the just described subsets. Now, let us consider values of β < 1 which,
for any given σ, causes γNT to rise. Indeed, there exist (β, σ) pairs that imply γNT ≥ 1, such
that γ ≤ γNT and hence, by part (b), R∗ ≤ 1

2 R always holds. One can verify that a sufficient
condition for this possibility is that β ≤ 1

2−σ (or, equivalently, σ ≥ σNT (β) ≡ 2 − 1
β ).

Clearly, this condition is always satisfied for β ≤ 1
2 because σ ∈ [0, 1). Thus, if the overall

rate of destruction is sufficiently strong (i.e., β ≤ 1
2 ), then γNT ≥ 1 and R∗ ≤ 1

2 R for any
σ ∈ [0, 1) and γ ∈ (0, 1]. When β ∈ ( 1

2 , 1), the values of both σ and γ matter because
σ < σNT implies γNT < 1, thereby raising the possibility that γ > γNT and thus R∗ > 1

2 R.
Nevertheless, R∗ ≤ 1

2 R will hold provided the differential rate of destruction γ satisfies
γ ≤ γNT. For additional insight, we illustrate this case with the blue curve in Fig. 2(a)
which depicts γNT for β = 9

10 . The green curve above the blue one arises when a lower
value of β (specifically, β = 2

3 ) is considered. In summary, we have R∗ ≤ 1
2 R at all (σ, γ)

pairs on or below γNT and R∗ > 1
2 R at all pairs above γNT.29

27Fig. 1(a) illustrates the effects of an increase in σ, but does so under the assumption that β = 1; in this
extreme case, R∗ = R and Ui

d(Ri) rotates counterclockwise at Ri = R as σ rises, such that there is no effect on
R∗ = R. However, Fig. 1(b) shows how a decrease in γ shifts Ui

d(Ri) downward, resulting in a decrease in R∗,
from the value of Ri associated with point A to that associated with point B.

28Without any loss of generality, we assume that an agent chooses peace at the point of indifference.
29Of course, the value of 1−βσ

2β(1−σ)
can exceed 1 (specifically, when σ > σNT), as discussed above and illus-

trated by the thin dotted-line extensions of γNT in Fig. 2(a). Since γ cannot exceed 1, the critical value of γ,
γNT , could be written more precisely as min{ 1−βσ

2β(1−σ)
, 1} as shown in the figure. But, to avoid clutter in the

text, we simply write γNT as specified in the lemma.
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Let us define R∗ ≡ R− R∗. Then, using Lemma 1 under the assumption that ex ante
resource transfers are not possible, the next proposition establishes the conditions under
which peace can and cannot arise as the stable equilibrium outcome:

Proposition 4 (Stability of peace without transfers.) For all values of β ∈ (0, 1] and σ ∈
[0, 1), if γ > γNT(σ; β), then war emerges as the unique pure-strategy, Nash equilibrium
for all feasible distributions Ri ∈ (0, R̄). However, if γ ≤ γNT(σ; β), then

(a) there exists a non-empty subset [R∗, R∗] ⊂
(
0, R

)
of initial resource distributions that

imply unarmed peace is the stable equilibrium for any Ri in this subset;

(b) war is the unique pure-strategy, Nash equilibrium for all other (sufficiently uneven)
distribution of resources.

Higher degrees of output security (σ ↑) and larger overall and/or differential rates of
destruction (β ↓ and/or γ ↓) enlarge the subset [R∗, R∗] of endowments that support
peace.

This proposition shows that there exist certain combinations of parameter values (β, γ, σ)

for which unarmed peace (without transfers) is not possible for any feasible resource dis-
tribution, implying war is the unique, pure-strategy Nash equilibrium.30 Such an outcome
is more likely to materialize when war is less destructive (β ↑ and/or γ ↑) and output is
less secure (σ ↓).31 Outside that parameter space (i.e., where R∗ ≤ 1

2 R), unarmed peace
can be another equilibrium outcome, but only provided the distribution of resources is
sufficiently even. Because Ri ≥ R∗ > R̂ for i = 1, 2 for such distributions, peace Pareto
dominates war (i.e., Vi

p(Ri) ≥ Ui
w(Ri)); and, under the reasonable assumption that the

two agents can communicate before they act, they would naturally coordinate on peace,
making that outcome the stable or coalition-proof equilibrium in the absence of transfers.32

To illustrate, let W i
NT denote agent i’s (pure-strategy) equilibrium payoff in the absence

of transfers. Now, consider combinations of the degree of output security σ and the rates
of destruction of output β and γ, such as the ones depicted in Fig. 2(c) below the γNT

30As in Jackson and Morelli (2009) and De Luca and Sekeris (2013), mixed-strategy equilibria that dominate
the war outcome could exist in this case; however, we focus on pure-strategy equilibria.

31Our earlier discussion in connection with Lemma 1 suggests that a necessary (but not sufficient) condition
for this possibility is that γ > 1

2 and β > 1
2 , which includes the case of no destruction at all.

32More formally, following Bernheim et al. (1987), this equilibrium concept requires that (i) neither agent
views a unilateral deviation from the outcome to be profitable and (ii) coalitional deviations are unprofitable
as well. However, in our setting, the conditions that ensure peace is a Nash equilibrium imply that peace
dominates war. Thus, condition (i) implies condition (ii), and one can think of “coalition proofness” as a re-
finement that allows the agents to coordinate on the Pareto dominant equlibrium—namely, unarmed peace.
While mixed-strategy equilibria with arming by at least one agent could also exist in this case, such equilibria
are similarly Pareto dominated by unarmed peace. Thus, provided unarmed peace is a stable outcome satis-
fying condition (i), it is the unique stable equilibrium. [See the proof of Proposition 4 presented in Appendix
A for some details.]
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curve. The two panels of Fig. 3 show W i
NT(Ri) (captured by the thick, black and discontin-

uous curve) associated with each of these points. Proposition 4 implies W i
NT(Ri) = Vi

P(Ri)

for all Ri ∈ [R∗, R∗], whereas W i
NT(Ri) = Ui

w(Ri) < Vi
p(Ri) for all Ri /∈ [R∗, R∗]. Thus,

peace emerges as the equilibrium outcome only if the initial distribution of resources is
sufficiently even. The discontinuity at point A arises because agent i has an incentive to
deviate unilaterally from peace as soon as Ri falls below R∗. Since the payoff W j

NT(Ri) to
agent j 6= i (not drawn to avoid cluttering) mirrors W i

NT(Ri), it should be clear that the dis-
continuity at point B arises because agent j ( 6= i) undermines peace as Ri rises above R∗ (or
equivalently, as Rj falls below R∗). This logic suggests that, in the absence of transfers, war
arises as the pure-strategy equilibrium for sufficiently uneven distributions of resources,
where peace fails to be immune to unilateral deviations. A comparison of the two panels
in Fig. 3 illustrates the result that an increase in the differential rate of destruction (γ ↓)
expands the size of [R∗, R∗], thereby making peace a more likely equilibrium outcome.

4.2 With Transfers

We now turn to explore how resource transfers affect the stability of unarmed peace when
the initial distribution is such that peace without transfers is not possible to begin with—
i.e., Ri /∈ [R∗, R∗]. Following Beviá and Corchón (2010) and Jackson and Morelli (2007)
among others, we assume such transfers are made in advance of the agents’ arming and
war/peace decisions and without any commitments to choose no arming and peace.33

To fix ideas, suppose that Ri > Rj, so that agent i is the more affluent one. From our dis-
cussion above, it should be clear that such transfers can improve the stability of peace only
if they make the ex post distribution of resources more even.34 For the transfer to support
peace in the absence of binding commitments, the resulting distribution of resources must
not leave either agent with an incentive to deviate unilaterally from that outcome. More
precisely, the transfer from the more affluent agent i must be sufficiently large to render
a unilateral deviation from peace unprofitable and thus unappealing to the less affluent
agent (j). Assuming that transferred resources are subject to destruction in the event of
war, this condition can be written as

V j
p(Rj + T) ≥ U j

d(Rj + T) −→ Rj + T ≥ βγ(1− σ)R + βσ(Rj + T).

33This ex ante resource transfer differs sharply from an ex post transfer resulting from a division contested
output conditioned on arming choices by each agent under peace. As shown by Garfinkel and Syropoulos
(2019) among others, in single-period settings, there always exists a division that (given arming choices) can
induce a peaceful outcome; however, that sort of peace comes at the cost of arming by both agents.

34This reasoning suggests an alternative way to induce peace would involve the affluent agent “burning”
some of his resource. However, like transfers as shown below, the burning of resources by one agent can
support peace for at least some resource distributions only if peace can be supported without transfers for
some resource distributions. Moreover, if this method of evening out the distribution of resources can support
peace, both agents would be better off under a transfer. (Details are available from the authors on request.)
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Rearranging the second inequality using the definition of R∗ in (11) shows that this con-
straint imposes an lower bound on the transfer, denoted by Tmin:

T ≥ Tmin ≡
βγ(1− σ)

1− βσ
R− Rj = R∗ − Rj. (12)

Since Rj + Tmin = R∗, a transfer of Tmin from i to j makes agent j just indifferent between
peace and a unilateral deviation from it. By the same token, the transfer should not be too
large so as to make a unilateral deviation by the more affluent agent (i) profitable:

Vi
p(Ri − T) ≥ Ui

d(Ri − T) −→ Ri − T ≥ βγ(1− σ)R + βσ(Ri − T),

which places an upper bound on the transfer, denoted by Tmax:

T ≤ Tmax ≡ Ri − βγ(1− σ)

1− βσ
R = Ri − R∗. (13)

The possible existence of a transfer that satisfies both (12) and (13) requires Tmin ≤ Tmax,
which brings us back to the necessary condition for peace without transfers: R∗ ≤ 1

2 R.
Thus, transfers can support peace only if peace can be supported in the absence of trans-
fers for at least some resource distributions. But, even if there exists a transfer T that
simultaneously satisfies (12) and (13), it need not support peace. In addition, the transfer
should not be so large as to make the more affluent agent (i) worse off under peace than
his fallback payoff under war with no transfers: Vi

p(Ri − T) = Ri − T ≥ Ui
w(Ri).

Building on this last condition that must hold for the more affluent agent i, the next
lemma lays the groundwork for our characterization of parameter values under which
unarmed peace with transfers is stable. To start, observe that, when the more affluent agent
i donates the minimum transfer that supports peace (Tmin = R∗ − Rj) to agent j, agent i
is left with R∗ (= R − R∗) resources and his payoff is Vi

p(R∗) = [1 − βγ(1−σ)
1−βσ ]R. Next,

recall that the payoffs under war and under an unilateral deviation from peace satisfy
limRi→R Ui

w(Ri) = limRi→R Ui
d(Ri) = β [γ (1− σ) + σ] R. Based on this equality, we now

identify another critical value of γ, denoted by γT (where the “T” subscript indicates when
transfers are possible) and conditioned on σ and β:

Lemma 2 There exists a critical value of γ, given by

γT ≡ γT (σ; β) =
(1− βσ)2

β (1− σ) (2− βσ)
, (14)

that implies Vi
p(R∗) = limRi→R Ui

w(Ri) and Vi
p(R∗) R limRi→R Ui

w as γ Q γT. For any
σ ∈ [0, 1) and β ∈ (0, 1], γT(σ; β) ≤ γNT(σ; β) (with equality for σ = 0) and depends on β

and σ as follows:
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(a) If β = 1, then γT = 1−σ
2−σ and ∂γT/∂σ < 0 with γT|σ=0 = 1

2 and limσ→1 γT = 0.

(b) If β ∈ ( 1
2 , 1), then

(i) there exists a unique σT = 2
(

β− 1
2

)
/β2 ∈ (0, 1) s.t. γT(σ; γ) > 1 for all σ > σT;

(ii) γT is strictly quasi-convex in σ with arg minσ γT = min{0, 3
(

β− 2
3

)
/β2} and

γT < 1 for all σ ∈ (0, σT).

(c) If β ∈ (0, 1
2 ], then γT ≥ 1.

The properties of γT highlighted in parts (a) and (b) are illustrated in Fig. 2(b). The pink,
dashed-line curve in panel (b) of Fig. 2 shows the γT schedule when β = 1 as charac-
terized in Lemma 2(a). The blue and green curves illustrate γT for β = 9

10 and β = 2
3 as

characterized in part (b).35 Lastly, panel (c) of Fig. 2 shows γNT in relation to γT for β = 9
10 .

Let us now give these figures more context. We have already described how the par-
tition of the [0, 1] × [0, 1] space of (σ, γ) by γNT matters for our characterization of the
equilibrium without transfers. Specifically, war is the unique pure-strategy, Nash equilib-
rium outcome for all parameter values in the subset above γNT (shown in Fig. 2(c) as the
pink-shaded area). In contrast, peace is possible when the distribution of resources is suf-
ficiently even for all parameter values in the subset below γNT. The γT (≤ γNT) schedule
partitions the latter (green-shaded) subset into two additional subsets: (σ, γ) pairs on and
below γT that support peace for all resource distributions Ri ∈ (0, R) (in the area shaded
with a darker green), whereas those pairs above γT (but below or on γNT, in the area
shaded with a lighter green) that support peace only for a subset of resource distributions.

Building on these ideas with Proposition 4 and Lemma 2, we can now establish the
following:

Proposition 5 (Stability of peace with transfers.) Suppose that ex ante resource transfers
between agents are possible. Such transfers are relevant in supporting peace only for those
(β, γ, σ) parameter values that also ensure peace can arise as a stable equilibrium in the
absence of transfers (i.e., γ ≤ γNT). Under such circumstances given β ∈ (0, 1] and σ ∈
[0, 1), transfers expand the distribution of resources under which unarmed peace is stable
as follows:

(a) If γ ∈ (γT(σ; β), γNT(σ; β)], there exist a unique R∗∗ ∈ (0, R∗) and corresponding
R∗∗ ≡ R− R∗∗ that satisfy Vi

p(R∗) = Ui
w(R∗∗) and imply the following:

(i) unarmed peace arises as the stable equilibrium for all Ri ∈ [R∗∗, R∗∗];

(ii) war is the unique pure-strategy, Nash equilibrium for all Ri /∈ [R∗∗, R∗∗].

(b) If γ ∈ (0, γT(σ; β)], unarmed peace is the stable equilibrium for all Ri ∈ (0, R).
35In the latter case, arg minσ γT = 0, as noted in part (b.ii). It is worth noting that, even though γT < 1 for

σ ∈ (0, σT), γT is increasing in σ ∈ [0, 1) when β ∈ (0, 2
3 ].
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If β ∈ ( 2
3 , 1], then improvements in output security (σ ↑) can reduce the range of resources

Ri ∈ [R∗∗, R∗∗] for which peace can be supported when transfers are possible.

This proposition identifies the conditions for which transfers between agents do not matter
and those for which they do and how. Clearly, as argued earlier, if unarmed peace is
not possible in the absence of transfers for any initial distribution of resources (i.e., γ >

γNT), then transfers can do nothing to support peace. We illustrate parts (a) and (b) of the
proposition, with the help of Figs. 3 and 4, assuming γ ≤ γNT. As established earlier in
Proposition 4 and illustrated in both panels of Fig. 3, when γ ≤ γNT, peace can arise as the
stable equilibrium in the absence of transfers, but only for a subset of resource distributions
Ri ∈ [R∗, R∗] ⊂ (0, R̄), since Ri > R∗ implies Rj < R∗ and which, in turn, implies agent
j has an incentive to deviate unilaterally. However, for an allocation Ri just above R∗ (or
point B in the figure), agent i could make an ex ante resource transfer to agent j, T = Tmin =

R∗−Rj shown in (12), to give the less affluent agent j the minimum payoff, V j
p(R∗) = R∗ =

U j
d(Rj) > U j

w(Rj), required to keep him from deviating from the peace outcome. At the
same time, with a final endowment of R∗ = Ri − R∗ + Rj after the transfer, the more
affluent agent i continues to enjoy the higher payoff under peace, Vi

p(R∗), that exceeds his
fallback payoff of not making a transfer and tolerating war, Ui

w(Ri), as illustrated in Fig.
3. Importantly, additional increases in Ri (above R∗) cause agent i’s fallback payoff Ui

w to
rise, such that the gain from making a transfer Vi

p(R∗)−Uw(Ri) falls.
The lower bound on γ specified in part (a) implies that Vi

p(R∗) < limRi→R Ui
w. It then

follows that there exists an allocation Ri = R∗∗ > 0 that implies Vi
p(R∗) represented by

point B in Fig. 3(a) equals Ui
w(R∗∗) represented by point C in the same figure. Thus, for

any Ri ∈ (R∗, R∗∗], agent i would prefer to make a resource transfer and avoid war. How-
ever, for allocations Ri > R∗∗ (just beyond point C), agent i views the required transfer
as too costly and so is willing to tolerate war. Considering all possible endowment dis-
tributions, we illustrate agent i’s (pure-strategy) equilibrium payoff in the presence of ex
ante transfers, W i

T(Ri), with the thick black curve in panel (a) of Fig. 4. Clearly, when
transfers are possible, peace is sustainable for a larger set of endowment distributions (i.e.,
R∗∗ > R∗), and both agents obtain payoffs that are at least as large as the ones associated
without transfers. But, for the set of parameter values considered here, war does emerge
as the unique, pure-strategy equilibrium outcome if the initial distribution of resources is
sufficiently uneven: Ri > R∗∗ that impies Rj < R∗∗.

Part (b) establishes that it is possible for peace to arise as the stable equilibrium in the
presence of ex ante resource transfers for all possible endowment distributions, as illus-
trated in panel (b) of Fig. 4. In particular, by the definition of γT, we have if γ ≤ γT, then
Vi

p(R∗) ≥ limRi→R Ui
w. Thus, although the gains to agent i of making an ex ante resource

transfer to agent j for Ri > R∗ diminish as his initial resource endowment increases, they

19



remain non-negative for all Ri ∈ (R∗, R̄). Accordingly, R∗∗ = R, and peace emerges as the
stable equilibrium outcome for all Ri ∈ (0, R) when transfers are possible.

Finally, Proposition 5 shows that improvements in output security (σ ↑) can make
transfers less effective in promoting unarmed peace. To gain some intuition here, recall
from Lemma 1 that an increase in σ reduces the critical value of the endowment R∗, above
which unilateral deviations are viewed as being unprofitable, and thus reduces the mini-
mum transfer required to keep the less affluent agent (j) from deviating. As a consequence,
an increase in σ enhances the more affluent agent’s (i) payoff under peace with transfers,
Vi

p(R∗). This effect alone tends to increase R∗∗. However, by Proposition 2, an increase in
σ also raises the more affluent agent’s fallback payoff under war Ui

w(Ri) at any given R∗,
and that effect alone tends to decrease R∗∗, thereby weakening the power of transfers to
promote peace. As shown in Appendix A, which effect dominates depends on the shape
of γT(σ) and the initial value of σ; but, for the latter effect to dominate, overall destruction
must not be too severe as stated in the proposition.36

5 Extensions: Generalizations and Limitations

That the stability of unarmed peace (identified with the status quo) for any feasible distri-
bution of resource endowments requires war to be destructive is noteworthy, and stands in
sharp contrast to what happens when peace is modeled as a bargaining process to divide
whatever is contested, with the agents arming to gain leverage in that process. Specifically,
as argued by Garfinkel and Syropoulos (2018), peace in the latter case (or “armed peace”) in
a one-period setting is immune to unilateral deviations provided that, for any given guns,
the payoffs to both contenders are greater under peace than under war. That is to say,
peace (identified with a division of contested goods) generates a “dividend” that extends
beyond the savings in resources allocated to arming. As long as guns are chosen before
the war/peace decision, peace necessarily arises as a possible equilibrium outcome.37

36One can visualize the possibility that an increase in σ makes transfers less effective in supporting peace
in Fig. 2(c) that assumes β = 9

10 . In particular, suppose that γ = 1
2 . As shown in the figure, for relatively

small values of σ, we have γ (= 1
2 ) < γT , implying that, when transfers are possible, peace can be supported

for all resource distributions (i.e., R∗∗ = 0). As we consider larger values of σ with γ = 1
2 , we eventually

cross over the γT schedule, where γ ∈ (γT , γNT) and thus peace with transfers is possible only for a subset of
resource distributions, implying R∗∗ > 0. But, with further security improvements, ultimately the inequality
γ (= 1

2 ) < γT is restored, such that R∗∗ = 0 again.
37However, there could exist resource distributions for which the ex ante equilibrium payoff of one agent

under war exceeds his ex ante equilibrium payoff under peace, such that peace does not dominate war in a
Pareto sense. As demonstrated by Garfinkel and Syropoulos (2019), this possibility can arise in the presence
of bargaining for a division of contested output under peace due to the different levels of arming by the
contenders that war and peace induce. In this case, it is the more affluent agent who could view war from an
ex ante perspective to be more appealing than peace (also see Schaller and Skaperdas, 2020). Then, if guns are
chosen after the war/peace decision as assumed in Beviá and Corchón (2010), armed peace, though immune
to unilateral deviations, need not arise as a stable equilibrium even in a one-period setting.
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Although war’s destructive effects represent one reason for the presence of such a
peace dividend as has been argued by Fearon (1995) and Powell (1993) among others, alter-
native factors similarly render peace better than war given arming choices—for example,
risk aversion, diminishing returns in production, and mutually advantageous trade that
is possible only when war is avoided.38 Could the introduction of these other factors in
our analysis restore the possible stability of unarmed peace (identified with the status quo)
for at least some distributions of initial resource endowments, even when war (including
unilateral deviations) is not destructive? In this section, we consider four extensions that,
while interesting in their own right, allow us to check the robustness of our finding to such
factors. In particular, we consider (i) diminishing returns in the production of butter and
(ii) the possibility of trade when the final goods produced by the two agents are differen-
tiated. In addition, we consider (iii) the possibility that the agents have an initial stock of
guns carried over at no cost to the present. Such an extension allows us to address the
possible objection to our analysis in which a unilateral deviation from unarmed peace by
one agent would allow him to capture, with certainty, all of the contested output upon
producing only an infinitesimal quantity of guns. Finally, we discuss the conditions under
which our results extend to (iv) a sequential-move game.39

5.1 Diminishing Returns

Here, we focus on a simple form of diminishing returns, one that helps us show clearly
how the analysis of our baseline model generalizes. Specifically, we modify the technol-
ogy of butter as follows: Xi = (Ri − Gi)α, where α ∈ (0, 1].40 An agent’s payoff functions
under peace Vi and war Ui remain precisely as shown respectively in (2) and in (3). Thus,
the structure of the contest is identical to that in the baseline model. Nevertheless, the
strict concavity of Xi in Ri − Gi (i.e., for α < 1) has some distinct analytical implications.
First, because an agent’s marginal product in butter Xi is infinitely large when Ri − Gi is
infinitesimal (i.e., limGi→Ri ∂Xi/∂Ri = limGi→Ri α(Ri − Gi)α−1 = ∞), the agent’s opportu-
nity cost to producing guns becomes infinitely large as Gi → Ri. As a consequence, an
agent never chooses to allocate his entire resource endowment to the production of guns.
Second, closed-form solutions for the agents’ best-response functions and the associated
Nash equilibrium in arming no longer exist. Nonetheless, it is possible to characterize

38See Garfinkel and Skaperdas (2007) for a general discussion. Also, see Anbarci (2002) on rules of division
in the presence of diminishing returns and Garfinkel and Syropoulos (2018) on such rules in the presence of
trade.

39More technical details regarding these extensions can be found in Appendix B.
40Results analogous to those that follow hold when we consider instead risk aversion. Alternatively, to cap-

ture the importance of complementarities between multiple inputs in production, one could consider the CES
production function Xi = [α(Ri − Gi)r + (1− α)(Ki)r]1/r for α ∈ (0, 1] and r < 1, where Ki is a specific factor
(e.g., land) that remains fixed in the background. This function becomes very similar to the one considered in
the text for Ki = K (i = 1, 2) as r → 0, and simplifies to the specification in our baseline model when α = 1.
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these functions (and equilibrium) and show that they have properties similar to the those
in the baseline model. Third, while the dependence of an agent i’s equilibrium payoff un-
der war Ui

w on the distribution of resources is similar to that in the baseline model it differs
in that Ui

w is smooth in Ri. Finally, although the payoffs under unarmed peace Vi
p = (Ri)α

and a unilateral deviation from it Ui
d are similar to the ones in the baseline model in that

they continue to be smooth, they are, in addition, strictly concave in Ri.
To see the implications of diminishing returns for the stability of peace, observe that

agent i’s payoff under a unilateral deviation from peace evaluated at Gi arbitrarily close to
zero is given by

Ui
d ≈ βγ(1− σ)[(Ri)α + (Rj)α] + βσ(Ri)α.

Thus, the critical value of Ri, above which agent i finds a unilateral deviation unprofitable
(R∗), is now

R∗ =
R

1 +
[

1−βσ
βγ(1−σ)

− 1
]1/α

∈ (0, R), (11′)

which simplifies to the value of R∗ in (11) when α = 1. Indeed, in the absence of destruction
under war or under unilateral deviations from peace (i.e., βγ = 1), we have Vi

p =
(

Ri)α
<

Ui
d =

(
Ri)α

+ (1− σ)
(

Rj)α for all Ri ∈ (0, R). As such, R∗ = R holds, implying (as in the
baseline model) that peace cannot emerge as a stable equilibrium for any distribution Ri ∈
(0, R) when war is not destructive. Even when war is destructive (βγ < 1), a comparison
of R∗ in (11′) with 1

2 R reveals that γNT in the case of diminishing returns is identical to the
one obtained in the baseline model (as shown in Lemma 1(b)), implying that the degree of
output insecurity and the nature of destruction alone determine γNT. Thus, the parameter
α plays no role in determining the possible existence of at least some resource distributions
under which unarmed peace can emerge as a stable equilibrium.41

This is not to say that the presence of diminishing returns is inconsequential. Suppose,
for any given σ ∈ [0, 1) and β ∈ (0, 1), that peace without transfers is sustainable for some
allocations of Ri (i.e., γ < γNT). As can be confirmed from (11′), stronger diminishing
returns (i.e., a smaller value of α) are associated with a lower value of R∗ and, therefore, a
larger range of (sufficiently even) resource distributions that support peace. Furthermore,
one can verify that the presence of diminishing returns makes ex ante resource transfers

41To see this more clearly, note that we can rewrite R∗ in (11′) as a function of γNT = (1− βσ)/2β(1− σ):

R∗ =
R

1 + (1 + 2[γNT/γ− 1])1/α
.

For any α ∈ (0, 1], if γ > γNT , then R∗ > 1
2 R, such that peace is not possible for any distribution Ri ∈ (0, R).
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more effective in expanding the range of allocations that support peace.42

5.2 Trade

In this section we consider the possible implications of trade for the stability of peace. We
do so in a very simple setting along the lines of Armington (1969), in which each agent
produces a differentiated good (j = 1, 2) that can be traded under peace. Although we
assume trade is not possible in the case of war, the winner of the conflict takes possession
of the contested portion of the rival’s good and thus can enjoy consumption of both goods,
whereas the defeated side can consume only the secure portion of what he produces. To de-
rive the corresponding payoffs, let preferences defined over these two consumption goods
take the following symmetric CES form: F ≡ F(D1, D2) = [Dρ

1 + Dρ
2 ]

1/ρ, where ρ ∈ (0, 1]
and Dj denotes the quantity of good j = 1, 2 consumed. The elasticity of substitution in
consumption is given by ε ≡ 1

1−ρ , implying that the two goods are perfect substitutes (as
in our baseline model) if ρ → 1 or ε → ∞. Based on these preferences, agent i’s payoff
function under war is given by

Ui = φi
[(

βγ(1− σ)Xi + βσXi
)ρ

+
(

βγ (1− σ) X j
)ρ]1/ρ

+ (1− φi)βσXi.

The first term represents agent i’s consumption contingent on victory, weighted by his
probability of winning. The second term equals his consumption in the case of defeat
weighted by that probability. Define η ≡ γ (1− σ) + σ, so that θ = γ (1− σ) /η. Then,
agent i’s payoff under war can be written more compactly as

Ui = βη

(
φi
[
(Xi)ρ + (θX j)ρ

]1/ρ
+ (1− φi) (1− θ) Xi

)
, (15)

which simplifies to that in the baseline model (3) if ρ = 1.43

Agent i’s payoff under peace and perfectly competitive trade (with no trade costs) can
be written as:44

Vi = ψi(Ri, Rj)F(Ri, Rj), where ψi ≡ ψi(Ri, Rj) =

(
Ri)ρ

(Ri)
ρ
+
(

Rj
)ρ . (16)

ψi represents agent i’s “competitive” share of total utility available to the two players when
each agent devotes his entire resource endowment to produce his (differentiated) good.
This payoff, too, simplifies to that of the baseline model when ρ = 1, as shown in (7).

42See Appendix B.
43As in the case of diminishing returns, it is not possible to find closed-form solutions for the best-response

functions or the Nash equilibrium; however, we can characterize the payoff functions.
44For brevity, the derivation of this expression, based on a standard analysis of the Armington (1969) model

of trade, is presented in Appendix B.
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Keeping in mind that Ri + Rj = R, one can demonstrate the following: First, for ρ ∈ (0, 1),
F(·, ·) is strictly concave in the allocation Ri, reaching its maximum at Ri

F = 1
2 R, where

the agents’ resource endowments are identical. Second, ψi(·) is increasing in Ri ∈ (0, R)
for ρ ∈ (0, 1]. As a result, Vi

p = ψiF attains a maximum at some Ri
p > Ri

F. In addition,
limRi→R Vi

p = R and limRi→R(dVi
p/dRi) < 0 that imply Ri

p ∈ ( 1
2 R, R).

The payoff to agent i under a unilateral deviation from unarmed peace can be derived
from (15), recognizing that his optimal deviation is Gi

d = ε, which is arbitarily close to zero
and, in turn, implies (given Gj = 0) that φi = 1, as well as X j = Rj and Xi ≈ Ri:

Ui
d ≈ βη

[
(Ri)ρ + (θRj)ρ

]1/ρ
. (17)

Ui
d in (17) simplifies to the deviation payoff when ρ = 1 as shown in (10). For ρ ∈ (0, 1),

this payoff is strictly concave in the allocation Ri, reaching its maximum at some Ri
d ≥

1
2 R,

with equality in the case of perfectly insecure property (i.e., σ = 0). Furthermore, we have
limRi→R Ui

d = βηR and limRi→R
(
dUi

d/dRi) < 0, such that Ri
d ∈ [ 1

2 R, R). Hence, while
social welfare under peace is maximized where initial resources are symmetrically dis-
tributed, each agent strictly prefers a distribution that is partially skewed towards himself.

As in the baseline model, Ui
d > Ui

w holds. To examine how trade affects the stability
of peace (absent transfers), we must therefore compare Vi

p with Ui
d. We start with the

following two observations:

(i) limRi→0 Vi
p = 0, whereas limRi→0 Ui

d = βγ (1− σ) R. Thus, limRi→0 Ui
d > limRi→0 Vi

p

for βγ ∈ (0, 1].

(ii) limRi→R Vi
p = R, whereas limRi→R Ui

d = βηR. Accordingly, limRi→R Ui
d ≤ limRi→R Vi

p

with equality if there is no destruction under war or under a unilateral deviation
from peace (i.e., if βγ = 1).

Suppose war is destructive (i.e., βγ < 1). Since both Vi
p and Ui

d are continuous in Ri ∈
(0, R), observations (i) and (ii) imply that Ui

d will cross Vi
p from above at some Ri. Exhaus-

tive numerical analysis confirms that this crossing occurs at most once at some Ri ∈ (0, R).
As a consequence, agent i will prefer a unilateral deviation over peace, if his initial en-
dowment is sufficiently small and conversely if his endowment is sufficiently large . One
can show further that the larger is the overall and/or differential rates of destruction the
more likely that the crossing will occur at some Ri < 1

2 R. Taken together, these results
establish the existence of sufficiently even distributions that support peace provided war
and unilateral deviations are sufficiently destructive as in our baseline model.

But, the more important question for our purposes here, assuming agents capitalize
on the opportunity that exists under peace to engage in mutually advantageous free trade
(i.e., with ρ ∈ (0, 1)), is whether peace can arise as a stable equilibrium when there is no
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destruction under war at all (i.e., βγ = 1). To establish the possibility that it can, we must
show the crossing of Ui

d and Vi
p can occur at some Ri ≤ 1

2 R when β = γ = 1. To that
end, consider the ratio (Vi

p/Ui
d)|Ri= 1

2 R. Using (16) and (17), one can show that this ratio
evaluated at β = γ = 1 is given by

Ω ≡ Ω(σ, ρ) =
Vi

p

Ui
d

∣∣∣∣
Ri= 1

2 R
=

[
21−ρ

1 + (1− σ)ρ

]1/ρ

.

For any ρ ∈ (0, 1) that inversely reflects the possible gains from trade, there exists a
σΩ ≡ σΩ(ρ) = 1− (21−ρ − 1)1/ρ ∈ (0, 1), where σ′Ω > 0 and σ′′Ω > 0, such that Ω ≥ 1
for all σ ≥ σΩ.45 The condition σ ≥ σΩ ensures that Vi

p ≥ Ui
d for both agents i when

resource endowments are identical across agents; and, when σ > σΩ, the allocation where
the less affluent strictly is indifferent between peace and a unilateral deviation from it is
at some allocation Ri < 1

2 R. These findings imply that war need not be destructive for
the emergence of unarmed peace as the stable equilibrium when peace gives rise to the
possibility for mutually beneficial trade. Even in the absence of war’s destructive effects,
provided that output is sufficiently secure, trade can ensure the existence of sufficiently
even distributions of resources that support peace as a stable equilibrium. In addition,
since σ′Ω > 0, greater gains from trade (i.e., lower values of ρ) weaken the requirement on
the security of output.

While the above analysis is encouraging for the prospects of unarmed peace when war
is not destructive and more generally, it is important not to lose sight of the converse im-
plication, that higher degrees of insecurity (σ ↓) together with lower gains from trade (ρ ↑)
weaken the effectiveness of trade to sustain unarmed peace. Put differently, one would be
incorrect in asserting that trade can always help support unarmed peace. Institutions that
shape the degree of security in property rights and the distribution of resource ownership
play important roles here.

5.3 Preexisting Military Capabilities

Next we turn to the possibility of preexisting military capabilities. As has been argued
by Slantchev (2011) among others, preexisting military capabilities are empirically rele-
vant. In particular, modern wars are typically of short duration and, when of a limited
nature, often are fought with the contenders’ existing military apparatus alone (i.e., with-
out producing additional weaponry). Applied to our setting, preexisting military capabil-
ities mean that, when contemplating a unilateral deviation from peace, each agent would
have to take into account that his rival is already armed, so that the production of some

45One can also show that limρ→0 σΩ = 3
4 while limρ→1 σΩ = 1.
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infinitesimal quantity of guns would no longer suffice to assure victory.46 More generally,
preexisting arms affect both the initial and the final distributions of power through their
possible impact on current arming decisions. Although this possibility does not affect the
payoffs under peace, it does matter for arming incentives and, thus, for the payoffs un-
der unilateral deviations as well as under war; in turn, this influence naturally matters for
the stability of peace. Indeed, preexisting arms can deter a more aggressive agent from
increasing his arms and attacking his rival. Our specific focus here is to examine whether
peace can arise as the stable equilibrium outcome in the presence of preexisting arms, but
no destruction.

Let Gi
0 > 0 denote the initial quantity of guns each agent i holds at the beginning of

their interactions, and define G0 = G1
0 + G2

0 as the total quantity of initial holdings. For
simplicity, we assume Gi

0 is a perfect substitute for current guns Gi and that agents need
not incur any additional costs to maintain or put their preexisting arms into use. However,
these arms affect power through the conflict technology, which we modify as follows:

φi ≡ φi(Gi, Gj) =
Gi + Gi

0

G + G0
, for i 6= j = 1, 2 and G0 > 0. (18)

Clearly, when neither agent produces any guns, the initial distribution of power is given
by φi(0, 0) = Gi

0/G0. A key issue here is whether and if so how agent i chooses to adjust
his military capacity through his current arming decisions, given G0 and Gj.

Applying the conflict technology in (18) to (4), while incorporating the relevant re-
source and non-negativity constraints, yields the following modified best-response func-
tion for agent i:

Bi
w = Bi

w(G
j; ·) ≡ min

{
Ri, max

[
B̃i

w(G
j; ·), 0

]}
, i = 1, 2. (19a)

where B̃i
w(Gj; ·) denotes agent i’s unconstrained best-response function; this function sat-

isfies ∂Ui/∂Gi = 0 and is given by

B̃i
w = B̃i

w(G
j; ·) ≡ −(Gj + G0) +

√
θ(Gj + Gj

0)(G0 + R). (19b)

Observe from (19) that, as in the baseline model, agent i’s arming choice could be con-
strained by his available resources. Furthermore, it is possible for agent i to choose to
arm even when his rival produces no additional arms (i.e., Gj = 0). Finally, agent i could
choose to produce no additional arms at all. Henceforth, to streamline the analysis, we
assume Gi

0 = λRi for λ ∈ [0, 1], implying there exists only one source of asymmetry be-

46In addition, as mentioned previously, the notion that a unilateral deviation could be destructive seems
more reasonable when each agent holds some quantity of guns before any decisions are made.
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tween agents—namely, in resource endowments. This formulation, which aims to capture
the reasonable idea that arming decisions are limited by agents’ endowments, nests our
baseline model (i.e., with λ = 0). Note especially, it implies, with our modified con-
flict technology (18) and consistent with our specification in the baseline model (1), that
φi (0, 0) = Ri/R.47

Given our primary interest in seeing how the presence of preexisting arms influences
the stability of peace when neither war nor unilateral deviations from peace cause de-
struction, we now impose the condition that βγ = 1, which implies θ = 1− σ ∈ (0, 1],
and evaluate agent i’s net marginal benefit of arming (4) using (18) at Gi = Gj = 0 and
Gi

0 = λRi for i = 1, 2:48

∂Ui
d

∂Gi

∣∣∣∣∣
Gi=Gj=0

=
δR− Ri

R(1− δ)
R 0 as Ri Q δR, (20)

where δ ≡ δ(λ, σ) = 1 − λ
(1+λ)(1−σ)

< 1 for λ > 0. The function δ(λ, θ) indicates the
threshold value of an agent’s resource endowment as a fraction of the total resource base,
Ri/R, above which he chooses not to add to his preexisting holdings of guns—i.e., if Ri ≥
δR, then Bi

w(Gj = 0; ·) = Gi
d = 0 holds. This threshold is decreasing in λ that positively

indicates preexisting guns (given R) and in the security of output σ that reduces the prize
from conflict. As a result, the condition for Gi

d = 0 (i.e., ∂Ui/∂Gi|Gi=Gj=0 ≤ 0) is more
easily satisfied when either λ or σ is larger.

Based on our findings above, we now identify the conditions, when war is not destruc-
tive, under which agent i views a unilateral deviation as unappealing (and conversely).
To start, observe that δ(λ, σ) ≤ 0 holds whenever the quantity of preexisting guns is suf-
ficiently large: λ ≥ 1−σ

σ (which also requires sufficiently secure output, σ > 1
2 ). In such

cases, from (20), neither agent i has an incentive to add to his military capacity with a uni-
lateral deviation (i.e., Gi

d = 0 under all feasible resource distributions Ri ∈ (0, R)). Because
Gi

d = Gj
p = 0 (j 6= i), the modified conflict technology in (18) implies agent i’s probabil-

ity of victory when he deviates unilaterally by declaring war is φi = Ri/R. Furthermore,
since (like his rival j) agent i uses his entire endowment to produce butter (i.e., Xi = Ri

for i 6= j = 1, 2), his deviation payoff is given by Ui
d = Ri, which equals his payoff under

peace Vi
p = Ri. Thus, when λ ≥ 1−σ

σ , neither agent i has an incentive to deviate from peace
unilaterally. Even when λ < 1−σ

σ such that δ > 0 holds, moderate quantities of preexiting
guns (more precisely, λ ∈ [ 1−σ

1+σ , 1−σ
σ )) imply δ ≤ 1

2 . For such parameter values, there ex-

47We could dispense with this assumption, though at the cost of added complexity due to an expanded
number of possible cases to consider. In any case, note that Jackson and Morelli (2007) also employ this
assumption, but do not allow agents to make adjustments in their guns.

48In Appendix B, we provide a more detailed analysis of this benchmark case as well as when there is some
destruction.
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ists a nonempty subset of distributions Ri ∈ [δR, (1− δ)R] for which, once again, Gi
d = 0

holds for both i, and neither agent has an incentive to deviate from peace. However, if
Ri /∈ [δR, (1− δ)R], the less affluent agent i has an incentive to add to his preexisting guns
(Gi

d > 0 given Gj = 0) and declare war, whereby he can obtain a higher payoff Ui
d > Ri.

By the same token, if the quantities of preexisting guns are sufficiently small (λ < 1−σ
1+σ ) to

imply that δ > 1
2 holds, at least one agent (the less affluent one) has an incentive to deviate

unilaterally for any feasible resource distribution.49 In either of these two latter cases, the
profitability of a unilateral deviation undermines the stability of peace.

Nonetheless, this discussion would seem to suggest that, even when war is not destruc-
tive, provided that either (i) preexisting guns are sufficiently large or (ii) preexisting guns
are moderately large and the distribution of resources is sufficiently even, peace is immune
to unilateral deviations. But, in such cases, neither agent would have an incentive to arm
in anticipation of war either (i.e., Gi

w = Gi
d = 0 for i = 1, 2), implying Ui

w = Ui
d = Vi

p.50

Hence, when war is not destructive, the conditions that ensure that unilateral deviations
are unprofitable for both agents are precisely the conditions under which there is essen-
tially no difference between the war and peace payoffs. Put differently, the result that
peace can emerge even in the absence of destruction when agents have preexisting guns
holds trivially.

Preexisting guns do matter, however, when war is destructive. First, we can show
that a greater quantity of preexisting guns (λ ↑) decreases the payoff to an agent who de-
viates unilaterally (through an adverse strategic payoff effect), to expand the parameter
space (β, γ, σ) under which peace without transfers can emerge as the stable equilibrium
outcome for some resource distributions. Second, given that peace without transfers is
possible for some resource distributions, an increase in λ expands the parameter space
(β, γ, σ) under which transfers can support peace for all feasible initial resource distribu-
tions.51 Both findings suggest that, when war is destructive, preexisting arms can serve as
a deterrent to war in a pure-strategy equilibrium.52

5.4 Sequential Moves

If communication were absent in our baseline model, war would be a possible equilibrium
outcome even when the conditions of Proposition 4 hold. In this case, whether agents

49Observe that, if λ < 1, a sufficient condition for a unilateral deviation to be profitable for at least one
agent, absent destruction under war, is that output is perfectly insecure, σ = 0.

50Of course, the realized outcomes will differ. To confirm that Gi
w = 0 for i = 1, 2 in such cases, one can

evaluate ∂Ui/∂Gi, using (4) with (18), at Gj > 0 and Gi = 0 to find this expression is non-positive for any
Ri ∈ (0, R) when δ ≤ 0 and for any Ri ∈ [δR, (1− δ)R] when δ ≤ 1

2 .
51See Appendix B for details regarding both claims.
52Of course, if preexisting arms were a choice variable, the only equilibrium in that choice would likely be

in mixed strategies as studied by Jackson and Morelli (2009) and De Luca and Sekeris (2013).
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make their arming and war/peace choices simultaneously or sequentially would not mat-
ter. But, when communication is possible, the timing of choices can have important impli-
cations. In this section, we briefly analyze the conditions under which our analysis above
of the simultaneous-move game (without transfers) extends to sequential-move version of
the game.53 Suppose, in particular, that there are two stages. In stage one, each agent i
arms and these choices are made simultaneously; in stage two, after having observed the
rival’s arming choice, each agent chooses whether to declare “peace” or “war.” We allow
for communication between the two agents throughout.

When the conditions of Proposition 4(a) are satisfied, unarmed peace continues to be
the stable equilibrium.54 When those conditions are not satisfied for a given distribution of
resources, war could be the unique subgame perfect, Nash equilibrium in pure strategies,
but not necessarily. The potential problem here is that once the two agents arm (in stage 1)
in anticipation of war, both could be better off if they agreed not to fight (in stage 2).

To dig a little deeper, let us suppose that Ri < R∗ for at least the less affluent agent, and
compare his payoffs under war with those under peace for given guns chosen in the first
stage (Gi, Gj). Using (2) and (3) while keeping in mind that Rj = R− Ri and Gj = G− Gi,
one can confirm Vi(Gi, Gj)−Ui(Gi, Gj) ≥ 0 holds, so that agent i (at least weakly) prefers
peace in the second stage, if and only if

(Ri − Gi)
[
1− φiβγ(1− σ)− βσ

]
− (Rj − Gj)

[
φiβγ(1− σ)

]
≥ 0.

From Proposition 1, when Ri ≤ RL, Gi = Gi
w = Ri holds, whereas Gj = B̃j

w(Ri) < Rj.
Thus, when one agent i is constrained in his arming choice, the inequality above cannot be
satisfied. Agent i, who finds a unilateral deviation from unarmed peace in the first stage to
be profitable, also strictly prefers war in the second stage given both agents have armed.
In this case, war is the unique subgame perfect, Nash equilibrium in pure strategies. Now
suppose neither agent is constrained, in which case Gi

w = RL ≡ 1
4 θR ≤ Ri and φi = 1

2 for
both agents i. In this case, there exists a threshold level of the distribution of resources,
denoted by ̂̂R, such that for Ri > ̂̂R, Vi(Gw, Gw) − Ui(Gw, Gw) > 0 holds and agent i is
strictly better off by declaring “peace” in the second stage:

̂̂R ≡ [βγ(1− σ) + θ

4(1− βσ)

]
R ∈

(
RL, 1

2 R
]

.

As one can verify, absent destruction (i.e., βγ = 1) that implies θ = 1− σ, ̂̂R = 1
2 R holds.

53Following Bernheim et al. (1987), the relevant equilibrium concept in this version of the game is “perfect
coalition proofness” that imposes the condition of dynamic consistency on strategies.

54Although once again there could exist mixed-strategy equilibria with positive arming, the conditions that
ensure unarmed peace is stable also ensure that unarmed peace dominates any such mixed-strategy equilib-
rium, by the same logic we spell out in the proof to Proposition 4.
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In this special case where R∗ = R, war remains the unique, pure-strategy equilibrium for
all feasible resource distributions.55

But, when war is destructive such that ̂̂R < 1
2 R holds, it is possible that Ri < R∗ for at

least one agent, whereas Ri > ̂̂R for both agents. For such moderately even distributions
Ri ∈ [ ̂̂R, R∗] ⊂ (RL, 1

2 R), the less affluent agent, who views a unilateral deviation from
unarmed peace in the first stage to be profitable, prefers peace in the second stage like his
more affluent rival. Thus, both agents who are ready for war in the second stage would
be willing to agree to (armed) peace. Of course, in anticipation of such coordination in the
second stage, each agent would want to adjust his first-period arming choice. Accordingly,
neither war nor unarmed peace would constitute a stable equilibrium in the sequential-
move version of this model.56

Yet, it is important to emphasize that this possibility need not arise when peace is not
a stable equilibrium outcome in the sequential-move game. In particular, we have already
pointed out that, when one agent is constrained in his arms production, his preference for
war remains intact in the second stage. Even when neither agent is constrained, it is pos-
sible that either Ri < ̂̂R < R∗ or that Ri < R∗ <

̂̂R. The former case can arise when war
is not sufficiently destructive (i.e., γ > γNT) such that R∗ > 1

2 R, meaning that unarmed
peace can be ruled out for any feasible resource distribution. The latter case, which is a
bit stronger and ensures that war similarly arises as the unique subgame perfect, Nash
equilibrium in pure strategies, requires that γ < 1−3βσ

3β(1−σ)
, which itself requires βσ < 1

3 and
implies γ < γNT. These two cases point to a more nuanced relation between the destruc-
tiveness of war and its emergence in equilibrium. In either case, war remains the unique
subgame-perfect, Nash equilibrium in pure strategies in the sequential-move version of
the game provided that unilateral deviations from peace are profitable.

6 Concluding Remarks

Disputes over such things as resources, output, technology, and spheres of influence are
common. While some are resolved by fighting that potentially generates large social losses,
others are resolved peacefully through negotiations and a division of whatever is being
disputed or more simply by letting the status quo stand. To be sure, as has been stud-
ied in the literature, peace through negotiation to divide whatever is being contested is
not costless, since each contender arms to improve his bargaining position vis-à-vis his
rival.57 Nevertheless, at least in a one-period setting, such armed peace is always welfare-

55At Ri = 1
2 R, both agents would be indifferent between war and peace given their arming choices Gw = RL;

however, when war is not destructive, the two outcomes are indistinguishable.
56In such cases, there likely exist mixed-strategy equilibria, as studied in Jackson and Morelli (2009) and De

Luca and Sekeris (2013).
57See Garfinkel and Syropoulos (2018, 2019) and the references cited therein.
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improving given the contenders’ guns choices, insofar as it allows them to avoid at least
some of the social losses or enjoy a surplus relative to war—due to, for example, the avoid-
ance of violence and uncertainty that comes with war and/or the opportunity of mutually
advantageous trade that would not exist in the case of war.

In this paper, we study peace identified with the status quo in a single-period setting.
Since no bargaining is involved, agents have no incentive to arm under peace, thereby
freeing up resources to produce more goods for consumption. However, since there is no
division of contestable output, one agent (the less affluent one) could find war relatively
more appealing than this form of peace. Moreover, while a sufficiently even distribution of
resource endowments could make peace relatively appealing to both agents, the absence
of arming under peace possibly leaves the agents unable to commit to sustain it. Thus,
the Pareto dominance of peace is not sufficient for its emergence as a stable equilibrium
outcome in this setting. We must also check that the outcome is immune to unilateral
deviations, where one agent arms and declares war while his rival remains unarmed in
anticipation of peace. Put differently, we compare not only the payoffs under war and
peace, but also the payoffs under peace and unilateral deviations.

These comparisons in our baseline model reveal that the pattern of war’s destructive
effects and the security of output matter. Indeed, a necessary condition for unarmed peace
to be stable for any distribution of resource endowments is that the alternative (i.e., war)
be destructive. In this case, and more generally when war is only mildly destructive and
output insecurity is high, war is the unique equilibrium outcome in pure strategies. Nev-
ertheless, unarmed peace is possible for sufficiently destructive wars and sufficiently even
distributions of resource endowments.58 What’s more, ex ante resource transfers can sup-
port unarmed peace for a wider range of resource distributions, provided that unarmed
peace without such transfers is stable for at least some distributions. Given that condi-
tion is satisfied, greater destruction enhances the power of transfers in the sense of mak-
ing peace possible for a wider range of resource distributions. Interestingly, we find that,
although improvements in security unambiguously make peace without transfers more
likely, there are circumstances—namely, when the destructive effects of war are not too
severe—under which increased security could shrink the range of resource endowments
for which transfers can support unarmed peace.

One important area for additional study involves a more comprehensive comparison
of unarmed peace identified with the status quo (and possibly including transfers) with
armed peace that involves negotiations and a division of contested output (that, as noted

58War’s effect to preclude mutually beneficial trade can “substitute” for war’s destructive effects to support
unarmed peace, although the requirement that such peace be immune to unilateral deviations remains rele-
vant and is what gives rise to the requirement even in this case that the distribution of resource endowments
be sufficiently even.

31



earlier, could be viewed as ex post transfers). When studied within a common, single-
period framework, one could identify the conditions under which one form or both forms
of peace can possibly emerge in equilibrium. In the case where both forms are possible,
one could then study their Pareto ranking.

A seemingly sharp distinction between analyses of peace as a division of what is being
contested and those of peace that preserves the status quo (such as the present study)
concerns the identity of the party having the greater incentive to deviate from peace. In
particular, in the former, it is the more affluent country that tends to be more aggressive,
whereas in the latter it is the less affluent country. However, our analysis can also capture
the possibility that the more affluent agent tends to be more aggressive (as in the case of
Russia vs. Ukraine)—namely, when the larger country enjoys a sufficiently greater degree
of output security (σ). To explore this possibility in greater depth, one could extend our
analysis to endogenize σ, distinguishing between arming to seize the output of another
agent and arming as an investment in output security to defend one’s own output.

Another potentially fruitful avenue for further study builds on the one-period setting
with preexisting military capacities. Specifically, instead of assuming that the quantity of
arms brought into the period depends on the contenders’ resource endowments, one could
suppose they are provided by a third party. Depending on its objectives (e.g., to promote
peace or to favor one contender over the other), a third party could decide to provide both
sides, one side, or neither side with guns; alternatively, third-party intervention need not
involve the provision of arms, but rather provision of productive resources. One central
issue here is how such intervention (whatever form it takes) influences the stability of
“unarmed” peace.
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Appendix

A Proofs of Lemmas and Propositions

Proof of Proposition 1.
Part (a). The first-order conditions (FOCs) associated with Ui

Gi = 0 for i = 1, 2 (from (4)),
imply that Gi

w = 1
4 θR. Since this outcome requires Gi

w ≤ Ri for i = 1, 2, the threshold levels
of the resource are given by RL ≡ 1

4 θR and RH ≡ R− RL =
[
1− 1

4 θ
]

R, as shown in (6).
From the expression for RL, it follows immediately that dRL/dθ > 0.

Part (b). When agent i is constrained by his endowment, Gi
w = Ri while Gj

w = B̃j
w(Ri) >

Ri, where B̃j
w(·) is shown in (5b) for i 6= j = 1, 2. In turn, differentiating B̃j

w(·) appropriately
shows that increases in θ increase the unconstrained agent’s optimal arming. ||

Proof of Proposition 2.
Part (a). Assuming Ri ∈ [RL, RH ] where RL ≡ 1

4 θR, Proposition 1(a) shows Gi
w = RL for

i = 1, 2, which implies (from (1)) φi = 1
2 , Xi = Ri − 1

4 θR, and X = [1− 1
2 θ]R for i = 1, 2.

Substituting these values into (3) gives Ui
w as shown in the second line of (8). This payoff

is clearly increasing in agent i’s own resource Ri (given R and σ > 0), β, and γ. It is
also increasing (decreasing) in σ for Ri > 1

4 γR (Ri < 1
4 γR). When 1

4 γR < RL = 1
4 θR or

equivalently when γ < 1−σ
2−σ , both agents (i = 1, 2) would benefit from an increase in σ for

any distribution Ri ∈ [RL, RH ]. Otherwise, an increase in σ would reduce the payoff of the
less affluent agent i if his endowment Ri is sufficiently close to RL.

Part (b). If Ri ∈ (0, RL), then from Proposition 1(b), Gi
w = Ri and from (5b) Gj

w = −Ri +√
θRiR, which from (1) imply φi = Ri/

√
θRiR. Furthermore, we have X = X j = R −√

θRiR. Substitution of these values into (3) gives the payoff function for constrained agent
i 6= j = 1 or 2 shown in the first line of (8). Clearly, limRi→0 Ui

w = 0. Differentiating the
expression for Ui

w with respect to Ri, γ, β, and σ, while using the definition of θ in (5c),
shows respectively

dUi
w

dRi = β (1− σ)

√ R
4θRi − 1

 ≥ 0,
d2Ui

w
(dRi)2 < 0 (A.1a)

dUi
w

dγ
= 1

2 β (1− σ)

√
RRi

θ

1 + θ

1−

√
4Ri

θR

 > 0,
d2Ui

w
dγ2 < 0 (A.1b)

dUi
w

dβ
=

Ui
w

β
> 0,

d2Ui
w

dβ2 = 0. (A.1c)

dUi
w

dσ
=

β
√

RiRθ

2 (1− σ)

1− 2 [γ (1− σ) + σ]

1−

√
Riθ

R

 ,
d2Ui

w
dσ2 < 0. (A.1d)
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The first inequality in (A.1a) follows from the restriction that Ri < RL = 1
4 θR and the fact

that 1
4 θR < 1

4 R/θ. The first inequality in (A.1b) follows directly from the requirement that
Ri < 1

4 θR, and the inequality in (A.1c) follows immediately. Turning to the payoff effects
of an increase in σ, the RHS of the first expression in (A.1d) can be rearranged to show
dUi

w/dσ < 0 if and only if√
Riθ

R
< 1− 1

2[γ(1− σ) + σ]
.

In the case that γ(1− σ) + σ ≤ 1
2 or equivalently γ ≤ 1−2σ

2(1−σ)
, the inequality above cannot

be satisfied, implying that dUi
w/dσ > 0 for all Ri ∈ (0, RL). Alternatively, when γ(1− σ) +

σ > 1
2 , the above inequality can be written as

Ri <
R
θ

(
1− 1

2[γ(1− σ) + σ]

)2

. (A.2)

Consistent with our finding from part (a), this critical value of Ri is strictly less than RL =
1
4 θR when γ ∈ ( 1−2σ

2(1−σ)
, 1−σ

2−σ ), implying that, for Ri sufficiently close to RL, an increase in σ

is welfare-improving for the resource-constrained agent. By contrast, if γ ≥ 1−σ
2−σ , then an

increase in σ necessarily makes the constrained agent i worse off.
Next consider the expected payoff for the unconstrained agent j 6= i = 1 or 2 under

war. Substituting the solutions above into (3) gives U j
w shown in the last line of (8). The

envelope theorem implies that the payoff effects of an exogenous change in χ ∈ {Rj, σ, β}
for the unconstrained agent j can be decomposed into a direct effect and an indirect effect
as follows:

dU j
w/dχ = U j

χ + U j
Gi

(
∂Bi

w/∂χ
)

, j 6= i.

Starting with χ = Rj, equation (3) implies that U j
Rj = U j

X j > 0; with the CSF specification
in (1), it also implies U j

Gi < 0. Since Bi
w = Ri for Ri ∈ (0, RL) and dRj = −dRi, it follows

that U j
Gi(∂Bi

w/∂Rj) > 0 and thus dU j
w/dRj > 0. Additionally, inspection of the expression

for payoffs in the last line of (8) reveals that U j
w is convex in Rj. The remaining parameters

χ ∈ {σ, β} have no influence on the rival’s arming (Bi
w = Ri), implying that only their re-

spective direct effects matter for j’s payoff. The sign of these effects can be easily identified
upon inspection of U j in (3). ||

Proof of Proposition 3. In what follows, we consider the condition for Vi
p > Ui

w depending
on whether neither agent or one agent is resource constrained in his arms production.

Case 1: Ri ∈ [RL, RH ] for i = 1, 2. From (7) and the second line in (8), when neither agent
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is resource constrained, the condition for agent i to strictly prefer peace is that

Ri > 1
4 βγ (1− σ) R + βσRi,

which requires

Ri > R̂H ≡
1
4 βγ(1− σ)

1− βσ
R.

One can confirm that R̂H ≥ RL = 1
4 θR when γ ≥ 1−2βσ

β(1−σ)
as required by the proposition.

(Otherwise, we would have Vi
p > Ui

w for both agents whenever neither one is resource
constrained, which is to say R̂ /∈ [RL, RH ].) Using the expression above for R̂H, one can
easily verify that R̂H ≤ 1

4 R. Finally, straightforward differentiation of R̂H shows that this
threshold falls as β ↓ and/or γ ↓ and as σ ↑.

Case 2: Ri ∈ (0, RL) for i = 1 or 2. Since payoffs under war are increasing in the agents’
respective resource endowments, we focus on the constrained agent, i. From (7) and the
first line of (8), the condition for him to strictly prefer peace is that

Ri > γβ(1− σ)Ri

√ R
θRi − 1

 ,

which after some manipulation can be shown to require

Ri > R̂L ≡
[

βγ(1− σ)

βγ(1− σ) + 1

]2

R/θ =

[
β(γ(1− σ) + σ)

βγ(1− σ) + 1

]2

θR.

One can readily verify, using (6), that R̂L < RL provided γ < 1−2βσ
β(1−σ)

holds, as required by
the proposition. By appropriately differentiating the RHS of the expression immediately
above, one can verify, in addition, that this threshold falls with increases in destruction (β ↓
and/or γ ↓). Furthermore, differentiating the expression above with respect to σ shows

dR̂L

dσ
=

R̂L

1− σ

[
1− γ(2− β)− σ(2− γ(2− β))

(βγ(1− σ) + 1)(γ(1− σ) + σ)

]
,

which is negative iff

γ >
1− 2σ

(2− β)(1− σ)
.

This condition on γ is precisely the necessary and sufficient condition that ensures the ini-
tial value of R̂L is less than the critical value of Ri ∈ (0, RL) (given γ < 1−σ

2−σ ) above (below)
which dUi

w/dσ > 0 (dUi
w/dσ < 0). (This critical value is shown in (A.2).) Conversely,
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when the inequality above is reversed (which also implies that the initial value of R̂L is
greater than the critical value of Ri shown in (A.2)), dR̂L/dσ > 0.59 ||

Proof of Lemma 1. Since βγ ∈ (0, 1) implies limRi→0 Ui
d(Ri) > limRi→0 Vi

p(Ri) = 0, while
limRi→R Ui

d(Ri) < limRi→R Vi
p(Ri) = R̄ and ∂Ui

d/∂Ri < ∂Vi
p/∂Ri, the value of R∗ shown in

(11) is the unique value of Ri that equates Vi
p = Ri to Ui

d(Ri) shown in (10), from which the
relative rankings of payoffs follow.

Part a. This part can be confirmed by differentiating R∗ in (11) with respect to β, γ and σ.
Note that R∗|β=1 = γR, which explains why ∂R∗/∂σ|β=1 = 0.

Part b. The value of γNT ≡ γNT(σ; β) defined in this part of the lemma is obtained by
equating R∗ in (11) to 1

2 R and then solving for γ. Observe that this value can be greater
than 1, whereas γ ∈ (0, 1]. Our claim in part (b) follows from definition of γNT and (11)
that together imply R∗ − 1

2 R = R∗R
γ (γ− γNT). ||

Proof of Proposition 4. The first part of the proposition showing that war might be the
only possible pure-strategy equilibrium for all Ri ∈ (0, R) follows from Lemma 1(b). In
particular, γ > γNT implies that R∗ > 1

2 R. In this case, it is not possible to have Ri ≥ R∗ for
both i = 1, 2. Conversely, when γ ≤ γNT, R∗ ≤ 1

2 R, thereby leaving open the possibility
that Ri ≥ R∗ for both i = 1, 2. But, even in such cases since R∗ > 0, peace (without
transfers) arises only for a subset of distributions Ri ∈ [R∗, R∗] ⊂ (0, R).

Nevertheless, for any distribution satisfying Ri ∈ [R∗, R∗], the pure-strategy equilib-
rium involving unarmed peace Pareto dominates not only the pure strategy equilibrium
of war, but also any mixed-strategy equilibrium with arming by at least one agent. To con-
firm this, suppose one agent j chooses Gj > 0. Suppose further there exists a threshold Gj

T

that satisfies the following:60

(i) Agent i prefers war for Gj < Gj
T, and thus chooses war and Gi = Bi

w(Gj) as shown
in (5).

(ii) Agent i prefers peace for Gj > Gj
T and thus chooses peace and Gi = Di

p(Gj), where
Di

p(Gj) is the level of guns by agent i that makes agent j (having armed by Gj) indif-
ferent between war and peace (“D” stands for “deterrence”).

(iii) Agent i is indifferent between war and peace at Gj = Gj
T.

In case (iii), agent i’s best reply is to randomize over the two pure strategies of war with
Gi = Bi

w(G
j
T) and peace with Gi = Dp(G

j
T). In a mixed-strategy equilibrium, each agent

obtains an expected payoff equal to a weighted average of the payoff under peace sup-

59This prediction also holds true when γ < (1− 2σ)/2(1− σ), such that dUi
w/dσ > 0 for all Ri ∈ (0, R).

60There could exist more such thresholds, in which case there would exist multiple equilibria in mixed
strategies. However, our argument to follow would apply to those as well.
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ported by deterrence Vi
p and under war Ui

w, with weights equal to the probabilities that
agent i chooses respectively those two pure-strategies. Now observe that, by the envelope
condition and the negative strategic payoff effect of rival j’s arming, Vi

p(Gi) is decreasing
in Gi and Ui

w(Gi, Gj) is decreasing in Gj along Bi
w(Gj), . In addition, observe that Di

p(Gj)

is implicitly defined by V j
p(Gj)−U j

w(Gj, Gi) = 0, such that dDi
p/dGj > 0. This last finding

implies that agent i’s payoff under peace as supported by deterrence (Vi
p) is decreasing as

Gj increases. With the above points, it follows that agent i’s expected payoff in a mixed-
strategy equilibrium is also decreasing in Gj. The same logic applies to agent j. Thus,
provided that unarmed peace as a pure-strategy equilibrium is stable, it Pareto dominates
any mixed-strategy equilibrium that involves arming by at least one agent, and thus rep-
resents the unique stable equilibrium.61

The last point of the proposition follows from Lemma 1, which establishes that de-
creases in β and/or γ and increases in σ reduce R∗ and raise R∗, thereby expanding the
range [R∗, R∗] and increasing the subset of resource distributions centered on 1

2 R that can
support unarmed peace. ||

Proof of Lemma 2. Solving for the value of γ that equates Vi
p(R∗) to limRi→R Ui

w(Ri) gives
the value of γT shown in (14). Using that expression one can then easily verify

Vi
p(R∗)− lim

Ri→R
Ui

w(Ri) =
1− βσ

γT
(γT − γ) R, (A.3)

which readily confirms the payoff rankings stated in the lemma. That γT(σ; β) ≤ γNT(σ; β)

(with equality when σ = 0) follows from (14) and the definition of γNT in Lemma 1(b).

Part (a). One can easily confirm this part after substituting in β = 1 into (14).

Parts (b) and (c). The value of σT shown in part (b) equals the value of σ that makes
γT = 1, such that for σ > σT, γT > 1. Focusing on β ∈ ( 1

2 , 1) ensures σT > 0. The second
component of part (b) can easily be confirmed with straightforward calculus. (Note that
arg minσ γT < σT.) To confirm part (c), one can evaluate the expression for σT in part (b)
at any β ∈ (0, 1

2 ]. The resulting expression is 0 for β = 1
2 and strictly negative for β < 1

2 .
Thus, for all β ∈ (0, 1

2 ] and σ ∈ [0, 1), γT ≥ 1. ||

Proof of Proposition 5. By Lemma 1(b), if γ > γNT, then R∗ > 1
2 R; therefore, there is no

transfer T that satisfies both (12) and (13), which is required to make unilateral deviations
following the transfer unprofitable to both agents. Hence, transfers are inconsequential in
this case.

Part a. From Proposition 4(a), γ ≤ γNT implies there exists an allocation Rj = R∗ ≤ 1
2 R,

61Of course, as noted in the text, when unilateral deviations from unarmed peace are profitable to at least
one agent, a Nash equilibrium in mixed strategies could dominate the war equilibrium in pure strategies.
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with Ri = R∗ ≡ R − R∗, such that V j
p(R∗) = U j

d(R∗) > U j
w(R∗), whereas Vi

p(R∗) >

Ui
d(R∗) > Ui

w(R∗). Part (b) of that proposition establishes further that, for Rj < R∗, we
have U j

d(Rj) > V j
p(Rj), giving agent j a strictly positive incentive to deviate unilaterally

from peace in the absence of a transfer. However, for such distributions, agent i could
be willing to offer agent j a transfer Tmin = R∗ − Rj, leaving agent j with an ex post en-
dowment of R∗ and agent i with R∗ = R− R∗. Such a transfer restores the equality that
prevents agent j from deviating unilaterally from peace, V j

p(R∗) = Ui
d(R∗), and makes

agent i better off than under war provided Vi
p(R∗) ≥ Uw(Ri) holds. Now observe that the

difference Vi
p(R∗)−Uw(Ri) is strictly positive at Ri = R∗. Since Ui

w(Ri) is increasing in Ri

whereas Vi
p(R∗) is independent of Ri, this difference decreases as Ri rises (or equivalently

Rj = R− Ri falls). Furthermore, by definition, γ > γT implies Vi
p(R∗)− limRi→R Ui

w < 0.
Then, by the continuity of Ui

w, there exists a unique value of Rj denoted by R∗∗ ∈ (0, R∗)
and thus Ri = R∗∗ ≡ R− R∗∗ that implies Vi

p(R∗) R Ui
w(Ri) for Ri Q R∗∗.

Part b. The assumption that γ ≤ γT implies Vi
p(R∗) ≥ limRi→R Ui

w, such that Vi
p(R∗) >

Uw(Ri) for Ri ∈ [R∗, R). In this case, R∗∗ = R, and transfers can support peace for all
distributions Ri ∈ (0, R).

Finally, we turn to the claim that increases in σ can lower the effectiveness of transfers in
supporting peace—i.e., reduce R∗∗ (= R − R∗∗). From Lemma 2(c), we know β ∈ (0, 1

2 ]

implies γT ≥ 1 or R∗∗ = R for all σ ∈ [0, 1). Thus, we consider only values of β ∈ ( 1
2 , 1].

Let us define σmin ≡ arg minσ γT. Based on parts (a) and (b) of Lemma 2, we distinguish
between three cases:

(i) If β ∈ ( 1
2 , 2

3 ], then dγT/dσ ≥ 0 for all σ ∈ [0, 1), implying σmin = 0.

(ii) If β ∈ ( 2
3 , 1), then γT is strictly quasi-concave in σ and σmin = 3

β2

(
β− 2

3

)
.

(iii) If β = 1, then dγT/dσ < 0 for all σ ∈ [0, 1).

Thus, given any β > 1
2 and γ > γT (σmin), there exists a unique σ̂ = γ−1

T (γ) in cases (i)
and (iii). By contrast, in case (ii), there exists two values σ̂J = γ−1

T (γ) for J ∈ {A, B} with
σ̂A < σ̂B, as indicated by points A and B in Fig. A.1(a) for γ = 1

2 , assuming β = 9
10 . In that

figure, we partition the space further with the schedule γTT, defined by values of γ (given
σ and β) that satisfy Vi

p(R∗) = Ui
w(RH), where Ui

w(Ri) is given by the second line in (8). For
given σ and β, values of γ ∈ (γTT, γNT) imply R∗∗ ∈ [ 1

2 R, RH), with R∗∗ implicitly defined
by Vi

p(R∗) = Ui
w(R∗∗), where again the payoff under war is given by the second line in (8).

For values of γ ∈ (γT, min{γNT, γTT})—again, given σ and β— we have R∗∗ ∈ [RH, R),
which is implicitly defined by Vi

p(R∗) = Ui
w(R∗∗), where Ui

w(Ri) is shown in the third line
in (8).

For our purposes here, it suffices to consider values of σ that ensure γT (σ) = γ, such
as points A and B along the pink horizontal line where γ = 1

2 in Fig. A.1(a). Then, we
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apply the implicit function theorem to the condition Vi
p(R∗) = Ui

w(R∗∗) to study the local
effect of a change in σ on R∗∗:

dR∗∗/dσ|γ=γT(σ) =
(∂Vi

p/∂σ)− (∂Ui
w/∂σ)|Ri=R

(∂Ui
w/∂Ri)|Ri=R

.

Notice that we evaluate the effects on Ui
w at γ = γT(σ), which implies Ri = R∗∗ = R.

Since by Proposition 2 ∂Ui
w/∂Ri > 0, we have that sign{dR∗∗/dσ|γ=γT(σ)} equals the sign

of the expression in the numerator. As briefly discussed in the main text, an increase in σ,
by Lemma 1(a), lowers the value of R∗; it, therefore, also reduces the minimum transfer
required to keep agent j from deviating unilaterally from peace, thereby giving agent i (the
donor) a higher payoff under peace (i.e., R∗ = R− R∗ ↑). Thus, ∂Vi

p/∂σ > 0. At the same
time, however, an increase in σ also raises the payoff under war for sufficiently large Ri,
implying ∂Ui

w/∂σ|Ri=R > 0 (see Proposition 2).
Although it is not immediately clear which effect dominates, we can gain more insight

by relating the expression we have for sign{dR∗∗/dσ|Ri=R} to the shape of γT in the (γ, σ)

space. Recall that γT(σ) as defined in Lemma 2 solves Vi
p(R∗) = Ui

w(Ri)|Ri=R. Then, we
can apply the implicit function theorem to that condition to find

dγT/dσ = −

(
∂Vi

p/∂σ
)
−
(
∂Ui

w/∂σ
)
|Ri=R(

∂Vi
p/∂γ

)
− (∂Ui

w/∂γ) |Ri=R

.

From Lemma 1, an increase in γ raises R∗ and thus the minimum transfer required to
induce agent j not to deviate from peace, thereby implying ∂Vi

p/∂γ < 0. Furthermore, by
Proposition 2, an increase in γ indicates less destruction and thus greater payoffs under
war, ∂Ui

w/∂γ > 0. Thus, we have that the sign of the numerator of the above expression
gives us the sign of dγT/dσ. Moreover, combining this result with that above implies

sign
{

dR∗∗/dσ|γ=γT(σ)

}
= sign {dγT/dσ} = sign

{(
∂Vi

p/∂σ
)
−
(

∂Ui
w/∂σ

)
|Ri=R

}
.

Thus, the condition that indicates whether or not the beneficial effect of an increase in σ

on Vi
p is swamped by the negative effect through Ui

w to induce a decrease in R∗∗ is directly
linked to the sign of dγT/dσ. We see, in particular, that dγT/dσ < 0 must hold (for some
σ). But dγT/dσ < 0 can hold only in cases (ii) and (iii) discussed earlier and that requires
β ∈ ( 2

3 , 1]. Panel (b) of Fig. A.1 illustrates the dependence of R∗∗ on σ for β = 9
10 and

γ = 1
2 .62 ||

62Note that the figure is not drawn to scale; in particular, the value of R∗∗ at arg minσ R∗∗ > 1
2 R.

45



γΝΤ

γΤ

γΤΤ

0

γ

1

1

(a)

(b)

σ

σ

R
_

0.50
A B

A B

σΑ

σΑ

σΒ

σΒ

R**

^ ^

^ ^

β = .90
γ = .50

β = .90
γ = .50
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B More Details on the Extensions

Case of diminishing returns. Here we provide a sketch of a proof to our claim in the
main text that, when war is destructive (βγ < 1), the presence of diminishing returns
can enhance the effectiveness of transfers to support unarmed peace. Keeping in mind
that transfers can be effective only when peace without transfers is possible for at least
some initial resource distributions, let us focus on a set of parameter values that, for α = 1,
imply (i) R∗ < 1

2 R and (ii) R∗∗ ∈ ( 1
2 R, R). Since R∗ is decreasing in α as can be confirmed by

(11′), the first assumption ensures that unarmed peace without ex ante resource transfers
is possible, though only for sufficiently even distributions, in the presence of diminishing
returns α < 1. The second assumption implies that, absent diminishing returns, transfers
can support peace for some but not all initial resource distributions. To fix ideas, let agent
i be the more affluent agent and define 1 + K1/α as the denominator of R∗ shown in (11′)
Then, we evaluate Vi

p(Ri) = (Ri)α at R∗ = R− R∗, to find agent i’s payoff under peace:

Hp ≡ Vi
p(R∗) = RαK/(1 + K1/α)α.

Recall that for agent i to be willing to make a transfer to agent j at a given resource distribu-
tion Ri > R∗, it must be the case that his fallback payoff of Ui

w evaluated at that distribution
be no greater than Vi

p(R∗) shown above. Although we have not characterized the payoff
function under war Ui

w(Ri) for all Ri, we do know that this payoff and that under a unilat-
eral deviation by agent i Ui

d(Ri) approach each other as Ri → R. Thus, using (10), agent i’s
fallback payoff Ui

w(Ri) in the limit as Ri → R can be written as

Hw ≡ lim
Ri→R

Ui
w(Ri) = lim

Ri→R
Ui

d(Ri) = Rα
βη,

where as previously defined in the main text η ≡ γ(1− σ) + σ. A necessary and sufficient
condition for ex ante transfers to support peace for all feasible resource distributions (i.e.,
R∗∗ = R) is that Hp ≥ Hw. Hence, consider the ratio,

Hp/Hw = K/(1 + K1/α)αβη.

As one can verify, this ratio is increasing in the degree of diminishing returns (or decreasing
in α) and rises above 1 for sufficiently small α < 1. Thus, for sufficiently small α, transfers
can support peace for all resource distributions. Numerical analysis shows further that,
under our assumptions made above, a decrease in α increases R∗∗, thereby expanding the
range of initial resource distributions under which peace with transfers is possible.
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Case of competitive trade: equilibrium prices and payoffs. Suppose that agent i produces
good i, whereas agent j produces the other good (j). Now, let pi

j denote the price agent i
pays for good j 6= i. Absent trade costs and under the condition of perfectly competitive
markets, pi

j also equals the price received by agent j for supplying good j. Given the
linear specification for transforming resource endowments into goods for consumption
and with each agent allocating all of his resource endowment to produce his good Xi = Ri

under unarmed peace, agent i’s income is pi
iR

i. In turn, the specification for preferences
implies that agent i’s demand for good j = 1, 2 is given by Di

j = si
j p

i
iR

i/pi
j, where si

j ≡
(pi

j)
1−ε/[(pi

j)
1−ε + (pi

i)
1−ε], represents agent i’s expenditure share on good j = 1, 2 and

where, as defined in the text, ε = 1/(1− ρ) represents the constant elasticity of substitution
in consumption. Then, the market-clearing condition, which requires pi

jD
i
j = pi

iD
j
i , pins

down the price of good j in terms of good i: πi ≡ pi
j/pi

i = (Ri/Rj)1/ε.
Using the expression for F(Di

i , Di
j) in the text with the demand functions above, agent

i’s indirect utility can be written as a function of prices and his endowment as follows: Vi =

[1 + (πi)1−ε]1/(ε−1)Ri. Substituting in πi = (Ri/Rj)1/ε gives, after some manipulation, the
equilibrium payoff under unarmed peace with competitive trade:

Vi
p =

[
(Ri)(ε−1)/ε + (Rj)(ε−1)/ε

]1/(ε−1)
(Ri)(ε−1)/ε. (B.1)

From this expression for Vi
p and an analogous one for agent j, one can find

Vi
p + V j

p =
[
(Ri)(ε−1)/ε + (Rj)(ε−1)/ε

]ε/(ε−1)
, (B.2)

which upon substituting in ρ = (ε − 1)/ε confirms that Vi
p + V j

p = F(Ri, Rj). Finally,
multiply and divide Vi

p in (B.1) by Vi + V j in (B.2). Then, after rearranging terms , one can
verify the expression for Vi

p, shown in (16), as a share ψi = (Ri)ρ/[(Ri)ρ + (Rj)ρ] of total

utility Vi
p + V j

p = F(Ri, Rj).
We now establish some claims made in the main text regarding the effects of an increase

in Ri on agent i’s payoffs under peace and a unilateral deviation as Ri → R that helped
to establish Vi

p and Ui
d reach their respective maximum values at resource distributions

strictly less than R (i.e., Rp < R and Rd < R). Differentiation of Vi
p in (16) shows

dVi
p/dRi = Vi

p

ρR− Ri + (Ri)ρ(Rj)1−ρ

RiRj
[
(Ri)

ρ
+
(

Rj
)ρ
]
 . (B.3)

Since limRi→R Vi
p = R is positive and finite, the expression above goes to −∞ as Ri → R

as claimed in observation (ii) in the text. Similarly, by differentiating Ui
d in (17), one can
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confirm that

dUi
d/dRi = Ui

d

[
(Rj)1−ρ − θρ(Ri)

1−ρ
]

(
RiRj

)1−ρ
[
(Ri)

ρ
+
(
θRj
)ρ
] . (B.4)

Now recall our definition of η ≡ γ (1− σ) + σ in the text, so that θ = γ(1− σ)/η. Since
limRi→R Ui

d = βηR is positive and finite, the expression above goes to −∞ as Ri → R.63

Thus, when βγ = 1, both Ui
d and Vi

p are decreasing in Ri and approach R as Ri → R.
We can now establish that, for sufficiently secure output, Vi

p is falling faster than Ui
d as

Ri → R, which implies Vi
p > Ui

d for some Ri < R. Using (B.3) and (B.4), one can confirm

limRi→R
dVi

p/dRi

dUi
d/dRi =

1−ρ
βηθρ that, when evaluated at β = γ = 1, gives

Υ ≡ Υ (σ, ρ) = lim
Ri→R

dVi
p/dRi

dUi
d/dRi

∣∣∣∣
β=γ=1

=
1− ρ

(1− σ)ρ .

Hence, for any given ρ ∈ (0, 1), there exists a unique σΥ (ρ) ≡ 1 − (1− ρ)1/ρ ∈ (0, 1),
where σ′Υ > 0 and σ

′′
Υ > 0, that implies Υ > 1 for all σ > σΥ.64 Of course, this condition

is necessary, but not sufficient, for Ui
d to cross Vi

p from above at some Ri < 1
2 R, as we

characterized in the main text with the function Ω(σ, ρ) = Vi
p/Ui

d|Ri= 1
2 R and the implied

condition that σ > σΩ(ρ). Thus, it should not be surprising that σΥ (ρ) < σΩ (ρ) for any
ρ ∈ (0, 1).

Case of preexisting military capabilities. Using (19), we provide more details regarding
the profitability of unilateral deviations from peace, allowing for the possibility of destruc-
tion (βγ ≤ 1) while maintaining our assumption that Gi

0 = λRi for λ ∈ [0, 1]. We proceed
in two parts. First, we provide a fuller characterization of an agent’s incentive to add to his
preexisting guns under a unilateral deviation, and identify some implications for the prof-
itability of such deviations. Second, building on this characterization, we examine more
generally the incentives for unilateral deviations and show how the presence of preexisting
guns matters for the stability of peace.

Recall that, under peace, both agents produce no additional guns. Thus, agent i’s opti-
mal arming under a unilateral deviation is given by Gi

d ≡ Bi
w (0; ·). Applying our assump-

tion that Gi
0 = λRi = 0 for i = 1, 2 and the fact that Ri = R− Rj to (19b), we find

B̃i
w (0; ·) = −G0 +

√
θGj

0

(
G0 + R

)
= −λR +

√(
R− Ri

)
θ (1 + λ) λR. (B.5)

63Observe that setting dUi
d/dRi = 0 implies Ri

d = [1 + θρ/(1−ρ)]−1R ≥ 1
2 R with equality when σ = 0, as

claimed in the text.
64One can also show that limρ→0 σΥ = 1− 1

e ≈ 0.632 while limρ→1 σΥ = 1.
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Observe that limλ→0 B̃i
w (0; ·) = 0 (and thus limλ→0 Bi

w (0; ·) = 0) for all feasible endow-
ment distributions. Indeed, this is the case of the baseline model, which led us to conclude
that Gi

d ≈ 0 for λ = 0.
Using (B.5) with (19a) shows that Gi

d takes the following form, contingent on Ri:

Gi
d =


Ri if Ri ∈ (0, µLR)
B̃i

w (0; ·) if Ri ∈ (µLR, µHR)
0 if Ri ∈ [µHR, R),

(B.6)

where

µL ≡ µL (λ, θ) =
1

1 + 1
(1+λ)θ

+ 1
2

(√
1 + 4

λθ − 1
) [1− λ

(1 + λ) θ

]

µH ≡ µH (λ, θ) = 1− λ

(1 + λ) θ
.

The function µL (resp., µH) is derived by searching for the value of Ri = µR that solves
B̃i

w
(
0; Ri) = Ri (resp., B̃i

w
(
0; Ri) = 0), naturally with µL < µH.65 One can confirm µL =

µL(λ, θ) depends positively on θ and is concave in λ, reaching a maximum value of θ/4 so
that µL ≤ 1

4 . Furthermore, µH = µH(λ, θ) ≤ 1 depends positively on θ and negatively on
λ. Figs. B.1(a) and B.2(a) show Gi

d in the absence of destruction (β = γ = 1) and in the
presence of destruction (β = 1 and γ = 0.8), respectively. The colors blue, pink and orange
depict the function in each of the three ranges indicated in (B.6).66

In general, decreases in differential destruction (γ ↑) and in output security (σ ↓), which
tend to fuel arming incentives under war (i.e., cause θ ↑), also fuel incentives to arm under
a unilateral deviation in this extension (with λ > 0). Here, there are two implications.
First, since dµL/dθ > 0, the deviating agent i is constrained in his arming over a larger
range of distributions Ri ∈ (0, µLR], with an increase in peak in Gi

d (at Ri = µLR). Second,
because dµH/dθ > 0, the range of resource distributions under which agent i arms in
a unilateral deviation (i.e., Ri ∈ (0, µHR]) expands as well. Turning to the implications
of an increase in preexisting arms (λ ↑), observe that, since dµH/dλ < 0, an increase in
λ expands the range of resource endowments Ri ∈ [µHR, R) for which agent i does not
adjust his arms in a unilateral deviation.67 The implications of an increase in λ for µL are a

65One can obtain µL = 1
2 [(1 + λ)

√
λθ (4 + λθ) − λ (2 + θ + λθ)] directly from the condition that

B̃i
w(0; Ri) = Ri, and then with some algebraic manipulation of terms find the expression shown in the text.

Note, the function µH evaluated at γ = 1, which implies θ = 1− σ, corresponds to δ(λ, σ) used in the main
text.

66Note that (both panels of) these figures are not drawn to scale. But, the line designated as the “45o line”
should help give the proper perspective.

67It is easy to verify that λ→ 0 implies µLR→ 0, µH R→ R and Gi
d → 0 for all Ri ∈ (0, R), as in our baseline

model.
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little more nuanced. Specifically, the non-monotonicity of µL in λ described above means
that an increase in λ starting at a small value initially shifts the peak of the Gi

d schedule
upward (e.g., from point A to point A′ in the figures); eventually, however, at sufficiently
high values of λ, it begins to shift that peak downward (from point A′ to point A′′).

Following our strategy in the text, let us consider first the conditions under which
neither agent would choose to add to his preexisting holdings of guns. From (B.6), Gi

d = 0
whenever Ri > µHR. One possibility is that λ ≥ γ(1−σ)

σ , which implies µH ≤ 0, such
that for any distribution Ri ∈ (0, R), Gi

d = 0 for i = 1, 2. The other (weaker) condition is
that λ ≥ γ(1−σ)

γ(1−σ)+2σ
, which implies µH ∈ (0, 1

2 ], such that for distributions Ri ∈ [µHR, (1−
µH)R], Gi

d = 0 holds again for i = 1, 2. Observe these conditions simplify to those stated in
the text when there is no destruction (γ = 1). Furthermore, as in the case of no destruction,
when these conditions are satisfied, the unique equilibrium in arming under war involves
no additional production of guns: Gi

w = 0 for both i.68 However, in the case where war
is destructive (i.e., βγ < 1), the payoff under peace is strictly greater than that under a
unilateral deviation for both agents: Vi

p = Ri > Ui
d = βηRi for i = 1, 2, where as defined in

the main text η ≡ γ(1− σ) + σ.69 Indeed, these conditions that ensure Gi
d = 0 for i = 1, 2

when war is destructive are sufficient, but not necessary, to render unilateral deviations
from peace unprofitable for both agents.

As such, to get a more complete picture of when peace is stable, we now turn to the
corresponding payoffs under a unilateral deviation, Ui

d. Upon substituting Gj = 0 and the
values of Gi

d shown in (B.6) into the expression for Ui shown in (3), using the modified
conflict technology (18) and simplifying, we obtain:

Ui
d =



Ui
d1 = βηθ (1 + λ) Ri

[
R−Ri

Ri+λR

]
if Ri ∈ (0, µLR)

Ui
d2 = βη

[
− (1− θ)(R− Ri)

+
(
[(1 + λ)R]

1
2 − [θλ(R− Ri)]

1
2

)2
]

if Ri ∈ (µLR, µHR)

Ui
d3 = βηRi if Ri ∈ [µHR, R).

(B.7)

Obviously, Ui
d is a piecewise function of the resource allocation Ri, as illustrated in Figs.

B.1(b) and B.2(b), respectively for the benchmark case of no destruction and the case of
destruction. A noteworthy difference between the case of preexisting arms (λ > 0) and
our baseline model without such arms (λ = 0) is that Ui

d is no longer linear in Ri ∈ (0, R)
in the former case. In particular, as one can verify, Ui

d1 (the blue curve) is increasing and

68This claim can be confirmed by evaluating the net marginal value of arming, ∂Ui/∂Gi, using (4) with (18),
at Gj > 0 and Gi = 0. The resulting expression is non-positive for any Ri ∈ (0, R) when µH ≤ 0 and for any
Ri ∈ [µH R, (1− µH)R] when µH ≤ 1

2 .
69The expression for Ui

d in this case can be confirmed using (3) and (18) with Gi = Gj = 0. Also see below.
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concave in Ri ∈ (0, µLR]; Ui
d2 (the pink curve) is increasing and convex in Ri ∈ (µLR, µHR);

and Ui
d3 (the orange curve) is increasing and linear in Ri ∈ [µHR, R).

Turning to our comparison of Ui
d with Vi

p, let us start with resource distributions Ri ∈
[µHR, R) that imply Ui

d = Ui
d3 as shown in (B.7). Clearly, Ui

d3 ≤ Vi
p (= Ri) holds as a strict

inequality, if βγ < 1. What’s more, dUi
d3/dRi < dVi

p/dRi = 1. When Ri ∈ (µLR, µHR)
such that Ui

d = Ui
d2 shown in (B.7), the fact that limRi↗µH R Ui

d2 = limRi↘µH R Ui
d3 together

with the just outlined properties of monotonicity and convexity of Ui
d2 in Ri imply that

dUi
d2/dRi < βη, so that Ui

d2 is flatter than Ui
d3 and thus approaches Vi

p from above. Lastly,
we note that limRi→0 dUi

d1/dRi = βηθ 1+λ
λ , whereas limRi→0 dVi

p/dRi = 1; thus, we have

limRi→0 dUi
d/dRi R limRi→0 dVi

p/dRi as λ Q βγ(1−σ)
1−βγ(1−σ)

.70 Since limRi→0 Ud1 = limRi→0 Vi
p =

0, it follows that, if λ is sufficiently small such that limRi→0 dUi
d/dRi > limRi→0 dVi

p/dRi,
then Ui

d > Vi
p at least for allocations close to Ri = 0.

We now stitch together the above description to obtain a more complete picture of how
Ui

d compares with Vi
p for all Ri. If λ is sufficiently large (specifically, if λ ≥ βγ(1−σ)

1−βγ(1−σ)
), then

Ui
d ≤ Vi

p holds for all feasible Ri (i = 1, 2), so that peace is never threatened.71 When λ <
βγ(1−σ)

1−βγ(1−σ)
, the distribution of resource endowments matters. In particular, as we have just

shown, the sufficiently small value of λ implies that Ui
d > Vi

p for values of Ri close to zero.
As Ri increases, both Vi

p and Ui
d rise as well. But, the properties of Ud2 described above and

the fact that Ui
d < Vi

p (provided βγ < 1 holds) when Ri ∈ (µHR, R) imply that there exists
a unique point R∗ ∈ (0, µHR) such that Vi

p R Ui
d as Ri R R∗. By the same logic in the main

text where we assumed λ = 0, if R∗ ≤ 1
2 R, then, there exists a non-empty subset of resource

distributions Ri ∈ [R∗, R∗] ⊂ (0, R) under which peace is immune to unilateral deviations,
whereas war is the equilibrium for Ri /∈ [R∗, R∗] ⊂ (0, R). However, if R∗ > 1

2 R, war is the
unique, pure-strategy equilibrium outcome for all resource distributions.

Based on the above analysis, we now turn to sketch out the proofs to the last two claims
we make in the main text regarding the effects of the quantity of preexisting arms or more
precisely λ

(
< βγ(1−σ)

1−βγ(1−σ)

)
relative to our baseline model where λ = 0. To show the first

claim that the the threshold value R∗ depends negatively on λ, we let agent i be the less
affluent one, and apply the implicit function theorem to Ui

d

(
Ri, λ

)
= Vi

p(Ri) evaluated at
Ri = R∗ ∈ (0, µHR), while recognizing that Vi

p is independent of λ, to find:

dR∗/dλ = −
dUi

d/dλ

dUi
d/dRi − dVi

p/dRi
.

Since Ui
d approaches Vi

p from above as Ri increases, the denominator of the above expres-

70 In the special case of β = γ = 1, the last inequality becomes λ Q 1−σ
σ that implies µH R 0.

71Of course, as discussed in the text, peace and war are distinct outcomes only when war is destructive (i.e.,
βγ < 1).
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sion is negative. Thus, the sign of dR∗/dλ equals the sign of the numerator. If R∗ ∈
(0, µLR), then Gi

d = Ri holds, in which case dGi
d/dλ = 0. Alternatively, if R∗ ∈ [µLR, µHR]

so that Gi
d = B̃i

w(0; ·) > 0, we can invoke the envelope theorem. In both cases, the nu-
merator of the expression above, using (3) with (18), Gi

0 = λRi (for i = 1, 2), Gi = Gi
d and

Gj = 0, can be written as

dUi
d/dλ = βηθ

(
R− Gi

d

) dφi

dλ
= −βηθ

(
R− Gi

d

) Gi
dRj(

Gi
d + λR

)2 < 0,

which implies dR∗/dλ < 0. Thus, an increase in λ expands the range of resource endow-
ments Ri ∈ [R∗, R∗] under which peace emerges as the stable equilibrium outcome. This
result is illustrated in Fig. B.2(b) in the case of destruction. Points C, C′ and C′′ are associ-
ated with Ri = R∗ for increasing values of λ. Depending on parameter values, R∗ will lie
either in

(
0, µLR

)
(if λ is sufficiently large) or in

[
µLR, µHR

)
(if λ is sufficiently small).

Finally, we show how an increase in the quantity of preexisting guns λ can enhance
the effectiveness of transfers to support peace. Now let agent i be the more affluent agent.
Our finding above that dR∗/dλ < 0 implies that dR∗/dλ > 0 and thus agent i’s payoff
under peace is increasing in λ: dVi

p(R∗)/λ > 0. The effect of an increase in λ on the
payoff under war Ui

w(Ri) includes both a direct effect through the conflict technology (18)
and a strategic effect through the rival j’s arming. Numerical analysis indicates that the
combined effect is positive for the affluent agent (i). Hence, the effect of an increase in λ

on R∗∗, implicitly defined by the condition Vi
p(R∗) − Ui

w(R∗∗) = 0, would appear to be
ambiguous. However, since Ui

w and the payoff to agent i when he deviates unilaterally
Ui

d(Ri) approach each other as Ri approaches R, we can focus on what happens as Ri

approaches R as we did in the case of diminishing returns. Specifically, one can confirm

lim
Ri→R

Ui
w(Ri) = lim

Ri→R
Ui

d(Ri) = Rβη,

which is independent of λ. Since dVi
p(R∗)/λ > 0, the necessary and sufficient condition

for ex ante transfers to support peace for all feasible resource distributions (i.e., R∗∗ = R)
is more likely to be satisfied as the quantity of preexisting guns increases (λ ↑).
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Figure B.1: Optimizing arming and payoffs under a unilateral deviation and various re-
source distributions: no destruction
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Figure B.2: Optimizing arming and payoffs under a unilateral deviation and various re-
source distributions: destruction
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