

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Eppinger, Peter; Smolka, Marcel

Working Paper

Firm Exports, Foreign Ownership, and the Global Financial Crisis

CESifo Working Paper, No. 8808

Provided in Cooperation with:

Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Eppinger, Peter; Smolka, Marcel (2020): Firm Exports, Foreign Ownership, and the Global Financial Crisis, CESifo Working Paper, No. 8808, Center for Economic Studies and Ifo Institute (CESifo), Munich

This Version is available at: https://hdl.handle.net/10419/232405

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

CESIFO WORKING PAPERS

8808 2020

December 2020

Firm Exports, Foreign Ownership, and the Global Financial Crisis

Peter Eppinger, Marcel Smolka

Impressum:

CESifo Working Papers

ISSN 2364-1428 (electronic version)

Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo

GmbH

The international platform of Ludwigs-Maximilians University's Center for Economic Studies and the ifo Institute

Poschingerstr. 5, 81679 Munich, Germany

Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de

Editor: Clemens Fuest

https://www.cesifo.org/en/wp

An electronic version of the paper may be downloaded

from the SSRN website: www.SSRN.comfrom the RePEc website: www.RePEc.org

· from the CESifo website: https://www.cesifo.org/en/wp

Firm Exports, Foreign Ownership, and the Global Financial Crisis

Abstract

The exceptional export performance of foreign-owned firms is a well-established stylized fact, but the underlying mechanism is not yet fully understood. In this paper, we provide theory and empirical evidence demonstrating that this fact can be explained by ownership differences in access to finance. We develop a theoretical model of international trade featuring firm heterogeneity and credit market frictions in which foreign-owned firms can access foreign capital markets via their multinational parents. The model predicts a financial advantage of foreign ownership for exporting that gains importance as credit conditions deteriorate. To empirically identify this effect, we estimate a triple differences model using rich micro data from Spain that exploits the global financial crisis as an exogenous shock to credit supply. We find that foreign ownership significantly stabilized firm exports when liquidity dried out in the crisis, in particular among small and financially vulnerable firms.

JEL-Codes: F100, F140, F230, G010, G320.

Keywords: firm exports, foreign ownership, multinational firms, financial frictions, financial crisis.

Peter Eppinger
University of Tübingen
Nauklerstr. 50
Germany – 72074 Tübingen
peter.eppinger@uni-tuebingen.de

Marcel Smolka
University of Flensburg
Munketoft 3b
Germany – 24937 Flensburg
marcel.smolka@uni-flensburg.de

December 23, 2020

We thank the Volkswagen Foundation under the project "Europe's Global Linkages and the Impact of the Financial Crisis" for financial support. We are grateful for helpful suggestions by Wilhelm Kohler, Hong Ma, and Claudia Steinwender, as well as for comments we received at various seminars, workshops, and conferences.

1 Introduction

Foreign-owned firms are exceptional exporters. They are more likely to export; they export larger volumes as well as larger shares of their output; they serve more export markets; and they export more products than their domestically owned peers.¹ The superior export performance of foreign-owned firms is interesting not only from an academic perspective, but it is also of central importance to policy makers, as it speaks to widespread arguments that inflows of foreign direct investment (FDI) are an effective vehicle to promote exports and economic development.

One key challenge for economic research is to sort out correlation from causation. In principle, the export success of foreign-owned firms could be purely driven by a selection effect: multinational enterprises (MNEs) may seek to acquire the most competitive and internationally active firms. While selection does play a role in the data, it does not tell the whole story. Carefully designed empirical studies suggest that foreign-acquired firms improve their export performance following acquisition compared to the counterfactual of non-acquisition (Guadalupe et al., 2012; Wang and Wang, 2015; Fons-Rosen et al., 2019). This poses another, even greater challenge for research: to identify the precise mechanism by which foreign ownership promotes exports. This issue has not been resolved to date, yet it is crucial for designing effective policies regulating trade and FDI.

In this paper, we exploit rich micro data for Spain to overcome this challenge and identify precisely one channel through which foreign ownership promotes exports: access to finance. To achieve this, we build on the seminal contribution by Manova (2013), who demonstrates that financial market imperfections severely restrict firm exports. To gain a theoretical perspective on the role of foreign ownership in promoting exports, we introduce sharp ownership differences in access to finance into the Manova (2013) framework. Specifically, we assume that foreign-owned firms can tap into additional funds via internal capital markets within multinationals, as shown by Desai et al. (2004) and Egger et al. (2014). This implies a financial advantage of foreign ownership that may rationalize their superior export performance compared to domestically owned firms. In the model, a credit supply shock causes a drop in firm-level exports, but this drop is mitigated among foreign-owned firms due to their financial advantage. Moreover, our model predicts that this differential effect on exports is larger among financially vulnerable firms that require financing for a larger share of their trade costs.

Our empirical analysis leverages the global financial crisis of 2008/09 as a major exogenous

¹These facts have been established in micro data from many different countries, including Indonesia (Arnold and Javorcik, 2009), Germany (Raff and Wagner, 2014), China (Manova et al., 2015), as well as 30 lower and middle income countries (Boddin et al., 2017).

²In a similar vein, foreign-divested firms (i.e., firms switching from foreign to domestic ownership) display a poorer export performance compared to the counterfactual of non-divestment (Javorcik and Poelhekke, 2017).

shock to credit market conditions. This crisis was not reasonably foreseeable and beyond the control of individual firms in Spain. In a first step, we estimate the differential impact of the crisis on exports across foreign and domestically owned firms—the ownership differential—using a difference-in-differences (DiD) model. To identify the crisis impact on exports beyond its effect on production, we focus on the export share (defined as exports over total sales) as our main outcome variable. In a second step, we pin down the credit channel by allowing the ownership differential to vary by the pre-crisis financial vulnerability of firms. More precisely, we propose a triple differences (DiDiD) identification strategy, motivated by our theoretical model, which exploits variation along three margins: the ownership structure of firms (foreign vs. domestic), the timing of the credit supply shock in the financial crisis, and the degree of financial vulnerability across firms prior to the crisis. Intuitively, firms entering the crisis with higher degrees of financial vulnerability are hit more severely by deteriorating credit market conditions, so that we expect the exports of these firms to benefit relatively more from the financial advantage of foreign ownership. To mitigate the influence of confounding factors, we control for firm-specific fixed effects as well as arbitrary industry-specific shocks over time, and we combine our estimates with a propensity score reweighting approach that controls for selection into foreign ownership based on past firm characteristics (akin to Guadalupe et al., 2012; Garicano and Steinwender, 2016).

In our analysis, we exploit panel data from the Encuesta Sobre Estrategias Empresariales (ESEE), which covers a representative sample of manufacturing firms in Spain over the years 2005–2012. The ESEE data set combines a unique set of firm-level information that makes it ideally suited for our analysis. It includes detailed information, not only on the ownership structure of firms as well as the volume of exports and domestic sales, but also on the financial situation of firms, including debt levels (by maturity) and interest rates (on different debt components). This allows us to construct a precise measure of firms' financial vulnerability, viz. the debt service-to-sales ratio, where debt service is the sum of debt repayments and interest payments. Using this measure, we can pinpoint the financial advantage of foreign ownership. A rare feature of the data set is that it contains specific information on whether firms used the distribution channels of their foreign parents to access export markets. This is an interesting variable in the context of our analysis, as this mode of exporting could benefit firms in the form of lower trade costs and financing needs. This suggests potential interactions with the financial channel of foreign ownership in promoting exports, which we are able to investigate with the ESEE data.

We begin our empirical analysis by showing in the ESEE data that foreign-owned firms are, indeed, exceptional exporters also in Spain. We find that the share of exports in total sales is on average more than three times as large for foreign-owned (37%) compared to domestically owned firms (11%). A significant difference of 6 percentage points prevails even after controlling for industry composition, firm size, or whether the firm mainly produces intermediates or final goods.

Similar sharp differences exist both on the extensive and on intensive margin of firm exports. Most notably, these differences widened substantially in the financial crisis. Taking a close look at firms' financial conditions, we find sharp ownership differences in the raw data: While the average debt service-to-sales ratios were almost identical across firms in domestic and foreign ownership before the crisis, financial vulnerability increased dramatically among domestically owned firms after 2008. By contrast, foreign-owned firms were able to issue relatively more new debt at lower interest rates, and the composition of this new debt suggests that this was at least partly driven by internal borrowing from the firm's foreign parent. In a nutshell, our descriptive analyses show that both the export performance and the financial situation of foreign-owned firms improved relative to their domestically owned peers over the crisis years.

Our econometric analysis starts out by estimating the *ownership differential* in our DiD model. We find that, as the credit crunch hit Spain in 2009, foreign-owned firms significantly increased their export shares compared to domestically owned firms. This finding of a positive ownership differential is consistent with the presumption that exports depend more heavily on finance than domestic sales, as found e.g. by Minetti and Zhu (2011). Importantly, the ownership differential persisted over the subsequent crisis years, while we cannot reject a common trend in the export shares of both ownership groups over the pre-crisis years. We further show that the differential effect is concentrated in small firms, which are more likely to be credit constrained (see Gertler and Gilchrist, 1994; Guiso et al., 2004; Beck et al., 2008), and absent in large firms. These results constitute first indicative evidence of the credit channel described by our model.

We then scrutinize the credit channel further in DiDiD estimations, which reveal that the ownership differential is increasing in firms' financial vulnerability (measured just before the crisis). This finding implies that financial frictions have played a decisive role for the superior export performance of foreign-owned firms in the crisis. Among financially vulnerable firms, the crisis substantially magnified the positive effect of foreign ownership on exports. What is more, these effects are again much more pronounced among small firms, for which other sources of finance are likely harder to access. The economic magnitude of the estimates is striking: The effect of foreign ownership on export shares in 2009 was larger by 5.4 percentage points for firms at the 75th percentile of financial vulnerability compared to those at the 25th percentile in the sample of small firms. This differential effect is more than half the size of the mean export share of 10.6% in this sample. Our findings thus provide strong support for the hypothesis that MNEs grant their affiliates a substantial financial advantage, which served to stabilize firm exports in the crisis.

Building on our main finding, we distinguish between the DiDiD effects on export market entry and exit (i.e., the extensive margin of exports) and on changes in the volume of export sales (i.e., the intensive margin). We find no significant difference in the crisis impact on the extensive margin of exports across firms with a different ownership status or degree of financial vulnerability.

Instead, our main findings are mainly driven by the intensive margin. This result is in line with micro evidence from several countries showing that the global financial crisis reduced firm exports predominantly at the intensive margin (see Behrens et al., 2013; Bricongne et al., 2012; Eppinger et al., 2018; Paravisini et al., 2014).

Is the ownership differential in export performance due to specific features of *foreign* ownership, or due to the general benefit of belonging to a large group of firms? We shed some light on this question by comparing the role of foreign ownership to the role of belonging to a corporate group (whether domestic or foreign). The evidence points to a differential effect of a corporate group that is around half the size of the foreign ownership effect, and it does not seem to interact significantly with financial vulnerability. What seemed to be crucial for crisis exports was therefore the *foreignness* of the parent firm, which is a distinguishing feature of FDI.

In a final set of analyses, we investigate the role of foreign ownership in facilitating export market access. Exploiting direct information on this market access channel in our data set generates valuable new insights: Access to finance and access to distribution networks seem to be substitutive rather than complementary benefits of foreign ownership. In general, firms using their parents' distribution networks at the onset of the crisis did not fare better in the crisis than other foreign-owned firms. However, among financially vulnerable firms, the export-promoting effect of foreign ownership was substantially reduced for those firms that were *already* relying on their parents' distribution networks. This is consistent with the presumption that access to MNEs' distribution networks lowers trade costs and hence the financial burden on firms, which consequently reduces the value of internal capital markets for these firms. In line with this interpretation, firms that *started* using their foreign parent's distribution networks over the crisis years showed a better export performance, and this difference is greater among financially vulnerable firms. These findings point to two distinct benefits of foreign ownership – funding via internal capital markets and facilitating market access – but the use of the latter diminishes the value of the former.

Our paper contributes to two strands of the literature at the intersection of corporate finance and international economics (see Foley and Manova, 2015, for an overview). The first is the literature on the nexus between international trade and financial frictions. This literature argues that export sales are inherently more dependent on external finance than domestic sales due to additional costs of exporting, longer shipping times, and greater risk involved in international transactions. Therefore, financial development can be a source of comparative advantage (Kletzer and Bardhan, 1987; Beck, 2002; Egger and Keuschnigg, 2017). To study the impact of financial frictions across heterogeneous firms, theoretical work by Manova (2013), Feenstra et al. (2014), and Chaney (2016) has extended the Melitz (2003) model with capital market imperfections.³

³While the bulk of the literature focuses on the case in which the exporting firm needs to raise finance, Antràs and Foley (2015) and Schmidt-Eisenlohr (2013) explicitly study different trade finance regimes.

These models predict that financial frictions may reduce aggregate exports through adverse effects on three different margins: selection of firms into production, selection of firms into exporting, and the quantity of exports. Several empirical studies have confirmed these key predictions (most prominently Manova, 2013).⁴ Focusing on the 2008/09 financial crisis, several contributions show that financial frictions played an important role in the great trade collapse (Auboin, 2009; Ahn et al., 2011; Chor and Manova, 2012).⁵ We contribute to this literature by providing evidence that financial frictions constrain firms more strongly in exports than in domestic sales, and that foreign ownership can be crucial to alleviate the detrimental effect of a financial crisis on firm exports.

The second strand of the literature closely related to our work focuses on MNEs and corporate finance. Desai et al. (2004) demonstrate how foreign affiliates of U.S. multinationals access internal capital markets to circumvent financial frictions in external capital markets. Consistent with this finding, Desai et al. (2008) show that foreign-owned firms intensify their activities in currency crises and outperform domestically owned firms in terms of sales growth. Alfaro and Chen (2012) investigate the benefits of foreign ownership in the global financial crisis using a worldwide panel of establishments. They find that foreign-owned plants fared significantly better in terms of sales growth at the time of the credit crunch. This effect is larger in sectors with stronger financial linkages or higher financial dependence and it is very weak in the pre-crisis years. Garicano and Steinwender (2016) investigate firms' investment behavior in the ESEE data set. They show that firms decreased their investments during the crisis, in particular long-term ones, if and only if they were in domestic ownership. All of these findings support the view that foreign ownership improves the crisis resilience of firms' real activities by alleviating financial constraints. We complement this literature with a detailed analysis of MNEs' role in mitigating the impact of the global financial crisis on firm exports, a dimension of firm performance that is particularly sensitive to financial conditions.

Most intimately related to our work is the research by Manova et al. (2015), which connects the aforementioned two strands of the literature. The authors find that foreign-owned firms in China account for disproportionate shares of exports in finance-intensive industries. This specialization pattern is consistent with the idea that foreign-owned firms enjoy a comparative advantage

⁴The empirical literature shows that improved financial market conditions due to financial development (Beck, 2002; Berman and Héricourt, 2010) or equity market liberalizations (Manova, 2008) boost exports. Muûls (2015) provides evidence on the nexus between credit constrains and the margins of trade from linked Belgian micro data. See Greenaway et al. (2007) for evidence on the converse result that exporting can improve financial health. Recently, Minetti et al. (2018) have shown that credit-rationed firms in Italy are *more* likely to participate in international supply chains.

⁵Amiti and Weinstein (2011, for Japan) and Paravisini et al. (2014, for Peru) have made further progress towards identifying a causal effect of financial crises on trade by linking micro-level trade data with bank data, and they confirm that financial frictions impede trade.

⁶As a notable exception, Alvarez and Görg (2007) find no stabilizing effect of foreign ownership for the Chilean crisis in the late 1990s.

in finance-intensive industries due to internal capital markets within MNEs.⁷ Manova et al. (2015) identify the effect of credit constraints from variation in external financial dependence across industries within multi-product firms. Our approach adds to this by exploiting the exogenous credit shock in the financial crisis in combination with a firm-specific, pre-determined measure of financial vulnerability. This identification strategy allow us to establish a clear link between credit supply, financial vulnerability, and foreign ownership in determining firm-level exports.⁸ In addition, since we have information on firms' total sales, we can show that exports responded more strongly to the credit shock than domestic sales.

The remainder of this paper is organized as follows. Section 2 develops a theoretical model of trade finance and foreign ownership, and derives predictions regarding the impact of the financial crisis on firm exports. Section 3 describes our firm-level data and offers descriptive evidence. In Section 4, we present our empirical strategy and estimation results. Section 5 offers some conclusions.

2 A simple theory of trade finance and foreign ownership

In this section, we present a heterogeneous firms model of international trade with financial market imperfections in the spirit of Manova (2013). To establish a close link between theory and empirical analysis, we extend Manova (2013) by drawing a sharp line between firms in domestic versus foreign ownership: while domestically owned firms must finance their export activities through domestic banks, foreign-owned firms can access foreign capital markets through their parent if needed.

2.1 General setup

Consider a world of two countries. Consumers are homogenous and identical across countries with preferences given by a Cobb-Douglas aggregate over industries j:

$$U = \prod_{j} \left[\int_{\omega \in \Omega_{j}} q_{j}(\omega)^{\frac{\sigma-1}{\sigma}} d\omega \right]^{\theta_{j} \frac{\sigma}{\sigma-1}},$$

⁷This is an endogenous outcome in Antràs et al. (2009), who show how financial frictions shape the pattern of foreign direct investment (FDI) in theory and in firm-level data.

⁸In related work, Wang and Wang (2015) use Chinese data to exploit variation in ownership over time within firms. They benchmark the effects of foreign acquisitions against domestic acquisitions and show that foreign ownership improves firm-level financial health and export performance, in line with our main finding.

⁹We focus on the two-country case for simplicity. Extending the setup to a large number of countries is straightforward. In anticipation of our empirical analysis, the two countries in our setup may be thought of as Spain and the rest of the world. We neglect the country index where it is not essential to keep the notation simple.

where $\omega \in \Omega_j$ refers to a specific variety of industry j, $\sigma > 1$ is the constant elasticity of substitution (CES) between any two varieties, and $\theta_j \in (0,1)$ is the consumer's expenditure share on industry j. Demand for each variety follows as

$$q_j(\omega) = p_j(\omega)^{-\sigma} \theta_j Y P_j^{\sigma - 1},\tag{1}$$

where Y is aggregate income, $p_j(\omega)$ is the price of variety ω in industry j, and $P_j = \left[\int_{\omega \in \Omega_j} p_j(\omega)^{1-\sigma} \mathrm{d}\omega \right]^{\frac{1}{1-\sigma}} \text{ is the CES price index.}$

Each industry is characterized by a continuum of heterogeneous firms in monopolistic competition. As in Melitz (2003), firms are identical ex ante and may choose to pay a sunk entry cost equal to $b_j f_E$. Upon entry, each firm draws its productivity 1/a from a known distribution G(a) with support $[\underline{a}, \overline{a}]$, $\overline{a} > \underline{a} > 0$. For a high enough productivity draw, the firm will start producing; otherwise it will exit immediately. Since a is specific to the firm and each firm produces a distinct variety, we henceforth use a to index variety ω . The minimum unit-cost function is given by $b_j a$, where b_j is the cost of a cost-minimizing input bundle.

To service a specific market, the firm has to incur fixed market-access costs and variable trade costs. More precisely, fixed costs are equal to $b_j f_X$ for exporting and $b_j f_H$ for servicing the home market. We make the standard assumption that the fixed costs of market access, marketing, and distribution are higher in the export market: $f_X > f_H > 0$. Variable costs of exporting take the usual iceberg form, such that $\tau > 1$ units of the good need to be shipped in order for one unit to arrive in the other country. These assumptions imply the standard Melitz-type selection into exporting.

2.2 Trade finance

As in Manova (2013), we relax the assumption of perfect capital markets that is implicit in Melitz (2003). We assume that firms must finance a share $d(a) \in (0,1)$ of all costs associated with exporting (production costs as well as fixed and variable trade costs) through an investor, while all other costs are financed internally. The parameter d(a) thus reflects a firm's financial vulnerability, which will play a key role in our analysis. Since the availability of internal funds may differ across firms, we assume that d(a) is firm specific. The investor will be repaid with exogenous probability $\lambda \in (0,1)$ due to frictions in the capital market. This notion of credit constraints is agnostic about the underlying source of the financial friction, but simply invokes that credit will not be repaid with certainty if capital markets function imperfectly.

We first consider the profit-maximization problem of a domestically owned firm. Such a firm must, by assumption, borrow the required funds from a domestic bank. We assume that there is a large number of domestic banks in perfect competition and that all parties are risk neutral. As a

result, the firm maximizes its expected profits from exporting:

$$\Pi_X(a) = p_j(a)q_j(a) - [1 - d(a)][q_j(a)\tau b_j a + f_X b_j] - \lambda R(a)$$
 (2)

subject to
$$R(a) \le p_j(a)q_j(a) - [1 - d(a)][q_j(a)\tau b_j a + f_X b_j],$$
 (FC)

and
$$\lambda R(a) \ge (1 + r_D) [d(a) (q_j(a)\tau b_j a + f_X b_j)],$$
 (PC-D)

and subject to demand from equation (1).¹⁰ The financial constraint (FC) states that the firm cannot repay more than its total export revenue. The participation constraint of the domestic investor (PC-D) states that her net return (expected repayment minus credit) must exceed her outside option. The investor's outside option reflects the returns from investing the amount of credit (the term in brackets) into an alternative project at the real interest rate $r_D > 0$ that prevails in the domestic capital market.

Since the capital market is perfectly competitive, investors are paid their outside option and equation (PC-D) holds with equality in equilibrium. We can plug this condition and demand from equation (1) into equation (2). Solving this maximization problem for highly productive firms that face no binding financial constraint yields optimal prices $p_i^*(a)$ and quantities $q_i^*(a)$:

$$p_j^*(a) = \frac{\sigma}{\sigma - 1} \left[1 - d(a) + (1 + r_D)d(a) \right] \tau b_j a$$
 and (3)

$$q_j^*(a) = \left(\frac{\sigma}{\sigma - 1} \left[1 - d(a) + (1 + r_D)d(a)\right] \tau b_j a\right)^{-\sigma} \theta_j Y P_j^{\sigma - 1}.$$
 (4)

Some domestically owned firms have a high enough productivity to become exporters, but face a binding financial constraint, so they cannot export at first-best levels. These constrained exporters have productivity levels below the threshold $1/a_H^D$, which is obtained by plugging the optimal price and quantity along with the binding participation constraint into the binding financial constraint:

$$\frac{1}{a_H^D} = \left[\frac{\left[1 - d(a) + (1 + r_D)d(a)/\lambda \right] \left(\frac{\sigma}{\sigma - 1} \left[1 + r_D d(a) \right] \right)^{\sigma}}{\frac{\sigma}{\sigma - 1} \left[1 + r_D d(a) \right] - \left[1 - d(a) \right] - (1 + r_D)d(a)/\lambda} \right]^{\frac{1}{\sigma - 1}} \left(\frac{f_X b_j^{\sigma}}{\theta_j Y} \right)^{\frac{1}{\sigma - 1}} \frac{\tau}{P_j}.$$
(5)

Firms with productivity levels just below this threshold will export a smaller quantity (at a higher price) than in the first-best case, in order to lower the repayment required by the investor. The optimal prices $p_j^{**}(a)$ for constrained exporters are determined by the binding financial constraint and can be obtained by plugging equation (1) and equation (PC-D) into equation (FC), all

¹⁰We depart from the program formulated by Manova (2013, Web Appendix, equation 2) in two ways. First, we abstract from collateral since it plays no role in our empirical analysis. Allowing for firms to pledge a certain share of the fixed entry costs as collateral is straightforward, but does not change our theoretical predictions. Second, we allow for a non-zero outside option of the investor, such that the interest rate can play a relevant role in the model.

holding with equality:

$$p_j^{**}(a)^{1-\sigma} - p_j^{**}(a)^{-\sigma}\tau b_j a \left[1 - d(a) + (1+r_D)d(a)/\lambda\right] = \frac{f_X b_j \left[1 - d(a) + (1+r_D)d(a)/\lambda\right]}{\theta_j Y P_j^{\sigma-1}}.$$
(6)

Appendix A.1 shows that the left-hand side of equation (6) is increasing in the optimal price, while the right-hand side is constant. Hence, equation (6) implicitly pins down the optimal prices $p_j^{**}(a)$ for constrained exporters, which are negatively related to the quantity sold (via the demand schedule in equation (1)) and the associated export revenues.

Another productivity threshold for domestically owned firms, $1/a_L^D$, separates exporters from firms serving only the domestic market. The highest price that constrained exporters may want to set is

$$p_L(a) = \frac{\sigma}{\sigma - 1} \tau b_j a \left[1 - d(a) + (1 + r_D) d(a) / \lambda \right], \tag{7}$$

which maximizes the left-hand side of equation (6). Firms with productivity levels below $1/a_L^D$ cannot compensate the investor even if they set this price and offer all revenues as a repayment to the investor. Formally, we obtain $1/a_L^D$ by plugging $p_L(a)$ from equation (7) back into equation (6):

$$\frac{1}{a_L^D} = \frac{\sigma}{\sigma - 1} \left[1 - d(a) + (1 + r_D)d(a)/\lambda \right]^{\frac{\sigma}{\sigma - 1}} \left(\frac{\sigma f_X b_j^{\sigma}}{\theta_j Y} \right)^{\frac{1}{\sigma - 1}} \frac{\tau}{P_j}.$$
 (8)

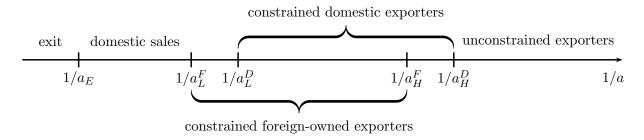
Our assumptions imply that domestically owned firms sort into different activities based on their productivity levels. This is illustrated in Figure 1 (above the horizontal line). While the least productive firms below the entry cut-off $1/a_E$ exit the market immediately, those with productivity levels equal to $1/a \in [1/a_E, 1/a_L^D)$ remain active, but serve only the domestic market. Constrained exporters with productivity levels equal to $1/a \in [1/a_L^D, 1/a_H^D)$ serve both the domestic and the export market, but they export lower quantities at higher prices than in the first-best case. Only the most productive firms export at first-best levels.

2.3 Foreign ownership and internal capital markets

We now proceed by adding foreign-owned firms to the picture. Our focus is exclusively on the *financial aspects* of foreign ownership. In particular, we assume that foreign-owned firms have access to the foreign capital market through their foreign parent (at zero cost). This assumption is motivated by ample evidence showing that MNEs use internal capital markets to finance the activities of their subsidiaries (see e.g. Desai et al., 2004; Egger et al., 2014). For domestically owned firms, in contrast, we make the simplifying assumption that the cost of finding and contracting a

¹¹For a formal treatment of the choice between internal and external capital markets, see Gertner et al. (1994).

suitable investor abroad is prohibitively high.


To keep matters simple, all differences between the domestic and foreign capital markets are summarized by the real interest rate differential. We denote the real interest rate in the foreign (or world) capital market by r_F . In the context of our analysis, it can be interpreted as the lowest interest rate at which the multinational parent can borrow foreign capital and lend to its affiliate in the domestic economy.

The optimization problem of a foreign-owned firm is identical to that of a domestically owned firm except for that fact the foreign-owned firm must additionally decide between domestic and foreign capital to finance its export activities. Depending on this choice, the firm faces either (PC-D) or the participation constraint of the foreign investor:

$$\lambda R(a) \ge (1 + r_F) \left[d(a) \left(q_i(a) \tau b_i a + f_X b_i \right) \right]. \tag{PC-F}$$

It is obvious from comparing the two participation constraints (PC-D) and (PC-F) that foreign-owned firms will opt for foreign capital if $r_F < r_D$, and for domestic capital if $r_F > r_D$. While in principle both cases are possible, the case of $r_F < r_D$ seems to be the more plausible one due to the greater liquidity of the world capital market as well as the size of MNEs, which allows them to raise funds directly in the credit market by issuing corporate bonds and to diversify financial activities across countries. We will focus below on this interesting case since it implies, consistent with our empirical analysis, that foreign-owned firms enjoy a financial advantage. ¹³

Figure 1: Sorting of firms by productivity for $r_F < r_D$

Thus, the world-market interest rate r_F replaces r_D in the (otherwise unchanged) equilibrium conditions (5) and (8) for foreign-owned firms. These conditions pin down two productivity cutoffs for foreign-owned firms in analogy to those derived for domestically owned firms, namely the export cut-off $1/a_L^F$ and the first-best export cut-off $1/a_H^F$. Crucially, we obtain $1/a_L^F < 1/a_L^D$

¹²For the knife-edge case of $r_F = r_D$, firms are indifferent between domestic and foreign capital.

 $^{^{13}}$ A situation with $r_D \le r_F$ may arise in case the MNE is itself liquidity constrained and the outside option of investing the available funds in another affiliate promises higher returns than r_D . However, even in this case, foreignowned firms are not worse off than domestically owned firms because they can always choose to borrow from domestic banks at r_D .

and $1/a_H^F < 1/a_H^D$, so the two cut-offs for foreign-owned firms lie strictly to the left of the corresponding cut-offs for domestically owned firms, as illustrated in Figure 1. This sorting pattern arises because the cut-offs are strictly increasing in the interest rate. Since foreign-owned firms have access to cheaper credit, they are not only more likely to export, but they are also more likely to export first-best quantities.

2.4 Comparative statics regarding the impact of the financial crisis

We are interested in how the credit crunch in the financial crisis affected the export shares (exports/sales) of domestically owned relative to foreign-owned firms. In our framework, the credit crunch can impact firms via two channels. The first channel is an efficiency loss in the capital market, reflected in a drop in the repayment probability λ . The second channel is an increase in credit costs modelled by a rise in the interest rates r_D and r_F (or the interest rate differential $r_D - r_F$). We choose to focus on the first case in the main text and consider the second case in Appendix A.2.¹⁴

We know from the analysis above that firms of ownership type $f \in \{D, F\}$ with productivity levels below $1/a_L^f$ will not export at all, and those with very high productivity levels above the cut-off $1/a_H^f$ are not credit constrained and hence export at first-best levels. The model predicts that the drop in λ will raise these cut-offs and induce some firms to exit the export market. Empirically speaking, these effects of the financial crisis on export market entry and exit turn out to be small and insignificant in Spain (see Section 4.3 and Eppinger et al., 2018). Hence, our discussion focuses on those firms that are constrained exporters before and after the credit shock. These are the firms with productivity levels in the critical interval $\left[1/a_L^D(\lambda_{crisis}), 1/a_H^F(\lambda_{initial})\right)$.

Since $r_F < r_D$, all foreign-owned exporters choose foreign financing both before and after the shock. Equation (6) delivers an implicit solution for $p_j^{**}(a)$ for constrained exporters depending on their ownership type, which determines the interest rate they are facing $r_f, f \in \{D, F\}$, and depending on their internal funds d(a). It allows us to derive the effect of a change in λ on prices $p_j^{**}(a)$ conditional on these characteristics. Comparative statics for export quantities $q_j^{**}(a)$ and export revenues $p_j^{**}(a)q_j^{**}(a)$ follow from this, as they are inversely related to $p_j^{**}(a)$ via the demand schedule from equation (1).

These considerations imply that a deterioration in credit market efficiency λ reduces the export revenues of all constrained exporters. Since domestic sales are financed internally and remain un-

¹⁴The financial crisis substantially increased the uncertainty of loan repayments, beyond the uncertainty associated with firms' fundamental characteristics. Around the peak of the financial crisis, marked by the bankruptcy of Lehman Brothers in September 2008, even loan repayments by major financial institutions were perceived as uncertain, which brought the interbank lending market to the verge of collapse. We view the deterioration of capital market efficiency reflected in the drop in λ as a temporary but global shock.

¹⁵The effects operating through export market entry and exit generally work in the same direction as the ones we focus on here. They can be thought of as reinforcing the adverse effect of the financial crisis on total exports and its differential effect across foreign and domestically owned firms.

affected by changes in λ , this translates directly into a reduction of firms' export shares. Crucially, the effect is larger for domestically owned firms, since they face a higher interest rate r_D . Intuitively, as credit market frictions worsen, the financial advantage of foreign ownership becomes more important. By a similar logic, the differential effect will be larger among more financially vulnerable firms that have less internal funds available (a high d(a)). We summarize these predictions in:

Proposition 1 Among constrained exporters, a deterioration in capital market efficiency decreases the export shares of domestically owned firms relative to foreign-owned firms. This differential effect is larger among more financially vulnerable firms.

Proof. See Appendix A.1.

In Appendix A.2, we take a slightly different approach and model the financial crisis as a credit shock that raises the domestic real interest rate r_D (rather than causing a drop in λ). The predictions from this scenario parallel those stated in Proposition 1. Interestingly, such a shock would also reduce the export shares of unconstrained domestically owned exporters (i.e. domestic firms with productivity levels beyond $1/a_H^D$), while it would leave unconstrained foreign-owned exporters unaffected.

3 Data and descriptives

In this section we introduce the data set used in our empirical analysis and provide descriptive analyses of firms' export behavior and their financial situation.

3.1 Data source and key variables

Our data come from the Encuesta Sobre Estrategias Empresariales (ESEE), an annual survey of about 2,000 manufacturing firms in Spain. The sample we use for our analysis is a panel data set covering the period 2005–2012, which allows us to track firms through the years before, during, and after the financial crisis. The initial sampling of the data in 1990 followed a two-tier structure designed to guarantee representativeness of the data for the manufacturing sector at large. Survey questionnaires were sent out to all 'large' firms (those with more than 200 employees), and to a subset of 'small' firms (those with 10 to 200 employees). Small firms were selected through stratified, proportional, and systematic sampling with a random seed. Industry affiliation and size class (defined by the number of employees) serve as stratification variables. Industries are defined

¹⁶The ESEE is managed by the Spanish foundation Sociedad Estatal de Participaciones Industriales (SEPI). See http://www.fundacionsepi.es/esee/en/epresentacion.asp for more information.

by product categories at the 2-digit level of the NACE Rev. 2 industry classification.¹⁷ To mitigate sample attrition, SEPI incorporates refreshment samples, i.e., new firms are added to the survey as other firms exit. This is done in a way that preserves the representativeness of the data set over time.

It is crucial for our analysis that the data set includes information about (i) the ownership structure of firms (foreign vs. domestic), (ii) their export *and* domestic sales volumes, and (iii) their financial situation and debt structure. We define a firm as foreign owned if more than 50% of its equity is held by foreigners, and as domestically owned otherwise. In the Spanish manufacturing sector at large, around 4% of firms are foreign owned over the period 2005–2012. This number is considerably higher for large firms (around 37%), and lower for small firms (around 3%), similar to other countries. In terms of employment, sales, and exports, foreign-owned firms are quite important in Spain. Of the total number of effective working hours reported in 2012, 29% can be attributed to foreign-owned firms. For sales and exports the numbers are even higher, standing at 46% and 60%, respectively. Table B.1 in Appendix B.1 provides summary statistics of all key variables used in the analysis.

3.2 Export behavior

Table 1 reveals a pronounced difference in the export performance between foreign and domestically owned firms. We pool all observations across the years 2005–2012 and then sort them into groups of firms depending on their ownership structure. Virtually all foreign-owned firms (95%) are exporters, as opposed to less than half of the domestically owned firms (46%). Among exporting firms, those in foreign ownership also export more, on average, than those in domestic ownership. These differences in both export status and export volumes translate into a considerably higher export share (*exports/sales*) for foreign-owned compared to domestically owned firms (37% vs. 11%). In Appendix B.2, we show that a significant foreign ownership premium in the

¹⁷Until 2009, the survey defined industries according to the NACE Rev. 1 classification. We accommodate the two classifications based on concordance information provided by SEPI.

¹⁸A small number of firms is foreign owned by more than zero, but not more than 50%, and thus labeled as domestically owned. We have checked that these firms are not driving our results by excluding them from the sample or by relabeling them as foreign owned. Our data set also includes information about unusual events such as mergers, acquisitions, and splitting up of firms. Such events can contaminate the analysis, as they often imply a drastic change not only in the ownership structure of the firm, but also in the type and scale of its output and exports (e.g. because the acquired entity is a large exporter). Hence, whenever a firm experiences one of the above-mentioned events, we treat it as a different firm afterwards. This applies to 30 firms in our sample.

¹⁹These and other descriptive statistics provided below are computed by applying sampling weights to describe the Spanish manufacturing sector at large. The sampling weights reflect the inverse sampling probability of a firm relative to the population of firms by industry-size stratum in 2010, based on data from the Spanish Instituto Nacional de Estadística (INE). Throughout the paper, we express exports and sales in constant 2005 prices using firm-level output price indexes from the ESEE data. Where firm-level price information is missing, we complement it with industry-level price information from INE.

export share of at least 6 percentage points prevails after controlling for industry composition, firm size, and whether the firm mainly produces intermediates or final goods. Hence, these differences are not trivially explained by firm size or intra-firm exports in vertical FDI relationships. The firm-level export share as a measure of export performance will be the focus of our empirical analysis in Section 4. However, while Table 1 compares average export shares across firms with different ownership structures in the pooled sample, our econometric analysis below exploits differential changes in the export share over time.

Table 1: Descriptive statistics

	Domestic			Foreign			
Variable	Mean	Std. Dev.	Observations	Mean	Std. Dev.	Observations	
Exporter dummy	0.462	0.499	13,441	0.951	0.215	2,187	
Exports (in logs)	12.836	2.460	8,022	15.708	2.343	2,099	
Export share (exports/sales)	0.113	0.220	13,441	0.369	0.307	2,187	

Notes: This table shows means, standard deviations, and numbers of firm-year observations for key variables by ownership (domestic vs. foreign). The sample covers the years 2005–2012. Exports and sales are expressed in constant 2005 prices. *Source:* Authors' computations based on ESEE data.

Figure 2 provides a first glance at the evolution of export shares depending on firm ownership (foreign vs. domestic). We balance the panel on firms with positive sales in each and every year over the period 2007–2010, which allows us to abstract from the effects of market entry and exit. Two key observations stand out. First, in line with the evidence in Table 1, foreign-owned firms have a consistently higher export share than domestically owned firms. Secondly, we see a considerable increase in the export share among foreign-owned firms in 2009 (from 37% to more than 42%). By contrast, the line for domestically owned firms is almost completely flat throughout the years before, during, and after the financial crisis, indicating a roughly constant export share of around 10–11%. Why did the export share increase so much among foreign-owned firms in the financial crisis? And why do we not observe a similar increase among domestically owned firms? In the next section, we will conduct a systematic econometric analysis of these questions. Guided by our theoretical model, we focus on the hypothesis that foreign ownership was especially helpful in facilitating exports among those firms that were characterized by a high financial vulnerability as they entered the crisis.

²⁰Balancing the panel on firms *exporting* over the period 2007–2010, rather than on *producing* firms, yields a very similar picture (available on request). This implies that the firm-level extensive margin of exports is not driving the differential change in export shares visible in 2009.

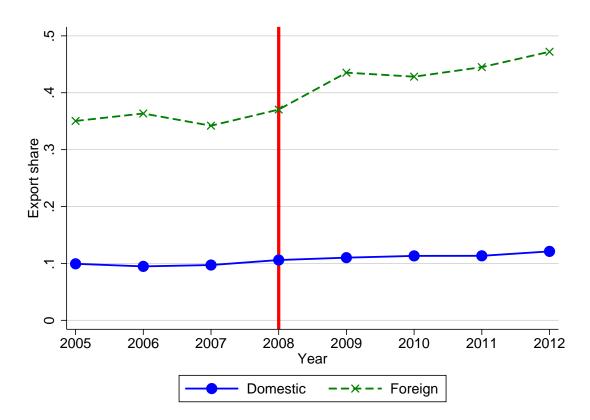


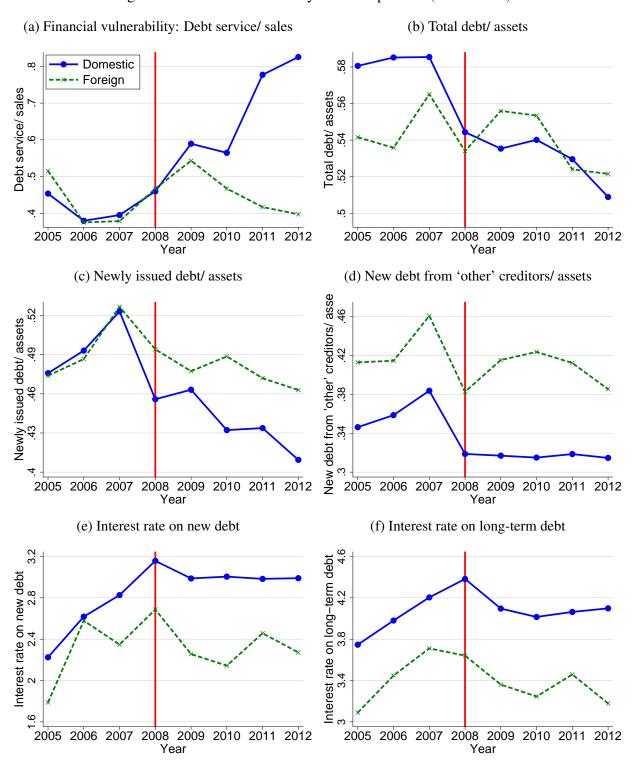
Figure 2: Evolution of export shares by ownership status (2005–2012)

Notes: This figure depicts the average firm-level export share by ownership (domestic vs. foreign). The panel used to construct the figure is balanced on firms with positive sales over the period 2007–2010. Sampling weights apply. *Source:* Authors' computations based on ESEE data.

3.3 Financial situation

Our data set includes detailed information on Spanish firms' assets, sales, and debt (i.e., total debt, debt volumes by maturity and types of creditors, and associated interest rates). This allows us to paint a rich picture of a firm's financial situation through the years of the financial crisis, and to directly identify the credit channel in our econometric analysis. Our focus is on a firm's financial vulnerability, which we measure by the ratio of debt service to total sales, where debt service is the sum of debt repayments and interest payments. Intuitively, this variable measures the share of a firm's revenue that is used for servicing its debt. The higher the debt service-to-sales ratio, the more difficult it is to obtain a loan, and hence, the more financially vulnerable is the firm (other things equal). This variable is closely related to the (inverse) debt service coverage ratio, which is a widely used benchmark to determine a firm's ability to service its debt. Importantly, debt service in any given year is determined through both short-term and long-term debt contracts signed in previous years. Debt service arising from short-term debt (i.e., with a maturity of less than one year) is

precisely reported in our data. Debt service arising from long-term debt can be approximated using the yearly stock of long-term debt as well as the average interest rate the firm pays on its long-term debt. Both the stock of long-term debt and the average interest rates are reported in the ESEE data separately for debt with financial and non-financial institutions, respectively. To keep matters simple, and since we have no information on the number and maturity of the firm's long-term credit contracts, we assume that in each year the firm pays back one tenth of its stock of long-term debt reported in the previous year plus the interest payment.²¹


A first glance at the financial data strongly suggests that the crisis had a differential impact on firms' financial situation depending on their ownership structure. Figure 3 depicts the evolution of firms' debt service-to-sales ratios (i.e., financial vulnerability) and other important financial variables over the years 2005–2012, separately for firms in domestic and foreign ownership. In Figure 3(a), we see an average debt service-to-sales ratio of around 0.45 over the period 2005–2008, and an extremely close comovement of this ratio for foreign and domestically owned firms. Interestingly, the two series start to diverge after 2008. On the one hand, domestically owned firms experienced a striking increase in their debt service-to-sales ratios from 0.47 in 2008 to more than 0.8 in 2012. On the other hand, foreign-owned firms had about the same degree of financial vulnerability in 2012 as in 2007; after a peak at 0.55 in 2009, their debt service-to-sales ratio returned to its pre-crisis level of 0.4. In our econometric analysis in the next section, we exploit this variable as a predictor of firms' export performance in the financial crisis. However, rather than using a time-varying measure, which is influenced by the crisis itself, we look at a firm's indebtedness in 2008 to exploit variation in firms' financial vulnerability at the onset of the crisis.

We dig deeper into firms' financial conditions by examining the volumes of total and newly issued debt over the crisis years. Figure 3(b) shows that domestically owned firms reduced their debt ratios (i.e., total debt over assets) more strongly over the crisis period than foreign-owned firms. This observation is in line with the idea of a credit supply shock that restricts access to credit more severely for domestically owned firms. Figure 3(c), which illustrates the volume of newly issued debt relative to total assets, supports this view. While in each of the pre-crisis years 2005–2007 foreign and domestically owned firms issued similar volumes of debt relative to their assets, this ratio dropped significantly in the crisis relative to 2007, and much more so for domestically owned firms. Hence, in contrast to the years before the crisis, foreign-owned firms borrowed considerably more in the crisis than their domestically owned peers.

Figure 3(d) provides suggestive evidence that internal capital markets are responsible for this divergence. It shows the new debt-to-assets ratio for the subcategory of new debt with 'other' cred-

 $^{^{21}}$ Our main results are fully robust if we vary our assumption on the share of long-term debt that is due each year using other plausible values in the range between 1/8 and 1/12.

Figure 3: Financial situation by ownership status (2005–2012)

Notes: This figure depicts the evolution of different aspects of firms' financial situation over time, on average by ownership (domestic vs. foreign). Sampling weights apply. *Source:* Authors' computations based on ESEE data.

itors. Importantly, this debt category includes intra-firm lending by the parent firm, and therefore it is plausibly greater for foreign-owned firms in all years. However, following a strikingly similar evolution across the two ownership groups up until 2008, this ratio clearly increased in 2009 and 2010 among foreign-owned firms, while it remained low and completely flat among domestically owned firms. This pattern is consistent with rising internal borrowing from the foreign parent over the crisis years 2009–2011.

Finally, we examine the interest rates paid by firms to shed some light on the question whether the observed changes in credit volumes are driven by factors related to credit demand or supply. Figure 3(e) shows the interest rate on new debt, which is a weighted average of interest rates paid on short-term debt and newly issued long-term debt, while Figure 3(f) shows the interest rate on long-term debt. In both figures we see that average interest rates are generally lower for foreignowned firms, which squares well with our assumption that they can access foreign capital at a lower cost (see Section 2.3). Figure 3(e) shows that the interest rate paid on new debt peaked in 2008 and remained high for domestically owned firms, in line with an adverse credit supply shock. Foreign-owned firms had a vastly different experience. They seemed to be able to sidestep the credit shortage, as the interest rate on their new debt rose by less between 2006 and 2008 and quickly fell in 2009–2010, even below the pre-crisis level of 2006–2007. When it comes to the interest rates paid on long-term debt, illustrated in Figure 3(f), we see a similar picture, though the adjustments there are naturally more sluggish. We can conclude that the gap in credit costs between foreign and domestically owned firms widened sharply over the crisis years. The raw data thus support the view that foreign-owned firms benefited in the crisis from more and cheaper credit, accessed through or with the assistance of their foreign parents.

4 Empirical analysis

Our empirical analysis proceeds in three steps. First, we estimate what we call the *ownership dif-ferential* of the financial crisis, i.e., the differential effect of the crisis on export shares of foreign-owned relative to domestically owned firms, using a difference-in-differences (DiD) framework. Secondly, we focus explicitly on the credit channel by estimating the ownership differential as a function of the financial vulnerability of the firm, measured just before the crisis, using a triple differences (DiDiD) framework. Thirdly, we scrutinize various aspects of our analysis: We distinguish the DiDiD effects at the extensive vs. intensive margin of exports; we contrast the financial advantage of foreign ownership with the benefit of belonging to a corporate group more generally, to learn about the role of *foreignness* of the parent firm as such; we test the potential advantage of foreign-owned firms to export their goods through the distributional network of the foreign parent (market access channel); and we conclude the section with an extensive robustness analysis.

4.1 The effect of foreign ownership

We begin by estimating the following DiD model:

$$(exports/sales)_{it} = \sum_{r=2006}^{2012} \phi_r \cdot (Foreign_{it} \cdot Y_r) + \gamma \cdot Foreign_{it} + D_i + D_{st} + \varepsilon_{it}, \tag{9}$$

where the dependent variable is the export share of firm i in year t, $Foreign_{it}$ is a dummy variable for foreign ownership with a corresponding coefficient γ , and Y_r is a dummy variable equal to one if r=t, so that the sum collects interaction terms between the foreign ownership dummy and a comprehensive set of year dummies with corresponding coefficients ϕ_r (indexed by $r=2006,\ldots,2012$). The parameter D_i is a firm fixed effect, while D_{st} is an industry-year fixed effect, corresponding to the 2-digit industry code first reported by the firm in our sample period (typically in the base year 2005). Finally, ε_{it} is an error term with zero conditional mean. Statistical inference will be based on robust standard errors clustered by firm, robust to serial correlation and heteroskedasticity.

This model allows us to study the evolution of firm-level export shares through the financial crisis in a systematic and flexible way, and to exploit the credit crunch in 2008/09 as a source of exogenous variation in credit supply. Our main interest is in whether the response to the crisis was contingent on foreign ownership. Against the backdrop of Proposition 1, we expect foreign-owned firms to outperform their domestically owned peers on export markets in the financial crisis. The flexible specification (9) has three advantages. First, we do not need to take a stance on whether the crisis first hit Spain in one of the years 2008, 2009, or 2010; instead we let the data speak as to when the crisis actually left a mark on exports. Secondly, we can test for differences in the evolution of export shares across ownership groups in the years before the crisis, which serves as an important plausibility check for the identifying assumption of a common trend. Thirdly, we can investigate whether the ownership differential is persistent over time, or whether it fades out.

Crucial for the interpretation of our estimates is the variation in the data we use for identification. Notice that the sets of fixed effects included in the model absorb a wide variety of potential confounding factors. In particular, the firm fixed effects capture any time-invariant heterogeneity in observable or unobservable firm characteristics, such as firm-specific productivity, management quality, or the fixed cost of exporting.²² The industry-year fixed effects flexibly account for the industry-specific evolution of comparative advantage and arbitrary domestic or foreign demand

²²Manova et al. (2015) point out several potential reasons why foreign-owned firms are doing better on export markets than domestically owned firms. Apart from enjoying better financing conditions, foreign-owned firms may e.g. have access to their parents' superior distribution network, an aspect that we investigate further in Section 4.5. The use of firm fixed effects in the estimation of (9) allows us to control for such factors to the extent that they are constant through time.

shocks across industries in the crisis. The interaction effects ϕ_r in equation (9) are hence identified from differences in within-firm variation over time across the two ownership groups, after controlling for industry-specific shocks.

A fundamental endogeneity problem stems from selection into foreign ownership based on past firm characteristics. The same factors that explain why firms are foreign owned might also explain why their exports are more resilient in the financial crisis. To tackle this problem, we follow the literature and combine the fixed effects model in (9) with a propensity score reweighting approach (Hirano et al., 2003). Specifically, we construct propensity scores and reweigh each observation in order to generate a similar distribution of key observable characteristics across foreign and domestically owned firms. The intention of this approach is to match also the distribution of important unobservable characteristics across the two groups. To estimate the propensity scores, we first consider the years 2007, 2008, and 2009 in our panel and sort those firms that are foreign owned in all three years into the treatment group and those that are domestically owned into the control group. Hence, we exclude those firms that switch their ownership status over time, as well as those firms that enter or leave the sample in one of the years 2007, 2008, and 2009. Importantly, this approach allows us to focus on a subsample of firms for which we can properly model the relationship between treatment assignment and covariates before the crisis, but study their export response during the crisis. Inspired by the literature studying selection into foreign ownership (e.g. Guadalupe et al., 2012), we then obtain the propensity scores for the remaining firms by running cross-sectional probit regressions of foreign ownership in 2007 (the treatment) on firmspecific sales, sales growth, capital intensity (all in logs), export share, and a full set of industry dummies. The firm-specific variables are all lagged by one year, i.e., they are observed in 2006. Each treated firm is reweighted by $1/\hat{p}$ and each control group firm by $1/(1-\hat{p})$, where \hat{p} is the estimated propensity score.²³ Importantly, \hat{p} reflects the estimated probability that the firm is in foreign ownership shortly before the crisis materialized (i.e., in 2007), and is thus orthogonal to the crisis itself.

Columns (1) and (2) of Table 2 present estimates of γ and ϕ_r , $r = 2006, \ldots, 2012$, based on the fixed effects (FE) estimator and the propensity score reweighting (PSR) estimator, respectively. The results show a significant increase in the export share of foreign-owned relative to domestically owned firms in the crisis, as predicted by Proposition 1. The fixed effects estimator identifies

²³We only keep those observations in the analysis that are in the region of common support, and we have checked that the balancing property is supported in the data. More specifically, after stratifying the panel into six subsamples according to their propensity scores, all observed characteristics of foreign and domestically owned firms are balanced within each subsample. This means that within each subsample we cannot reject the null hypothesis (at any conventional significance level) that the means of the variables are identical across treatment and control group. We also winsorize the propensity scores at the 99th percentile, following Guadalupe et al. (2012). Detailed results of the propensity score estimation are available from the authors on request.

Table 2: The effect of foreign ownership on the export share (DiD)

	Dependent variable: Export share (exports/sales)							
_	Full s	ample	Small	firms	Large firms			
	FE	PSR	FE	PSR	FE	PSR		
_	(1)	(2)	(3)	(4)	(5)	(6)		
Foreign	-0.00603	-0.00613	-0.0216	-0.0115	-0.000952	0.00516		
	(0.0154)	(0.0188)	(0.0291)	(0.0285)	(0.0202)	(0.0229)		
Foreign $\cdot Y_{2006}$	0.00281	-0.000747	0.0242	0.0204	-0.00782	-0.0194		
	(0.00769)	(0.00827)	(0.0162)	(0.0128)	(0.0128)	(0.0123)		
Foreign $\cdot Y_{2007}$	-0.000234	-0.0144	0.0244	-0.0124	-0.0132	-0.0187		
	(0.00937)	(0.0106)	(0.0215)	(0.0200)	(0.0132)	(0.0118)		
Foreign $\cdot Y_{2008}$	-0.000703	-0.00266	0.0185	0.0128	-0.00217	-0.0119		
	(0.0104)	(0.0108)	(0.0220)	(0.0164)	(0.0145)	(0.0148)		
Foreign $\cdot Y_{2009}$	0.0227*	0.0365*	0.0522*	0.0611	0.0260	0.0223		
	(0.0123)	(0.0189)	(0.0281)	(0.0375)	(0.0174)	(0.0201)		
Foreign $\cdot Y_{2010}$	0.0282**	0.0493**	0.0731**	0.0956**	0.0148	0.0171		
	(0.0133)	(0.0221)	(0.0306)	(0.0447)	(0.0179)	(0.0187)		
Foreign $\cdot Y_{2011}$	0.0385***	0.0521**	0.0689**	0.0952**	0.0240	0.0173		
	(0.0141)	(0.0220)	(0.0329)	(0.0468)	(0.0200)	(0.0199)		
Foreign $\cdot Y_{2012}$	0.0311*	0.0438*	0.0724*	0.0923*	0.00698	0.00609		
	(0.0161)	(0.0240)	(0.0371)	(0.0502)	(0.0218)	(0.0212)		
Observations	15,628	10,325	11,542	6,978	4,086	3,347		
R^2 (within)	0.055	0.088	0.058	0.121	0.092	0.105		

Notes: The table shows estimates of equation (9). The dependent variable is the firm-specific export share. *Foreign* is a dummy variable indicating foreign ownership. All estimations columns include firm fixed effects and industry-year fixed effects. The even columns apply propensity score reweighting (PSR). Robust standard errors (in parentheses) are clustered at the firm level. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

an ownership differential of 2.3 percentage points in 2009 (significant at the 10% level), which increases further in the two subsequent years, peaking at 3.9 percentage points in 2011 (significant at the 1% level) relative to the base year. The PSR estimator confirms this effect in a considerably smaller sample (two thirds of the initial sample size) and yields slightly larger point estimates: 3.7 percentage points in 2009 and 5.2 percentage points in 2011. These changes are quite sizeable, implying an increase in the foreign ownership premium of around 9–15% in 2009 compared to 2005.²⁴ Importantly, our estimates also support the idea that foreign and domestically owned firms share a common trend in export shares *before* the crisis, as we find no significant differences between the two types of firms over the years 2005–2008.²⁵

 $^{^{24}}$ These numbers are obtained by dividing the estimates of ϕ_{2009} from columns (1) and (2) of Table 2 by the unconditional difference in weighted averages for the two groups in 2005, which amounts to 24 percentage points (see Figure 2).

 $^{^{25}}$ Notice that γ is identified only through a small number of firms switching into and out of foreign ownership. We have verified that our results are not driven by these firms, as they remain virtually unchanged when we exclude switchers from the sample altogether.

While these results are consistent with a financial advantage of foreign ownership that helped in supporting exports in the crisis, they could be caused by factors unrelated to credit constraints. For example, the international distribution network maintained by MNEs might have helped foreign-owned firms to channel their sales into foreign markets that fared better than the Spanish market during the crisis (e.g. emerging-market economies). Therefore, a more convincing identification strategy needs to exploit an additional margin of variation in the data in order to clearly disentangle the credit channel from other potential explanations.

One such margin could be firm size. The evidence suggests that small firms are more likely to be credit constrained than large firms (see Gertler and Gilchrist, 1994; Guiso et al., 2004; Beck et al., 2008). This observation is fully consistent with our theory. In the model in Section 2, only the less productive and thus smaller exporting firms are credit constrained, while the most productive and thus larger firms can always export at first-best levels. Hence, we next estimate the model in equation (9) separately for small and large firms (with up to 200 vs. more than 200 employees, respectively).

Columns (3) to (6) in Table 2 report the results. We find that the above-described ownership differential is strongly confirmed in the sample of small firms, but not in the sample of large firms. The larger coefficient estimates in the sample of small firms further suggest a more important role for foreign ownership among small firms. While we believe that these results serve as an indication for the credit channel to be at work, we cannot rule out the possibility that other benefits of foreign ownership also gained importance for small firms' exports in the crisis. An alternative and more promising route to pin down the credit channel is suggested by our model: to focus on a firm's financial situation rather than on firm size. The financial advantage of foreign ownership should be more important for exports among financially vulnerable firms that are highly indebted at the onset of the crisis. Therefore, we directly focus on firms' financial vulnerability in the next section.

4.2 The credit channel of foreign ownership

To identify the credit channel of foreign ownership in promoting firm exports, we propose a triple differences (DiDiD) identification strategy that exploits three margins: variation in the ownership structure of firms (foreign vs. domestic), variation in credit supply caused by the financial crisis, and variation in financial vulnerability across firms prior to the crisis. The estimation equation reads as follows:

$$\begin{split} (\textit{exports/sales})_{it} &= \sum_{r=2006}^{2012} \theta_r \cdot (\textit{Foreign}_{it} \cdot \textit{FinVul}_i \cdot Y_r) + \sum_{r=2006}^{2012} \phi_r \cdot (\textit{Foreign}_{it} \cdot Y_r) + \gamma \cdot \textit{Foreign}_{it} \\ &+ \rho \cdot (\textit{Foreign}_{it} \cdot \textit{FinVul}_i) + \sum_{r=2006}^{2012} \delta_r \cdot (\textit{FinVul}_i \cdot Y_r) + D_i + D_{st} + \varepsilon_{it}, \end{split} \tag{10}$$

where $Foreign_{it}$ is the foreign ownership dummy (as before), $FinVul_i$ is our firm-specific measure of pre-crisis financial vulnerability, and the main parameters of interest are the coefficients of the triple interaction terms with year dummies: θ_r , $r=2006,\ldots,2012$. From Proposition 1, we expect $\theta_r>0$ in the crisis years.

This model allows us to see whether the ownership differential identified in the previous section is larger among financially vulnerable firms. The main rationale behind this approach is that firms with a higher debt service-to-sales ratio in 2008 will have found it more difficult to finance their export activities when liquidity dried out in the financial crisis. Importantly, we measure financial vulnerability in 2008, based on credit contracts signed in or before 2007, in the manner described in Section 3.3. Hence, this variable is exogenous to the credit crunch in the financial crisis, which came unexpected and the severity of which had not been anticipated.²⁷ Moreover, as shown in Figure 3, there was virtually no difference in the degree of financial vulnerability between foreign and domestically owned firms in any of the pre-crisis years 2005–2008. The foreign ownership status of firms was thus orthogonal to the measure of financial vulnerability we use in estimating the model in (10).

Table 3 reports our main estimation results. It demonstrates that it was especially the group of financially vulnerable firms for which the adverse effect of the financial crisis on firms' export shares was mitigated by foreign ownership. In other words, the ownership differential identified above is increasing in a firm's degree of financial vulnerability. The table reports estimates of the triple interaction effects θ_r , $r=2006,\ldots,2012$ in equation (10), first for the full sample (columns (1) and (2)), and then separately for the samples of small firms (columns (3) and (4)) and large firms (columns (5) and (6)). In each case, we first use the FE estimator and then the PSR estimator described in the previous section. We find economically and statistically significant triple interaction effects for 2009 and the subsequent years in the full sample. As in the case of our DiD results, the DiDiD effects are greater among small firms, which were more likely to face binding credit constraints. In the sample of large firms, the DiDiD effects are not statistically significant. Overall, these results provide strong support for Proposition 1 and the financial advantage of foreign ownership on export markets.

To provide a quantitative perspective on our estimates, we evaluate the ownership differential at different degrees of financial vulnerability. Focusing on the sample of small firms, we find that the estimated ownership differential is larger by 5.4 percentage points at the 75th percentile of

²⁶Further parameters to be estimated in equation (10) are the coefficients of the two-way interaction terms, i.e., ρ , ϕ_r and δ_r , $r=2006,\ldots,2012$, as well as the coefficient of the foreign ownership dummy γ . The fixed effects D_i and D_{st} absorb $FinVul_i$ and Y_r , $r=2006,\ldots,2012$. These estimates are not reported below to economize on space.

²⁷We carefully explore the timing of our measure of financial vulnerability and its implications for our main results in Appendix B.3.

Table 3: The credit channel of foreign ownership (DiDiD)

	Dependent variable: Export share (exports/sales)						
	Full sample		Small	Small firms		Large firms	
	FE PSR		FE	FE PSR		PSR	
	(1)	(2)	(3)	(4)	(5)	(6)	
Foreign \cdot FinVul \cdot Y_{2006}	-0.0182	-0.0301	-0.0189	-0.0376	0.0689	0.0203	
	(0.0233)	(0.0227)	(0.0335)	(0.0249)	(0.0622)	(0.0526)	
Foreign \cdot FinVul \cdot Y_{2007}	-0.00485	-0.00975	0.00784	-0.00394	0.0254	-0.00270	
_	(0.0230)	(0.0200)	(0.0319)	(0.0230)	(0.0568)	(0.0474)	
Foreign \cdot FinVul \cdot Y_{2008}	0.00961	-0.000947	0.0157	-0.0100	0.0681	0.0548	
_	(0.0214)	(0.0178)	(0.0367)	(0.0179)	(0.0571)	(0.0503)	
Foreign \cdot FinVul \cdot Y_{2009}	0.0810*	0.155***	0.185***	0.182***	0.0767	0.104	
-	(0.0464)	(0.0414)	(0.0206)	(0.0115)	(0.0650)	(0.0808)	
Foreign \cdot FinVul \cdot Y_{2010}	0.0843	0.149***	0.201***	0.181***	0.0639	0.0856	
	(0.0546)	(0.0476)	(0.0243)	(0.0170)	(0.0648)	(0.0588)	
Foreign \cdot FinVul \cdot Y_{2011}	0.0799*	0.138***	0.200***	0.178***	0.0510	0.0382	
	(0.0483)	(0.0412)	(0.0264)	(0.0142)	(0.0764)	(0.0597)	
Foreign \cdot FinVul \cdot Y_{2012}	0.0779	0.131***	0.194***	0.174***	0.0224	-0.0131	
	(0.0494)	(0.0363)	(0.0316)	(0.0146)	(0.0716)	(0.0641)	
Observations	12,488	9,937	8,873	6,720	3,615	3,217	
R ² (within)	0.069	0.165	0.093	0.289	0.106	0.116	

Notes: The table shows estimates of equation (10). The dependent variable is the export share. Foreign is a dummy variable indicating foreign ownership. FinVul is the financial vulnerability of the firm measured by the debt service-to-sales ratio in 2008. Y_t are year dummies. All estimations include the Foreign dummy, a full set of two-way interaction terms between Foreign, FinVul, and the year dummies, as well as firm fixed effects and industry-year fixed effects. The even columns apply propensity score reweighting (PSR). Robust standard errors (in parentheses) are clustered at the firm level. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

financial vulnerability compared to the 25th percentile.²⁸ The magnitude of this triple difference effect is large, since it must be evaluated against the mean export share of 10.6% in the underlying estimation sample. And it is even twice as large, amounting to 12 percentage points, if we compare firms at the 90th to the 10th percentile of financial vulnerability.

Note that in the sample of small firms, the results are very similar across the two different estimators, both in terms of magnitudes and significance levels. Moreover, we cannot reject the null hypothesis that $\theta_{2009} = \theta_{2010} = \theta_{2011} = \theta_{2012}$, i.e., the coefficients of the triple interaction terms are remarkably stable over the period 2009–2012. For the remaining part of our analysis, we

²⁸The 25th and 75th percentiles of financial vulnerability in the estimation sample of small firms are 0.210 and 0.507, respectively, after applying sampling weights. We compute the differential effect as $\hat{\theta}_{2009} \cdot (0.507 - 0.210)$, using the estimate of θ_{2009} from column (4). Note that these effects are estimated relative to the base year 2005. However, we find no evidence of differential effects before 2009, consistent with a common pre-crisis trend. Thus, the reported magnitudes are approximately equal to the effect in 2009 relative to 2008.

therefore define a *Crisis* dummy variable which takes on the value zero for the period 2005–2008 and the value one for the period 2009–2012.

4.3 Extensive versus intensive margin of exports

We proceed by investigating the precise firm-level margin that is driving our results. In particular, we distinguish between the extensive and the intensive margin of exports in our triple differences analysis. This allows us to see whether, among financially vulnerable firms, foreign ownership helped firms to continue (or even start) exporting in the crisis, or to maintain high volumes of exports, or both. This distinction is important: If the effect is concentrated at the extensive margin of exports, then it must be the fixed rather than the variable costs of exporting that matter in the presence of capital market imperfections (see e.g. the discussions in Minetti and Zhu, 2011; Muûls, 2015). It also connects our findings to the literature on the micro structure of the great trade collapse, which has found predominantly intensive-margin adjustments in the crisis (Behrens et al., 2013; Bricongne et al., 2012; Eppinger et al., 2018).

We estimate our triple differences model using two different dependent variables: For the extensive margin, we define an exporter dummy which is equal to one if the firm has positive exports in a given year and zero otherwise. For the intensive margin, we use the volume of exports (deflated and in logs), which implies that we only include exporting firms in this regression.

Our estimates in Table 4 reveal that the export-promoting effect of foreign ownership in the crisis was concentrated at the intensive rather than the extensive margin. This suggests that problems with financing the fixed costs of exporting played a minor role in the crisis. Before dissecting the two margins, we estimate our benchmark specification (10) using the export share as the main dependent variable as well as the *Crisis* dummy instead of the year dummies in the main interaction terms. We find the same triple differences results as before in the previous section; see columns (1) and (2). When using the export dummy as the dependent variable in columns (3) and (4), we find no evidence of a differential effect at the extensive margin of exports. The triple interaction effect is not significantly different from zero, and the same applies to the two-way interaction effect between *Foreign* and *Crisis* in this model or in a DiD model (not reported). By contrast, at the intensive margin, foreign ownership had a large and highly significant differential effect on the volume of exports for financially vulnerable firms, as revealed in columns (5) and (6). In terms of magnitude, the estimated triple interaction effect in column (6) suggests that foreign ownership raised export volumes in the crisis by 20.1% more for firms at the 75th percentile of financial vulnerability compared to those at the 25th percentile.

Table 4: Extensive versus intensive margin of exports (DiDiD)

	Export share		Exporter dummy		ln <i>exports</i>	
	FE PSR		FE	FE PSR		PSR
	(1)	(2)	(3)	(4)	(5)	(6)
Foreign · FinVul · Crisis	0.0852* (0.0497)	0.155*** (0.0410)	0.00590 (0.0150)	-0.000989 (0.0161)	0.458*** (0.156)	0.699*** (0.131)
Observations R ² (within)	12,488 0.065	9,937 0.161	12,488 0.017	9,937 0.023	8,056 0.052	6,585 0.092

Notes: The table shows estimates of variants of equation (10). The dependent variable is the export share in columns (1) and (2), an export dummy in columns (3) and (4), and the log of export sales in columns (5) and (6). *Foreign* is a dummy variable indicating foreign ownership. *FinVul* is the financial vulnerability of the firm measured by the debt service-to-sales ratio in 2008. *Crisis* is a dummy variable indicating the period 2009–2012. All estimations include the *Foreign* dummy, a full set of two-way interaction terms between *Foreign*, *FinVul*, and *Crisis*, as well as firm fixed effects and industry-year fixed effects. Robust standard errors (in parentheses) are clustered at the firm level. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

4.4 Foreign versus domestic corporate groups

Our analysis builds on the idea that foreign-owned firms can tap into additional funds via internal capital markets. However, domestically owned firms might also have access to such internal capital markets if they belong to a corporate group able to reallocate funds across multiple firms. Therefore, an interesting question is whether the financial advantage identified above derives from *foreignness* of the parent firm as such, or from membership in a corporate group of firms regardless of location (foreign or domestic).

The ESEE data set allows us to address this question. It directly asks firms every fourth year whether they belong to a corporate group (i.e., a group of multiple firms). We thus use this piece of information from the pre-crisis year 2006 in our analysis. In that year, around 14.5% of firms in Spanish manufacturing belonged to a corporate group (compared to 4.2% in foreign ownership). To understand how membership in a corporate group affected firm exports in the crisis, we augment our DiD and DiDiD specifications (with the year dummies collapsed into a *Crisis* dummy) by two interaction terms: *Corporate group* · *Crisis* and *Corporate group* · *FinVul* · *Crisis*, where *Corporate group* is a dummy variable indicating membership in a corporate group in 2006.

The results are reported in Table 5. The estimates from the augmented DiD model in columns (1) and (2), with and without reweighting, reveal that membership a corporate group was associated with higher export shares in the crisis. Importantly, the positive interaction effect between *Foreign* and *Crisis* is confirmed in these regressions, and it is evidently more important than corporate group membership, as the point estimates are almost twice the size of the differential corporate group membership effect. To investigate whether the latter is associated with internal capital

markets, we add triple interaction terms with financial vulnerability (and all relevant two-way interactions) in columns (3) and (4). While our main finding on the financial advantage of foreign ownership is confirmed, the role of membership in a corporate group in the crisis is less clear as we see no significant interaction effect with financial vulnerability. Hence, the evidence remains inconclusive as to whether the ability to reallocate funds across *domestic* firms in internal capital markets benefits exports. Rather, we find clear evidence suggesting that *foreignness* of the parent firm is crucial.

Table 5: Foreign versus domestic corporate groups

	Dependent variable: Export share (exports/sales)					
	FE	PSR	FE	PSR		
	(1)	(2)	(3)	(4)		
Foreign · Crisis	0.0258**	0.0391**	-0.0148	-0.0311		
	(0.0107)	(0.0162)	(0.0225)	(0.0198)		
Foreign · FinVul · Crisis			0.0849*	0.146***		
			(0.0502)	(0.0431)		
Corporate group · Crisis	0.0130*	0.0248**	0.0150	0.00783		
	(0.00744)	(0.0112)	(0.0123)	(0.0156)		
Corporate group · FinVul · Crisis			-0.00362	0.0234		
			(0.0226)	(0.0304)		
Observations	12,575	10,282	11,852	9,897		
R ² (within)	0.060	0.090	0.068	0.164		

Notes: The table shows estimates of equation (9) in columns (1) and (2) and of equation (10) in columns (3) and (4), with the additional interaction terms listed. The dependent variable is the export share. Foreign is a dummy variable indicating foreign ownership. FinVul is the financial vulnerability of the firm measured by the debt service-to-sales ratio in 2008. Crisis is a dummy variable indicating the period 2009–2012. All estimations include the Foreign dummy, a full set of two-way interaction terms between Foreign, FinVul, and Crisis, as well as firm fixed effects and industry-year fixed effects. Robust standard errors (in parentheses) are clustered at the firm level. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

4.5 The market access channel of foreign ownership

In this section we shed light on the role of foreign MNEs in providing their subsidiaries with access to export markets in the crisis (the market access channel). To this end we exploit a specific question in the ESEE survey that directly asks whether firms rely on the distribution network of their foreign parents for exporting. This question is unique to the ESEE data set and makes it a particularly valuable tool for studying the role of foreign ownership for exports (for other studies exploiting this feature of the data set see Guadalupe et al., 2012; Koch and Smolka, 2019). The

question appears in the survey every four years, which allows us to study two related yet distinct aspects of the market access channel: First, we study the evolution of export shares through the crisis conditional on the use of the parent's distribution network as reported in 2006 (i.e., before the crisis). Second, we consider also changes in this variable between 2006 and the crisis year 2010, and focus on firms that started to use their foreign parent's distribution network in the crisis.

While the role of market access in promoting exports of foreign-owned firms in the crisis is interesting by itself, it is also of crucial importance in the context of our analysis for two reasons. First, the market access channel could be a confounding factor explaining our finding of a sizable and significant ownership differential in our DiD model that we might falsely attribute to the financial channel. Secondly, and more importantly, the market access channel and the financial channel of foreign ownership might be intertwined, in the sense that firms relying on their foreign parent's distribution channels face lower cost of exporting and hence have less financing needs. This would imply a twin financial advantage for foreign-owned firms: On the one hand, they can finance their export activities through funds available from their foreign parents, and on the other hand, they can reduce their financing needs by relegating distribution and marketing activities associated with exporting to their foreign parents.²⁹ In the following we explore these aspects in detail.

We start by investigating whether firms' exports performed better in the crisis if they used their foreign parents' distribution networks in 2006, which is pre-determined and hence exogenous to the crisis. Columns (1) and (2) in panel A of Table 6 report estimates of the DiD model augmented by an interaction term between *Use parent network*₂₀₀₆ and *Crisis*, where the former is a firm-specific and time-constant dummy variable for the use of the foreign parent's distribution network for exporting in 2006.³⁰ Whether we look at the FE estimator or the PSR estimator, the results provide no indication that using this distribution channel on average helped to promote exports beyond the effect of foreign ownership per se. We obtain the same result in the DiDiD specification in columns (3) and (4), where our previous finding on the financial advantage of foreign ownership is confirmed, but the interaction effect between *Use parent network*₂₀₀₆ and *Crisis* remains insignificant.

An interesting pattern emerges as we focus explicitly on the firm's financial vulnerability. The specification in columns (5) and (6) augments the DiDiD model with a triple interaction term Use parent $network_{2006} \cdot FinVul \cdot Crisis$, and thus provides insights into potential interdependencies between the market access channel and the financial channel. Specifically, if using the foreign parent's distribution network serves to reduce the cost of exporting, this should lower the finan-

²⁹While the theoretical modeling of the market access channel is beyond the scope of our paper, it is clear that optimal decision-making on the part of the foreign MNE must involve the efficient allocation of scarce financial resources across subsidiaries as well as the efficient integration of subsidiaries into the MNE's distribution network.

 $^{^{30}}$ By definition, the foreign ownership dummy is equal to one in 2006 when *Use parent network*₂₀₀₆ is one, but not vice versa.

cial burden on firms using this network, and hence the role of financial vulnerability in the crisis should be diminished for these firms. This intuition is confirmed in our regressions. The triple interaction effect Foreign · FinVul · Crisis is positive and significant, as before. By contrast, the triple interaction effect between Use parent network₂₀₀₆, FinVul, and Crisis is negative and highly significant, at least when using the PSR estimator, indicating a less important role of financial vulnerability among firms that are exporting via their foreign parent's distribution network. These results suggest that foreign ownership fostered firm exports in the crisis by providing both credit and market access — but the use of the distribution network seems to be diminishing the value of internal capital markets.

To open up another perspective on the link between the financial channel and MNEs' distribution networks, we next exploit changes in the use of the market access channel over time. Given the difficulties in raising finance in the financial crisis, it seems reasonable to expect that the parent's distribution network has become a more attractive vehicle for exporting in the crisis. Indeed, our data reveal that the share of foreign-owned firms using this distribution channel increased considerably between 2006 and 2010, from 43.1% to 54.9%. This constitutes highly suggestive evidence that foreign-owned firms started using their parent's distribution network in response to the financial crisis in order to reduce exporting costs and mitigate liquidity problems. To identify the effect on exports, we run a series of regressions on a reduced sample, restricted to the years 2006 and 2010 (i.e., the two years around the crisis in which we have data on the market access channel). The central variable of interest that we add to our benchmark DiDiD model is the time-varying dummy variable $Use\ parent\ network_t$, the coefficient of which is identified only from within-firm variation over time. Notably, these regressions should not be interpreted as causal evidence on the market access channel, since the use of distribution networks plausibly changed due to the crisis and may hence be endogenous to exports.

Panel B of Table 6 investigates whether increased reliance on foreign parents' distribution networks helped in promoting exports in the crisis. To benchmark our estimates, columns (1) and (2) first validate our previous result on the financial channel of foreign ownership in the reduced sample for 2006 and 2010 using the FE and PSR estimators, respectively. Columns (3) and (4) add the market access channel and shows that firms which *started* using their parent's distribution network significantly improved their export performance in 2010. This is novel evidence that highlights the value of MNEs' distribution networks in the crisis. In the final two columns of panel B, we interact the time-varying variable *Use parent network* $_t$ with the firm's financial vulnerability. The positive and significant interaction effect demonstrates that the exports of financially vulnerable firms benefitted the most from adopting the market access channel in the crisis. This is intuitive because doing so serves to lower the cost of exporting and thus to sidestep the associated financ-

Table 6: Export market access via foreign parent's distribution network

		Dependent	variable: E	export share	(exports/sal	les)
	FE	PSR	FE	PSR	FE	PSR
	(1)	(2)	(3)	(4)	(5)	(6)
A. Using foreign parent's dis	stribution n	etwork bef	ore the cris	sis (full par	nel)	
Foreign · Crisis	0.0389***	0.0612**	-0.00175	-0.0219	-0.0107	-0.0326*
	(0.0129)	(0.0262)	(0.0216)	(0.0194)	(0.0262)	(0.0172)
Foreign · FinVul · Crisis			0.0843*	0.154***	0.100*	0.170***
			(0.0491)	(0.0406)	(0.0573)	(0.0311)
Use parent network ₂₀₀₆	-0.0215	-0.0318	-0.0177	-0.0144	0.00802	0.0432**
· Crisis	(0.0149)	(0.0270)	(0.0142)	(0.0160)	(0.0267)	(0.0212)
Use parent network ₂₀₀₆					-0.0522	-0.122***
· FinVul · Crisis					(0.0528)	(0.0356)
Observations	15,628	10,325	12,488	9,937	12,488	9,937
R ² (within)	0.055	0.089	0.065	0.162	0.066	0.169
B. Start using foreign parent						0.121444
Foreign · FinVul · Crisis	0.125**	0.199***	0.168***	0.234***	0.124***	0.131***
	(0.0575)	(0.0476)	(0.0561)	(0.0455)	(0.0346)	(0.0435)
Use parent network $_t$			0.0446**	0.0488**	-0.00311	-0.0182
11 , 1 E 17 1			(0.0222)	(0.0245)	(0.0291)	(0.0298)
I so narout notwork. Hin Vul					0.110** (0.0527)	0.139*** (0.0409)
Ose parent networkt · Tinvin					(0.0527)	(H H) H H H H H
Ose parem network $_t$. I invar					(0.0321)	(0.0409)
Use parent $network_t \cdot FinVul$ Observations	3,198	2,535	2,021	1,662	2,021	1,662

Notes: The table shows estimates of equation (9) in columns (1) and (2) of panel A and of equation (10) in all remaining columns, with the additional covariates listed. Panel A is based on the full estimation sample, while panel B is restricted to the years 2006 and 2010 when firms report their use of the foreign parent's distribution network. The dependent variable in all regressions is the export share. Use parent network₂₀₀₆ is constant within firms, while Use parent network_t is a time-varying variable. Foreign is a dummy variable indicating foreign ownership. FinVul is the financial vulnerability of the firm measured by the debt service-to-sales ratio in 2008. Crisis is a dummy variable indicating the period 2009–2012. All estimations include the Foreign dummy, a full set of two-way interaction terms between Foreign, FinVul, and Crisis, as well as firm fixed effects and industry-year fixed effects. Robust standard errors (in parentheses) are clustered at the firm level. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

ing requirements, which is especially beneficial for financially vulnerable firms. Note that this interpretation is in line with our conclusions from panel A, since we use a different type of variation in the data there. Firms that *already* relied on the parent's distribution network before the crisis (as measured in panel A) benefited less from internal capital markets because they had lower trade costs that required financing. Those that *started* using the parent's distribution network (in panel B) benefited the most if they were financially vulnerable. Taken together, the evidence in

Table 6 paints a consistent picture according to which foreign-owned firms were able to mitigate the impact of credit constraints in the crisis in two different ways: by borrowing abroad through the foreign parent, and by using the parent's distribution network to reduce exporting costs and the associated financing needs. Both of these channels seem to have been important for foreign-owned firms in Spain during the global financial crisis.

4.6 Robustness analysis

In this section, we offer several robustness checks supporting our main triple difference result on the credit channel of foreign ownership. In particular, we address potential concerns related to (i) confounding factors at the firm level, (ii) the role of demand shocks in export markets, and (iii) the fractional response variable in our empirical model.

4.6.1 Confounding factors at the firm level

We begin by tackling concerns that firm-specific factors correlated with foreign ownership or financial vulnerability might confound our triple difference estimates. To do so, we modify our DiDiD specification in three different ways. First, we augment the model to include a comprehensive set of industry-size-year fixed effects, distinguishing between six different size groups of firms in terms of their number of employees (≤20; 21–50; 51–100; 101–200; 201–500; >500). Secondly, we bring in additional control variables at the firm level, viz. total factor productivity (TFP, in logs), capital intensity (in logs), skill intensity (in logs), and R&D intensity (all lagged by one year), and we interact these variables with year dummies in order to allow for differential effects over time, especially during the financial crisis.³¹ Thirdly, we extend the PSR approach by including proxies of financial health in the propensity score estimation, to account for the possibility that MNEs target financially vulnerable exporting firms (Manova et al., 2015).³² In this extended PSR approach, we also allow for a firm's foreign ownership status to be influenced by R&D intensity, skill intensity, and the size group of the firm (included as a fixed effect). As in the baseline propensity score estimation, all of these variables are observed in 2006.

Columns (1) to (3) of Table 7 report the results corresponding to these different modifications. In the last column of the table, we combine all modifications in one estimation, i.e., we augment the model to include a richer set of fixed effects, we bring in additional firm-level covariates interacted with year dummies, and we use our extended PSR approach. The bottom line is that the

³¹Our measure of TFP is the index used by Delgado et al. (2002) based on the ESEE data. It is constructed as the log of the firm's output minus a cost-share weighted sum of the log of the firm's inputs. This approach goes back to Caves et al. (1982). We use a firm's average wage to proxy for its skill intensity, as this variable is available for every year in our data set, while a direct measure of skill intensity based on workers' educational background is available only for every fourth year.

³²We measure financial health by the firm's debt service (in logs) and debt ratio (total debt over total assets).

estimated coefficient of our main triple interaction term proves to be highly robust to all of these modifications.

Table 7: Robustness – Controlling for confounding factors

	Dependent variable: Export share (exports/sales)							
	Richer FE structure	All combined						
	(1)	(2)	(3)	(4)				
Foreign · FinVul · Crisis	0.154*** (0.0378)	0.160*** (0.0418)	0.145*** (0.0430)	0.147*** (0.0408)				
Observations R ² (within)	9,937 0.273	8,468 0.174	9,592 0.169	8,207 0.289				

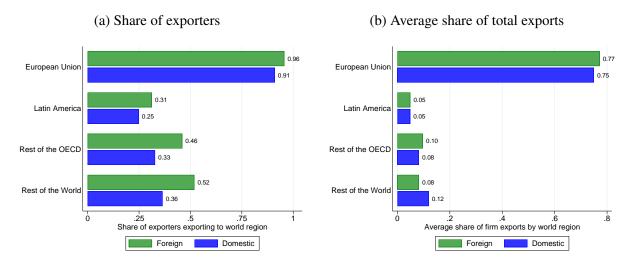
Notes: The table shows estimates of variants of equation (10). The dependent variable is the export share. Foreign is a dummy variable indicating foreign ownership. FinVul is the financial vulnerability of the firm measured by the debt service-to-sales ratio in 2008. Crisis is a dummy variable indicating the period 2009-2012. All estimations include the Foreign dummy, a full set of two-way interaction terms between Foreign, FinVul, and the Crisis dummy, as well as firm fixed effects and industry-year fixed effects. Column (1) controls for industry-size-year fixed effects. Column (2) controls for firm-level TFP (in logs), capital intensity (in logs), skill intensity (in logs), and R&D intensity (all lagged by one year and interacted with year dummies). Columns (1) and (2) employ PSR as described in the main empirical analysis; column (3) augments the propensity score estimation by adding a firm's debt service (in logs), debt ratio (total debt over total assets), R&D intensity, skill intensity, and size group as a fixed effect (all observed in 2006). Column (4) combines all modifications introduced in columns (1) to (3) in one estimation. Robust standard errors (in parentheses) are clustered at the firm level. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

4.6.2 Market-specific demand shocks

Next, we investigate whether the fact that some countries were hit much harder by the global financial crisis than others may confound our main estimation results. This could be the case if foreign-owned firms in Spain had a different geographic composition of exports than domestically owned firms already before the crisis. In particular, if foreign-owned firms were relatively more engaged in serving markets that turned out to be more robust in the crisis, then we should expect their exports to be more stable. In fact, more geographically distant markets, in particular across Asia, experienced a much smaller drop in aggregate demand than markets across Europe. And as we see in our data, foreign-owned firms are more likely to serve more distant markets. Hence, market-specific demand shocks could provide an alternative rationale for the superior export performance of foreign-owned firms in the crisis, besides the financial channel that we have stressed in our main analysis.³³

³³However, we have no reason to expect that market-specific demand shocks are correlated with Spanish firms' financial vulnerability. Hence, our triple difference results are not easily attributable to heterogeneous demand shocks.

Our data allow us to investigate the role of market-specific demand shocks by exploiting information on the composition of firms' exports by world region. We can distinguish firm exports in 2006 (before the crisis) and 2010 (during the crisis) to the following four world regions:³⁴ the European Union (EU), Latin America, other OECD countries, and the rest of the world (Africa, most of Asia, and Eastern Europe). While admittedly broad, this aggregation groups together countries with similar levels of income per capita and at a similar geographic and cultural distance to Spain. Also, the financial crisis had a very strong adverse effect on aggregate demand in the EU and other OECD countries, since the crisis originated in the U.S. and spilled over quickly to Western Europe, whereas Latin America and the rest of the world were less affected. This fact is clearly reflected in our micro data, which show that Spanish firms' real exports to other EU countries declined between 2006 and 2010, while they were growing for the other three destinations, at average annualized rates between 5% and 11%.


Figure 4 illustrates the composition of firm exports by world region, separately for exporters in foreign vs. domestic ownership. Panels (a) and (b) show the respective shares of exporters (the extensive margin) and export volumes (the intensive margin) for each world region in the pre-crisis year 2006. Three observations are important in the context of our analysis. First, the overall picture looks rather similar across the two ownership groups: the EU is by far the dominant export market independent of ownership status. It is served by more than 90% of exporters and receives on average around three quarters of a firm's total exports. At the intensive margin, the shares of exports going to each world region are almost identical for firms in foreign and domestic ownership, with the difference between the two ownership groups never exceeding four percentage points. Secondly, conditional on being an exporter, foreign-owned firms are more likely to serve any given market (including the EU). This also implies that foreign-owned firms are more likely to serve multiple markets simultaneously.³⁵ Thirdly, foreign-owned firms are more likely to export to more distant world regions than domestically owned firms. The gap is largest for the geographically and culturally distant markets in the rest of the world (36% vs. 52%). This observation is consistent with the presumption that foreign-owned firms are better able to cover the higher costs of accessing more distant markets. These differences at the extensive margin point to the possibility that foreign-owned firms were on average exposed to more favorable demand shocks in the crisis than domestically owned firms.

We now assess whether these differences in the composition of exports coupled with marketspecific demand shocks have any bearing on our main findings. To this end, we augment our

³⁴Data at a higher frequency or on exports disaggregated by country of destination are not available in the ESEE.

³⁵We have also checked that this difference in the scope and diversification of exports per se is not driving our results. The positive estimate for our main triple interaction effect is robust to controlling for interaction terms of the *Crisis* dummy with the number of international markets served by a firm before the crisis.

Figure 4: Regional composition of exports by ownership status (2006)

Notes: This figure illustrates the composition of exports by world region for the year 2006, distinguished by firms in foreign vs. domestic ownership. Panel (a) shows the share of exporters with positive export sales for each world region; panel (b) shows the average share of an exporter's total exports for each world region. Sampling weights apply. *Source:* Authors' computations based on ESEE data.

triple difference specification (10), with the *Crisis* dummy replacing the year dummies, by a set of interaction terms of the *Crisis* dummy with the shares of exports destined for each world region (as observed in 2006). These pre-crisis shares capture the exposure of a firm to demand shocks in different world regions. Since the four shares are perfectly multicollinear, we omit the EU share as a base category. This analysis is restricted to firms with positive exports in 2006, as the shares are not defined for non-exporters.

The estimates are reported in Table 8. For the sake of comparison, the first two columns show the results from estimating our baseline DiDiD specification in the sample of firms with positive exports in 2006. The results are similar to the ones we obtain when using the full sample of firms; see columns (1) and (2) of Table 4. In columns (3) and (4), we add the interaction terms controlling for the regional composition of firm exports in 2006. The estimates show that shipping a larger share of exports to the rest of the world (e.g. Asia) *before* the crisis was clearly conducive to firm exports *during* the crisis. However, our estimates of the triple interaction effects are virtually identical to those in columns (1) and (2) for each estimator. These findings suggest that the differential exposure to market-specific demand shocks across firms does not confound our main estimates of the financial benefit of foreign ownership for firm exports in the crisis.

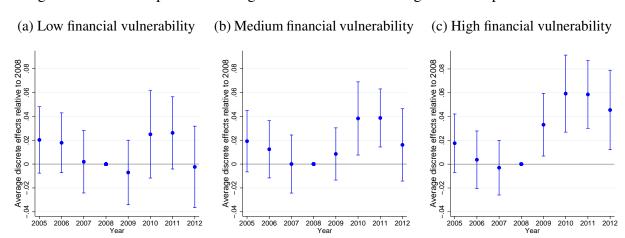
A related issue concerns the fact that foreign and domestically owned firms might differ in terms of the number and location of their foreign affiliates. The presence of foreign affiliates might help firms to switch from serving a foreign market via exporting to serving it via horizontal FDI.

Table 8: Robustness – Controlling for demand shocks by world regions

	Dependent variable: Export share (exports/sales)						
	FE	PSR	FE	PSR	FE	PSR	
	(1)	(2)	(3)	(4)	(5)	(6)	
Foreign · FinVul · Crisis	0.102**	0.174***	0.102**	0.172***	0.103**	0.174***	
	(0.0507)	(0.0408)	(0.0509)	(0.0399)	(0.0508)	(0.0392)	
Export share Latin America · Crisis			0.0117	0.0579	0.0117	0.0481	
-			(0.0264)	(0.0406)	(0.0269)	(0.0398)	
Export share rest of OECD · Crisis			0.0100	0.0107	0.0117	0.0102	
•			(0.0192)	(0.0259)	(0.0190)	(0.0251)	
Export share rest of world · Crisis			0.0479***	0.0632***	0.0495***	0.0658***	
•			(0.0179)	(0.0244)	(0.0180)	(0.0244)	
Affiliates $EU \cdot Crisis$,	0.0133	0.0126	
					(0.0115)	(0.0135)	
Affiliates Latin America · Crisis					0.00168	0.0222	
					(0.0169)	(0.0200)	
Affiliates rest of OECD · Crisis					-0.00833	-0.00840	
					(0.0223)	(0.0308)	
Affiliates rest of world · Crisis					-0.0223	-0.0446*	
v v					(0.0241)	(0.0232)	
Observations	7,434	6,414	7,434	6,414	7,434	6,414	
R ² (within)	0.081	0.182	0.083	0.185	0.084	0.188	

Notes: The table shows estimates of variants of equation (10) augmented by the listed interaction terms. The dependent variable is the export share. *Foreign* is a dummy variable indicating foreign ownership. *FinVul* is the financial vulnerability of the firm measured by the debt service-to-sales ratio in 2008. *Crisis* is a dummy variable indicating the period 2009–2012. All estimations include the *Foreign* dummy, a full set of two-way interaction terms between *Foreign*, *FinVul*, and *Crisis*, as well as firm fixed effects and industry-year fixed effects. Robust standard errors (in parentheses) are clustered at the firm level. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

To see whether this possibility is relevant in the context of our analysis, we estimate a specification that further includes a set of interaction terms between the *Crisis* dummy and dummy variables indicating the presence of foreign affiliates in each world region in 2006. We find no evidence that firms with foreign affiliates in a given world region experienced a more or less pronounced decline in exports during the crisis; see columns (5) and (6) of Table 8.


4.6.3 Fractional probit estimations

Next, we account for the fact that our dependent variable, the export share, is a fractional response variable that is naturally bounded between zero and one. For this reason, our linear fixed effects estimator may deliver inconsistent estimates of the treatment effect. To evaluate whether this is a problem in our application, we estimate a fractional probit model. Two complications arise with

this approach: First, it does not allow controlling for firm fixed effects without introducing an incidental parameters problem into the estimation. Second, due to the non-linearity of the model, the triple interaction effect that we are interested in is not simply equal to the coefficient of the interaction term.

To address the first issue, we use a Mundlak-Chamberlain device in estimating a correlated random effects version of equation (10). This approach replaces the firm fixed effects by firm-specific averages of all time-varying covariates (including all interaction terms), as in Papke and Wooldridge (2008). We also reweigh the fractional probit regression by the estimated propensity scores. To address the second issue, we compute average discrete effects of foreign ownership, evaluated in different years and at different levels of financial vulnerability.

Figure 5: Fractional probit – Average discrete effects of foreign ownership relative to 2008

Notes: This figure illustrates the average discrete effects of *Foreign* on the *Export share* in each year relative to 2008, evaluated at low, medium, and high levels of financial vulnerability, as represented by the 25th percentile (Figure 5(a)), the median (Figure 5(b)), and the 75th percentile (Figure 5(c)) of the debt service-to-sales ratio (*FinVul*) in 2008. They are estimated from fractional probit models with the same control variables as in equation (10), reweighted by the estimated propensity score, and accounting for firm-specific effects by including firm-specific averages of all time-varying covariates.

Figure 5 summarizes the estimation results from the fractional probit model. It displays the effect of foreign ownership on the export share in each year relative to 2008. The effects are evaluated at different levels of financial vulnerability, corresponding to the 25th, 50th, and 75th percentile of the in-sample distribution of *FinVul*, in panels (a), (b), and (c), respectively. For a low level of financial vulnerability, we find no significant differences in the effects, neither before nor after 2008. For a medium level of financial vulnerability, we continue to find no significant differences over the pre-crisis years, but the effects are positive and significant for 2010 and 2011. For a high level of financial vulnerability, we find that foreign ownership caused a significant increase in the export share in all years from 2009 through 2012 relative to 2008. These results

strongly support our main conclusions based on the linear model.

5 Conclusions

Foreign-owned firms are exceptionally successful on export markets along various margins. In this paper, we argue theoretically and empirically that this fact can be explained by the role of foreign ownership in mitigating financial constraints. In terms of theory, we introduce ownership differences in access to finance into a canonical trade model featuring firm heterogeneity and capital market imperfections (Manova, 2013). In the model, foreign-owned firms can raise export finance by tapping into additional funds via their foreign parent's internal capital market, an option that is unavailable to domestically owned firms. This provides foreign-owned firms with a financial advantage that allows them to maintain higher export levels and shares than their domestically owned competitors. Crucially, the model predicts that this financial advantage of foreign ownership will be more pronounced among financially vulnerable firms.

In our empirical analysis, we exploit rich firm-level data from Spain and leverage the global financial crisis as an exogenous shock to credit market conditions. We propose a triple differences identification strategy that exploits variation in the ownership structure of firms (foreign vs. domestic), the timing of the financial crisis, and firms' financial vulnerability just before the crisis. Our estimations reveal clear-cut evidence that the credit supply shock in the financial crisis increased the exports of foreign-owned compared to domestically owned firms. Consistent with a financial advantage of foreign ownership, we find that this differential effect was significantly larger among firms that entered the crisis with higher degrees of financial vulnerability.

We further contribute to the literature by investigating how using the distribution network of their foreign parent contributed to promoting the exports of foreign-owned firms in the crisis. This allows us to shed light on hitherto unexplored interdependencies between this market access channel and the credit channel discussed before. The evidence suggests that using their parent's distribution network serves to reduce the exporting costs of foreign-owned firms and thereby mitigates financial problems. Consistent with this interpretation, exports in the crisis were increasingly channeled through the foreign parents' distribution network.

Our findings point to significant firm-level complementarities between FDI and trade, which gained particular importance in the crisis. More specifically, the financial advantage of foreign ownership that we have identified suggests that multinational firms can play an important role in circumventing cross-border frictions in capital markets, which in turn proves to be particularly beneficial for international trade. These interdependencies should be duly taken into account in designing effective policies regulating FDI and trade.

References

- **Ahn, J., M. Amiti, and D. E. Weinstein**, "Trade Finance and the Great Trade Collapse," *American Economic Review*, 2011, *101* (3), 298–302.
- **Alfaro, L. and M. X. Chen**, "Surviving the Global Financial Crisis: Foreign Ownership and Establishment Performance," *American Economic Journal: Economic Policy*, 2012, 4 (3), 30–55.
- **Alvarez, R. and H. Görg**, "Multinationals as Stabilizers? Economic Crisis and Plant Employment Growth," IZA Discussion Papers 2692, Institute for the Study of Labor (IZA) March 2007.
- **Amiti, M. and D. E. Weinstein**, "Exports and Financial Shocks," *The Quarterly Journal of Economics*, 2011, *126* (4), 1841–1877.
- **Antràs, P. and C. F. Foley**, "Poultry in Motion: A Study of International Trade Finance Practices," *Journal of Political Economy*, 2015, *123* (4), 853–901.
- _ , M. A. Desai, and C. F. Foley, "Multinational Firms, FDI Flows, and Imperfect Capital Markets," *The Quarterly Journal of Economics*, 2009, *124* (3), 1171–1219.
- **Arnold, J. M. and B. S. Javorcik**, "Gifted Kids or Pushy Parents? Foreign Direct Investment and Plant Productivity in Indonesia," *Journal of International Economics*, 2009, 79 (1), 42–53.
- **Auboin, M.**, "Boosting the Availability of Trade Finance in the Current Crisis: Background Analysis for a Substantial G20 Package," CEPR Policy Insight 35, CEPR 2009.
- **Beck, T.**, "Financial Development and International Trade: Is There a Link?," *Journal of International Economics*, 2002, 57 (1), 107–131.
- _ , A. Demirgüç-Kunt, L. Laeven, and R. Levine, "Finance, Firm Size, and Growth," *Journal of Money, Credit and Banking*, 2008, 40 (7), 1379–1405.
- **Behrens, K., G. Corcos, and G. Mion**, "Trade Crisis? What Trade Crisis?," *Review of Economics and Statistics*, 2013, 95 (2), 702–709.
- **Berman, N. and J. Héricourt**, "Financial factors and the margins of trade: Evidence from cross-country firm-level data," *Journal of Development Economics*, 2010, 93 (2), 206–217.
- **Boddin, D., H. Raff, and N. Trofimenko**, "Foreign Ownership and the Export and Import Propensities of Developing-country Firms," *The World Economy*, 2017, 40 (12), 2543–2563.

- Bricongne, J.-C., L. Fontagné, G. Gaulier, D. Taglioni, and V. Vicard, "Firms and the Global Crisis: French Exports in the Turmoil," *Journal of International Economics*, 2012, 87 (1), 134–146.
- Caves, D. W., L. R. Christensen, and W. Diewert, "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," *Econometrica*, 1982, 50 (6), 1393–1414.
- **Chaney, T.**, "Liquidity Constrained Exporters," *Journal of Economic Dynamics and Control*, 2016, 72 (C), 141–154.
- **Chor, D. and K. Manova**, "Off the Cliff and Back? Credit Conditions and International Trade during the Global Financial Crisis," *Journal of International Economics*, 2012, 87 (1), 117–133.
- **Delgado, M. A., J. C. F. nas, and S. Ruano**, "Firm Productivity and Export Markets: A Non-parametric Approach," *Journal of International Economics*, 2002, 57 (2), 397–422.
- **Desai, M. A., C. F. Foley, and J. R. Hines**, "A Multinational Perspective on Capital Structure Choice and Internal Capital Markets," *The Journal of Finance*, 2004, *59* (6), 2451–2487.
- **Desai, M. A., C. F. Foley, and K. J. Forbes**, "Financial Constraints and Growth: Multinational and Local Firm Responses to Currency Depreciations," *Review of Financial Studies*, November 2008, *21* (6), 2857–2888.
- **Egger, P. and C. Keuschnigg**, "Access to Credit and Comparative Advantage," *Canadian Journal of Economics*, 2017, 50 (2), 481–505.
- ______, **V. Merlo, and G. Wamser**, "Corporate Taxes and Internal Borrowing within Multinational Firms," *American Economic Journal: Economic Policy*, 2014, 6 (2), 54–93.
- **Eppinger, P., N. Meythaler, M.-M. Sindlinger, and M. Smolka**, "The Great Trade Collapse and the Spanish Export Miracle: Firm-level Evidence from the Crisis," *The World Economy*, 2018, 41 (2), 457–493.
- **Feenstra, R. C., Z. Li, and M. Yu**, "Exports and Credit Constraints under Incomplete Information: Theory and Evidence from China," *The Review of Economics and Statistics*, 2014, 96 (3), 729–744.
- **Foley, C. and K. Manova**, "International Trade, Multinational Activity, and Corporate Finance," *Annual Review of Economics*, 2015, 7 (1), 119–146.

- Fons-Rosen, C., S. Kalemli-Ozcan, B. E. Sørensen, C. Villegas-Sanchez, and V. Volosovych, "Quantifying Productivity Gains from Foreign Investment," 2019. University of California at Merced, mimeo.
- **Garicano, L. and C. Steinwender**, "Survive Another Day: Using Changes in the Composition of Investments to Measure the Cost of Credit Constraints," *The Review of Economics and Statistics*, 2016, 98 (5), 913–924.
- **Gertler, M. and S. Gilchrist**, "Monetary Policy, Business Cycles, and the Behavior of Small Manufacturing Firms," *Quarterly Journal of Economics*, 1994, *109* (2), 309–340.
- Gertner, R. H., D. S. Scharfstein, and J. C. Stein, "Internal versus External Capital Markets," *The Quarterly Journal of Economics*, 1994, 109 (4), 1211–30.
- **Greenaway, D., A. Guariglia, and R. Kneller**, "Financial Factors and Exporting Decisions," *Journal of International Economics*, 2007, 73 (2), 377–395.
- **Guadalupe, M., O. Kuzmina, and C. Thomas**, "Innovation and Foreign Ownership," *American Economic Review*, 2012.
- Guiso, L., P. Sapienza, and L. Zingales, "Does Local Financial Development Matter?," *Quarterly Journal of Economics*, 2004, 119 (3), 929–969.
- **Hirano, K., G. W. Imbens, and G. Ridder**, "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," *Econometrica*, 2003, 71 (4), 1161–1189.
- **Javorcik**, **B. and S. Poelhekke**, "Former Foreign Affiliates: Cast Out and Outperformed?," *Journal of the European Economic Association*, 2017, *15* (3), 501–539.
- **Kletzer, K. and P. Bardhan**, "Credit Markets and Patterns of International Trade," *Journal of Development Economics*, 1987, 27 (1-2), 57–70.
- **Koch, M. and M. Smolka**, "Foreign Ownership and Skill-biased Technological Change," *Journal of International Economics*, 2019, *118*, 84–104.
- **Manova, K.**, "Credit Constraints, Equity Market Liberalizations and International Trade," *Journal of International Economics*, 2008, 76 (1), 33–47.
- _____, "Credit Constraints, Heterogeneous Firms, and International Trade," *Review of Economic Studies*, 2013, 80 (2), 711–744.
- _ , S.-J. Wei, and Z. Zhang, "Firm Exports and Multinational Activity under Credit Constraints," *Review of Economics and Statistics*, 2015, 97 (3), 574–588.

- **Melitz, M. J.**, "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity," *Econometrica*, 2003, 71 (6), 1695–1725.
- Minetti, R. and S. C. Zhu, "Credit Constraints and Firm Export: Microeconomic Evidence from Italy," *Journal of International Economics*, 2011, 83 (2), 109–125.
- _ , P. Murro, Z. Rotondi, and S. C. Zhu, "Financial Constraints, Firms' Supply Chains, and Internationalization," *Journal of the European Economic Association*, 01 2018, 17 (2), 327–375.
- **Muûls, M.**, "Exporters, Importers and Credit Constraints," *Journal of International Economics*, 2015, 95 (2), 333–343.
- **Papke, L. E. and J. M. Wooldridge**, "Panel data methods for fractional response variables with an application to test pass rates," *Journal of Econometrics*, July 2008, *145* (1-2), 121–133.
- **Paravisini, D., V. Rappoport, P. Schnabl, and D. Wolfenzon**, "Dissecting the Effect of Credit Supply on Trade: Evidence from Matched Credit-Export Data," *The Review of Economic Studies*, 2014.
- **Raff, H. and J. Wagner**, "Foreign Ownership and the Extensive Margins of Exports: Evidence for Manufacturing Enterprises in Germany," *The World Economy*, 2014, 37 (5), 579–591.
- **Schmidt-Eisenlohr, T.**, "Towards a Theory of Trade Finance," *Journal of International Economics*, 2013, 91 (1), 96–112.
- Wang, J. and X. Wang, "Benefits of Foreign Ownership: Evidence from Foreign Direct Investment in China," *Journal of International Economics*, 2015, 97 (2), 325–338.

A Mathematical Appendix

A.1 Proof of Proposition 1

The left-hand side (LHS) of equation (6) is increasing in the price in the relevant range $p_j^{**}(a) \in [p_j^*(a), p_L(a)]$:

$$\frac{\partial LHS}{\partial p_{j}^{**}(a)} = (1 - \sigma)p_{j}^{**}(a)^{-\sigma} + \sigma p_{j}^{**}(a)^{-1-\sigma} \tau b_{j} a \left[1 - d(a) + (1 + r_{D})d(a)/\lambda\right]
\geq \left((1 - \sigma)\frac{\sigma}{\sigma - 1} \left[1 - d(a) + (1 + r_{D})d(a)\right] \tau b_{j} a + \sigma \tau b_{j} a \left[1 - d(a) + (1 + r_{D})d(a)/\lambda\right]\right) p_{j}^{**}(a)^{-1-\sigma}
= (1 + r_{D})d(a) \left(\frac{1 - \lambda}{\lambda}\right) \sigma \tau b_{j} a p_{j}^{**}(a)^{-1-\sigma} > 0$$

where the first inequality follows from plugging in the lowest optimal price $p_j^*(a)$ from equation (3) for $p_j^{**}(a)$ and the second follows from the fact that all parameters and prices are non-negative and $\lambda \in (0,1)$. Trivially, the right-hand side (RHS) of equation (6) is independent of the price.

To determine the impact of a deterioration in capital market efficiency λ on the optimal price of constrained exporters, we take the derivatives of LHS and RHS with respect to λ :

$$\frac{\partial LHS}{\partial \lambda} = p_j^{**}(a)^{-\sigma} \tau b_j a(1+r) d(a)/\lambda^2 > 0, \qquad \text{and} \qquad \frac{\partial RHS}{\partial \lambda} = -\frac{f_X b_j (1+r) d(a)}{\theta_j Y P_j^{\sigma-1} \lambda^2} < 0,$$

$$\frac{\partial^2 LHS}{\partial \lambda \partial r} = p_j^{**}(a)^{-\sigma} \tau b_j a d(a)/\lambda^2 > 0, \qquad \text{and} \qquad \frac{\partial^2 RHS}{\partial \lambda \partial r} = -\frac{f_X b_j d(a)}{\theta_j Y P_j^{\sigma-1} \lambda^2} < 0.$$

Hence, a decrease in λ increases the optimal price for constrained exporters and this effect is stronger for higher interest rates. Due to $r_F < r_D$, the effect will be stronger for domestically owned firms compared to foreign-owned firms (while both types of firms are equally affected for $r_F \geq r_D$). Also, the effect is stronger for more financially vulnerable firms that need to finance a larger share d(a) of exporting costs:

$$\frac{\partial^3 LHS}{\partial \lambda \partial r \partial d(a)} = p_j^{**}(a)^{-\sigma} \tau b_j a/\lambda^2 > 0, \quad \text{and} \quad \frac{\partial^3 RHS}{\partial \lambda \partial r \partial d(a)} = -\frac{f_X b_j}{\theta_j Y P_j^{\sigma-1} \lambda^2} < 0.$$

The comparative statics for quantities $q_j^{**}(a)$ and export revenues $p_j^{**}(a)q_j^{**}(a)$ follow from these results. They are the opposite of the price effects because quantities sold are inversely related to the price $p_j^{**}(a)$ via the demand schedule in equation (1). Thus, both export quantities and export revenues (i) decrease in response to a decrease in λ , (ii) they decrease more for domestically owned firms facing the higher interest rate, and (iii) this differential effect is stronger for more financially vulnerable firms.

Since firms finance all domestic activities internally and foreign-owned firms borrow at the unaffected foreign interest rate $r_F < r_D$, the comparative statics regarding the export revenues translate directly into the export share = exports/(exports + domestic sales) because domestic sales are unaffected by credit market conditions. This completes the proof of Proposition 1.

A.2 Modeling the financial crisis as an interest rate shock

In this appendix, we pursue an alternative modeling of the financial crisis as an increase in the domestic interest rate r_D relative to the foreign interest rate r_F . To keep the analysis simple, we model the financial crisis in this scenario as an increase in r_D , while r_F remains constant. The smaller drop in the foreign interest rate, at which foreign-owned firms can borrow, may be rationalized by a combination of three facts: the sheer size of most multinational firms, the large liquidity of the world capital market, and the geographical asymmetry of the crisis. In general, large multinational firms have multiple sources of financing, could offer substantial collateral also in the crisis, and continued to have access to thicker foreign capital markets. Most importantly, the financial crisis had an asymmetric effect across world regions, leaving banks in some countries (notably in East Asia and Eastern Europe) hardly affected at all. Arguably, multinational firms, and hence their affiliates, are more likely to have access to credit from such banks. They could tap the source of finance for which the interest rate remained lowest in the crisis.

For $r_F < r_D$, all foreign-owned firms access the foreign capital market both before and after the shock. In this case, we only need to consider how an increase in the real interest rate r_D affects the export shares of domestically owned firms: $\partial(exports/sales)/\partial r_D$. If the sign of this derivative is negative, foreign-owned firms will *ceteris paribus* maintain a higher export share in the crisis.

To determine the impact of an increase in r_D on the optimal price of constrained exporters, we take the derivatives of LHS and RHS with respect to r_D . It is easy to see from equation (6), that LHS is decreasing in r_D , while RHS is increasing in r_D :

$$\frac{\partial LHS}{\partial r_D} = -p_j^{**}(a)^{-\sigma}\tau b_j ad(a)/\lambda < 0, \quad \text{and} \quad \frac{\partial RHS}{\partial r_D} = \frac{f_X b_j d(a)}{\theta_j Y P_j^{\sigma-1} \lambda} > 0.$$

Constrained exporters will increase their optimal price in response to an increase in r_D and this differential effect is stronger for more financially vulnerable firms:

$$\frac{\partial^2 LHS}{\partial r_D \partial d(a)} = -p_j^{**}(a)^{-\sigma} \tau b_j a/\lambda < 0, \quad \text{and} \quad \frac{\partial^2 RHS}{\partial r_D \partial d(a)} = \frac{f_X b_j}{\theta_j Y P_j^{\sigma-1} \lambda} > 0.$$

It follows by a similar argument as in Section A.1 that export quantities, export revenues, and export shares for constrained exporters decrease in response to an increase in r_D . Foreign-owned

firms' exports, in contrast, are unaffected by this shock as long as they can borrow at $r_F < r_D$. The resulting, differential effect is larger for financially vulnerable firms, in analogy to Proposition 1.

Interestingly, the optimal prices and quantities for unconstrained exporters also depend on the interest rate via the investor's participation constraint. This can be easily seen from the optimality conditions (3) and (4). Thus, if the r_D increases in the crisis, also unconstrained domestic exporters have to reduce their export revenues and shares. This prediction differs from the scenario where λ changes, and it implies a differential effect of the financial crisis across domestic and foreignowned firms' export shares also among highly productive firms.

B Empirical Appendix

B.1 Summary statistics

Table B.1: Summary statistics

Variable	Mean	Std. dev.	Min.	Max.	Observations
Export share (exports/sales)	0.206	0.278	0	1	15,628
Foreign	0.140	0.347	0	1	15,628
FinVul	0.462	0.478	0	7.963	12,488
Total debt/ assets	0.552	0.237	0	1.704	14,980
Newly issued debt/ assets	0.467	0.360	0	33.321	15,022
New debt from 'other' creditors/ assets	0.339	0.220	0	2.102	15,022
Interest rate on new debt	2.928	2.200	0	18	15,075
Interest rate on long-term debt	3.835	1.742	0	17	13,023
Exporter dummy	0.648	0.478	0	1	15,628
ln exports	14.653	2.754	1.561	22.558	10,121
Corporate group (2006)	0.353	0.478	0	1	12,575
Use parent network ₂₀₀₆	0.069	0.254	0	1	15,628
Use parent network $_t$	0.110	0.313	0	1	3,380
ln TFP	-0.102	0.279	-2.424	2.04	15,311
ln capital intensity	3.597	1.148	-8.981	10.657	15,371
ln R&D intensity	0.869	10.295	0	1241.3	15,595
ln skill intensity	10.251	0.389	7.897	12.117	15,569
Export share EU (2006)	0.469	0.432	0	1	12,495
Export share Latin America (2006)	0.032	0.108	0	1	12,495
Export share rest of OECD (2006)	0.061	0.152	0	1	12,495
Export share rest of world (2006)	0.068	0.172	0	1	12,495
Affiliates EU (2006)	0.109	0.312	0	1	12,620
Affiliates Latin America (2006)	0.052	0.221	0	1	12,620
Affiliates rest of OECD (2006)	0.040	0.195	0	1	12,620
Affiliates rest of world (2006)	0.034	0.182	0	1	12,620

B.2 Conditional foreign ownership premia

This Appendix reports OLS regressions of the export share on the foreign ownership dummy and the following set of control variables: size class fixed effects, distinguishing between six different size groups of firms in terms of their number of employees (≤20; 21–50; 51–100; 101–200; 201–500; >500); industry-size fixed effects (the former interacted with industry fixed effects); and two dummy variables indicating the types of good produced by the firm: final good or intermediate good (with the residual category being: undefined). All regressions use ESEE data for the year 2006, when direct questions on the types of good were included in the survey. Table B.2 summarizes the results. It shows that a highly significant foreign ownership premium of at least 6 percentage points prevails, even after conditioning on the combination of these control variables.

Table B.2: Conditional foreign ownership premia

	Dependent variable: Export share (exports/sales)					
	(1)	(2)	(3)	(4)	(5)	
Foreign	0.228***	0.113***	0.0607***	0.219***	0.0602***	
	(0.0158)	(0.0166)	(0.0165)	(0.0158)	(0.0164)	
Final good				-0.0949***	-0.0505***	
_				(0.0154)	(0.0152)	
Intermediate good				-0.0138	-0.00538	
				(0.0130)	(0.0125)	
Size fixed effects	no	yes	no	no	no	
Industry-size fixed effects	no	no	yes	no	yes	
Observations	2,020	2,020	2,018	2,011	2,009	
\mathbb{R}^2	0.093	0.211	0.355	0.110	0.359	

Notes: The table shows OLS estimates foreign ownership premia with the indicated control variables. The dependent variable is the export share. *Foreign* is a dummy variable indicating foreign ownership. *Final good* and *Intermediate good* are dummy variables indicating the type of good produced by the firm. Robust standard errors (in parentheses) are clustered at the firm level. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

B.3 Placebo analysis

We have used the debt service-to-sales ratio in 2008 to measure a firm's financial vulnerability in our main analysis. Notably, we have chosen this local measure because it accurately reflects the firm's financial conditions at the onset of the financial crisis. However, a skeptical reader might suspect that this particular timing could be driving our results. More precisely, it is at least conceivable that in any given year export shares diverge between firms that were more vs. less financially vulnerable in the preceding year. While the financial crisis came unexpected and its

timing can be considered random, our choice of measurement is not. To ensure that our findings indeed reflect the interaction between financial conditions and the crisis, and are not merely a statistical artifact of our choice of measurement, we run a series of placebo tests.

Table B.3: Placebo tests – Measuring financial vulnerability in different years

	Dependent variable: Export share (exports/sales)							
	2006	2007	2008	2009	2010	2011	2012	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
$Foreign \cdot FinVul \cdot Y_{2006}$	0.0343	0.0241	-0.0301	-0.0202*	-0.0101	0.00120	-0.000707	
	(0.0388)	(0.0280)	(0.0227)	(0.0108)	(0.0106)	(0.00708)	(0.00418)	
Foreign · FinVul · Y_{2007}	0.0420	0.0511*	-0.00975	0.0108	0.0103	0.0196	0.00880	
	(0.0352)	(0.0264)	(0.0200)	(0.0126)	(0.00834)	(0.0152)	(0.0101)	
Foreign \cdot FinVul \cdot Y ₂₀₀₈	0.0177	0.0233	-0.000947	0.0138	0.00989	0.00704	0.00442	
	(0.0338)	(0.0235)	(0.0178)	(0.0137)	(0.00734)	(0.00945)	(0.00726)	
Foreign \cdot FinVul \cdot Y ₂₀₀₉	0.115	0.207*	0.155***	0.0437	0.0415	0.0905	0.0425	
	(0.0749)	(0.116)	(0.0414)	(0.0356)	(0.0349)	(0.0690)	(0.0353)	
Foreign \cdot FinVul \cdot Y ₂₀₁₀	0.116	0.205*	0.149***	0.0331	0.0217	0.0584	0.0227	
	(0.101)	(0.121)	(0.0476)	(0.0395)	(0.0322)	(0.0674)	(0.0328)	
Foreign \cdot FinVul \cdot Y ₂₀₁₁	0.140	0.209*	0.138***	0.0482	0.0393	0.0972	0.0506	
	(0.106)	(0.119)	(0.0412)	(0.0403)	(0.0343)	(0.0687)	(0.0351)	
Foreign \cdot FinVul \cdot Y ₂₀₁₂	0.137	0.201	0.131***	0.102	0.0850	0.0941	0.0374	
	(0.133)	(0.133)	(0.0363)	(0.0772)	(0.0895)	(0.0991)	(0.0538)	
Observations	10,290	10,299	9,937	9,302	8,680	8,095	7,210	
R ² (within)	0.100	0.129	0.165	0.109	0.109	0.112	0.111	

Notes: The table shows PSR estimates of equation (10). The dependent variable is the export share. Foreign is a dummy variable indicating foreign ownership. FinVul is the financial vulnerability of the firm measured by the debt service-to-sales ratio in different years, as indicated in the table header for the the respective column. Y_t are year dummies. All estimations include the Foreign dummy, a full set of two-way interaction terms between Foreign, FinVul, and the year dummies, as well as firm fixed effects and industry-year fixed effects. Robust standard errors (in parentheses) are clustered at the firm level. *,**,*** denote significance at the 10%, 5%, 1% levels, respectively.

In these placebo tests, we measure a firm's financial vulnerability by the debt service-to-sales ratios in all possible years in our sample, ranging from 2006 to 2012. Table B.3 present the results of estimating equation (10) for these alternative measures of *FinVul* by the PSR estimator. Column (3) replicates the baseline results with measurement in 2008. Reassuringly, we see no significant differential effects subsequent to the respective year of measurement in any of the placebo regressions. Only the debt service-to-sales ratio in 2007 constitutes an alternative, valid proxy for financial vulnerability, which is plausibly exogenous to the crisis. The regression in column (2) shows that this measure also serves to confirm our main finding on the triple difference effect in 2009 and thereafter, though statistical significance is much weaker than for the preferred measure

from 2008. To a lesser extent, the same pattern is also visible in the point estimates for measurement in 2006 (column (1)). We are aware that measures of financial vulnerability based on later years (2010–2012) are endogenous to the crisis, hence we abstain from interpreting these regressions. The main insight from columns (4)–(7) is that the point estimates for the triple interaction effects show no suspicious pattern, while they are all insignificant. These non-results dispel any concerns related to the timing of our measurement of financial vulnerability.