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Abstract 

From the standpoint of a policy maker who has access to a number of expert forecasts, the 
uncertainty of a combined or ensemble forecast should be interpreted as that of a typical forecaster 
randomly drawn from the pool. This uncertainty formula should incorporate forecaster discord, 
as justified by (i) disagreement as a component of combined forecast uncertainty, (ii) the model 
averaging literature and (iii) central banks’ communication of uncertainty via fan charts. Using 
new statistics to test for the homogeneity of idiosyncratic errors under the joint limits with both T 
and n approaching infinity simultaneously, we find that some previously used measures can 
significantly underestimate the conceptually correct benchmark forecast uncertainty. 
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1 Introduction

Consider the problem of a macro policy maker who often has to aggregate a number of expert

forecasts for the purpose of a uniform policy making. A general solution was provided by

Bates and Granger (1969) who have inspired extensive research on forecast combination, as

evidenced by two comprehensive surveys in Clemen (1989) and Timmermann (2006), and

many additional papers since 2006.1 The solution based on minimizing the mean squared

error of the combined forecasts calls for a performance-based weighted average of individual

forecasts with precision of the combined forecast that is readily shown to be better than

any of the constituent elements under reasonable conditions.2 Thus, Wei and Yang (2012)

characterize this approach as “combination for improvement.” However, many studies have

found that a simple average is often as good as the Bates-Granger estimator, possibly due

to large estimation error of the weights, the variances of individual forecast errors being

the same or their pair-wise correlations being the same; see, e.g. Bunn (1985), Clemen

and Winkler (1986), Gupta and Wilton (1987), Palm and Zellner (1992) and Smith and

Wallis (2009), among many others. Under the standard factor decomposition of a panel

of forecasts, where the cross correlations of forecast errors can be attributed to a common

aggregate shock, the precision of this equally-weighted average is simply a function of the

variance of this common shock that nets out the uncertainty associated with idiosyncratic

errors. This precision formula should be enriched with disagreement, as motivated by a

variety of theoretical, empirical, and policy factors.

As Timmermann (2006, p.141) has noted, heightened discord among forecasters, ceteris
1Granger and Jeon (2004) call this approach of making inference based on combined outputs from alter-

native models as “thick modeling.”
2The superior performance of the consensus forecast relative to individual forecasts follows from Jensen’s

inequality, which states that with convex loss functions, the loss associated with the mean forecast is generally
less than the mean loss of individual forecasts, cf. Manski (2011). See also Granger (1989), Makridakis (1989),
Diebold and Lopez (1996), Newbold and Harvey (2001) and Hendry and Clements (2004) for discussing why
combining is beneficial due to unobserved information sets, diversification gains, insurance against structural
breaks and misspecifications.
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paribus, may be indicative of higher uncertainty in the combined forecast from the standpoint

of a policy maker. Thus, the precision formula for the average (or “consensus”) forecast

should reflect disagreement among experts as part of forecast uncertainty, which is desirable

in many situations. On the other hand, the use of disagreement as a sole proxy for forecast

uncertainty continues to be debated in other contexts.

Another justification for incorporating disagreement as part of aggregate uncertainty

comes from the rich literature on model averaging pioneered by Leamer (1978). Draper

(1995) and Buckland, et al. (1997) present cogent explications of the result using Bayesian

and Frequentist approaches respectively. See Hansen (2008) and Amisano and Geweke (2017)

for more recent advances.

A third consideration for using a theoretically sound uncertainty measure of the consensus

forecast comes from the recent advances in the presentation and communication strategies

by a number of central banks, pioneered by Bank of England’s fan charts to report forecast

uncertainty. For the credibility of forecasts in the long run, it is essential that the reported

confidence bands for forecasts be properly calibrated. In the U.S., from November 2007,

all FOMC members are required to provide their judgments as to whether the uncertainty

attached to their projections is greater than, smaller than, or broadly similar to typical lev-

els of forecast uncertainty in the past. In order to aid each FOMC member to report their

personal uncertainty estimates, Reifschneider and Tulip (2019) have provided a measure for

gauging the average magnitude of historical uncertainty using information on past forecast

errors from a number of private and government forecasters. These benchmark estimates

for a number of target variables are reported in the minutes of each FOMC meeting and are

used by the public to interpret the responses of the FOMC participants. We show how this

measure incorporates the disagreement amongst forecasters as a component of forecast uncer-

tainty, but particular formula used may underestimate the true historical uncertainty if the

individual forecast errors are heterogeneous. Given that these historical benchmark numbers
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are fed into the highest level of national decision making, a careful examination of a number

of alternative uncertainty measures relevant for a policy maker cannot be overemphasized.

In this paper we establish the asymptotic limits for these alternative measures of uncer-

tainty under the joint limits with both the time series (T ) and cross section (n) dimensions

approaching infinity simultaneously, and develop tests to check if the uncertainty measures

are statistically different and the forecasters are exchangeable. We build on Issler and Lima

(2009), who have shown the optimality of the (bias-corrected) simple average forecast using

panel data sequential asymptotics. Our tests identify the differences in the idiosyncratic

error variances, in addition to the differences in the means, and thus shed new light on the

heterogeneity of expectation formation processes.3 A Monte Carlo study confirms that the

test performs well in our context. We use individual forecasts from the Survey of Professional

Forecasters (SPF) and the Michigan Survey of Consumers (MSC) to show that the uncer-

tainty measure conventionally attached to a consensus forecast using the Bates-Granger

approach and the Reifschneider and Tulip (2019) [hereafter RT] benchmark measure can

underestimate the true uncertainty under certain circumstances. Similar to Rossi and Sekh-

posyan (2015) and Jo and Sekkel (2019), our measure is based on subjective forecasts of

market participants and reflects their perceived uncertainty. In contrast to these two papers,

but like RT, we include both common and idiosyncratic uncertainty in the measurement and

provide the typical levels of uncertainty seen on average over history. Our test also confirms

these results at the 1% level for multiple forecast horizons.

The plan of the paper is as follows. Section 2 derives the relationship between disagree-

ment and overall forecast uncertainty. Section 3 compares different measures of historical

uncertainty and develops a new test for forecaster homogeneity. In Section 4 we use SPF

data on real GDP and inflation forecasts by experts and the MSC data on price expectations
3See, e.g. Lahiri and Sheng (2008), Patton and Timmermann (2010), and Andrade, et al. (2016). Pesaran

and Weale (2006) contains an early elaboration of many of these issues.
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made by households to highlight the differences in the alternative uncertainty measures, and

implement our test for forecaster homogeneity. Pesaran (1987) established the value of using

survey data in measuring uncertainty and testing for rationality. Finally, Section 5 summa-

rizes the results and presents some concluding remarks. Proofs of theorems and corollaries

in Section 3 are relegated to the unpublished mathematical appendix in Lahiri, Peng and

Sheng (2015).

2 Uncertainty and Disagreement

Let Yt be the random variable of interest, Fith be the forecast of Yt made by individual i at

time t− h. Then individual i’s forecast error, eith, can be defined as

eith = At − Fith, (1)

where At is the actual realization of Yt. Following a long tradition, e.g., Davies and Lahiri

(1995) and Gaglianone and Lima (2012), we write eith as the sum of an individual bias, µit,

a common component, λth and idiosyncratic errors, εith:

eith = µith + λth + εith, (2)

where µith is nonrandom and time-varying, λth represents the cumulative weighted effect

of all independent shocks that occurred from h-period ahead to the end of target year t.

Thus, even if forecasters make “perfect” forecasts, the forecast error may still be nonzero

due to shocks (λth), which are, by nature, unpredictable. Forecasters, however, do not make

“perfect” forecasts even in the absence of unanticipated shocks. This “lack of perfection” is

due to other factors (e.g., differences in information processing, loss functions, interpretation,

judgment, and forecasting models) specific to a given individual at a given point in time and
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is represented by the idiosyncratic error, εith.

In order to establish the relationship between different measures of uncertainty and derive

their asymptotic limits, we make the following simplifying assumptions:

Assumption 1 (Bias)

µit is nonstochastic for all i and all t with sup 1
T

i

T∑
t=1

µ4
it = O

(
(Tn)−α

)
for some α ≥ 2.

Assumption 2 (Common Shocks)

λth = ∑h−1
k=0 θkζthk with θ0 = 1, |θk| < ∞ for k = 1, . . . , h − 1, where ζthk, occurred from

k-period ahead to the end of target year t, are economic shocks that are uncorrelated across

k, and stationary ergodic over t such that E(ζthk) = 0, E(ζ2
thk) = σ2

ζhk, E|ζthk|4+δ < ∞ and

var

(
1√
T

T∑
t=1

(∑h−1
k=0 θkζthk

)2
)
→ ϕλh with 0 < ϕλh <∞ as T →∞.

Assumption 3 (Idiosyncratic Shocks)

εith is independent identically distributed over t, and independent potentially non-identically

distributed across i with Eεith = 0, Eε2
ith = σ2

εih, σ2
εh = lim 1

n

n∑
i=1

σ2
εih, Eε3

ith = 0, E(ε4
ith) =

ωεih such that inf
i
σ2
εih > 0, sup

i
Eε8

ith <∞. In addition, ωεih = ωεjh whenever σ2
εi = σ2

εj.

Assumption 4 (Relations)

λth is independent of εish for all i, t and s.

Remark 1. Assumption 1 allows for time-varying nonrandom bias, which is more general

than the time-invariant assumption made in the literature (for example, Issler and Lima

(2009)) and hence potentially has a wider range of applications. The condition 1
T

T∑
t=1

µ4
ith =

Op((Tn)−α) for some α ≥ 2 helps to ensure that individual bias is negligible in the asymptotic

limits involving various ex post measures of forecast uncertainty. The eventually vanishing

bias condition is in line with the spillover effect that the bias gets smaller as more forecasters

learn from each other, and consistent with the empirical evidence that forecasters’ biases

diminish over time as they gain experience, cf. Pesaran (1987) and Lahiri and Sheng (2008).4

4Reifschneider and Tulip (2019) report the biases to be transitory. See also Clark, et al. (2020) who
make a similar assumption. Note that our bias condition allows for heterogenous rates of individual biases
approaching zero.
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Assumption 2 implies that λth is a stationary ergodic moving average process of order at

most h − 1 with Eλth = 0, Eλ2
th = σ2

λh =
h−1∑
k=0

θkσ
2
ζhk , E |λth|4+δ < ∞ for some δ > 0, and

var

(
1√
T

T∑
t=1

λ2
th

)
→ ϕλ as T →∞. Thus, this condition is almost identical to the assumption

in Issler and Lima (2009) except for the higher moment condition, which, together with the

higher moment assumption of εith, is required to establish the asymptotic limits in Theorem 1.

Assumption 3 is standard in errors component or factor analysis. It can be readily extended,

at the expense of some technical complication, to allow for both some weak time dependence

and cross-sectional dependence of groupwise block form brought by some residual group-wide

influences.5 The requirement, ωεih = ωεjh whenever σ2
εih = σ2

εjh, though slightly restrictive,

still allows for a wide range of probability distributions such as normal, t, and uniform

distributions with zero mean. The independence of λth and εish in Assumption 4 is common

in errors component or factor models.

Taken together, the assumptions 1-4 imply that the individual forecast error is not only

an asymptotic stationary and ergodic process for any given horizon h, but also has a factor

structure interpretation. Given a panel of forecasts, Lahiri and Sheng (2010) decompose the

average squared individual forecast errors as

1
n

n∑
i=1

e2
ith = (At − F·th)2 + 1

n

n∑
i=1

(Fith − F·th)2, (3)

where F·th = 1
n

∑n
j=1 Fjth. The simple average 1

n

∑n
i=1 e

2
ith can be viewed as the volatility

associated with a representative forecaster, selected randomly from among all forecasters,

e.g. Giordani and Söderlind (2003), Lahiri and Sheng (2010), and Ozturk and Sheng (2018).

This decomposition of the uncertainty of a typical forecaster is consistent with the vast

literature on the capital asset pricing model that decomposes the return volatility of a typical
5For example, some residual group-wide influences, resulting from the facts that groups of forecasters

may adopt similar models, loss functions, judgements of interpretations under certain circumstances, may
not be strong enough or explicit enough to be embodied in specific common factors.
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stock into market volatility and firm-specific volatility; see, e.g. Campbell, et al. (2001).

By taking time average on both sides of equation (3), we get an empirical measure of

historical forecast uncertainty based on past errors such that

1
nT

T∑
t=1

n∑
i=1

e2
ith = 1

T

T∑
t=1

(At − F·th)2 + 1
nT

T∑
t=1

n∑
i=1

(Fith − F·th)2. (4)

Equation (4) states that the squared measure can be decomposed into two components:

uncertainty that is common to all forecasters and uncertainty that arises from heterogeneity

of individual forecasters. The first component is the empirical variance of the average that

is conventionally taken as the uncertainty of the consensus forecast; see, e.g. Patton and

Timmermann (2011) and Clements (2014). The second component is the disagreement

among forecasters. Similar decomposition of uncertainty is also obtained by Draper (1995) in

assessing model uncertainty via Bayesian approach. Geweke and Amisano (2014) presented

a parallel decomposition of predictive variance from Bayesian model averaging in terms of

intrinsic and extrinsic variances.

By virtue of the assumptions 1-4, the population analog of equation (4) is given by

1
n

n∑
i=1

E(e2
ith) = σ2

λh + 1
n

n∑
i=1

σ2
εih + 1

n

n∑
i=1

lim
T→∞

1
T

T∑
t=1

µ2
ith. (5)

It is now obvious from equation (5) that the squared uncertainty of a typical forecaster

arises from the variance of the aggregate shock common to all forecasters and from the

heterogeneity of individual forecasters that contains both the average idiosyncratic variance

and the average of the variance of individual biases. What is not readily recognized in the

literature is that apart from the disagreement coming from time-varying systematic biases

(i.e., 1
n

n∑
i=1

lim
T→∞

1
T

T∑
t=1

µ2
ith), the average of individual variances also contains a disagreement

component coming from 1
n

∑n
i=1 σ

2
εih. In the context of the empirical examples on real GDP

and inflation forecasts that we report in Section 4, a model uncertainty audit reveals that
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the variance explained by the systematic bias component is tiny compared to the other two

components in equation (5). A similar result on the transitory nature of the individual bias

terms is also reported by Reifschneider and Tulip (2019).

3 Measures of Historical Uncertainty and Tests for

Forecaster Homogeneity

3.1 Measures of Forecast Uncertainty and their Asymptotic Prop-

erties

A common practice in the uncertainty literature is to quantify uncertainty in terms of s-

tandard deviation. In line with this tradition, taking the square root of the average of the

individual variances observed over the sample period in equation (4) gives the historical

uncertainty faced by a policy maker while using a typical forecaster.

Definition (Forecast combination uncertainty)

The historical uncertainty of a combined forecast from n experts is given by

RMSELPS =

√√√√ 1
nT

T∑
t=1

n∑
i=1

e2
ith. (6)

The historical uncertainty measure, RMSELPS in equation (6), in which the uncertainties

add in quadrature is consistent with the standard error propagation formula used for cal-

culating uncertainties among experimental scientists in engineering, physics, chemistry and

biology, cf. Draper (1995).

On the other hand, the conventional choice as suggested by Bates and Granger (1969) is the
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root mean squared error (RMSE) of the average forecast

RMSEAF =

√√√√ 1
T

T∑
t=1

(
1
n

n∑
i=1

eith

)2

. (7)

With the stated objective of using forecast errors made by a panel of forecasters to generate a

benchmark estimate of historical forecast uncertainty, Reifschneider and Tulip (2019) propose

the following measure

RMSERT = 1
n

n∑
i=1

√√√√ 1
T

T∑
t=1

e2
ith. (8)

They explicitly recognized that the empirical uncertainty faced by a typical forecaster is

the average of the estimated individual uncertainty. Along this line, Jurado, et al. (2015)

proposed an ex post analog of aggregate uncertainty measure. However, as Boero, et al.

(2008) pointed out, aggregating individual standard deviations as a measure of collective

uncertainty would violate the identify in equation (4). Obviously, RMSERT is distinct from

RMSELPS, and by construction, incorporates partially the disagreement as a component of

uncertainty as shown in the following theorem and corollary.

Theorem 1. Suppose Assumptions 1-4 hold. Then as (n, T →∞),

(i)
√
T
(
RMSE2

AF − σ2
λh − 1

n2

n∑
i=1

σ2
εih

)
→d N (0, ϕλh).

(ii)
√
T

(
RMSE2

RT −
(

1
n

n∑
i=1

√
σ2
λh + σ2

εih

)2
)
→d N (0, φϕλh),

where φ =
(

lim
n→∞

1
n

n∑
i=1

(σ2
λh + σ2

εih)
1/2
)2 (

lim
n→∞

1
n

n∑
i=1

(σ2
λh + σ2

εih)
−1/2

)2
.

(iii)
√
T
(
RMSE2

LPS −
(
σ2
λh + 1

n

n∑
i=1

σ2
εih

))
→d N (0, ϕλh).

An immediate consequence of Theorem 1 is Corollary 1.

Corollary 1. Suppose Assumptions 1-4 hold. Then as (n, T →∞) ,
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(i) RMSEAF →p σλh.

(ii) RMSERT →p lim
n→∞

1
n

n∑
i=1

√
σ2
λh + σ2

εih.

(iii) RMSELPS →p

√
(σ2

λh + σ2
εh).

Remark 2. RMSEAF tends to ignore the uncertainty associated with the idiosyncratic

shocks, especially when n is large since RMSE2
AF = σ2

λh + 1
n2

n∑
i=1

σ2
εih + Op(T−1/2) with

1
n2

n∑
i=1

σ2
εih = O( 1

n
). By contrast, for RMSELPS, we have RMSE2

LPS →p σ2
λh + σ2

εh as

(n, T → ∞). Finally, it is trivial to see that RMSELPS and RMSEAF yield identical

asymptotic limit if and only if σ2
εh = 0.

Remark 3. Corollary 1 implies, in light of Jensen’s inequality, RMSERT ≤ RMSELPS in

the limit. RMSERT , though allows for some disagreement among forecasters, underestimates

the historical uncertainty especially in the presence of unequal idiosyncratic error variances.

The amount of underestimation in the limit, obtained via applying second-order Taylor’s

expansion to
√

1 + (σ2
λh + σ2

εh)
−1 (σ2

εih − σ2
εh), is given by

RMSELPS −RMSERT →p
1
8
(
σ2
λh + σ2

εh

)−3/2
var(σ2

εih), (9)

where var(σ2
εih) = lim

n→∞
1
n

n∑
i=1

(σ2
εih − σ2

εh)
2. Thus, RMSELPS and RMSERT are equal in the

limit if and only if var(σ2
εih) = 0 since 1

8 (σ2
λh + σ2

εh)
−3/2 is a positive constant.

Remark 4. Interestingly, RMSERT , as a measure of the typical level of historical uncertain-

ty, is potentially more volatile than RMSELPS because of φ ≥ 1 by virtue of Cauchy-Schwarz

inequality.
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3.2 Tests for Forecaster Homogeneity and their Asymptotic Dis-

tribution

It is evident from Remark 3 that testing for the equality of RMSELPS and RMSERT in

the limit is equivalent to testing for var(σ2
εih) = 0, that is, σ2

εih = σ2
εh for almost all i with

n approaching infinity. But to examine whether RMSERT and RMSELPS give statistically

different measures of uncertainty in the context of a particular data set, it is necessary to

restrict the null hypothesis to σ2
εih = σ2

εh for all i.6 To derive the test, we first obtain

various bias-corrected estimators by letting e·th = 1
n

n∑
i=1

eith, ε̂ith = eith − e·th, and defining

σ̂2
εih = 1

T

T∑
t=1

ε̂2
ith, σ̂2

εh = 1
n

n∑
i=1

σ̂2
εih, ω̂εih = 1

T

T∑
t=1

ε̂4
ith, ω̂εh = 1

n

n∑
i=1

ω̂εih, ψ̂εih = ω̂εih − σ̂4
εih, ψ̂εh =

ω̂εh−σ̂4
εh, σ̃2

εih =
(
1− 1

n

)−2
σ̂2
εih−

(
1− 1

n

)−2 1
n2

n∑
j 6=i

σ̂2
εjh, σ̃2

εh =
(
1− 1

n

)−2
σ̂2
εh− 1

n

(
1− 1

n

)−1
σ̂2
εh,

φ̂1ih = 6(1 − 1
n
)2
[
σ̃2
εih

(
1
n

n∑
j 6=i

σ̃2
εjh

)]
, φ̂2ih = 1

n2

n∑
j 6=i

ω̂εih + 6
n2

n∑
j 6=i

n∑
k 6=i,j

σ̃2
εjhσ̃

2
εkh, φ̂1h = 1

n

n∑
i=1

φ̂1ih,

φ̂2h = 1
n

n∑
i=1

φ̂2ih, ψ̃εh =
(
1− 1

n

)−4
ψ̂εh − γ̂hn, and γ̂hn = 1

n

[
φ̂1h − 2

(
1− 1

n

)3
σ̃4
εh

]
+ 1

n2

[
φ̂2h +(

1− 1
n

)2
σ̃4
εh

]
. The resulting test is presented in the following theorem.

Theorem 2. Suppose Assumptions 1-4 hold. Then under the null hypothesis that σ2
εi = σ2

ε

for all i,

Zo
nT = 1

snT

n∑
i=1


T ( 1

T

T∑
t=1

ε̂2
ith −

1
nT

n∑
i=1

T∑
t=1

ε̂2
ith

)2− (1− 1
n

)4ψ̃εh

→d N(0, 1)

as (n, T →∞) and T
n
→ 0, where s2

nT = 2nψ̃2
εh.

Theorem 2 has established the joint limit distribution of the statistic for testing the null

hypothesis that σ2
εih = σ2

εh for all i. By construction, λth plays no role in the test since it

is completely removed in the process of computing consistent estimates for εith. Along with

6Indeed, it would be enough to test the null hypothesis that 1
n

n∑
i=1

(
σ2

εih − 1
n

n∑
i=1

σ2
εih

)2
= o(T−1n−1) for

our purpose. But σ2
εih does not depend on T by Assumption 3. So a natural choice for the null would then

be σ2
εih = σ2

εh for all i.

12



λth, all between- and within-forecaster correlations are also removed. Moreover, the impact

of the nonstochastic bias µit is asymptotically negligible as implied by assumption. Thus,

our test is essentially an unconditional test for homogeneity of idiosyncratic variances in

large panel data framework. A rejection of the null hypothesis based on Theorem 2 can be

interpreted as a signal of the need for using unequal weights in computing the measures of

uncertainty. Future research is warranted in exploring an optimally weighted (over i) version

of RMSELPS, which might be lower than the RMSELPS based on a simple average.

Remark 5. The statistical literature for testing equality of variances is huge. The most

widely used procedure among these is an F test proposed by Levene (1960) in the form of

the classic ANOVA method applied to the absolute differences between each observation and

the mean of its group. Brown and Forsythe (1974) suggested using median instead of the

mean, and this version of the Levene test has been found to have excellent power properties

even under asymmetric distributions, see Gastwirth, et al. (2009). However, as Iachine, et

al. (2010) have pointed out this family of tests assume independence of observations, and

hence are not suitable in our context where forecast errors are sticky and correlated across

forecasters due to common shocks.

An alternative approach assumes that the individual variance (σ2
εih) can be approximated

by a function of covariates. Testing for homoscedasticity then reduces to a joint testing for

zero coefficients using Lagrange Multiplier tests, see Baltagi, et al. (2006) and Baltagi, et al.

(2010). These tests require a prior knowledge of what might be causing the heteroskedasticity,

and have statistical power provided σ2
εih can be well explained by a few proxies. Since we have

very little information on the characteristics of professional forecasters and how they make

forecasts, this approach is not feasible in our case.

Remark 6. It is clear from expression (9) that we are in essence testing the following null

13



hypothesis

8
(
σ2
λh + σ2

εh

)3/2
[ plim
(n,T→∞)

RMSELPS − plim
(n,T→∞)

RMSERT ] = 0.

That is, we are testing the significance of the scaled difference between the asymptotic limits

of RMSELPS and RMSERT .

Remark 7. The restriction that T
n
→ 0 as (n, T →∞) controls for the approximation errors

in panel estimation and prevents them to have a non-trivial effect on the limit distribution.

Moreover, from the proof of Theorem 2 in the online appendix, we see the presence of two

bias terms of magnitude order Op(n−1/2) - one positive and one negative, and two positive

bias terms of order Op(n−3/2).

Remark 8. Under the null hypothesis, the term
T ( 1

T

T∑
t=1

ε̂2
ith − 1

nT

n∑
i=1

T∑
t=1

ε̂2
ith

)2
 roughly

follows a χ2
1 distribution for large T and large n, leading to potential size distortions and

slow convergence to standard normality due to its large positive skewness (close to
√

8).

To address the bias and skewness issues pointed out in Remarks 7 and 8, we define

B̃RT = −(1 − 1
n
)4B̃1 + 4(1 − 1

n
)2B̃2 + B̃3, where B̃1 = n−1/2ψ̃εh, B̃2 = n−1/2(1 − 1

n
)2σ̃4

εh,

and B̃3 = 3n−3/2(1− 1
n
)2(1− 2

n
)σ̃4

εh + n−5/2(1− 1
n
)(ω̃εh− 5σ̃4

εh), and modify the test statistic

proposed in Theorem 2. The result is then summarized in the following theorem.

Theorem 3. Suppose Assumptions 1-4 hold. Then under the null hypothesis that σ2
εih = σ2

εh

for all i,

Zbsc
nT =

{( 1
n

n∑
i=1

1
(1− 1

n )4ψ̃εh

[
T ( 1
T

T∑
t=1

ε̂2
ith −

1
nT

n∑
i=1

T∑
t=1

ε̂2
ith)2 − 1

n1/2 B̃RT

])1/3
− 1 + 2

9n

}( 2
9n

)−1/2

→d N(0, 1)

as (n, T →∞) and T
n
→ 0.

Remark 9. The statistic in Theorem 3 reduces the asymptotic bias by subtracting the esti-

mated means for the four bias terms discussed in Remark 7 and by scaling with the factor

14



(1 − 1
n
)−4. A similar approach was adopted by Pesaran and Yamagata (2008) in their test

of slope homogeneity in large random coefficient panel data models, see also Hsiao and Pe-

saran (2008). In addition, it addresses the issues of positive skewness and slow convergence

by adopting the popular Wilson-Hilferty cube root transformation; see Chen and Deo (2004)

for a general discussion on power transformation to tackling skewness and slow convergence

problems.

3.3 Monte Carlo Simulation

To assess the performance of our tests, we conduct Monte Carlo simulations. We consider

all combinations of T = 20, 60, 120 and n = 20, 60, 120. Data are generated according to

eith = λth+εith.7 Since λth plays no role in the test, for simplicity, it is generated as a moving

average process of order one such that λth = ξth − 0.5ξ(t−1)h, with ξth iid∼ U(−1, 1). εith are

randomly generated from either a normal distribution N(0, σ2
εih) or a uniform distribution

U(−
√

3σεih,
√

3σεih). To assess the size of our tests, we let σ2
εih = σ2

εh for all i and set

σ2
εh = 0.05, 0.25, and 1.25, respectively. To evaluate the power, we first set the value for

the average of idiosyncratic variances (σ2
εh), and then let 100r percentage of idiosyncratic

variances differ from σ2
εh, with half of them greater and the other half smaller than σ2

εh. The

magnitude of the difference is measured by 100p percentage. Our simulation design allows

us to explore the effect of changes in r and p on the performance of the test statistics, as

large values of r and/or p introduce increasing heterogeneity of idiosyncratic variances. In

our simulation study, we consider all combinations of r = 0.3, 0.5, 0.7 and p = 0.3, 0.5, 0.7.

For brevity, we report the results for σ2
εh = 0.05 only, since other values of σ2

εh (namely, 0.25

and 1.25) yield very similar power. All results are obtained from 5, 000 replications.

Since the results for the original test in Theorem 2 are slightly inferior to those for
7We also consider the following data generating process eith = µith +λth + εith with µith = O((nT )−1/2).

We find that the size and power of our tests are almost identical to those of the process eith = λth + εith,
implying that the impact of µith on our tests are insignificant and thus can be safely ignored.
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the bias and skewness corrected test (Zbsc
nT ) in Theorem 3, and for the sake of brevity, we

report only the simulation results for the latter. Table 1 summarizes the size of the test.

When the idiosyncratic errors are assumed to be normally distributed, the Zbsc
nT test yields

good empirical size, though slightly oversized when n = 20. With a uniform distribution

for the error terms, the test exhibits size distortions, especially for n = 20, but the size

distortion becomes less as n increases to 60. Turning to the power, Table 2 shows that the

Zbsc
nT test becomes more powerful when either r or p increases. Recall that r indicates the

fraction of heterogeneous idiosyncratic variances in the panel and p captures the deviation

of the individual variances from the average of idiosyncratic variances on the whole. Taken

together, r measures the relative amount of evidence against the null (or “patterns”), and

p measures the overall amount of evidence against the null (or “strength”). Moreover, the

power tends to increase when T and/or n increase for given values of r and p, which justifies

our proposed test for the use in large panels. Finally, the Zbsc
nT test performs better under a

uniform distribution than a normal distribution for the idiosyncratic error terms.

4 Empirical Illustrations: Underestimation of Uncer-

tainty in US GDP and Inflation Forecasts

In this section, we present estimates of historical uncertainty in inflation and output growth

forecasts using RMSELPS, and compare it to RMSEAF and RMSERT . The use of various

types of survey data in measuring forecast uncertainty is well elaborated in Pesaran and

Weale (2006).
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4.1 Survey of Professional Forecasters

The first data set used in this study to examine the alternative uncertainty estimates comes

from the US Survey of Professional Forecasters (SPF) over 1991Q1 to 2017Q4. We focus on

forecasts of GDP price deflator and real GDP growth, with horizon varying from one to five

quarters. In order to calculate the forecast errors, we used the first-announced actual values

in real time from the Real Time Data Set for Macroeconomists (RTDSM) provided by the

Federal Reserve Bank of Philadelphia. The forecast data set fits our need well because it

covers 90-100 forecasters over 108 quarters. The SPF is a quality-assured and widely used

quarterly survey on macroeconomic forecasts in the United States. The American Statistical

Association (ASA) and the National Bureau of Economic Research (NBER) initiated the

survey in 1968Q4. Due to a rapidly declining participation rate in the late 1980s, the Federal

Reserve Bank of Philadelphia took over the survey in 1990 with a new infusion of forecasters.

Thus, in order to minimize the missing data problem, our sample starts from 1991Q1; even

then nearly 70% of the potentially observable forecasts are unavailable, cf. Engelberg, et al.

(2011).

The missing values pose a potential challenge for empirically implementing our test s-

tatistics since many of the asymptotic inequalities that we established are not necessarily

valid in the context of incomplete panels. Following a lead from Genre, et al. (2013), we

impute the missing values, but allow for uncertainty in inference due to missing data by

multiple imputations (MIs). Using Markov chain Monte Carlo (MCMC) techniques, a pre-

dictive distribution of missing data conditional on observed forecasts is simulated leading to

the creation of MIs, see Little and Rubin (2002). Our model of imputation for each variable

and for each horizon is specified as a linear mixed-effects model

eith = α + βe.th + γi(eih. − eh..) + εith, (10)
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where e.th is the average forecast error for period t made by the participating forecasters, eih.

is the average forecast error by forecaster i during the periods for which he/she forecasted,

and the overall mean of forecast errors is eh... εith is the error in the imputation equation.

It is presumed that parts of eith are missing that we need to impute. Whereas β is specified

as a fixed effect with expected value 1, γi(eih. − eh..) is treated as random effects allowing

for time invariant individual biases. Note that in Genre, et al. (2013), the second term in

(10) is a function of recent average deviation of forecasts made by a forecaster from the

mean forecasts.8 However, as discussed in Lahiri, et al. (2017), due to excessive missing

observations in SPF data, we took individual means instead. Since our aim is to fill in the

missing values retrospectively for calculating the ex post RMSEs, we did not have to impute

recursively in real time, even though our scheme in principle can allow for this. After each

imputation, we replaced the right-hand-side variables based on the imputed data set, and

the missing observations were imputed again. In this way, the three variables in equation

(10) will be pairwise consistent. This is a sensible imputation scheme in our context since

the original time series of mean forecasts will be preserved, and the structure of correlations

in the forecast errors between and within individuals will be largely maintained. What is

most noteworthy is that the mean squared forecast errors based on the original incomplete

panels and the imputed data sets were very close.9

8Following Davies and Lahiri (1999), we also experimented with a number of alternative imputation
schemes including using known lagged actuals and aggregate forecast revisions from last forecasts. But these
variables were found to be redundant in specification (10).

9We did 100 imputations for each data set using packages pan and mitml in R (version 3.6.0). Specif-
ically, the calculated 100 test statistics Zo

nT and Zbsc
nT from the imputed data sets are combined in such a

way that they reflect the variabilities due to both within and between imputations, see Little and Rubin
(2002, pp. 86-87). For asymptotically valid inference in this context, one needs the assumption that the
missingness mechanism is ignorable or missing at random (MAR). The MAR assumption merely means that
the mechanism generating missing values can be ignored while preforming statistical inference. Identifying
the mechanism generating attrition is difficult in our case because we have very little information on the
forecasters except for their past forecast performance and the number of quarters they have been responding.
Capistrán and Timmermann (2009), Genre, et al. (2013) and Lahiri, et al. (2017) found little association
between participation and performance. While the assumption of MAR is almost impossible to test, it does
not seem to be unreasonable in this example, see Yucel (2011).
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Tables 3 and 4 report various statistics for inflation and output growth forecasts re-

spectively using multiple imputed data. Two points are worth noting. First, the RMSEs

associated with output are uniformly higher compared to inflation due to a differential in-

cidence of common shocks. Both the idiosyncratic and common shocks are more variable

for GDP growth forecasts than those for inflation, and the latter for GDP is comparatively

very high. This phenomenon, which makes real GDP growth a difficult variable to predict,

has been documented by Lahiri and Sheng (2008) using a heterogeneous learning model.

More importantly, as expected, for all five horizons and for both GDP growth and infla-

tion, RMSERT is less than RMSELPS, but the differences between these two measures are

very small. Yet, these differences are statistically significant for almost all cases. To un-

derstand the latter finding, note that we are testing the significance of the scaled difference

between the asymptotic limits of RMSELPS and RMSERT , as noted in Remark 6. Indeed,

the scaled differences range from 0.09 to 0.13 for inflation and from 0.12 to 0.36 for output

growth forecasts, resulting in a rejection of the null hypothesis that the scaled difference

(i.e., the variance of idiosyncratic variances) is zero by both the original and bias-corrected

test statistics (Zo
nT and Zbsc

nT ). The power of the tests comes from the fact that they hone

into the individual forecast variances after netting out the more formidable variability of the

common shocks in constructing the statistics.

Note that the RMSE figures that are reported by Reifschneider and Tulip (2019) and

those in this paper are not directly comparable. RT used the simple averages of the individ-

ual projections in SPF, Blue Chip and FOMC panels, together with Greenbook, Congres-

sional Budget Office (CBO) and the Administration forecasts giving n = 6 in their calcula-

tion. Specifically, their measure is expressed as RMSEgroup = 1
M

∑M
m=1

√
1
T

∑T
t=1(At − Fm

·t )2,

where Fm
·t is the mean forecast for the group m, for the target year t and h-period ahead to

the end of the target year. By averaging across individual projections, most of idiosyncratic

differences and disagreement in FOMC, SPF and Blue Chip forecasts have inadvertently
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been washed away. They found very little heterogeneity in these six forecasts. On the other

hand, their simultaneous use of Greenbook, CBO, Adminstration, consensus FOMC, SPF,

and Blue Chip forecasts meant that RT had to meticulously sort out important differences in

the comparability of these six forecasts due to data coverage, timing of forecasts, reporting

basis for projections, and forecast conditionality. Despite all these differences, these two sets

of uncertainty estimates are very close in the context of SPF dataset. At least a part of

the explanation for this similarity is due to the use of dataset from professional forecaster-

s. For non-professionals, such as surveys of households, where the idiosyncratic errors are

expected to be more heteroskedastic, we may see a substantial difference between RT and

LPS uncertainty measures. Indeed, if the cross sectional variance of idiosyncratic error vari-

ances, defined as 1
n

n∑
i=1

(
1
T

T∑
t=1

e2
ith − 1

nT

n∑
i=1

T∑
t=1

e2
ith

)2

, were to increase from 0.0004 to 0.004 at

1-quarter ahead inflation forecast, RMSERT would decrease from 0.209 in Table 5 to 0.163,

resulting in an underestimation of the correct benchmark uncertainty by 23%. Clements and

Galvao (2017) compare RT measure against two ex ante uncertainty measures from survey

forecasts and find that for both inflation and output growth at within-year horizon, RT

uncertainty underestimates ex ante uncertainty measures.10

4.2 University of Michigan Survey of Consumers

To gain further insight into heterogeneous idiosyncratic errors, we conduct a separate experi-

ment using data from the University of Michigan Survey of Consumers (MSC). We choose the

Michigan survey since household expectations in this survey are often used in the macroeco-

nomics literature; see, e.g. Carroll (2003), Ang, et al. (2007) and Coibion and Gorodnichenko
10Clark, et al. (2020) have compared the RT approach based on past errors with a stochastic multi-horizon

volatility model of nowcasts and successive forecast updates, and found that the former yields incorrect
coverage rates. However, with smaller rolling window sizes around 40 quarters, the two approaches gave
comparable results. That said, RT measure was proposed not as a stand-alone measure of uncertainty, but
rather as a historical benchmark against which the FOMC participants would form their own forward-looking
evaluations and downside risks.
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(2015). Each month households give their forecasts of price changes over the next 12 month-

s.11 In order to build a balanced panel, we followed Deaton (1985) to convert the repeated

cross-sections MSC data to a pseudo panel. Thus, we classify each household into different

cohorts according to their age (at five-year intervals), gender (male vs. female) and income

(quartiles). Souleles (2004), Bruine de Bruin, et al. (2011) and Lahiri and Zhao (2016) pro-

vide mounting evidence on the heterogeneity in the household price expectations along these

dimensions. Then we construct a pseudo balanced panel of 104 forecasters, with each of them

calculated as the average inflation forecast in the corresponding age/gender/income cohort.

To increase the number of observations for each cohort, we pool monthly observations for

each quarter. The sample in this study comprises 153 quarterly surveys from the fourth

quarter of 1979 through the fourth quarter of 2017. There are about 1,400 participants in

each year/quarter and 13 participants in each cohort, on average.12 For our purpose, the

structure of heterogeneity should be maintained in the pseudo panel. Indeed, the correlation

between disagreement from the pseudo panel and from the entire sample is about 0.79.

To further explore the heterogeneity across cohorts, in Table 5 we report the RMSE and

test statistics. For both the whole sample period and various subsamples, we see substantial

differences between RMSERT and RMSELPS, and these differences are statistically signifi-

cant at the 1% level. Depending on the sample period, RMSERT underestimates the correct

benchmark uncertainty by 2% to 14%. One potential concern with the above analysis is

that there are not enough participants for each cohort for valid asymptotic inference. To

address this issue, we drop the gender category and form cohorts by only age and income

categories. Also, we now construct 6 age cohorts by ages 18-30, 31-40, 41-50, 51-60, 61-70,
11Specifically, households are first asked, “During the next 12 months, do you think that prices in general

will go up, or go down, or stay where they are now?” If the respondent answers “go up” or “go down”, point
forecasts are requested: “By about what percent do you expect prices to go up/down on the average, during
the next 12 months?”

12For 204 cohorts (accounting for about 1% of all cohorts) where there are no participants, we replace the
missing value by the corresponding mean forecast across all participants in that year/quarter.
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71 and above. Thus, we now have 24 cohorts (= 6 age cohorts × 4 income cohorts) in this

alternative dataset, and there are about 58 participants in each cohort on average. Table 6

reports the RMSE and test statistics, and the results based on 24 cohorts are qualitatively

the same as those based on 104 cohorts. This simple experiment confirms our conjecture that

there exists substantial differences in the idiosyncratic forecast variances among household-

s, and suggests the need to construct the correct benchmark uncertainty by incorporating

heterogeneous individual error variances.

5 Concluding Remarks

A number of surveys of professional forecasters and households are regularly conducted in

many countries around the world, and a widespread interest in these surveys suggests that

the aggregate macroeconomic forecasts reported by these organizations are considered useful

by policy makers, investors and other stakeholders. Even though it is now recognized in the

forecasting profession that a point forecast by itself is of limited use and should be reported

with an indication of the associated uncertainty, currently the consensus forecasts from these

surveys are not reported with uncertainty bands.

The dominant methodology of forecast combination in econometrics is due to Bates and

Granger (1969) whose basic criterion for optimal combination is based on minimizing the

mean squared error of combined forecasts that rule out any consideration of the cross sec-

tional distribution of forecasts. From the standpoint of a policy maker who has access to a

number of expert forecasts, the uncertainty of a combined or ensemble forecast should be

interpreted as that of a typical forecaster randomly drawn from the pool. This uncertainty

formula should incorporate forecaster discord, as justified by (i) disagreement as a compo-

nent of combined forecast uncertainty, (ii) the model averaging literature and (iii) central

banks’ communication of uncertainty via fan charts. This is not entirely a new idea, but
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the asymptotic results that we have provided in this paper will help crystallize the role of

forecaster disagreement in measuring uncertainty of combined forecast from the standpoint

of a policy maker.

We have identified two layers of heterogeneity in individual forecast errors, arising from

i) systematic individual biases, and ii) random individual errors with heteroskedasticity. We

develop two new statistics to test the heterogeneity of idiosyncratic errors under the joint

limits with both n and T approaching infinity simultaneously. We find significant hetero-

geneity in professional forecasters, which is due primarily to the heterogeneity in individual

error variances. However, for this set of professional forecasters, the observed heterogeneity

does not translate into a significant underestimation of true uncertainty if one uses the bench-

mark uncertainty formula suggested by Reifschneider and Tulip (2019). However, when we

implement our test on the household inflation expectations, the cross sectional heterogene-

ity is found to be considerable, and perhaps not surprisingly, the RT formula significantly

underestimates the theoretical value by as much as 10% for one-year ahead forecasts.

One potential concern in incorporating disagreement as part of aggregate uncertainty is

that the prediction intervals will get wider, making inter-temporal movements in consensus

forecasts less meaningful. Why would practitioners opt for enlarged confidence bands when

they are less likely to obtain news-worthy results? The simple answer is that in the long run

the reported forecasts will be more credible and the uncertainty measures better calibrated.

As aptly put by Draper (1995) in his concluding remark, “which is worse - widening the

bands now or missing the truth later?”.

23



References

Amisano, G. and J. Geweke (2017). Prediction using several macroeconomic models. Review

of Economics and Statistics 99, 912-925.

Andrade, P., R. Crump, S. Eusepi and E. Moench (2016). Fundamental disagreement. Jour-

nal of Monetary Economics 83, 106-128.

Ang, A., G. Bekaert and M. Wei (2007). Do macro variables, asset markets, or surveys

forecast inflation better? Journal of Monetary Economics 54, 1163-1212.

Baltagi, B.H., G. Bresson and A. Pirotte (2006). Joint LM test for heteroskedasticity in a

one way error component model. Journal of Econometrics 134, 401-417.

Baltagi, B.H., B.C. Jung and S.H. Song (2010). Testing for heteroskedasticity and serial

correlation in a random effects panel data model. Journal of Econometrics 154, 122-124.

Bates, J.M. and C.W.J. Granger (1969). The combination of forecasts. Operational Research

Quarterly 20, 451-468.

Boero, G., J. Smith and K.F. Wallis (2008). Uncertainty and disagreement in economic

prediction: the Bank of England survey of external forecasters. Economic Journal 118,

1107-1127.

Brown, M.B. and A.B. Forsythe (1974). Robust tests for equality of variances. Journal of

the American Statistical Association 69, 364-367.

Bruine de Bruin, W., C.F. Manski, G. Topa, and W. van der Klaauw (2011). Measuring

consumer uncertainty about future inflation. Journal of Applied Econometrics 26, 454-

478.

24



Buckland, S.T., K.P. Burnham, and N.H. Augustin (1997). Model selection: an integral part

of inference. Biometrics 53, 603-618.

Bunn, D. (1985). Statistical efficiency in the linear combination of forecasts. International

Journal of Forecasting 1, 151-163.

Campbell, J.Y., M. Lettau, B.G. Malkiel and Y. Xu (2001). Have individual stocks become

more volatile? An empirical exploration of idiosyncratic risk. Journal of Finance 56, 1-43.

Capistrán, C. and A. Timmermann (2009). Forecast combination with entry and exit of

experts. Journal of Business & Economic Statistics 27, 429-440.

Carroll, C.D. (2003). Macroeconomic expectations of households and professional forecasters.

Quarterly Journal of Economics 118, 269-298.

Chen, W.W. and R.S. Deo (2004). Power transformations to induce normality and their

applications. Journal of the Royal Statistical Society B 66, 117-130.

Clark, T.E., M.W. McCracken, and E. Mertens (2020). Modeling time-varying uncertainty

of multiple-horizon forecast errors. Review of Economics and Statistics 102, 17-33.

Clemen, R.T. (1989). Combining forecasts: a review and annotated bibliography. Interna-

tional Journal of Forecasting 5, 559-583.

Clemen, R. and R. Winkler (1986). Combining economic forecasts. Journal of Business and

Economic Statistics 4, 39-46.

Clements, M.P. (2014). Forecast uncertainty - ex ante and ex post: U.S. inflation and output

growth. Journal of Business & Economic Statistics 32, 206-216.

Clements, M.P. and A.B. Galvao (2017). Model and survey estimates of the term structure

of US macroeconomic uncertainty. International Journal of Forecasting 33, 591-604.

25



Coibion, O. and Y. Gorodnichenko (2015). Is the Phillips curve alive and well after all?

Inflation expectations and the missing disinflation. American Economic Journal: Macroe-

conomics 7, 197-232.

Deaton, A. (1985). Panel data from time series of cross-sections. Journal of Econometrics

30, 109-126.

Davies, A. and K. Lahiri (1995). A new framework for analyzing survey forecasts using

three-dimensional panel data. Journal of Econometrics 68, 205-227.

Davies, A. and K. Lahiri (1999). Re-examining the rational expectations hypothesis using

panel data on multiperiod forecasts. In Hsiao, C., K. Lahiri, L-F Lee, and H.M. Pesaran

(eds.), Analysis of Panels and Limited Dependent Variable Models, Cambridge University

Press, 226-254.

Diebold, F.X. and J.A. Lopez (1996). Forecast evaluation and combination. In Maddala,

G.S. and C.R. Rao (eds.), Handbook of Statistics, volume 14, Amsterdam: North-Holland,

241-268.

Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the Royal

Statistical Society B 57, 45-97.

Engelberg, J., C.F. Manski and J. Williams (2011). Assessing the temporal variation of

macroeconomic forecasts by a panel of changing composition. Journal of Applied Econo-

metrics 26, 1059-1078.

Gaglianone, W.P. and L.R. Lima (2012). Constructing density forecasts from quantile re-

gressions. Journal of Money, Credit and Banking 44, 1589-1607.

Gastwirth, J.L., G.R. Gel and W. Miao (2009). The impact of Levene’s test of equality of

variances on statistical theory and practice. Statistical Sciences 24, 343-360.

26



Genre, V., G. Kenny, A. Meyler and A. Timmermann (2013). Combining expert forecasts:

can anything beat the simple average? International Journal of Forecasting 29, 108-121.

Geweke J. and G. Amisano (2014). Analysis of variance for Bayesian inference. Econometric

Reviews, 33, 270-288.

Giordani, P. and P. Söderlind (2003). Inflation forecast uncertainty. European Economic

Review 47, 1037-1059.

Granger, C.W.J. (1989). Combining forecasts: twenty years later. Journal of Forecasting 8,

167-173.

Granger, C.W.J. and Y. Jeon (2004). Thick modeling. Economic Modelling 21, 323-343.

Gupta, S. and P. Wilton (1987). Combination of forecasts: an extension. Management Sci-

ence 33, 356-372.

Hall, P. and C.C. Heyde (1980). Martingale Limit Theory and its Application. Academic

Press, New York.

Hansen, B.E. (2008). Least squares forecast averaging. Journal of Econometrics 146, 342-350.

Hendry, D.F. and M.P. Clements (2004). Pooling of forecasts. Econometrics Journal 7, 1-31.

Hsiao, C. and M.H. Pesaran (2008). Random coefficient panel data models. In Matyas,

L. and P. Sevestre (eds.), The Econometrics of Panel Data: Fundamentals and Recent

Developments in Theory and Practice. Springer, 3rd edition.

Iachine, I., H.C. Peterson, and K.O. Kyvik (2010). Robust tests for the equality of variances

for clustered data. Journal of Statistical Computation and Simulation 80, 365-377.

Issler, J.V. and L.R. Lima (2009). A panel data approach to economic forecasting: the

bias-corrected average forecast. Journal of Econometrics 152, 153-164.

27



Jo, S. and R. Sekkel (2019). Macroeconomic uncertainty through the lens of professional

forecasters. Journal of Business & Economic Statistics 37, 436-446.

Jurado, K., S.C. Ludvigson and S. Ng (2015). Measuring uncertainty. American Economic

Review 105, 1177-1216.

Lahiri, K. and X. Sheng (2008). Evolution of forecast disagreement in a Bayesian learning

model. Journal of Econometrics 144, 325-340.

Lahiri, K. and X. Sheng (2010). Measuring forecast uncertainty by disagreement: the missing

link. Journal of Applied Econometrics 25, 514-538.

Lahiri, K., H. Peng and X. Sheng (2015). Measuring Uncertainty of a Combined Forecast

and Some Tests for Forecaster Heterogeneity. CESifo Working Paper No. 5468. Available

at SSRN: https://ssrn.com/abstract=2643370

Lahiri, K., H. Peng and Y. Zhao (2017). On-line learning and forecast combination in un-

balanced panels. Econometric Reviews 36, 257-288.

Lahiri, K. and Y. Zhao (2016). Determinants of consumer sentiment over business cycles:

evidence from the US surveys of consumers. Journal of Business Cycle Research 12, 187-

215.

Leamer, E.E. (1978). Specification Searches: Ad Hoc Inference with Non Experimental Data,

John Wiley and Sons, Inc.

Levene, H. (1960). Robust tests for equality of variances. In Olkin, I. (ed.), Contributions to

Probability and Statistics 278-292. Stanford University Press.

Little, R.J.A. and D.B. Rubin (2002). Statistical Analysis with Missing Data, 2nd Edition.

28



Makridakis, S. (1989). Why combining works? International Journal of Forecasting 5, 601-

603.

Manski, C.F. (2011). Interpreting and combining heterogeneous survey forecasts. In

Clements, M.P. and D.F. Hendry (eds.), Oxford Handbook of Economic Forecasting 457-

472, Oxford University Press.

Newbold, P. and D.I. Harvey (2001). Forecast combination and encompassing. In Clements,

M.P. and D.F. Hendry (eds.) A Companion to Economic Forecasting, Blackwell, Oxford.

Ozturk, E. and X.S. Sheng (2018). Measuring global and country-specific uncertainty. Journal

of International Money and Finance 88, 276-295.

Palm, F.C. and A. Zellner (1992). To combine or not to combine? Issues of combining

forecasts. Journal of Forecasting 11, 687-701.

Patton, A.J. and A. Timmermann (2010). Why do forecasters disagree? Lessons from the

term structure of cross-sectional dispersion. Journal of Monetary Economics 57, 803-820.

Patton, A.J. and A. Timmermann (2011). Predictability of output growth and inflation: a

multi-horizon survey approach. Journal of Business & Economic Statistics 29, 397-410.

Pesaran, M.H. (1987). The limits to rational expectations. Basil Blackwell, Oxford.

Pesaran, M.H. and M. Weale (2006). Survey expectations. In Elliott, G., C.W.J. Granger

and A. Timmermann (eds.), Handbook of Economic Forecasting 1, 715-776, Elsevier.

Pesaran, M.H. and T. Yamagata (2008). Testing slope homogeneity in large panels. Journal

of Econometrics 142, 50-93.

Phillips, P.C.B. and H.R. Moon (1999). Linear regression limit theory for nonstationary

panel data. Econometrica 67, 1057-1111.

29



Reifschneider, D. and P. Tulip (2019). Gauging the uncertainty of the economic outlook

using historical forecasting errors: The Federal Reserve’s approach. International Journal

of Forecasting 35, 1564-1582.

Rossi, B. and T. Sekhposyan (2015). Macroeconomic uncertainty indices based on nowcast

and forecast error distributions. American Economic Review 105, 650-655.

Smith, J. and K.F. Wallis (2009). A simple explanation of the forecast combination puzzle.

Oxford Bulletin of Economics and Statistics 71, 331-355.

Souleles, N.S. (2004). Expectations, heterogeneous forecast errors, and consumption: micro

evidence from the Michigan consumer sentiment surveys. Journal of Money, Credit and

Banking 36, 39-72.

Timmermann, A. (2006). Forecast combinations. In Elliott, G., C.W.J. Granger and A.

Timmermann (eds.), Handbook of Economic Forecasting. Elsevier, 135-196.

Wei, X. and Y. Yang (2012). Robust forecast combinations. Journal of Econometrics 166,

224-236.

Yucel, R.M. (2011). Inference by multiple imputation under random coefficients and random

covariances model. Statistical Modelling 11, 351-370.

30



Table 1: Size of Zbsc
nT test

σ2
ε = 0.05 σ2

ε = 0.25 σ2
ε = 1.25

n=20 n=60 n=120 n=20 n=60 n=120 n=20 n=60 n=120
T=20 0.065 0.049 0.043 0.067 0.046 0.047 0.066 0.047 0.041

DGP I T=60 0.075 0.052 0.054 0.074 0.051 0.051 0.076 0.053 0.051
T=120 0.078 0.059 0.051 0.080 0.057 0.050 0.074 0.058 0.054
T=20 0.136 0.061 0.055 0.137 0.065 0.054 0.138 0.061 0.052

DGP II T=60 0.143 0.067 0.056 0.147 0.070 0.055 0.137 0.067 0.058
T=120 0.148 0.073 0.062 0.138 0.066 0.060 0.142 0.070 0.056

Note: Rejection rates of Zbsc
nT test under H0 : σ2

εi = σ2
ε for all i at the 5% nominal level based on two-sided

N(0, 1) test and 5000 replications. We consider all combinations of T = 20, 60, 120 and n = 20, 60, 120.
Data are generated according to eit = λt + εit. λt is generated as a moving average process of order
one such that λt = ξt − 0.5ξt−1, with ξt

iid∼ U(−1, 1). εit are randomly generated from either a normal
distribution N(0, σ2

εi) under DGP 1, or a uniform distribution U(−
√

3σεi,
√

3σεi) under DGP 2. To assess
the size of our tests, we let σ2

εi = σ2
ε for all i and set σ2

ε = 0.05, 0.25, and 1.25, respectively.
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Table 2: Power of Zbsc
nT test

r = 0.3 r = 0.5 r = 0.7
n=20 n=60 n=120 n=20 n=60 n=120 n=20 n=60 n=120

T=20 0.16 0.25 0.42 0.26 0.50 0.77 0.37 0.73 0.95
p = 0.3 T=60 0.55 0.92 1.00 0.85 1.00 1.00 0.96 1.00 1.00

T=120 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T=20 0.43 0.83 0.99 0.74 0.99 1.00 0.91 1.00 1.00

DGP I p = 0.5 T=60 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T=120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T=20 0.82 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

p = 0.7 T=60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T=120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T=20 0.50 0.79 0.97 0.75 0.98 1.00 0.90 1.00 1.00

p = 0.3 T=60 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T=120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T=20 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DGP II p = 0.5 T=60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T=120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T=20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p = 0.7 T=60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T=120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: See Table 1. Under DGP I, εit ∼ N(0, σ2
εi

); under DGP II, εit ∼ U(−
√

3σεi
,
√

3σεi
), where

σ2
ε = 0.05. r measures the percentage of σ2

εi
that differ from σ2

ε . p measures the magnitude of the
deviation of σ2

εi
from σ2

ε on the whole.
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Table 3: Measures of historical uncertainty in SPF inflation forecasts

Horizon RMSEAF RMSERT RMSELPS Zo
nT Zbsc

nT

1-quarter ahead 0.830 1.158 1.167 4.340*** 4.278***
2-quarter ahead 0.923 1.135 1.140 3.857*** 3.888***
3-quarter ahead 0.977 1.187 1.196 3.786*** 3.971***
4-quarter ahead 1.002 1.215 1.226 3.564*** 3.776***
5-quarter ahead 1.064 1.295 1.305 2.196** 2.258**
Note: RMSEAF is the conventional uncertainty measure in equation (7), RMSERT is the Reifschneider
and Tulip (2019)’s uncertainty measure in equation (8) and RMSELP S is our suggested uncertainty
measure in equation (6). In testing the null hypothesis that RMSERT is the same as RMSELP S , the
original test statistic Zo

nT is defined in Theorem 2, and Zbsc
nT is the bias and skewness corrected test

statistic as defined in Theorem 3. The actual inflation rate for 1991-2017 is taken from the first quarterly
release of Federal Reserve Bank of Philadelphia “real-time” data set. The inflation forecasts are taken
from the Survey of Professional Forecasters from 1991:Q1 until 2017:Q3. *** and ** indicate significance
at the 1% and 5% level, respectively.

Table 4: Measures of historical uncertainty in SPF output growth forecasts

Horizon RMSEAF RMSERT RMSELPS Zo
nT Zbsc

nT

1-quarter ahead 1.402 1.638 1.642 3.558*** 3.511***
2-quarter ahead 1.738 1.920 1.922 3.744*** 3.716***
3-quarter ahead 1.913 2.080 2.082 2.612*** 2.591***
4-quarter ahead 2.055 2.245 2.249 -0.107 -0.003
5-quarter ahead 2.104 2.269 2.272 0.566 0.671
Note: See Table 3. The actual output growth rate for 1991-2017 is taken from the first quarterly release
of Federal Reserve Bank of Philadelphia “real-time” data set. The output growth forecasts used in this
study are taken from the Survey of Professional Forecasters from 1991:Q1 until 2017:Q3. *** indicates
significance at the 1% level.
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Table 5: Measures of historical uncertainty in MSC inflation forecasts from 104 cohorts

Survey period RMSEAF RMSERT RMSELPS Zo
nT Zbsc

nT

1979Q4-1989Q4 1.39 3.07 3.33 8.27*** 6.55***
1990Q1-1999Q4 1.28 2.51 2.92 6.08*** 5.14***
2000Q1-2009Q4 2.13 2.66 2.72 20.93*** 12.81***
2010Q1-2017Q4 2.31 2.70 2.78 8.54*** 6.70***
Whole sample 1.79 2.82 2.96 13.62*** 9.52***
Note: RMSEAF is the conventional uncertainty measure in equation (7), RMSERT is the Reifschneider
and Tulip (2019)’s uncertainty measure in equation (8) and RMSELP S is our suggested uncertainty
measure in equation (6). In testing the null hypothesis that RMSERT is the same as RMSELP S , the
original test statistic Zo

nT is defined in Theorem 2, and Zbsc
nT is the bias and skewness corrected test

statistic as defined in Theorem 3. The inflation forecasts of households are taken from University of
Michigan Survey of Consumers (MSC) forecast of price changes over the next 12 months. The actual
inflation rate is calculated as the annual percentage change in the Consumer Price Index for All Urban
Consumers. The pseudo-balanced panel includes 104 forecasters by dividing the survey participants into
104 cohorts by their age/gender/income from the fourth quarter of 1979 through the fourth quarter of
2017. *** indicates significance at the 1% level.

Table 6: Measures of historical uncertainty in MSC inflation forecasts from 24 cohorts

Survey period RMSEAF RMSERT RMSELPS Zo
nT Zbsc

nT

1979Q4-1989Q4 1.41 2.08 2.16 10.44*** 6.96***
1990Q1-1999Q4 1.34 1.71 1.89 15.68*** 8.98***
2000Q1-2009Q4 2.15 2.30 2.33 6.51*** 5.07***
2010Q1-2017Q4 2.30 2.38 2.44 10.52*** 6.97***
Whole sample 1.81 2.13 2.20 22.45*** 11.08***
Note: See Table 5. The pseudo-balanced panel includes 24 forecasters by dividing the survey participants
into 24 cohorts by their age/income from the fourth quarter of 1979 through the fourth quarter of 2017.
*** indicates significance at the 1% level.
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Online Appendix

“Measuring Uncertainty of A Combined Forecast and Some Tests for
Forecaster Heterogeneity” by Lahiri, Peng and Sheng

We start with some useful lemmas. Note that in all the proofs, the
subscript h is omitted for notational simplicity.

Lemma 1. Let {ζinT} be a martingale difference array relative
to the filtration {FinT} for 0 ≤ i ≤ n such that

plim
(n,T→∞)

n∑
i=1
E[ζ2

inT1{|ζinT |>ε}] = 0, ∀ε > 0, (1)

n∑
i=1
E[ζ2

inT |F(i−1)nT ]→p 1 as (n, T →∞). (2)

Then
n∑
i=1
ζinT →d N(0, 1),

as (n, T →∞).

Proof. The proof follows that of central limit theorem for martingale
difference sequences given in Pollard (1984, Theorem 1 in Chapter
VIII). The only change is that the additional index appears in the
component variates ζinT and limits are taken as (n, T → ∞), and
we still have

E exp
{
it(

n∑
i=1
ζinT )

}
→ exp(−1

2
t2)

as (n, T →∞).

Lemma 2. Suppose Assumptions 1-4 hold, then as (n, T →∞)

(a) 1√
T

T∑
t=1

(λ2
t − σ2

λ)→d N (0, ϕλ).

1



(b) 1
T 1/2

T∑
t=1

µitλt = Op

(
(nT )−α4

)
; 1
nT 1/2

n∑
i=1

T∑
t=1

µitλt = Op

(
(nT )−α4

)
;

1
T 1/2

T∑
t=1

µitεit = Op

(
(nT )−α4

)
; 1

(nT )1/2
n∑
i=1

T∑
t=1

µitεit = Op

(
(nT )−α4

)
;

1
n3/2√T

n∑
i=1

n∑
j=1

T∑
t=1

µitεjt = Op

(
(nT )−α4

)
.

(c) 1√
T

T∑
t=1

λtεit →d N(0, σ2
λσ

2
εi); 1√

nT

n∑
i=1

T∑
t=1

λtεit →d N(0, σ2
λσ

2
ε)

with σ2
ε = lim

n→∞
1
n

n∑
i=1
σ2
εi.

(d) 1√
T

T∑
t=1

(ε2
it − σ2

εi)→d N (0, ψεi) where ψεi = ωεi − σ4
εi;

1√
nT

T∑
t=1

n∑
i=1

(ε2
it − σ2

εi)→d N(0, ψε), where ψε = ωε− lim
n→∞

1
n

n∑
i=1
σ4
εi,

ωε = lim
n→∞

1
n

n∑
i=1
ωεi; 1√

nT

n∑
i=1

T∑
t=1

(ε4
it − ωεi) →d N(0, ϕω), where

ϕω = lim
n→∞

1
n

n∑
i=1

(Eε8
it − ω2

εi).

(e) 1√
nT

T∑
t=1

εit
n∑
j 6=i
εjt →d N(0, σ2

εiσ
2
ε);

1
n1/2

n∑
i=1

{[
1√
T

T∑
t=1

(ε2
it − σ2

εi)
]2 − ψεi

}
→d N(0, lim

n→∞
2
n

n∑
i=1
ψ2
εi);

(f) 1√
T

T∑
t=1


 1√

n

n∑
j=1

εjt

2
− 1

n

n∑
j=1

σ2
εj

→d N(0, 2σ4
ε);

1√
T

T∑
t=1


 1√

n

n∑
j 6=i
εjt

2
− 1

n

n∑
j 6=i
σ2
εj

→d N(0, 2σ4
ε);

1√
T

T∑
t=1

ε2
it

 1√
n

n∑
j 6=i
εjt

2
− σ2

εi

 1
n

n∑
j 6=i
σ2
εj


→d N

(
0, θεi

)
,

for some θεi > 0,
1√
T

T∑
t=1

{(
1√
n

n∑
j 6=i
εjt

)4 − E
(

1√
n

n∑
j 6=i
εjt

)4}→d N
(
0, qε

)
,

for some qε > 0.

2



(g) 1√
T

T∑
t=1

ε3
it

(
1√
n

n∑
j 6=i
εjt

)
= Op(1), 1√

nT

n∑
i=1

T∑
t=1

ε3
it

(
1√
n

n∑
j 6=i
εjt

)
= Op(1);

1√
T

T∑
t=1

εit
(

1√
n

n∑
j 6=i
εjt

)3 = Op(1), 1
n
√
T

n∑
i=1

T∑
t=1

εit
(

1√
n

n∑
j 6=i
εjt

)3 = Op(1).

Proof. (a) By Assumption 2 and the independence of white noise
shocks ζtk of λt, λ2

t−σ2
λ is a stationary ergodic (centered) process with

E
{
(λ2

t − σ2
λ)

(
λ2
t−k − σ2

λ

)}
= 0 for all k > h− 1. Also by Loeve’s cr

inequality, E |λ2
t − σ2

λ|
2+δ

2 ≤ 21+δ
2
(
E |λt|4+δ + σ4+δ

λ

)
<∞ for some

δ > 0. Therefore 1√
T

T∑
t=1

(λ2
t − σ2

λ)→d N (0, ϕλ) in view of Theorem

5.6 in Hall and Heyde (1980) since var
(

1√
T

T∑
t=1

λ2
t

)
→ ϕλ > 0 as

T →∞.
(b) By Jensen inequality, sup

i

1
T

T∑
t=1

µ2
it 6

(
sup
i

1
T

T∑
t=1

µ4
it

)1/2 = O
(
(nT )−α2

)
.

Next, let ρk = corr(λt, λt+k). By Assumptions 1 and 2, we have

E

 1
T 1/2

T∑
t=1

µitλt

 = 1
T 1/2

T∑
t=1

µitE(λt) = 0,

and

E

 1
T 1/2

T∑
t=1

µitλt

2
= σ2

λ

1
T

T∑
t=1

µ2
it + σ2

λ

2
T

T−k∑
t=1

h−1∑
k=1

ρkµitµi(t+k)

≤ σ2
λ

1
T

T∑
t=1

µ2
it + 2σ2

λ

h−1∑
k=1

 1
T

T−k∑
t=1

µ2
it

1/2  1
T

T−k∑
t=1

µ2
i(t+k)

1/2

≤ (2h− 1)σ2
λ

 1
T

T∑
t=1

µ2
it


= O

(
(nT )−

α
2
)

where the first inequality is obtained by virtue of Cauchy Schwarz in-
equality and the fact that ρk ≤ 1 for all k. It follows that 1

T 1/2
T∑
t=1

µitλt =

Op

(
(nT )−α4

)
, from which we obtain 1

nT 1/2
n∑
i=1

T∑
t=1

µitλt = Op

(
(nT )−α4

)
.
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By arguments similar to that of 1
T 1/2

T∑
t=1

µitλt, we can readily show

that 1
T 1/2

T∑
t=1

µitεit = Op

(
(nT )−α4

)
, 1

(nT )1/2
n∑
i=1

T∑
t=1

µitεit = Op

(
(nT )−α4

)

and 1
n3/2√T

n∑
i=1

n∑
j=1

T∑
t=1

µitεjt = Op

(
(nT )−α4

)
.

(c) By Assumptions 2, 3 and 4, λtεit is stationary and ergodic over
t for each iwithE (λtεit) = 0, E (λ2

tε
2
it) = σ2

λσ
2
εi, E

(
λtεitλt−kεi(t−k)

)
=

0 for all k ≥ 1, andE |λtεit|2+δ <∞. Hence it follows from Theorem
5.6 in Hall and Heyde (1980) that for each i

1√
T

T∑
t=1

λtεit →d N
(
0, σ2

λσ
2
εi

)
,

as T →∞. It remains to establish that, as (T, n→∞),
1√
nT

n∑
i=1

T∑
t=1

λtεit →d N(0, σ2
λσ

2
ε).

Define ξinT = 1

σλ

(
T

n∑
i=1

σ2
εi

)1
2

T∑
t=1

λtεit, andFinT = σ(ξinT , ξ(i−1)nT , . . . , ξ1nT ).

It can be shown that E(ξinT |F(i−1)nT ) = 0 since εit is independent
across i and that E|ξinT |2 < ∞ by virtue of moment conditions of
λt and εit in Assumptions 2 and 3 respectively. Thus {ξinT}i≤n is a
square integrable martingale difference array relative to the filtration
{FinT}0≤i≤n. To apply the central limit theorem to {ξinT}i≤n as
(T, n→∞), it suffices to verify conditions (1) and (2) in Lemma 1.
Notice that

(
1√
T

T∑
t=1

λtεit
)2

is uniformly integrable in T , as implied
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by Assumptions 2 and 3, so
n∑
i=1
E

[
ξ2
inT1{|ξinT |>ε}

]

≤
(
σ2
λinf
i
σ2
εi

)−1
sup
i,T

E



 1√
T

T∑
t=1

λtεit

2
1

∣∣∣∣∣ 1√
T

T∑
t=1

λtεit

∣∣∣∣∣(
σ2
λ

inf
i
σ2
εi

)1/2>n
1/2ε




→ 0,

as n→∞, verifying condition (1) of Lemma 1. Also, as (T, n→∞),
n∑
i=1
E[ξ2

inT |F(i−1)nT ] = 1
σ2
λ

n∑
i=1
σ2
εi

n∑
i=1
E
[ 1
T

T∑
t=1

λ2
tε

2
it

∣∣∣∣F(i−1)nT
]

+ 1
σ2
λ

n∑
i=1
σ2
εi

n∑
i=1
E
[ 2
T

T−1∑
t=1

T−t∑
k=1

λtλt+kεitεi(t+k)
∣∣∣∣F(i−1)nT

]

= 1
σ2
λ

n∑
i=1
σ2
εi

[ 1
T

T∑
t=1

λ2
t

n∑
i=1
E(ε2

it

∣∣∣∣F(i−1)nT )
]

+ 1
σ2
λ

n∑
i=1
σ2
εi

2
T

T−1∑
t=1

T−t∑
k=1

λtλt+k
n∑
i=1
E(εitεi(t+k)

∣∣∣∣F(i−1)nT )

= 1
σ2
λ

1
T

T∑
t=1

λ2
t + 0

→p 1,

since E(ε2
it

∣∣∣∣F(i−1)nT ) = E(ε2
it) = σ2

εi, E(εitεi(t+k)
∣∣∣∣F(i−1)nT ) = 0 by

virtue of Assumption 3 and Lemma 2(a). Therefore
n∑
i=1
ξinT →d N(0, 1)
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as (T, n→∞), from which we obtain
1√
nT

n∑
i=1

T∑
t=1

λtεit →d N(0, σ2
λσ

2
ε)

as (T, n→∞).
(d) Since εit is iid over twith finite eighth moment, 1√

T

T∑
t=1

(ε2
it − σ2

εi)→d

N (0, ψεi) as T →∞ holds by central limit theorem for independent
nonidentical distributed random variables. To show 1√

nT

T∑
t=1

n∑
i=1

(ε2
it − σ2

εi)→d

N(0, ψε) as (n, T →∞), let ηinT = 1
√
T

(
n∑
i=1

ψεi

)1/2
T∑
t=1

(ε2
it − σ2

εi). Then

n∑
i=1
E

[
η2
inT1{|ηinT |>ε}

]

≤
(
inf
i
ψεi

)−1
sup
i,T

E



 1√
T

T∑
t=1

(
ε2
it − σ2

εi

)2
1

∣∣∣∣∣ 1√
T

T∑
t=1

(ε2it−σ2
εi)
∣∣∣∣∣(

inf
i
ψεi

)1/2 >n1/2ε




→ 0

as n → ∞ because 0 < inf
i
ψεi < ∞ and

(
1√
T

T∑
t=1

(ε2
it − σ2

εi)
)2

is
uniformly integrable in T , as implied by Assumptions 3. More-
over, εit is independent across i implies that ηinT is also indepen-
dent across i. So n∑

i=1
ηinT →d N (0, 1) as (n, T →∞) by virtue of

Theorem 2 in Phillips and Moon (1999), from which we can deduce
that 1√

nT

T∑
t=1

n∑
i=1

(ε2
it − σ2

εi) →d N(0, ψε) as (n, T →∞). By similar

argument, we can show that 1√
nT

n∑
i=1

T∑
t=1

(ε4
it − ωεi) →d N(0, ϕω) as

(n, T →∞).
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(e) Using argument similar to that of Lemma 2(d), we can readily
show that for each i

1√
nT

T∑
t=1

εit
n∑
j 6=i
εjt →d N(0, σ2

εiσ
2
ε),

and

1
n1/2

n∑
i=1

{[ 1√
T

T∑
t=1

(ε2
it − σ2

εi)
]2 − ψεi

}
→d N(0, lim

n→∞
2
n

n∑
i=1
ψ2
εi),

as (T, n→∞). This completes the proof.
(f) Again, by argument similar to that establishes the simultaneous

joint limit distribution of 1√
nT

T∑
t=1

n∑
i=1

(ε2
it − σ2

εi), we can readily show
that

1√
T

T∑
t=1


 1√

n

n∑
j=1

εjt


2

− 1
n

n∑
i=1
σ2
εj

→d N(0, 2σ4
ε),

as (n, T →∞). Next, observe that

1√
T

T∑
t=1


 1√

n

n∑
j 6=i
εjt


2

− 1
n

n∑
j 6=i
σ2
εj



= 1√
T

T∑
t=1


 1√

n

n∑
j=1

εjt


2

− 1
n

n∑
j=1

σ2
εj



− 1
n
√
T

T∑
t=1

(ε2
it − σ2

εi)−
2√
T

T∑
t=1

εit

1
n

n∑
j 6=i
εjt



= 1√
T

T∑
t=1


 1√

n

n∑
j=1

εjt


2

− 1
n

n∑
j=1

σ2
εj

 + Op

(
n−1/2

)
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where the last equality follows from Lemma 2(d) and 2(e). Thus
the desired result follows as (n, T → ∞). Finally, the simultaneous
asymptotic joint normal distribution for the terms

1√
T

T∑
t=1

ε2
it

 1√
n

n∑
j 6=i
εjt

2
− σ2

εi

 1
n

n∑
j 6=i
σ2
εj


 and 1√

T

T∑
t=1

{(
1√
n

n∑
j 6=i
εjt

)4−

E
(

1√
n

n∑
j 6=i
εjt

)4} can be established in a similar way to that of
1√
nT

T∑
t=1

n∑
i=1

(ε2
it − σ2

εi), and thus omitted here.
(g) By Assumption 3, we see that

E
{ 1√

nT

n∑
i=1

T∑
t=1

ε3
it

( 1√
n

n∑
j 6=i
εjt

)}
= 1√

nT

n∑
i=1

T∑
t=1

E(ε3
it)
( 1√

n

n∑
j 6=i
E(εjt)

)
= 0.

and

E
{ 1√

nT

n∑
i=1

T∑
t=1

ε3
it

( 1√
n

n∑
j 6=i
εjt

)}2

= E
{ 1√

n

n∑
i=1
ε3
it

( 1√
n

n∑
j 6=i
εjt

)}2

= 1
n

n∑
i=1
Eε6

itE
( 1√

n

n∑
j 6=i
εjt

)2

+ 2
n

n−1∑
i=1

n−i∑
k=1

E
{
ε3
it

( 1√
n

n∑
j 6=i
εjt

)
ε3

(i+k)t
( 1√

n

n∑
j 6=(i+k)

εjt
)}

= 1
n

n∑
i=1
Eε6

it

(1
n

n∑
j 6=i
σ2
εj

)
+ 2
n

n−1∑
i=1

n−i∑
k=1

E( ε
4
it√
n

)E(
ε4

(i+k)t√
n

)

≤ (sup
i
Eε6

it)
(

sup
i
σ2
εi

)
+ 2

(
sup
i
ω2
εi

)
.

Then it follows that
1√
nT

n∑
i=1

T∑
t=1

ε3
it

( 1√
n

n∑
j 6=i
εjt

)
= Op(1).
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Using argument similar to that in Lemma 2(d), we can readily show
that 1√

T

T∑
t=1

ε3
it

(
1√
n

n∑
j 6=i
εjt

)
and 1√

T

T∑
t=1

εit
(

1√
n

n∑
j 6=i
εjt

)3 are asymptoti-
cally normal respectively as (n, T →∞), which then implies that

1
n
√
T

n∑
i=1

T∑
t=1

εit
( 1√

n

n∑
j 6=i
εjt

)3 = Op(1).

Lemma 3. Suppose Assumptions 1-4 hold, then as (n, T →∞)

(a) 1√
T

T∑
t=1

(µit − µ·t)
2 = O

(
n−

α
2T−

α−1
2
)
;

1√
T

T∑
t=1

(µit − µ·t)
4 = O

(
n−αT−(α−1

2)
)
.

(b) 1√
T

T∑
t=1

(µit − µ·t)
2 (εit − ε·t)2 = Op

(
n−

α
2T−

α−1
2
)
.

(c) 1√
T

T∑
t=1

(µit − µ·t) (εit − ε·t) = Op

(
(nT )−α4

)
;

1√
nT

n∑
i=1

T∑
t=1

(µit − µ·t) (εit − ε·t) = Op

(
(nT )−α4

)
.

(d) 1√
T

T∑
t=1

(µit − µ·t)
3 (εit − ε·t) = Op

(
n−

3α
4 T−

3α−2
4

)
.

(e) 1√
T

T∑
t=1

(µit − µ·t) (εit − ε·t)3 = Op

(
n−

α
4T−

α−2
4
)
.

(f) 1√
n

n∑
i=1

[
1√
T

T∑
t=1

(ε2
it − σ2

εi)
][

1√
T

T∑
t=1

εit
(

1√
n

n∑
j 6=i
εjt

)]
= Op(1)

Proof. (a) Using 2ab ≤ a2 + b2 and Jensen inequality, we have
1√
T

T∑
t=1

(µit − µ·t)
2 ≤ 2√

T

T∑
t=1

µ2
it + 2

n
√
T

T∑
t=1

n∑
i=1
µ2
it

= O
(
n−

α
2T−

α−1
2
)
,
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as a result of Assumption 1 and Jensen inequality. Next, by Loeve’s
cr inequality and Jensen inequality,

1√
T

T∑
t=1

(µit − µ·t)
4 ≤ 8

 1√
T

T∑
t=1

µ4
it + 1

n
√
T

n∑
i=1

T∑
t=1

µ4
it


= O

(
n−αT−(α−1

2)
)
.

(b) By Cauchy Schwarz inequality, we have
1√
T

T∑
t=1

(µit − µ·t)
2 (εit − ε·t)2

≤
√
T
[ 1
T

T∑
t=1

(µit − µ·t)
4
]1/2[ 1

T

T∑
t=1

(εit − ε·t)4
]1/2

= Op

(
n−

α
2T−

α−1
2
)
,

in view of Lemma 3(a) and the result that 1
T

T∑
t=1

(εit − ε·t)4 = Op(1)
as implied by Assumption 3.

(c) By using arguments similar to those in Lemma 2(b), Assump-
tions 1 and 3, and Jensen inequality, we obtain

1√
T

T∑
t=1

µ·tεit = Op

(
(nT )−

α
4
)
,

1√
T

T∑
t=1

µitε·t = Op

(
n−

α+2
4 T−

α
4
)
,

and
1√
T

T∑
t=1

µ·tε·t = Op

(
n−

α+2
4 T−

α
4
)
,
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which, together with Lemma 2(b), yields that
1√
T

T∑
t=1

(µit − µ·t) (εit − ε·t)

= 1√
T

T∑
t=1

µitεit −
1√
T

T∑
t=1

µ·tεit −
1√
T

T∑
t=1

µitε·t

+ 1√
T

T∑
t=1

µ·tε·t

= Op

(
(nT )−

α
4
)
.

By similar arguments, we can show that
1√
nT

n∑
i=1

T∑
t=1

(µit − µ·t) (εit − ε·t)

= 1√
nT

n∑
i=1

T∑
t=1

µitεit −
1√
nT

n∑
i=1

T∑
t=1

µ·tεit −
1√
nT

n∑
i=1

T∑
t=1

µitε·t

+ 1√
nT

n∑
i=1

T∑
t=1

µ·tε·t

= Op

(
(nT )−

α
4
)
.

(d) By Cauchy Schwarz inequality, we have
1√
T

T∑
t=1

(µit − µ·t)
3 (εit − ε·t)

≤
√
T
{ 1
T

T∑
t=1

(µit − µ·t)
2 (εit − ε·t)2

}1/2

×
{ 1
T

T∑
t=1

(µit − µ·t)
4
}1/2

= Op

(
n−

3α
4 T−

3α−2
4

)

in view of Lemma 3(a) and Lemma 3(b).
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(e) By Cauchy Schwarz inequality, we have
1√
T

T∑
t=1

(µit − µ·t) (εit − ε·t)3

≤
√
T
{ 1
T

T∑
t=1

(µit − µ·t)
2 (εit − ε·t)2

}1/2

×
{ 1
T

T∑
t=1

(εit − ε·t)4
}1/2

= Op

(
n−

α
4T−

α−2
4
)

by virtue of Lemma 3(b) and the result that 1
T

T∑
t=1

(
εit − 1

n

n∑
i=1
εit

)4
=

Op(1), as implied by Assumption 3.
(f) Write

1√
n

n∑
i=1

[ 1√
T

T∑
t=1

(ε2
it − σ2

εi)
][ 1√

T

T∑
t=1

εit
( 1√

n

n∑
j 6=i
εjt

)]

= 1√
n

n∑
i=1

1
T

T∑
t=1

T∑
s=1

(ε2
it − σ2

εi)εis
( 1√

n

n∑
j 6=i
εjs

)

= 1
T

T∑
t=1

T∑
s=1

1√
n

n∑
i=1

(ε2
it − σ2

εi)εis
( 1√

n

n∑
j 6=i
εjs

)

By Assumption 3, we have

E
{ 1
T

T∑
t=1

T∑
s=1

1√
n

n∑
i=1

(ε2
it − σ2

εi)εis
( 1√

n

n∑
j 6=i
εjs

)}

= 1
T

T∑
t=1

T∑
s=1

1√
n

n∑
i=1
E(ε2

it − σ2
εi)Eεis

( 1√
n

n∑
j 6=i
Eεjs

)

= 0,
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and

E
{ 1
T

T∑
t=1

T∑
s=1

1√
n

n∑
i=1

(ε2
it − σ2

εi)εis
( 1√

n

n∑
j 6=i
εjs

)}2

= 1
T 2

T∑
t=1

T∑
s=1

E
{ 1√

n

n∑
i=1

(ε2
it − σ2

εi)εis
( 1√

n

n∑
j 6=i
εjs

)}2

= 1
T 2

T∑
t=1

T∑
s=1

E
{1
n

n∑
i=1

(ε2
it − σ2

εi)2ε2
is

( 1√
n

n∑
j 6=i
εjs

)2}

+ 1
T 2

T∑
t=1

T∑
s=1

2
n

n−1∑
i=1

n−i∑
k=1

E
{
(ε2
it − σ2

εi)εis
( 1√

n

n∑
j 6=i
εjs

)

×(ε2
(i+k)t − σ2

ε(i+k))ε(i+k)s
( 1√

n

n∑
j 6=(i+k)

εjs
)}

= 1
n

n∑
i=1
ψεiσ

2
εi

(1
n

n∑
j 6=i
σ2
εj

)
.

Therefore, it follows that
1√
n

n∑
i=1

[ 1√
T

T∑
t=1

(ε2
it − σ2

εi)
][ 1√

T

T∑
t=1

εit
( 1√

n

n∑
j 6=i
εjt

)]
= Op(1)

Lemma 4. Suppose Assumptions 1-4 hold with σ̂2
λ = 1

T

T∑
t=1

e2
·t,

σ̂2
εi = 1

T

T∑
t=1

(eit − e·t)2, σ̂2
ε = 1

n

n∑
i=1
σ̂2
εi, ω̂εi = 1

T

T∑
t=1

(eit − e·t)4, ω̂ε =
1
n

n∑
i=1
ω̂εi, ψ̂εi = ω̂εi − σ̂4

εi, and ψ̂ε = ω̂ε − σ̂4
ε, where e·t = 1

n

n∑
i=1
eit.

Then as (n, T →∞)

(a)
√
T
(
σ̂2
λ − σ2

λ − 1
n2

n∑
i=1
σ2
εi

)
→d N (0, ϕλ).

(b)
√
T

σ̂2
εi −

(
1− 1

n

)2
σ2
εi − 1

n2
n∑
j 6=i
σ2
εj

→d N (0, ψεi).
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(c)
√
nT

(
σ̂2
ε −

(
1− 1

n

)2
σ2
ε − 1

n

(
1− 1

n

)
σ2
ε

)
→d N (0, ψε),

provided σ2
εi = σ2

ε for all i.

(d)
√
T
(
ω̂εi −

(
1− 1

n

)4
ωεi − 1

nφ1i − 1
n2φ2i

)
→d N(0, ϕωi),

where

φ1i = 6(1− 1
n

)2
[
σ2
εi

(1
n

n∑
j 6=i
σ2
εj

)]
= 6(1− 1

n
)2
[
σ2
εi

(1
n

n∑
j=1

σ2
εj

)
− 1
n
σ4
εi

]

φ2i = E
( 1√

n

n∑
j 6=i
εjt

)4 = 1
n2

n∑
j 6=i
ωεi + 6

n2

n∑
j 6=i

n∑
k 6=i,j

σ2
εjσ

2
εk

= 1
n2

n∑
j=1

ωεj −
1
n2ωεi + 6

n2

[ n−1∑
j=1

n∑
k=j+1

σ2
εjσ

2
εk − σ2

εi

( n∑
j=1

σ2
εj − σ2

εi

)]

= 1
n2

n∑
j=1

ωεj −
1
n2ωεi

+ 6
n2

{1
2

[( n∑
j=1

σ2
εj

)2 −
n∑
j=1

σ4
εj

]
− σ2

εi

( n∑
j=1

σ2
εj − σ2

εi

)}
,

and

ϕωi = Eε8
i − ω2

εi.

(e)
√
nT

(
ω̂ε −

(
1− 1

n

)4
ωε − 1

nφ1 − 1
n2φ2

)
→d N(0, ϕω), where

φ1 = 6(1− 1
n

)3σ4
ε

φ2 = 1
n

(1− 1
n

)ωε + 3(1− 1
n

)(1− 2
n

)σ4
ε

provided σ2
εi = σ2

ε for all i.
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(f)
√
nT

(
ψ̂ε −

(
1− 1

n

)4
ψε − γn

)
→d N(0,Ω),

with γn = 1
n

[
4
(
1− 1

n

)3
σ4
ε

]
+ 1

n2

[
φ2 +

(
1− 1

n

)2
σ4
ε

]
,

and Ω = ϕω + 4σ2
εE[(ε4

it − ωε)(ε2
it − σ2

εi)] + 4σ4
εψε.

provided σ2
εi = σ2

ε for all i.

Proof. (a) Since σ̂2
λ = 1

T

T∑
t=1

e2
·t, we have

√
T

σ̂2
λ − σ2

λ −
1
n2

n∑
i=1
σ2
εi

 = 1√
T

T∑
t=1

e2
·t − σ2

λ −
1
n2

n∑
i=1
σ2
εi


= 1√

T

T∑
t=1

µ2
·t + 1√

T

T∑
t=1

(λ2
t − σ2

λ)

+ 1
n
√
T

T∑
t=1


( 1√

n

n∑
i=1
εit


2

− 1
n

n∑
i=1
σ2
εi


+ 2
n
√
T

n∑
i=1

T∑
t=1

λtµit + 2
n
√
T

n∑
i=1

T∑
t=1

λtεit

+ 2
n2
√
T

n∑
i=1

n∑
j=1

T∑
t=1

µitεjt.

By Jensen inequality, we see immediately that
1√
T

T∑
t=1

µ2
·t ≤

1√
T

T∑
t=1

1
n

n∑
i=1
µ2
it

 = O
(
n−

α
2T

1−α
2
)
.

which, when joint with Lemma 2(a),2(b), 2(c) and 2(e), yields

√
T

σ̂2
λ − σ2

λ −
1
n2

n∑
i=1
σ2
εi


= 1√

T

T∑
t=1

(λ2
t − σ2

λ) + O
(
n−

α
2T

1−α
2
)

+ Op

(
(nT )−

α
4
)

+ Op(n−1/2)

→d N (0, ϕλ)
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as (n, T →∞).
(b) Note that

√
T

σ̂2
εi −

1− 1
n

2
σ2
εi −

1
n2

n∑
j 6=i
σ2
εj


= 1√

T

T∑
t=1

(µit − µ·t)
2 + 2√

T

T∑
t=1

(µit − µ·t) (εit − ε·t)

+ 1√
T

T∑
t=1

(εit − ε·t)2 −
1− 1

n

2
σ2
εi −

1
n2

n∑
j 6=i
σ2
εj



= 1√
T

T∑
t=1

(εit − ε·t)2 −
1− 1

n

2
σ2
εi −

1
n2

n∑
j 6=i
σ2
εj


+O

(
n−

α
2T−

α−1
2
)

+ Op

(
(nT )−

α
4
)

in view of Lemma 3(a) and 3(c). Since α > 2 by assumption, it
suffices to establish the asymptotic distribution of

1√
T

T∑
t=1

(εit − ε·t)2 −
(
1− 1

n

)2
σ2
εi − 1

n2
n∑
j 6=i
σ2
εj

 for each i. Notice
that

1√
T

T∑
t=1

(εit − ε·t)2 −
1− 1

n

2
σ2
εi −

1
n2

n∑
j 6=i
σ2
εj



=
1− 1

n

2 1√
T

T∑
t=1

(ε2
it − σ2

εi)−
2(n− 1)
n2
√
T

T∑
t=1

εit
n∑
j 6=i
εjt

+ 1
n
√
T

T∑
t=1


 1√

n

n∑
j 6=i
εjt


2

− 1
n

n∑
j 6=i
σ2
εj



=
1− 1

n

2 1√
T

T∑
t=1

(ε2
it − σ2

εi) + Op

(
n−1/2

)

in view of Lemma 2(e) and 2(f). Then the desired result follows as
(n, T →∞) because of Lemma 2(e) and the fact that lim

n→∞

(
1− 1

n

)2 =
1.
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(c) Since σ2
εi = σ2

ε for all i, then,
√
nT

σ̂2
ε −

1− 1
n

2
σ2
ε −

1− 1
n

 1
n
σ2
ε


=
√
nT


1
nT

n∑
i=1

T∑
t=1

(eit − e·t)2 −
1− 1

n

2
σ2
ε −

1− 1
n

 1
n
σ2
ε


= 1√

nT

n∑
i=1

T∑
t=1

(µit − µ·t)
2 + 2√

nT

n∑
i=1

T∑
t=1

(µit − µ·t) (εit − ε·t)

+ 1√
nT

n∑
i=1

T∑
t=1

(εit − ε·t)2 −
1− 1

n

2
σ2
ε −

1− 1
n

 1
n
σ2
ε



= 1√
nT

n∑
i=1

T∑
t=1

(εit − ε·t)2 −
1− 1

n

2
σ2
ε −

1− 1
n

 1
n
σε


+O

(
n

1−α
2 T

1−α
2
)

+ Op

(
(nT )−

α
4
)

by virtue of Lemma 3(a) and 3(c). Next, note that

1√
nT

n∑
i=1

T∑
t=1

(εit − ε·t)2 −
1− 1

n

2
σ2
ε −

1− 1
n

 1
n
σ2
ε



= 1√
nT

n∑
i=1

T∑
t=1


(1− 1

n
)εit −

1
n

n∑
j 6=i
εjt


2

−
1− 1

n

2
σ2
ε −

1− 1
n

 1
n
σ2
ε



=
1− 1

n

2 1√
nT

n∑
i=1

T∑
t=1

(ε2
it − σ2

εi)−
2(n− 1)
n2

1√
nT

n∑
i=1

T∑
t=1

εit
n∑
j 6=i
εjt

+ 1
n
√
nT

n∑
i=1

T∑
t=1


 1√

n

n∑
j 6=i
εjt


2

− 1
n

n∑
j 6=i
σ2
εj



=
1− 1

n

2 1√
nT

n∑
i=1

T∑
t=1

(ε2
it − σ2

εi) + Op

(
n−1/2

)
,
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where the last equality follows from Lemma 2(f) and the result that
1

n
√
nT

n∑
i=1

T∑
t=1

εit
n∑
j 6=i
εjt

= 1√
n

1√
T

T∑
t=1

{( 1√
n

n∑
j=1

εjt
)2 − 1

n

n∑
i=1
σ2
εi

}
− 1
n
√
nT

n∑
i=1

T∑
t=1

(ε2
it − σ2

εi)

= Op(n−1/2)

in view of Lemma 2(d) and 2(e). Therefore,
√
nT

σ̂2
ε −

1− 1
n

2
σ2
ε −

1− 1
n

 1
n
σ2
ε


=

1− 1
n

2 1√
nT

n∑
i=1

T∑
t=1

(ε2
it − σ2

εi) + Op

(
n−1/2

)

+O
(
n

1−α
2 T

1−α
2
)

+ Op

(
(nT )−

α
4
)

→d N(0, ψε)

provided (n, T →∞).
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(d) Note that
√
T

ω̂εi −
1− 1

n

4
ωεi −

1
n
φ1i −

1
n2φ2i


=
√
T
{ 1
T

T∑
t=1

(eit − e·t)4 − (1− 1
n

)4ωεi −
1
n
φ1i −

1
n2φ2i

}

= 1√
T

T∑
t=1

{[
(µit − µ·t) + (εit − ε·t)

]4 − (1− 1
n

)4ωεi −
1
n
φ1i −

1
n2φ2i

}

= 1√
T

T∑
t=1

(µit − µ·t)4 + 4√
T

T∑
t=1

(µit − µ·t)3(εit − ε·t)

+ 6√
T

T∑
t=1

(µit − µ·t)2(εit − ε·t)2 + 4√
T

T∑
t=1

(µit − µ·t)(εit − ε·t)3

+ 1√
T

T∑
t=1

[
(εit − ε·t)4 − (1− 1

n
)4ωεi −

1
n
φ1i −

1
n2φ2i

]

= 1√
T

T∑
t=1

[
(εit − ε·t)4 − (1− 1

n
)4ωεi −

1
n
φ1i −

1
n2φ2i

]
+ O

(
n−αT−(α−1

2)
)

+Op

(
n−

3α
4 T−

3α−2
4

)
+ Op

(
n−

α
2T−

α−1
2
)

+ Op

(
n−

α
4T−

α−2
4
)
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by virtue of Lemma 3 (a),(b),(d) and (e). Next,
1√
T

T∑
t=1

[
(εit − ε·t)4 − (1− 1

n
)4ωεi −

1
n
φ1i −

1
n2φ2i

]

= 1√
T

T∑
t=1

{[
(1− 1

n
)εit −

1
n

n∑
j 6=i
εjt

]4 − (1− 1
n

)4ωεi −
1
n
φ1i −

1
n2φ2i

}

= (1− 1
n

)4 1√
T

T∑
t=1

(ε4
it − ωεi)− (1− 1

n
)3 4√

T

T∑
t=1

ε3
it

(1
n

n∑
j 6=i
εjt

)

+(1− 1
n

)2 6
n
√
T

T∑
t=1

{
ε2
it

( 1√
n

n∑
j 6=i
εjt

)2 − σ2
εi

( 1
n

n∑
j 6=i
σ2
εj

)}

−(1− 1
n

) 4√
T

T∑
t=1

εit
(1
n

n∑
j 6=i
εjt

)3

+ 1
n2
√
T

T∑
t=1

{( 1√
n

n∑
j 6=i
εjt

)4 − [E
( 1√

n

n∑
j 6=i
εjt

)4]
}

= (1− 1
n

)4 1√
T

T∑
t=1

(ε4
it − ωεi) + Op(n−1/2)

by virtue of Lemma 2(f) and 2(g). Then it follows immediately from
Lemma 2(d) that
√
T

ω̂εi −
1− 1

n

4
ωεi −

1
n
φ1i −

1
n2φ2i

→d N(0, ϕωi)

as (n, T →∞).
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(e)
√
nT

[
ω̂ε − (1− 1

n
)4ωε −

1
n
φ1 −

1
n2φ2

]

=
√
nT

{ 1
nT

n∑
i=1

T∑
t=1

(eit − e·t)4 − (1− 1
n

)4ωε −
1
n
φ1 −

1
n2φ2

}

= 1√
nT

n∑
i=1

T∑
t=1

(µit − µ·t)4 + 4√
nT

n∑
i=1

T∑
t=1

(µit − µ·t)3(εit − ε·t)

+ 6√
nT

n∑
i=1

T∑
t=1

(µit − µ·t)2(εit − ε·t)2 + 4√
nT

n∑
i=1

T∑
t=1

(µit − µ·t)(εit − ε·t)3

+ 1√
nT

n∑
i=1

T∑
t=1

[
(εit − ε·t)4 − (1− 1

n
)4ωε −

1
n
φ1 −

1
n2φ2

]

= 1√
nT

n∑
i=1

T∑
t=1

[
(εit − ε·t)4 − (1− 1

n
)4ωε −

1
n
φ1 −

1
n2φ2

]
+ O

(
(nT )−(α−1

2)
)

+Op

(
(nT )−

3α−2
4

)
+ Op

(
(nT )−

α−1
2
)

+ Op

(
(nT )−

α−2
4
)

by virtue of Lemma 3 (a),(b),(d) and (e). But given σ2
εi = σ2

ε for all
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i, then ωεi = ωε for all i by Assumption 3.
1√
nT

n∑
i=1

T∑
t=1

[
(εit − ε·t)4 − (1− 1

n
)4ωεi − φ1 − φ2

]

= 1√
nT

n∑
i=1

T∑
t=1

{[
(1− 1

n
)εit −

1
n

n∑
j 6=i
εjt

]4 − (1− 1
n

)4ωεi − φ1n − φ2n
}

= (1− 1
n

)4 1√
nT

n∑
i=1

T∑
t=1

(ε4
it − ωεi)− (1− 1

n
)3 4√

nT

n∑
i=1

T∑
t=1

ε3
it

(1
n

n∑
j 6=i
εjt

)

+(1− 1
n

)2 6
n
√
nT

n∑
i=1

T∑
t=1

{
ε2
it

( 1√
n

n∑
j 6=i
εjt

)2 − σ2
εi

( 1
n

n∑
j 6=i
σ2
εj

)}

−(1− 1
n

) 4√
nT

n∑
i=1

T∑
t=1

εit
(1
n

n∑
j 6=i
εjt

)3

+ 1
n2
√
nT

n∑
i=1

T∑
t=1

{( 1√
n

n∑
j 6=i
εjt

)4 − E
( 1√

n

n∑
j 6=i
εjt

)4}

= (1− 1
n

)4 1√
nT

n∑
i=1

T∑
t=1

(ε4
it − ωεi) + Op(n−1/2)

by virtue of Lemma 2(f) and 2(g). Then we have
√
nT

[
ω̂ε − (1− 1

n
)4ωε − φ1 − φ2

]

= (1− 1
n

)4 1√
nT

n∑
i=1

T∑
t=1

(ε4
it − ωεi) + Op(n−1/2) + O

(
(nT )−(α−1

2)
)

+Op

(
(nT )−

3α−2
4

)
+ Op

(
(nT )−

α−1
2
)

+ Op

(
(nT )−

α−2
4
)

It follows immediately from Lemma 2(d) that
√
nT

[
ω̂ε − (1− 1

n
)4ωε − φ1 − φ2

]
→d N(0, ϕω)

as (n, T →∞).
(f) Given σ2

εi = σ2
ε for all i, then ωεi = ωε by Assumption 3 and
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hence ψεi = ψε for all i. As a result,
√
nT

ψ̂ε −
1− 1

n

4
ψε − γn


=
√
nT

[
ω̂ε − σ̂4

ε − (1− 1
n

)4(ωε − σ4
ε)− γn

]

=
√
nT

[
ω̂ε − (1− 1

n
)4ωε −

1
n
φ1 −

1
n2φ2

]

−
[
σ̂2
ε +

1− 1
n

2
σ2
ε −

1
n

1− 1
n

σ2
ε

]√
nT

[
σ̂2
ε −

1− 1
n

2
σ2
ε

−1
n

1− 1
n

σ2
ε

]

=
√
nT

[
ω̂ε − (1− 1

n
)4ωε −

1
n
φ1 −

1
n2φ2

]

−(2σ2
ε)
√
nT

[
σ̂2
ε −

1− 1
n

2
σ2
ε −

1
n

1− 1
n

σ2
ε

]
+ Op

(
(nT )−1/2

)

+Op

(
n−1

)

=
(

(1− 1
n)4, 2

(
1− 1

n

)2
σ2
ε

) 
1√
nT

n∑
i=1

T∑
t=1

(ε4
it − ωεi)

1√
nT

n∑
i=1

T∑
t=1

(ε2
it − σ2

εi)


+Op(n−1/2) + O

(
(nT )−(α−1

2)
)

+ Op

(
(nT )−

α
4
)

+Op

(
(nT )−

3α−2
4

)
+ Op

(
(nT )−

α−1
2
)

+ Op

(
(nT )−

α−2
4
)

where the last equality follows from Lemma 4(c) and 4(e). We can
then conclude via central limit theorems for iid random vectors that

√
nT

ψ̂ε −
1− 1

n

4
ψε − γn

 →d N (0,Ω ) ,

as (n, T →∞).
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Lemma 5. Suppose Assumptions 1-4 hold. Let

σ̃2
εi =

1− 1
n

−2
σ̂2
εi −

1− 1
n

−2 1
n2

n∑
j 6=i
σ̂2
εj,

σ̃2
λ = σ̂2

λ −
1
n2

n∑
i=1
σ̃2
εi,

σ̃2
ε =

1− 1
n

−2
σ̂2
ε −

1
n

1− 1
n

−1
σ̂2
ε ,

ω̃εi = (1− 1
n

)−4ω̂εi −
1
n

(1− 1
n

)−4φ̂1i −
1
n2(1− 1

n
)−4φ̂2i,

with

φ̂1i = 6(1− 1
n

)2
[
σ̃2
εi

(1
n

n∑
j 6=i
σ̃2
εj

)]
, φ̂2i = 1

n2

n∑
j 6=i
ω̂εi + 6

n2

n∑
j 6=i

n∑
k 6=i,j

σ̃2
εjσ̃

2
εk.

ω̃ε = (1− 1
n

)−4ω̂ε −
1
n

(1− 1
n

)−4φ̂1 −
1
n2(1− 1

n
)−4φ̂2,

with

φ̂1 = 1
n

n∑
i=1
φ̂1i, φ̂2 = 1

n

n∑
i=1
φ̂2i.

ψ̃ε =
1− 1

n

−4
ψ̂ε − γ̂n,

with

γ̂n = 1
n

[
φ̂1 − 2

1− 1
n

3
σ̃4
ε

]
+ 1
n2

[
φ̂2 +

1− 1
n

2
σ̃4
ε

]
.

Then as (n, T →∞),
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(a) σ̃2
εi − σ2

εi = Op (n−2) + Op

(
T−1/2

)
.

(b) σ̃2
λ − σ2

λ = Op (n−2) + Op

(
T−1/2

)
.

(c) σ̃2
ε − σ2

ε = Op (n−2) + Op

(
(nT )−1/2

)
,

provided σ2
εi = σ2

ε for all i,

(d) ω̃εi − ωεi = Op (n−2) + Op

(
T−1/2

)
.

(e) ω̃ε − ωε = Op (n−2) + Op

(
(nT )−1/2

)
,

provided σ2
εi = σ2

ε for all i.

(f) ψ̃ε − ψε = Op (n−2) + Op

(
(nT )−1/2

)
,

provided σ2
εi = σ2

ε for all i.

Proof. These results follow immediately from Lemma 4.

Theorem 1. Suppose Assumptions 1-4 hold. Then as (n, T →∞),

(i)
√
T
(
RMSE2

AF − σ2
λ − 1

n2
n∑
i=1
σ2
εi

)
→d N (0, ϕλ).

(ii)
√
T

RMSE2
RT −

(
1
n

n∑
i=1

√
σ2
λ + σ2

εi

)2→d N (0, φϕλ),

where φ =
(

lim
n→∞

1
n

n∑
i=1

(σ2
λ + σ2

εi)
1/2

)2 (
lim
n→∞

1
n

n∑
i=1

(σ2
λ + σ2

εi)
−1/2

)2
.

(iii)
√
T
(
RMSE2

LPS −
(
σ2
λ + 1

n

n∑
i=1
σ2
εi

))
→d N (0, ϕλ).

Proof. (i) See the proof of Lemma 4(a).
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(ii) Since RMSERT = 1
n

n∑
i=1


√√√√ 1
T

T∑
t=1

e2
it

, then by Taylor’s expan-
sion, Assumption 1, and Lemma 2(a)-(d), we have

T 1/2
RMSERT −

1
n

n∑
i=1

√
σ2
λ + σ2

εi


= 1

n

n∑
i=1

1
2
(
σ2
λ + σ2

εi

)−1/2
 1
T 1/2

T∑
t=1

[
(λt + εit)2 −

(
σ2
λ + σ2

εi

)]
+Op

(
T−1/2

)
+ Op

(
n−

α
2T−

α−1
2
)

+ Op

(
n−

α
4T−

α
4
)

=
 1

2n
n∑
i=1

(
σ2
λ + σ2

εi

)−1/2
 1
T 1/2

T∑
t=1

(
λ2
t − σ2

λ

)

+ 1
2n

n∑
i=1

(
σ2
λ + σ2

εi

)−1/2 1
T 1/2

T∑
t=1

(
ε2
it − σ2

εi

)

+ 1
n

n∑
i=1

(
σ2
λ + σ2

εi

)−1/2 1
T 1/2

T∑
t=1

λtεit

+Op

(
T−1/2

)
+ Op

(
n−

α
2T−

α−1
2
)

+ Op

(
n−

α
4T−

α
4
)

=
 1

2n
n∑
i=1

(
σ2
λ + σ2

εi

)−1/2
 1
T 1/2

T∑
t=1

(
λ2
t − σ2

λ

)

+Op

(
n−

α
2T−

α−1
2
)

+ Op

(
n−

α
4T−

α
4
)

+ Op

(
T−1/2

)
+ Op

(
n−1/2

)
.

for large n and large T , where the last equality is obtained because
1
n1/2

n∑
i=1

(
σ2
λ + σ2

εi

)−1/2 1
T 1/2

T∑
t=1

(
ε2
it − σ2

εi

)
= Op (1) ,

and
1
n1/2

n∑
i=1

(
σ2
λ + σ2

εi

)−1/2 1
T 1/2

T∑
t=1

λtεit = Op (1) .

by using arguments similar to Lemma 2(d) and 2(c) respectively.
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Then, for α > 2, it follows from Lemma 2(a) that

T 1/2
RMSERT −

1
n

n∑
i=1

√
σ2
λ + σ2

εi



→d N

0, 1
4

 lim
n→∞

1
n

n∑
i=1

(
σ2
λ + σ2

εi

)−1/2
2
ϕλ


as (n, T →∞). Consequently,

RMSERT = 1
n

n∑
i=1

√
σ2
λ + σ2

εi + Op(T−1/2)

That is,
RMSERT →p lim

n→∞
1
n

n∑
i=1

√
σ2
λ + σ2

εi

as (n, T →∞). Hence

T 1/2
RMSE2

RT −
1
n

n∑
i=1

√
σ2
λ + σ2

εi

2
=

RMSERT + 1
n

n∑
i=1

√
σ2
λ + σ2

εi

T 1/2
RMSERT −

1
n

n∑
i=1

√
σ2
λ + σ2

εi


→d N (0, φϕλ) ,

by Slutsky’s theorem.
(iii) Observe that

T 1/2
RMSE2

LPS −
σ2

λ + 1
n

n∑
i=1
σ2
εi


= 1

T 1/2

T∑
t=1

(
λ2
t − σ2

λ

)
+ 1
nT 1/2

n∑
i=1

T∑
t=1

(
ε2
it − σ2

εi

)
+ 2
nT 1/2

n∑
i=1

T∑
t=1

λtεit

+ 1
nT 1/2

n∑
i=1

T∑
t=1

µ2
it + 2

nT 1/2

n∑
i=1

T∑
t=1

µitλt + 1
nT 1/2

n∑
i=1

T∑
t=1

µitεit

= 1
T 1/2

T∑
t=1

(
λ2
t − σ2

λ

)
+ Op

(
n−1/2

)
+ O

(
n−

α
2T−

α−1
2
)

+ Op

(
(nT )−

α
4
)
,
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by virtue of Lemma 2(b)-2(d). Hence

T 1/2
RMSE2

LPS −
σ2

λ + 1
n

n∑
i=1
σ2
εi

→d N (0, ϕλ)

holds as (n, T →∞) in view of Lemma 2(a).

Corollary 1. Suppose Assumptions 1-4 hold. Then as (n, T →∞) ,

(i) RMSEAF →p σλ.

(ii) RMSERT →p lim
n→∞

1
n

n∑
i=1

√
σ2
λ + σ2

εi.

(iii) RMSELPS →p

√
(σ2

λ + σ2
ε), where σ2

ε = lim 1
n

n∑
i=1
σ2
εi.

Proof. The results follow immediately from Theorem ??.

Theorem 2. Suppose Assumptions 1-4 hold. Then under the
null hypothesis that σ2

εi = σ2
ε for all i,

1
snT

n∑
i=1


T

 1
T

T∑
t=1

ε̂2
it −

1
nT

n∑
i=1

T∑
t=1

ε̂2
it

2− (1− 1
n

)4ψ̃ε

→d N(0, 1)

as (n, T →∞) (and T
n → 0), where s2

nT = 2nψ̃2
ε.

Proof. Let e·t = 1
n

n∑
i=1
eit, µ·t = 1

n

n∑
i=1
µit, ε·t = 1

n

n∑
i=1
εit, and ε̂it =

eit − e·t. Then

ε̂2
it = (µit − µ·t)2 + 2(µit − µ·t)(εit − ε·t) + (εit − ε·t)2

28



and hence 1
T

T∑
t=1

ε̂2
it −

1
nT

n∑
i=1

T∑
t=1

ε̂2
it

2

=
{ 1
T

T∑
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(µit − µ·t)2 − 1
nT
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T∑
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(µit − µ·t)2
}2

+4
{ 1
T
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1
nT

n∑
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T∑
t=1

(µit − µ·t)(εit − ε·t)
}2

+
{ 1
T

T∑
t=1

(εit − ε·t)2 − 1
nT

n∑
i=1

T∑
t=1

(εit − ε·t)2
}2

+4
{[ 1
T

T∑
t=1

(µit − µ·t)2 − 1
nT

n∑
i=1

T∑
t=1

(µit − µ·t)2
]

×
[ 1
T

T∑
t=1

(µit − µ·t)(εit − ε·t)−
1
nT

n∑
i=1

T∑
t=1

(µit − µ·t)(εit − ε·t)
]}

+2
{[ 1
T

T∑
t=1

(µit − µ·t)2 − 1
nT

n∑
i=1

T∑
t=1

(µit − µ·t)2
]

×
[ 1
T

T∑
t=1

(εit − ε·t)2 − 1
nT

n∑
i=1

T∑
t=1

(εit − ε·t)2
]}

+4
{[ 1
T

T∑
t=1

(εit − ε·t)2 − 1
nT

n∑
i=1

T∑
t=1

(εit − ε·t)2
]

×
[ 1
T

T∑
t=1

(µit − µ·t)(εit − ε·t)−
1
nT

n∑
i=1

T∑
t=1

(µit − µ·t)(εit − ε·t)
]}

=
{ 1
T

T∑
t=1

(εit − ε·t)2 − 1
nT

n∑
i=1

T∑
t=1

(εit − ε·t)2
}2

+Op

(
n−

α
4T−

α+2
4
)
,

by virtue of Lemma 3(a), 3(c) and that 1
T

T∑
t=1

(εit−ε·t)2− 1
nT

n∑
i=1

T∑
t=1

(εit−
ε·t)2 = Op(1), a result implied by Lemma 2(d). It follows that, under
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the null,

1
n1/2

n∑
i=1

{
T

 1
T

T∑
t=1

ε̂2
it −

1
nT

n∑
i=1

T∑
t=1

ε̂2
it

2
− (1− 1

n
)4ψ̃ε

}

= 1
n1/2

n∑
i=1

{
T
[ 1
T

T∑
t=1

(εit − ε·t)2 − 1
nT

n∑
i=1

T∑
t=1

(εit − ε·t)2
]2
− (1− 1

n
)4ψε

}

+Op

(
n−

α−2
4 T−

α−2
4
)

by virtue of Lemma 5(f). Using the fact that εit− ε·t = (1− 1
n)εit−
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1
n

n∑
j 6=i
εjt, we see

1
n1/2

n∑
i=1

{
T
[ 1
T

T∑
t=1

(εit − ε·t)2 − 1
nT

n∑
i=1

T∑
t=1

(εit − ε·t)2
]2
− (1− 1

n
)4ψε

}

= (1− 1
n

)4 1
n1/2

n∑
i=1

{
T
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T

T∑
t=1

ε2
it −

1
nT

n∑
i=1

T∑
t=1

ε2
it

]2 − ψε
}

+4(1− 1
n
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n1/2

n∑
i=1

[ 1
T

T∑
t=1

εit
(1
n

n∑
j 6=i
εjt

)
− 1
nT

n∑
i=1

T∑
t=1

εit
(1
n

n∑
j 6=i
εjt

)]2

+ T

n1/2

n∑
i=1

[ 1
T

T∑
t=1

(1
n

n∑
j 6=i
εjt

)2 − 1
nT

n∑
i=1

T∑
t=1

(1
n

n∑
j 6=i
εjt

)2]2

−4(1− 1
n

)3 T
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n∑
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T

T∑
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ε2
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1
nT

n∑
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T∑
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]

×
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T

T∑
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n

n∑
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T∑
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n

n∑
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n
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T
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ε2
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1
nT
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ε2
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]
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T
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n

n∑
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nT
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T∑
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(1
n
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n
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T
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n
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)
− 1
nT
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T∑
t=1
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n

n∑
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)]

×
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T

T∑
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n

n∑
j 6=i
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n

n∑
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.
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Observe that, under the null,
T

n1/2

n∑
i=1
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T

T∑
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ε2
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1
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n∑
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T∑
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]

×
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T
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n

n∑
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n∑
i=1

T∑
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1
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√
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n
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√
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T∑
t=1

(ε2
it − σ2
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T
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n
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n
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n
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where the third equality is obtained via Lemma 2(d) and 2(e) and
the last equality follows from Lemma 3(f). Similarly, we can obtain,
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under the null,
T
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n∑
i=1

T∑
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It then follows that under the null
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Proof. From the proof of Theorem 2, we see, under the null, that
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Theorem 3. Suppose Assumptions 1 and 3 hold. Then under
the null hypothesis that σ2
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t=1

ε̂2
it −

1
nT

n∑
i=1

T∑
t=1

ε̂2
it

)2 − 1√
n
BRT

)
− 1

]}
.

Then by Taylor’s expansion, we have
(1
n

n∑
i=1

[ 1
(1− 1

n)4ψ̃ε

(
T
( 1
T

T∑
t=1

ε̂2
it −

1
nT

n∑
i=1

T∑
t=1

ε̂2
it

)2 − 1√
n
BRT

)])1/3

=
(
1 + ∆nT

)1/3

=
(
1 + 1

3
∆nT −

1
9

∆2
nT + O

(
|∆2

nT |
))
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so that
{(1
n

n∑
i=1

[(1− 1
n)−4

2ψ̃ε

(
T
( 1
T

T∑
t=1

ε̂2
it −

1
nT

n∑
i=1

T∑
t=1

ε̂2
it

)2 − B̃nT

)])1/3

−1 + 2
9n

}  2
9n

−1/2

=
{1

3
∆nT −

2
9n

(n
2

∆2
nT − 1

)
+ o

(
|∆2

nT |
)}  2

9n

−1/2

By Theorem 2, we see that under the null√
n/2∆nT →d N(0, 1)

as (n, T →∞) and T
n → 0, implying that

n

2
∆2
nT − 1 = Op(1)

and hence

∆2
nT = Op(n−1)

Therefore, under the null
{(1
n

n∑
i=1

[(1− 1
n)−4

2ψ̃ε

(
T
( 1
T

T∑
t=1

ε̂2
it −

1
nT

n∑
i=1

T∑
t=1

ε̂2
it

)2 − B̃nT

)])1/3

−1 + 2
9n

}  2
9n

−1/2

=
1

3
∆nT

  2
9n

−1/2
+ Op

(
n−1/2

)
→d N(0, 1)

as (n, T →∞) and T
n → 0.
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